softpipe: Remove unnecessary header.
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keith@tungstengraphics.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50 /**
51 * Triangle edge info
52 */
53 struct edge {
54 float dx; /**< X(v1) - X(v0), used only during setup */
55 float dy; /**< Y(v1) - Y(v0), used only during setup */
56 float dxdy; /**< dx/dy */
57 float sx, sy; /**< first sample point coord */
58 int lines; /**< number of lines on this edge */
59 };
60
61
62 #define MAX_QUADS 16
63
64
65 /**
66 * Triangle setup info (derived from draw_stage).
67 * Also used for line drawing (taking some liberties).
68 */
69 struct setup_context {
70 struct softpipe_context *softpipe;
71
72 /* Vertices are just an array of floats making up each attribute in
73 * turn. Currently fixed at 4 floats, but should change in time.
74 * Codegen will help cope with this.
75 */
76 const float (*vmax)[4];
77 const float (*vmid)[4];
78 const float (*vmin)[4];
79 const float (*vprovoke)[4];
80
81 struct edge ebot;
82 struct edge etop;
83 struct edge emaj;
84
85 float oneoverarea;
86 int facing;
87
88 float pixel_offset;
89
90 struct quad_header quad[MAX_QUADS];
91 struct quad_header *quad_ptrs[MAX_QUADS];
92 unsigned count;
93
94 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
95 struct tgsi_interp_coef posCoef; /* For Z, W */
96
97 struct {
98 int left[2]; /**< [0] = row0, [1] = row1 */
99 int right[2];
100 int y;
101 } span;
102
103 #if DEBUG_FRAGS
104 uint numFragsEmitted; /**< per primitive */
105 uint numFragsWritten; /**< per primitive */
106 #endif
107
108 unsigned winding; /* which winding to cull */
109 unsigned nr_vertex_attrs;
110 };
111
112
113
114
115 /**
116 * Do triangle cull test using tri determinant (sign indicates orientation)
117 * \return true if triangle is to be culled.
118 */
119 static INLINE boolean
120 cull_tri(const struct setup_context *setup, float det)
121 {
122 if (det != 0) {
123 /* if (det < 0 then Z points toward camera and triangle is
124 * counter-clockwise winding.
125 */
126 unsigned winding = (det < 0) ? PIPE_WINDING_CCW : PIPE_WINDING_CW;
127
128 if ((winding & setup->winding) == 0)
129 return FALSE;
130 }
131
132 /* Culled:
133 */
134 return TRUE;
135 }
136
137
138
139 /**
140 * Clip setup->quad against the scissor/surface bounds.
141 */
142 static INLINE void
143 quad_clip( struct setup_context *setup, struct quad_header *quad )
144 {
145 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
146 const int minx = (int) cliprect->minx;
147 const int maxx = (int) cliprect->maxx;
148 const int miny = (int) cliprect->miny;
149 const int maxy = (int) cliprect->maxy;
150
151 if (quad->input.x0 >= maxx ||
152 quad->input.y0 >= maxy ||
153 quad->input.x0 + 1 < minx ||
154 quad->input.y0 + 1 < miny) {
155 /* totally clipped */
156 quad->inout.mask = 0x0;
157 return;
158 }
159 if (quad->input.x0 < minx)
160 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
161 if (quad->input.y0 < miny)
162 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
163 if (quad->input.x0 == maxx - 1)
164 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
165 if (quad->input.y0 == maxy - 1)
166 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
167 }
168
169
170 /**
171 * Emit a quad (pass to next stage) with clipping.
172 */
173 static INLINE void
174 clip_emit_quad( struct setup_context *setup, struct quad_header *quad )
175 {
176 quad_clip( setup, quad );
177
178 if (quad->inout.mask) {
179 struct softpipe_context *sp = setup->softpipe;
180
181 sp->quad.first->run( sp->quad.first, &quad, 1 );
182 }
183 }
184
185
186
187 /**
188 * Given an X or Y coordinate, return the block/quad coordinate that it
189 * belongs to.
190 */
191 static INLINE int block( int x )
192 {
193 return x & ~(2-1);
194 }
195
196 static INLINE int block_x( int x )
197 {
198 return x & ~(16-1);
199 }
200
201
202 /**
203 * Render a horizontal span of quads
204 */
205 static void flush_spans( struct setup_context *setup )
206 {
207 const int step = 16;
208 const int xleft0 = setup->span.left[0];
209 const int xleft1 = setup->span.left[1];
210 const int xright0 = setup->span.right[0];
211 const int xright1 = setup->span.right[1];
212 struct quad_stage *pipe = setup->softpipe->quad.first;
213
214
215 int minleft = block_x(MIN2(xleft0, xleft1));
216 int maxright = MAX2(xright0, xright1);
217 int x;
218
219 for (x = minleft; x < maxright; x += step) {
220 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
221 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
222 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
223 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
224 unsigned lx = x;
225 unsigned q = 0;
226
227 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
228 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
229
230 /* These calculations fail when step == 32 and skip_right == 0.
