draw: implement pipeline statistics in the draw module
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keith@tungstengraphics.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50
51 /**
52 * Triangle edge info
53 */
54 struct edge {
55 float dx; /**< X(v1) - X(v0), used only during setup */
56 float dy; /**< Y(v1) - Y(v0), used only during setup */
57 float dxdy; /**< dx/dy */
58 float sx, sy; /**< first sample point coord */
59 int lines; /**< number of lines on this edge */
60 };
61
62
63 /**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68 #define MAX_QUADS 16
69
70
71 /**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75 struct setup_context {
76 struct softpipe_context *softpipe;
77
78 /* Vertices are just an array of floats making up each attribute in
79 * turn. Currently fixed at 4 floats, but should change in time.
80 * Codegen will help cope with this.
81 */
82 const float (*vmax)[4];
83 const float (*vmid)[4];
84 const float (*vmin)[4];
85 const float (*vprovoke)[4];
86
87 struct edge ebot;
88 struct edge etop;
89 struct edge emaj;
90
91 float oneoverarea;
92 int facing;
93
94 float pixel_offset;
95
96 struct quad_header quad[MAX_QUADS];
97 struct quad_header *quad_ptrs[MAX_QUADS];
98 unsigned count;
99
100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101 struct tgsi_interp_coef posCoef; /* For Z, W */
102
103 struct {
104 int left[2]; /**< [0] = row0, [1] = row1 */
105 int right[2];
106 int y;
107 } span;
108
109 #if DEBUG_FRAGS
110 uint numFragsEmitted; /**< per primitive */
111 uint numFragsWritten; /**< per primitive */
112 #endif
113
114 unsigned cull_face; /* which faces cull */
115 unsigned nr_vertex_attrs;
116 };
117
118
119
120
121
122
123
124 /**
125 * Clip setup->quad against the scissor/surface bounds.
126 */
127 static INLINE void
128 quad_clip(struct setup_context *setup, struct quad_header *quad)
129 {
130 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
131 const int minx = (int) cliprect->minx;
132 const int maxx = (int) cliprect->maxx;
133 const int miny = (int) cliprect->miny;
134 const int maxy = (int) cliprect->maxy;
135
136 if (quad->input.x0 >= maxx ||
137 quad->input.y0 >= maxy ||
138 quad->input.x0 + 1 < minx ||
139 quad->input.y0 + 1 < miny) {
140 /* totally clipped */
141 quad->inout.mask = 0x0;
142 return;
143 }
144 if (quad->input.x0 < minx)
145 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
146 if (quad->input.y0 < miny)
147 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
148 if (quad->input.x0 == maxx - 1)
149 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
150 if (quad->input.y0 == maxy - 1)
151 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
152 }
153
154
155 /**
156 * Emit a quad (pass to next stage) with clipping.
157 */
158 static INLINE void
159 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
160 {
161 quad_clip( setup, quad );
162
163 if (quad->inout.mask) {
164 struct softpipe_context *sp = setup->softpipe;
165
166 #if DEBUG_FRAGS
167 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
168 #endif
169
170 sp->quad.first->run( sp->quad.first, &quad, 1 );
171 }
172 }
173
174
175
176 /**
177 * Given an X or Y coordinate, return the block/quad coordinate that it
178 * belongs to.
179 */
180 static INLINE int
181 block(int x)
182 {
183 return x & ~(2-1);
184 }
185
186
187 static INLINE int
188 block_x(int x)
189 {
190 return x & ~(16-1);
191 }
192
193
194 /**
195 * Render a horizontal span of quads
196 */
197 static void
198 flush_spans(struct setup_context *setup)
199 {
200 const int step = MAX_QUADS;
201 const int xleft0 = setup->span.left[0];
202 const int xleft1 = setup->span.left[1];
203 const int xright0 = setup->span.right[0];
204 const int xright1 = setup->span.right[1];
205 struct quad_stage *pipe = setup->softpipe->quad.first;
206
207 const int minleft = block_x(MIN2(xleft0, xleft1));
208 const int maxright = MAX2(xright0, xright1);
209 int x;
210
211 /* process quads in horizontal chunks of 16 */
212 for (x = minleft; x < maxright; x += step) {
213 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
214 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
215 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
216 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
217 unsigned lx = x;
218 unsigned q = 0;
219
220 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
221 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
222
223 /* These calculations fail when step == 32 and skip_right == 0.