231 */
232 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
233 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
234
235 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
236 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
237
238 if (mask0 | mask1) {
239 do {
240 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
241 if (quadmask) {
242 setup->quad[q].input.x0 = lx;
243 setup->quad[q].input.y0 = setup->span.y;
244 setup->quad[q].input.facing = setup->facing;
245 setup->quad[q].inout.mask = quadmask;
246 setup->quad_ptrs[q] = &setup->quad[q];
247 q++;
248 }
249 mask0 >>= 2;
250 mask1 >>= 2;
251 lx += 2;
252 } while (mask0 | mask1);
253
254 pipe->run( pipe, setup->quad_ptrs, q );
255 }
256 }
257
258
259 setup->span.y = 0;
260 setup->span.right[0] = 0;
261 setup->span.right[1] = 0;
262 setup->span.left[0] = 1000000; /* greater than right[0] */
263 setup->span.left[1] = 1000000; /* greater than right[1] */
264 }
265
266
267 #if DEBUG_VERTS
268 static void print_vertex(const struct setup_context *setup,
269 const float (*v)[4])
270 {
271 int i;
272 debug_printf(" Vertex: (%p)\n", (void *) v);
273 for (i = 0; i < setup->nr_vertex_attrs; i++) {
274 debug_printf(" %d: %f %f %f %f\n", i,
275 v[i][0], v[i][1], v[i][2], v[i][3]);
276 if (util_is_inf_or_nan(v[i][0])) {
277 debug_printf(" NaN!\n");
278 }
279 }
280 }
281 #endif
282
283 /**
284 * Sort the vertices from top to bottom order, setting up the triangle
285 * edge fields (ebot, emaj, etop).
286 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
287 */
288 static boolean setup_sort_vertices( struct setup_context *setup,
289 float det,
290 const float (*v0)[4],
291 const float (*v1)[4],
292 const float (*v2)[4] )
293 {
294 setup->vprovoke = v2;
295
296 /* determine bottom to top order of vertices */
297 {
298 float y0 = v0[0][1];
299 float y1 = v1[0][1];
300 float y2 = v2[0][1];
301 if (y0 <= y1) {
302 if (y1 <= y2) {
303 /* y0<=y1<=y2 */
304 setup->vmin = v0;
305 setup->vmid = v1;
306 setup->vmax = v2;
307 }
308 else if (y2 <= y0) {
309 /* y2<=y0<=y1 */
310 setup->vmin = v2;
311 setup->vmid = v0;
312 setup->vmax = v1;
313 }
314 else {
315 /* y0<=y2<=y1 */
316 setup->vmin = v0;
317 setup->vmid = v2;
318 setup->vmax = v1;
319 }
320 }
321 else {
322 if (y0 <= y2) {
323 /* y1<=y0<=y2 */
324 setup->vmin = v1;
325 setup->vmid = v0;
326 setup->vmax = v2;
327 }
328 else if (y2 <= y1) {
329 /* y2<=y1<=y0 */
330 setup->vmin = v2;
331 setup->vmid = v1;
332 setup->vmax = v0;
333 }
334 else {
335 /* y1<=y2<=y0 */
336 setup->vmin = v1;
337 setup->vmid = v2;
338 setup->vmax = v0;
339 }
340 }
341 }
342
343 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
344 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
345 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
346 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
347 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
348 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
349
350 /*
351 * Compute triangle's area. Use 1/area to compute partial
352 * derivatives of attributes later.
353 *
354 * The area will be the same as prim->det, but the sign may be
355 * different depending on how the vertices get sorted above.
356 *
357 * To determine whether the primitive is front or back facing we
358 * use the prim->det value because its sign is correct.
359 */
360 {
361 const float area = (setup->emaj.dx * setup->ebot.dy -
362 setup->ebot.dx * setup->emaj.dy);
363
364 setup->oneoverarea = 1.0f / area;
365
366 /*
367 debug_printf("%s one-over-area %f area %f det %f\n",
368 __FUNCTION__, setup->oneoverarea, area, det );
369 */
370 if (util_is_inf_or_nan(setup->oneoverarea))
371 return FALSE;
372 }
373
374 /* We need to know if this is a front or back-facing triangle for:
375 * - the GLSL gl_FrontFacing fragment attribute (bool)
376 * - two-sided stencil test
377 */
378 setup->facing =
379 ((det > 0.0) ^
380 (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW));
381
382 /* Prepare pixel offset for rasterisation:
383 * - pixel center (0.5, 0.5) for GL, or
384 * - assume (0.0, 0.0) for other APIs.