224 */
225 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
226 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
227
228 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
229 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
230
231 if (mask0 | mask1) {
232 do {
233 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
234 if (quadmask) {
235 setup->quad[q].input.x0 = lx;
236 setup->quad[q].input.y0 = setup->span.y;
237 setup->quad[q].input.facing = setup->facing;
238 setup->quad[q].inout.mask = quadmask;
239 setup->quad_ptrs[q] = &setup->quad[q];
240 q++;
241 #if DEBUG_FRAGS
242 setup->numFragsEmitted += util_bitcount(quadmask);
243 #endif
244 }
245 mask0 >>= 2;
246 mask1 >>= 2;
247 lx += 2;
248 } while (mask0 | mask1);
249
250 pipe->run( pipe, setup->quad_ptrs, q );
251 }
252 }
253
254
255 setup->span.y = 0;
256 setup->span.right[0] = 0;
257 setup->span.right[1] = 0;
258 setup->span.left[0] = 1000000; /* greater than right[0] */
259 setup->span.left[1] = 1000000; /* greater than right[1] */
260 }
261
262
263 #if DEBUG_VERTS
264 static void
265 print_vertex(const struct setup_context *setup,
266 const float (*v)[4])
267 {
268 int i;
269 debug_printf(" Vertex: (%p)\n", (void *) v);
270 for (i = 0; i < setup->nr_vertex_attrs; i++) {
271 debug_printf(" %d: %f %f %f %f\n", i,
272 v[i][0], v[i][1], v[i][2], v[i][3]);
273 if (util_is_inf_or_nan(v[i][0])) {
274 debug_printf(" NaN!\n");
275 }
276 }
277 }
278 #endif
279
280
281 /**
282 * Sort the vertices from top to bottom order, setting up the triangle
283 * edge fields (ebot, emaj, etop).
284 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
285 */
286 static boolean
287 setup_sort_vertices(struct setup_context *setup,
288 float det,
289 const float (*v0)[4],
290 const float (*v1)[4],
291 const float (*v2)[4])
292 {
293 if (setup->softpipe->rasterizer->flatshade_first)
294 setup->vprovoke = v0;
295 else
296 setup->vprovoke = v2;
297
298 /* determine bottom to top order of vertices */
299 {
300 float y0 = v0[0][1];
301 float y1 = v1[0][1];
302 float y2 = v2[0][1];
303 if (y0 <= y1) {
304 if (y1 <= y2) {
305 /* y0<=y1<=y2 */
306 setup->vmin = v0;
307 setup->vmid = v1;
308 setup->vmax = v2;
309 }
310 else if (y2 <= y0) {
311 /* y2<=y0<=y1 */
312 setup->vmin = v2;
313 setup->vmid = v0;
314 setup->vmax = v1;
315 }
316 else {
317 /* y0<=y2<=y1 */
318 setup->vmin = v0;
319 setup->vmid = v2;
320 setup->vmax = v1;
321 }
322 }
323 else {
324 if (y0 <= y2) {
325 /* y1<=y0<=y2 */
326 setup->vmin = v1;
327 setup->vmid = v0;
328 setup->vmax = v2;
329 }
330 else if (y2 <= y1) {
331 /* y2<=y1<=y0 */
332 setup->vmin = v2;
333 setup->vmid = v1;
334 setup->vmax = v0;
335 }
336 else {
337 /* y1<=y2<=y0 */
338 setup->vmin = v1;
339 setup->vmid = v2;
340 setup->vmax = v0;
341 }
342 }
343 }
344
345 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
346 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
347 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
348 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
349 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
350 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
351
352 /*
353 * Compute triangle's area. Use 1/area to compute partial
354 * derivatives of attributes later.
355 *
356 * The area will be the same as prim->det, but the sign may be
357 * different depending on how the vertices get sorted above.