385 */
386 if (setup->softpipe->rasterizer->gl_rasterization_rules) {
387 setup->pixel_offset = 0.5f;
388 } else {
389 setup->pixel_offset = 0.0f;
390 }
391
392 return TRUE;
393 }
394
395
396 /**
397 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
398 * The value value comes from vertex[slot][i].
399 * The result will be put into setup->coef[slot].a0[i].
400 * \param slot which attribute slot
401 * \param i which component of the slot (0..3)
402 */
403 static void const_coeff( struct setup_context *setup,
404 struct tgsi_interp_coef *coef,
405 uint vertSlot, uint i)
406 {
407 assert(i <= 3);
408
409 coef->dadx[i] = 0;
410 coef->dady[i] = 0;
411
412 /* need provoking vertex info!
413 */
414 coef->a0[i] = setup->vprovoke[vertSlot][i];
415 }
416
417
418 /**
419 * Compute a0, dadx and dady for a linearly interpolated coefficient,
420 * for a triangle.
421 */
422 static void tri_linear_coeff( struct setup_context *setup,
423 struct tgsi_interp_coef *coef,
424 uint vertSlot, uint i)
425 {
426 float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i];
427 float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
428 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
429 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
430 float dadx = a * setup->oneoverarea;
431 float dady = b * setup->oneoverarea;
432
433 assert(i <= 3);
434
435 coef->dadx[i] = dadx;
436 coef->dady[i] = dady;
437
438 /* calculate a0 as the value which would be sampled for the
439 * fragment at (0,0), taking into account that we want to sample at
440 * pixel centers, in other words (pixel_offset, pixel_offset).
441 *
442 * this is neat but unfortunately not a good way to do things for
443 * triangles with very large values of dadx or dady as it will
444 * result in the subtraction and re-addition from a0 of a very
445 * large number, which means we'll end up loosing a lot of the
446 * fractional bits and precision from a0. the way to fix this is
447 * to define a0 as the sample at a pixel center somewhere near vmin
448 * instead - i'll switch to this later.
449 */
450 coef->a0[i] = (setup->vmin[vertSlot][i] -
451 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
452 dady * (setup->vmin[0][1] - setup->pixel_offset)));
453
454 /*
455 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
456 slot, "xyzw"[i],
457 setup->coef[slot].a0[i],
458 setup->coef[slot].dadx[i],
459 setup->coef[slot].dady[i]);
460 */
461 }
462
463
464 /**
465 * Compute a0, dadx and dady for a perspective-corrected interpolant,
466 * for a triangle.
467 * We basically multiply the vertex value by 1/w before computing
468 * the plane coefficients (a0, dadx, dady).
469 * Later, when we compute the value at a particular fragment position we'll
470 * divide the interpolated value by the interpolated W at that fragment.
471 */
472 static void tri_persp_coeff( struct setup_context *setup,
473 struct tgsi_interp_coef *coef,
474 uint vertSlot, uint i)
475 {
476 /* premultiply by 1/w (v[0][3] is always W):
477 */
478 float mina = setup->vmin[vertSlot][i] * setup->vmin[0][3];
479 float mida = setup->vmid[vertSlot][i] * setup->vmid[0][3];
480 float maxa = setup->vmax[vertSlot][i] * setup->vmax[0][3];
481 float botda = mida - mina;
482 float majda = maxa - mina;
483 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
484 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
485 float dadx = a * setup->oneoverarea;
486 float dady = b * setup->oneoverarea;
487
488 /*
489 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
490 setup->vmin[vertSlot][i],
491 setup->vmid[vertSlot][i],
492 setup->vmax[vertSlot][i]
493 );
494 */
495 assert(i <= 3);
496
497 coef->dadx[i] = dadx;
498 coef->dady[i] = dady;
499 coef->a0[i] = (mina -
500 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
501 dady * (setup->vmin[0][1] - setup->pixel_offset)));
502 }
503
504
505 /**
506 * Special coefficient setup for gl_FragCoord.
507 * X and Y are trivial, though Y has to be inverted for OpenGL.
508 * Z and W are copied from posCoef which should have already been computed.
509 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
510 */
511 static void
512 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
513 {
514 /*X*/
515 setup->coef[slot].a0[0] = 0;
516 setup->coef[slot].dadx[0] = 1.0;
517 setup->coef[slot].dady[0] = 0.0;
518 /*Y*/
519 setup->coef[slot].a0[1] = 0.0;
520 setup->coef[slot].dadx[1] = 0.0;
521 setup->coef[slot].dady[1] = 1.0;
522 /*Z*/
523 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
524 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
525 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
526 /*W*/
527 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
528 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
529 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
530 }
531
532
533
534 /**
535 * Compute the setup->coef[] array dadx, dady, a0 values.
536 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
537 */
538 static void setup_tri_coefficients( struct setup_context *setup )
539 {
540 struct softpipe_context *softpipe = setup->softpipe;
541 const struct sp_fragment_shader *spfs = softpipe->fs;
542 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
543 uint fragSlot;
544
545 /* z and w are done by linear interpolation:
546 */
547 tri_linear_coeff(setup, &setup->posCoef, 0, 2);
548 tri_linear_coeff(setup, &setup->posCoef, 0, 3);
549
550 /* setup interpolation for all the remaining attributes:
551 */
552 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
553 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
554 uint j;
555
556 switch (vinfo->attrib[fragSlot].interp_mode) {
557 case INTERP_CONSTANT:
558 for (j = 0; j < NUM_CHANNELS; j++)
559 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
560 break;
561 case INTERP_LINEAR:
562 for (j = 0; j < NUM_CHANNELS; j++)
563 tri_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
564 break;
565 case INTERP_PERSPECTIVE:
566 for (j = 0; j < NUM_CHANNELS; j++)
567 tri_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
568 break;
569 case INTERP_POS:
570 setup_fragcoord_coeff(setup, fragSlot);
571 break;
572 default:
573 assert(0);
574 }
575
576 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
577 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
578 setup->coef[fragSlot].dadx[0] = 0.0;
579 setup->coef[fragSlot].dady[0] = 0.0;
580 }
581 }
582 }
583
584
585
586 static void setup_tri_edges( struct setup_context *setup )
587 {
588 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
589 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
590
591 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
592 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
593 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
594
595 setup->emaj.sy = ceilf(vmin_y);
596 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
597 setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
598 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
599
600 setup->etop.sy = ceilf(vmid_y);
601 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
602 setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
603 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
604
605 setup->ebot.sy = ceilf(vmin_y);
606 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
607 setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
608 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
609 }
610
611
612 /**
613 * Render the upper or lower half of a triangle.
614 * Scissoring/cliprect is applied here too.
615 */
616 static void subtriangle( struct setup_context *setup,
617 struct edge *eleft,
618 struct edge *eright,
619 unsigned lines )
620 {
621 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
622 const int minx = (int) cliprect->minx;
623 const int maxx = (int) cliprect->maxx;
624 const int miny = (int) cliprect->miny;
625 const int maxy = (int) cliprect->maxy;
626 int y, start_y, finish_y;
627 int sy = (int)eleft->sy;
628
629 assert((int)eleft->sy == (int) eright->sy);
630
631 /* clip top/bottom */
632 start_y = sy;
633 if (start_y < miny)
634 start_y = miny;
635
636 finish_y = sy + lines;
637 if (finish_y > maxy)
638 finish_y = maxy;
639
640 start_y -= sy;
641 finish_y -= sy;
642
643 /*
644 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
645 */
646
647 for (y = start_y; y < finish_y; y++) {
648
649 /* avoid accumulating adds as floats don't have the precision to
650 * accurately iterate large triangle edges that way. luckily we
651 * can just multiply these days.
652 *
653 * this is all drowned out by the attribute interpolation anyway.
654 */
655 int left = (int)(eleft->sx + y * eleft->dxdy);
656 int right = (int)(eright->sx + y * eright->dxdy);
657
658 /* clip left/right */
659 if (left < minx)
660 left = minx;
661 if (right > maxx)
662 right = maxx;
663
664 if (left < right) {
665 int _y = sy + y;
666 if (block(_y) != setup->span.y) {
667 flush_spans(setup);
668 setup->span.y = block(_y);
669 }
670
671 setup->span.left[_y&1] = left;
672 setup->span.right[_y&1] = right;
673 }
674 }
675
676
677 /* save the values so that emaj can be restarted:
678 */
679 eleft->sx += lines * eleft->dxdy;
680 eright->sx += lines * eright->dxdy;
681 eleft->sy += lines;
682 eright->sy += lines;
683 }
684
685
686 /**
687 * Recalculate prim's determinant. This is needed as we don't have
688 * get this information through the vbuf_render interface & we must
689 * calculate it here.
690 */
691 static float
692 calc_det( const float (*v0)[4],
693 const float (*v1)[4],
694 const float (*v2)[4] )
695 {
696 /* edge vectors e = v0 - v2, f = v1 - v2 */
697 const float ex = v0[0][0] - v2[0][0];
698 const float ey = v0[0][1] - v2[0][1];
699 const float fx = v1[0][0] - v2[0][0];
700 const float fy = v1[0][1] - v2[0][1];
701
702 /* det = cross(e,f).z */
703 return ex * fy - ey * fx;
704 }
705
706
707 /**
708 * Do setup for triangle rasterization, then render the triangle.