358 *
359 * To determine whether the primitive is front or back facing we
360 * use the prim->det value because its sign is correct.
361 */
362 {
363 const float area = (setup->emaj.dx * setup->ebot.dy -
364 setup->ebot.dx * setup->emaj.dy);
365
366 setup->oneoverarea = 1.0f / area;
367
368 /*
369 debug_printf("%s one-over-area %f area %f det %f\n",
370 __FUNCTION__, setup->oneoverarea, area, det );
371 */
372 if (util_is_inf_or_nan(setup->oneoverarea))
373 return FALSE;
374 }
375
376 /* We need to know if this is a front or back-facing triangle for:
377 * - the GLSL gl_FrontFacing fragment attribute (bool)
378 * - two-sided stencil test
379 * 0 = front-facing, 1 = back-facing
380 */
381 setup->facing =
382 ((det < 0.0) ^
383 (setup->softpipe->rasterizer->front_ccw));
384
385 {
386 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
387
388 if (face & setup->cull_face)
389 return FALSE;
390 }
391
392
393 /* Prepare pixel offset for rasterisation:
394 * - pixel center (0.5, 0.5) for GL, or
395 * - assume (0.0, 0.0) for other APIs.
396 */
397 if (setup->softpipe->rasterizer->gl_rasterization_rules) {
398 setup->pixel_offset = 0.5f;
399 } else {
400 setup->pixel_offset = 0.0f;
401 }
402
403 return TRUE;
404 }
405
406
407 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
408 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
409 * Some combinations of coordinates produce invalid results,
410 * but this behaviour is acceptable.
411 */
412 static void
413 tri_apply_cylindrical_wrap(float v0,
414 float v1,
415 float v2,
416 uint cylindrical_wrap,
417 float output[3])
418 {
419 if (cylindrical_wrap) {
420 float delta;
421
422 delta = v1 - v0;
423 if (delta > 0.5f) {
424 v0 += 1.0f;
425 }
426 else if (delta < -0.5f) {
427 v1 += 1.0f;
428 }
429
430 delta = v2 - v1;
431 if (delta > 0.5f) {
432 v1 += 1.0f;
433 }
434 else if (delta < -0.5f) {
435 v2 += 1.0f;
436 }
437
438 delta = v0 - v2;
439 if (delta > 0.5f) {
440 v2 += 1.0f;
441 }
442 else if (delta < -0.5f) {
443 v0 += 1.0f;
444 }
445 }
446
447 output[0] = v0;
448 output[1] = v1;
449 output[2] = v2;
450 }
451
452
453 /**
454 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
455 * The value value comes from vertex[slot][i].
456 * The result will be put into setup->coef[slot].a0[i].
457 * \param slot which attribute slot
458 * \param i which component of the slot (0..3)
459 */
460 static void
461 const_coeff(struct setup_context *setup,
462 struct tgsi_interp_coef *coef,
463 uint vertSlot, uint i)
464 {
465 assert(i <= 3);
466
467 coef->dadx[i] = 0;
468 coef->dady[i] = 0;
469
470 /* need provoking vertex info!
471 */
472 coef->a0[i] = setup->vprovoke[vertSlot][i];
473 }
474
475
476 /**
477 * Compute a0, dadx and dady for a linearly interpolated coefficient,
478 * for a triangle.
479 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
480 */
481 static void
482 tri_linear_coeff(struct setup_context *setup,
483 struct tgsi_interp_coef *coef,
484 uint i,
485 const float v[3])
486 {
487 float botda = v[1] - v[0];
488 float majda = v[2] - v[0];
489 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
490 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
491 float dadx = a * setup->oneoverarea;
492 float dady = b * setup->oneoverarea;
493
494 assert(i <= 3);
495
496 coef->dadx[i] = dadx;
497 coef->dady[i] = dady;
498
499 /* calculate a0 as the value which would be sampled for the
500 * fragment at (0,0), taking into account that we want to sample at
501 * pixel centers, in other words (pixel_offset, pixel_offset).