709 */
710 void sp_setup_tri( struct setup_context *setup,
711 const float (*v0)[4],
712 const float (*v1)[4],
713 const float (*v2)[4] )
714 {
715 float det;
716
717 #if DEBUG_VERTS
718 debug_printf("Setup triangle:\n");
719 print_vertex(setup, v0);
720 print_vertex(setup, v1);
721 print_vertex(setup, v2);
722 #endif
723
724 if (setup->softpipe->no_rast)
725 return;
726
727 det = calc_det(v0, v1, v2);
728 /*
729 debug_printf("%s\n", __FUNCTION__ );
730 */
731
732 #if DEBUG_FRAGS
733 setup->numFragsEmitted = 0;
734 setup->numFragsWritten = 0;
735 #endif
736
737 if (cull_tri( setup, det ))
738 return;
739
740 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
741 return;
742 setup_tri_coefficients( setup );
743 setup_tri_edges( setup );
744
745 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
746
747 setup->span.y = 0;
748 setup->span.right[0] = 0;
749 setup->span.right[1] = 0;
750 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
751
752 /* init_constant_attribs( setup ); */
753
754 if (setup->oneoverarea < 0.0) {
755 /* emaj on left:
756 */
757 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
758 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
759 }
760 else {
761 /* emaj on right:
762 */
763 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
764 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
765 }
766
767 flush_spans( setup );
768
769 #if DEBUG_FRAGS
770 printf("Tri: %u frags emitted, %u written\n",
771 setup->numFragsEmitted,
772 setup->numFragsWritten);
773 #endif
774 }
775
776
777
778 /**
779 * Compute a0, dadx and dady for a linearly interpolated coefficient,
780 * for a line.
781 */
782 static void
783 line_linear_coeff(const struct setup_context *setup,
784 struct tgsi_interp_coef *coef,
785 uint vertSlot, uint i)
786 {
787 const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
788 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
789 const float dady = da * setup->emaj.dy * setup->oneoverarea;
790 coef->dadx[i] = dadx;
791 coef->dady[i] = dady;
792 coef->a0[i] = (setup->vmin[vertSlot][i] -
793 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
794 dady * (setup->vmin[0][1] - setup->pixel_offset)));
795 }
796
797
798 /**
799 * Compute a0, dadx and dady for a perspective-corrected interpolant,
800 * for a line.
801 */
802 static void
803 line_persp_coeff(const struct setup_context *setup,
804 struct tgsi_interp_coef *coef,
805 uint vertSlot, uint i)
806 {
807 /* XXX double-check/verify this arithmetic */
808 const float a0 = setup->vmin[vertSlot][i] * setup->vmin[0][3];
809 const float a1 = setup->vmax[vertSlot][i] * setup->vmax[0][3];
810 const float da = a1 - a0;
811 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
812 const float dady = da * setup->emaj.dy * setup->oneoverarea;
813 coef->dadx[i] = dadx;
814 coef->dady[i] = dady;
815 coef->a0[i] = (setup->vmin[vertSlot][i] -
816 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
817 dady * (setup->vmin[0][1] - setup->pixel_offset)));
818 }
819
820
821 /**
822 * Compute the setup->coef[] array dadx, dady, a0 values.
823 * Must be called after setup->vmin,vmax are initialized.
824 */
825 static INLINE boolean
826 setup_line_coefficients(struct setup_context *setup,
827 const float (*v0)[4],
828 const float (*v1)[4])
829 {
830 struct softpipe_context *softpipe = setup->softpipe;
831 const struct sp_fragment_shader *spfs = softpipe->fs;
832 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
833 uint fragSlot;
834 float area;
835
836 /* use setup->vmin, vmax to point to vertices */
837 if (softpipe->rasterizer->flatshade_first)
838 setup->vprovoke = v0;
839 else
840 setup->vprovoke = v1;
841 setup->vmin = v0;
842 setup->vmax = v1;
843
844 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
845 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
846
847 /* NOTE: this is not really area but something proportional to it */
848 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
849 if (area == 0.0f || util_is_inf_or_nan(area))
850 return FALSE;
851 setup->oneoverarea = 1.0f / area;
852
853 /* z and w are done by linear interpolation:
854 */
855 line_linear_coeff(setup, &setup->posCoef, 0, 2);
856 line_linear_coeff(setup, &setup->posCoef, 0, 3);
857
858 /* setup interpolation for all the remaining attributes:
859 */
860 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
861 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
862 uint j;
863
864 switch (vinfo->attrib[fragSlot].interp_mode) {
865 case INTERP_CONSTANT:
866 for (j = 0; j < NUM_CHANNELS; j++)
867 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
868 break;
869 case INTERP_LINEAR:
870 for (j = 0; j < NUM_CHANNELS; j++)
871 line_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
872 break;
873 case INTERP_PERSPECTIVE:
874 for (j = 0; j < NUM_CHANNELS; j++)
875 line_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
876 break;
877 case INTERP_POS:
878 setup_fragcoord_coeff(setup, fragSlot);
879 break;
880 default:
881 assert(0);
882 }
883
884 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
885 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
886 setup->coef[fragSlot].dadx[0] = 0.0;
887 setup->coef[fragSlot].dady[0] = 0.0;
888 }
889 }
890 return TRUE;
891 }
892
893
894 /**
895 * Plot a pixel in a line segment.
896 */
897 static INLINE void
898 plot(struct setup_context *setup, int x, int y)
899 {
900 const int iy = y & 1;
901 const int ix = x & 1;
902 const int quadX = x - ix;
903 const int quadY = y - iy;
904 const int mask = (1 << ix) << (2 * iy);
905
906 if (quadX != setup->quad[0].input.x0 ||
907 quadY != setup->quad[0].input.y0)
908 {
909 /* flush prev quad, start new quad */
910
911 if (setup->quad[0].input.x0 != -1)
912 clip_emit_quad( setup, &setup->quad[0] );
913
914 setup->quad[0].input.x0 = quadX;
915 setup->quad[0].input.y0 = quadY;
916 setup->quad[0].inout.mask = 0x0;
917 }
918
919 setup->quad[0].inout.mask |= mask;
920 }
921
922
923 /**
924 * Do setup for line rasterization, then render the line.
925 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
926 * to handle stippling and wide lines.
927 */
928 void
929 sp_setup_line(struct setup_context *setup,
930 const float (*v0)[4],
931 const float (*v1)[4])
932 {
933 int x0 = (int) v0[0][0];
934 int x1 = (int) v1[0][0];
935 int y0 = (int) v0[0][1];
936 int y1 = (int) v1[0][1];
937 int dx = x1 - x0;
938 int dy = y1 - y0;
939 int xstep, ystep;
940
941 #if DEBUG_VERTS
942 debug_printf("Setup line:\n");
943 print_vertex(setup, v0);
944 print_vertex(setup, v1);
945 #endif
946
947 if (setup->softpipe->no_rast)
948 return;
949
950 if (dx == 0 && dy == 0)
951 return;
952
953 if (!setup_line_coefficients(setup, v0, v1))
954 return;
955
956 assert(v0[0][0] < 1.0e9);
957 assert(v0[0][1] < 1.0e9);
958 assert(v1[0][0] < 1.0e9);
959 assert(v1[0][1] < 1.0e9);
960
961 if (dx < 0) {
962 dx = -dx; /* make positive */
963 xstep = -1;
964 }
965 else {
966 xstep = 1;
967 }
968
969 if (dy < 0) {
970 dy = -dy; /* make positive */
971 ystep = -1;
972 }
973 else {
974 ystep = 1;
975 }
976
977 assert(dx >= 0);
978 assert(dy >= 0);
979 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
980
981 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
982 setup->quad[0].inout.mask = 0x0;
983
984 /* XXX temporary: set coverage to 1.0 so the line appears
985 * if AA mode happens to be enabled.
986 */
987 setup->quad[0].input.coverage[0] =
988 setup->quad[0].input.coverage[1] =
989 setup->quad[0].input.coverage[2] =
990 setup->quad[0].input.coverage[3] = 1.0;
991
992 if (dx > dy) {
993 /*** X-major line ***/
994 int i;
995 const int errorInc = dy + dy;
996 int error = errorInc - dx;
997 const int errorDec = error - dx;
998
999 for (i = 0; i < dx; i++) {
1000 plot(setup, x0, y0);
1001
1002 x0 += xstep;
1003 if (error < 0) {
1004 error += errorInc;
1005 }
1006 else {
1007 error += errorDec;
1008 y0 += ystep;
1009 }
1010 }
1011 }
1012 else {
1013 /*** Y-major line ***/
1014 int i;
1015 const int errorInc = dx + dx;
1016 int error = errorInc - dy;
1017 const int errorDec = error - dy;
1018
1019 for (i = 0; i < dy; i++) {
1020 plot(setup, x0, y0);
1021
1022 y0 += ystep;
1023 if (error < 0) {
1024 error += errorInc;
1025 }
1026 else {
1027 error += errorDec;
1028 x0 += xstep;
1029 }
1030 }
1031 }
1032
1033 /* draw final quad */
1034 if (setup->quad[0].inout.mask) {
1035 clip_emit_quad( setup, &setup->quad[0] );
1036 }
1037 }
1038
1039
1040 static void
1041 point_persp_coeff(const struct setup_context *setup,
1042 const float (*vert)[4],
1043 struct tgsi_interp_coef *coef,
1044 uint vertSlot, uint i)
1045 {
1046 assert(i <= 3);
1047 coef->dadx[i] = 0.0F;
1048 coef->dady[i] = 0.0F;
1049 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1050 }
1051
1052
1053 /**
1054 * Do setup for point rasterization, then render the point.