502 *
503 * this is neat but unfortunately not a good way to do things for
504 * triangles with very large values of dadx or dady as it will
505 * result in the subtraction and re-addition from a0 of a very
506 * large number, which means we'll end up loosing a lot of the
507 * fractional bits and precision from a0. the way to fix this is
508 * to define a0 as the sample at a pixel center somewhere near vmin
509 * instead - i'll switch to this later.
510 */
511 coef->a0[i] = (v[0] -
512 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
513 dady * (setup->vmin[0][1] - setup->pixel_offset)));
514
515 /*
516 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
517 slot, "xyzw"[i],
518 setup->coef[slot].a0[i],
519 setup->coef[slot].dadx[i],
520 setup->coef[slot].dady[i]);
521 */
522 }
523
524
525 /**
526 * Compute a0, dadx and dady for a perspective-corrected interpolant,
527 * for a triangle.
528 * We basically multiply the vertex value by 1/w before computing
529 * the plane coefficients (a0, dadx, dady).
530 * Later, when we compute the value at a particular fragment position we'll
531 * divide the interpolated value by the interpolated W at that fragment.
532 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
533 */
534 static void
535 tri_persp_coeff(struct setup_context *setup,
536 struct tgsi_interp_coef *coef,
537 uint i,
538 const float v[3])
539 {
540 /* premultiply by 1/w (v[0][3] is always W):
541 */
542 float mina = v[0] * setup->vmin[0][3];
543 float mida = v[1] * setup->vmid[0][3];
544 float maxa = v[2] * setup->vmax[0][3];
545 float botda = mida - mina;
546 float majda = maxa - mina;
547 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
548 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
549 float dadx = a * setup->oneoverarea;
550 float dady = b * setup->oneoverarea;
551
552 /*
553 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
554 setup->vmin[vertSlot][i],
555 setup->vmid[vertSlot][i],
556 setup->vmax[vertSlot][i]
557 );
558 */
559 assert(i <= 3);
560
561 coef->dadx[i] = dadx;
562 coef->dady[i] = dady;
563 coef->a0[i] = (mina -
564 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
565 dady * (setup->vmin[0][1] - setup->pixel_offset)));
566 }
567
568
569 /**
570 * Special coefficient setup for gl_FragCoord.
571 * X and Y are trivial, though Y may have to be inverted for OpenGL.
572 * Z and W are copied from posCoef which should have already been computed.
573 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
574 */
575 static void
576 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
577 {
578 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
579
580 /*X*/
581 setup->coef[slot].a0[0] = fsInfo->pixel_center_integer ? 0.0f : 0.5f;
582 setup->coef[slot].dadx[0] = 1.0f;
583 setup->coef[slot].dady[0] = 0.0f;
584 /*Y*/
585 setup->coef[slot].a0[1] =
586 (fsInfo->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
587 + (fsInfo->pixel_center_integer ? 0.0f : 0.5f);
588 setup->coef[slot].dadx[1] = 0.0f;
589 setup->coef[slot].dady[1] = fsInfo->origin_lower_left ? -1.0f : 1.0f;
590 /*Z*/
591 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
592 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
593 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
594 /*W*/
595 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
596 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
597 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
598 }
599
600
601
602 /**
603 * Compute the setup->coef[] array dadx, dady, a0 values.