1055 * Round or square points...
1056 * XXX could optimize a lot for 1-pixel points.
1057 */
1058 void
1059 sp_setup_point( struct setup_context *setup,
1060 const float (*v0)[4] )
1061 {
1062 struct softpipe_context *softpipe = setup->softpipe;
1063 const struct sp_fragment_shader *spfs = softpipe->fs;
1064 const int sizeAttr = setup->softpipe->psize_slot;
1065 const float size
1066 = sizeAttr > 0 ? v0[sizeAttr][0]
1067 : setup->softpipe->rasterizer->point_size;
1068 const float halfSize = 0.5F * size;
1069 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1070 const float x = v0[0][0]; /* Note: data[0] is always position */
1071 const float y = v0[0][1];
1072 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1073 uint fragSlot;
1074
1075 #if DEBUG_VERTS
1076 debug_printf("Setup point:\n");
1077 print_vertex(setup, v0);
1078 #endif
1079
1080 if (softpipe->no_rast)
1081 return;
1082
1083 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1084
1085 /* For points, all interpolants are constant-valued.
1086 * However, for point sprites, we'll need to setup texcoords appropriately.
1087 * XXX: which coefficients are the texcoords???
1088 * We may do point sprites as textured quads...
1089 *
1090 * KW: We don't know which coefficients are texcoords - ultimately
1091 * the choice of what interpolation mode to use for each attribute
1092 * should be determined by the fragment program, using
1093 * per-attribute declaration statements that include interpolation
1094 * mode as a parameter. So either the fragment program will have
1095 * to be adjusted for pointsprite vs normal point behaviour, or
1096 * otherwise a special interpolation mode will have to be defined
1097 * which matches the required behaviour for point sprites. But -
1098 * the latter is not a feature of normal hardware, and as such
1099 * probably should be ruled out on that basis.
1100 */
1101 setup->vprovoke = v0;
1102
1103 /* setup Z, W */
1104 const_coeff(setup, &setup->posCoef, 0, 2);
1105 const_coeff(setup, &setup->posCoef, 0, 3);
1106
1107 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
1108 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1109 uint j;
1110
1111 switch (vinfo->attrib[fragSlot].interp_mode) {
1112 case INTERP_CONSTANT:
1113 /* fall-through */
1114 case INTERP_LINEAR:
1115 for (j = 0; j < NUM_CHANNELS; j++)
1116 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1117 break;
1118 case INTERP_PERSPECTIVE:
1119 for (j = 0; j < NUM_CHANNELS; j++)
1120 point_persp_coeff(setup, setup->vprovoke,
1121 &setup->coef[fragSlot], vertSlot, j);
1122 break;
1123 case INTERP_POS:
1124 setup_fragcoord_coeff(setup, fragSlot);
1125 break;
1126 default:
1127 assert(0);
1128 }
1129
1130 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1131 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
1132 setup->coef[fragSlot].dadx[0] = 0.0;
1133 setup->coef[fragSlot].dady[0] = 0.0;
1134 }
1135 }
1136
1137
1138 if (halfSize <= 0.5 && !round) {
1139 /* special case for 1-pixel points */
1140 const int ix = ((int) x) & 1;
1141 const int iy = ((int) y) & 1;
1142 setup->quad[0].input.x0 = (int) x - ix;
1143 setup->quad[0].input.y0 = (int) y - iy;
1144 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1145 clip_emit_quad( setup, &setup->quad[0] );
1146 }
1147 else {
1148 if (round) {
1149 /* rounded points */
1150 const int ixmin = block((int) (x - halfSize));
1151 const int ixmax = block((int) (x + halfSize));
1152 const int iymin = block((int) (y - halfSize));
1153 const int iymax = block((int) (y + halfSize));
1154 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1155 const float rmax = halfSize + 0.7071F;
1156 const float rmin2 = MAX2(0.0F, rmin * rmin);
1157 const float rmax2 = rmax * rmax;
1158 const float cscale = 1.0F / (rmax2 - rmin2);
1159 int ix, iy;
1160
1161 for (iy = iymin; iy <= iymax; iy += 2) {
1162 for (ix = ixmin; ix <= ixmax; ix += 2) {
1163 float dx, dy, dist2, cover;
1164
1165 setup->quad[0].inout.mask = 0x0;
1166
1167 dx = (ix + 0.5f) - x;
1168 dy = (iy + 0.5f) - y;
1169 dist2 = dx * dx + dy * dy;
1170 if (dist2 <= rmax2) {
1171 cover = 1.0F - (dist2 - rmin2) * cscale;
1172 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1173 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1174 }
1175
1176 dx = (ix + 1.5f) - x;
1177 dy = (iy + 0.5f) - y;
1178 dist2 = dx * dx + dy * dy;
1179 if (dist2 <= rmax2) {
1180 cover = 1.0F - (dist2 - rmin2) * cscale;
1181 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1182 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1183 }
1184
1185 dx = (ix + 0.5f) - x;
1186 dy = (iy + 1.5f) - y;
1187 dist2 = dx * dx + dy * dy;
1188 if (dist2 <= rmax2) {
1189 cover = 1.0F - (dist2 - rmin2) * cscale;
1190 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1191 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1192 }
1193
1194 dx = (ix + 1.5f) - x;
1195 dy = (iy + 1.5f) - y;
1196 dist2 = dx * dx + dy * dy;
1197 if (dist2 <= rmax2) {
1198 cover = 1.0F - (dist2 - rmin2) * cscale;
1199 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1200 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1201 }
1202
1203 if (setup->quad[0].inout.mask) {
1204 setup->quad[0].input.x0 = ix;
1205 setup->quad[0].input.y0 = iy;
1206 clip_emit_quad( setup, &setup->quad[0] );
1207 }
1208 }
1209 }
1210 }
1211 else {
1212 /* square points */
1213 const int xmin = (int) (x + 0.75 - halfSize);
1214 const int ymin = (int) (y + 0.25 - halfSize);
1215 const int xmax = xmin + (int) size;
1216 const int ymax = ymin + (int) size;
1217 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1218 const int ixmin = block(xmin);
1219 const int ixmax = block(xmax - 1);
1220 const int iymin = block(ymin);
1221 const int iymax = block(ymax - 1);
1222 int ix, iy;
1223
1224 /*
1225 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1226 */
1227 for (iy = iymin; iy <= iymax; iy += 2) {
1228 uint rowMask = 0xf;
1229 if (iy < ymin) {
1230 /* above the top edge */
1231 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1232 }
1233 if (iy + 1 >= ymax) {
1234 /* below the bottom edge */
1235 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1236 }
1237
1238 for (ix = ixmin; ix <= ixmax; ix += 2) {
1239 uint mask = rowMask;
1240
1241 if (ix < xmin) {
1242 /* fragment is past left edge of point, turn off left bits */
1243 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1244 }
1245 if (ix + 1 >= xmax) {
1246 /* past the right edge */
1247 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1248 }
1249
1250 setup->quad[0].inout.mask = mask;
1251 setup->quad[0].input.x0 = ix;
1252 setup->quad[0].input.y0 = iy;
1253 clip_emit_quad( setup, &setup->quad[0] );
1254 }
1255 }
1256 }
1257 }
1258 }
1259
1260 void sp_setup_prepare( struct setup_context *setup )
1261 {
1262 struct softpipe_context *sp = setup->softpipe;
1263
1264 if (sp->dirty) {
1265 softpipe_update_derived(sp);
1266 }
1267
1268 /* Note: nr_attrs is only used for debugging (vertex printing) */
1269 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1270
1271 sp->quad.first->begin( sp->quad.first );
1272
1273 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1274 sp->rasterizer->fill_cw == PIPE_POLYGON_MODE_FILL &&
1275 sp->rasterizer->fill_ccw == PIPE_POLYGON_MODE_FILL) {
1276 /* we'll do culling */
1277 setup->winding = sp->rasterizer->cull_mode;
1278 }
1279 else {
1280 /* 'draw' will do culling */
1281 setup->winding = PIPE_WINDING_NONE;
1282 }
1283 }
1284
1285
1286
1287 void sp_setup_destroy_context( struct setup_context *setup )
1288 {
1289 FREE( setup );
1290 }
1291
1292
1293 /**
1294 * Create a new primitive setup/render stage.
1295 */
1296 struct setup_context *sp_setup_create_context( struct softpipe_context *softpipe )
1297 {
1298 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1299 unsigned i;
1300
1301 setup->softpipe = softpipe;
1302
1303 for (i = 0; i < MAX_QUADS; i++) {
1304 setup->quad[i].coef = setup->coef;
1305 setup->quad[i].posCoef = &setup->posCoef;
1306 }
1307
1308 setup->span.left[0] = 1000000; /* greater than right[0] */
1309 setup->span.left[1] = 1000000; /* greater than right[1] */
1310
1311 return setup;
1312 }
1313