604 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
605 */
606 static void
607 setup_tri_coefficients(struct setup_context *setup)
608 {
609 struct softpipe_context *softpipe = setup->softpipe;
610 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
611 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
612 uint fragSlot;
613 float v[3];
614
615 /* z and w are done by linear interpolation:
616 */
617 v[0] = setup->vmin[0][2];
618 v[1] = setup->vmid[0][2];
619 v[2] = setup->vmax[0][2];
620 tri_linear_coeff(setup, &setup->posCoef, 2, v);
621
622 v[0] = setup->vmin[0][3];
623 v[1] = setup->vmid[0][3];
624 v[2] = setup->vmax[0][3];
625 tri_linear_coeff(setup, &setup->posCoef, 3, v);
626
627 /* setup interpolation for all the remaining attributes:
628 */
629 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
630 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
631 uint j;
632
633 switch (vinfo->attrib[fragSlot].interp_mode) {
634 case INTERP_CONSTANT:
635 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
636 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
637 break;
638 case INTERP_LINEAR:
639 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
640 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
641 setup->vmid[vertSlot][j],
642 setup->vmax[vertSlot][j],
643 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
644 v);
645 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
646 }
647 break;
648 case INTERP_PERSPECTIVE:
649 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
650 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
651 setup->vmid[vertSlot][j],
652 setup->vmax[vertSlot][j],
653 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
654 v);
655 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
656 }
657 break;
658 case INTERP_POS:
659 setup_fragcoord_coeff(setup, fragSlot);
660 break;
661 default:
662 assert(0);
663 }
664
665 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
666 /* convert 0 to 1.0 and 1 to -1.0 */
667 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
668 setup->coef[fragSlot].dadx[0] = 0.0;
669 setup->coef[fragSlot].dady[0] = 0.0;
670 }
671 }
672 }
673
674
675 static void
676 setup_tri_edges(struct setup_context *setup)
677 {
678 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
679 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
680
681 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
682 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
683 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
684
685 setup->emaj.sy = ceilf(vmin_y);
686 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
687 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
688 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
689
690 setup->etop.sy = ceilf(vmid_y);
691 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
692 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
693 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
694
695 setup->ebot.sy = ceilf(vmin_y);
696 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
697 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
698 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
699 }
700
701
702 /**
703 * Render the upper or lower half of a triangle.
704 * Scissoring/cliprect is applied here too.
705 */
706 static void
707 subtriangle(struct setup_context *setup,
708 struct edge *eleft,
709 struct edge *eright,
710 int lines)
711 {
712 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
713 const int minx = (int) cliprect->minx;
714 const int maxx = (int) cliprect->maxx;
715 const int miny = (int) cliprect->miny;
716 const int maxy = (int) cliprect->maxy;
717 int y, start_y, finish_y;
718 int sy = (int)eleft->sy;
719
720 assert((int)eleft->sy == (int) eright->sy);
721 assert(lines >= 0);
722
723 /* clip top/bottom */
724 start_y = sy;
725 if (start_y < miny)
726 start_y = miny;
727
728 finish_y = sy + lines;
729 if (finish_y > maxy)
730 finish_y = maxy;
731
732 start_y -= sy;
733 finish_y -= sy;
734
735 /*
736 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
737 */
738
739 for (y = start_y; y < finish_y; y++) {
740
741 /* avoid accumulating adds as floats don't have the precision to
742 * accurately iterate large triangle edges that way. luckily we
743 * can just multiply these days.
744 *
745 * this is all drowned out by the attribute interpolation anyway.
746 */
747 int left = (int)(eleft->sx + y * eleft->dxdy);
748 int right = (int)(eright->sx + y * eright->dxdy);
749
750 /* clip left/right */
751 if (left < minx)
752 left = minx;
753 if (right > maxx)
754 right = maxx;
755
756 if (left < right) {
757 int _y = sy + y;
758 if (block(_y) != setup->span.y) {
759 flush_spans(setup);
760 setup->span.y = block(_y);
761 }
762
763 setup->span.left[_y&1] = left;
764 setup->span.right[_y&1] = right;
765 }
766 }
767
768
769 /* save the values so that emaj can be restarted:
770 */
771 eleft->sx += lines * eleft->dxdy;
772 eright->sx += lines * eright->dxdy;
773 eleft->sy += lines;
774 eright->sy += lines;
775 }
776
777
778 /**
779 * Recalculate prim's determinant. This is needed as we don't have
780 * get this information through the vbuf_render interface & we must
781 * calculate it here.
782 */
783 static float
784 calc_det(const float (*v0)[4],
785 const float (*v1)[4],
786 const float (*v2)[4])
787 {
788 /* edge vectors e = v0 - v2, f = v1 - v2 */
789 const float ex = v0[0][0] - v2[0][0];
790 const float ey = v0[0][1] - v2[0][1];
791 const float fx = v1[0][0] - v2[0][0];
792 const float fy = v1[0][1] - v2[0][1];
793
794 /* det = cross(e,f).z */
795 return ex * fy - ey * fx;
796 }
797
798
799 /**
800 * Do setup for triangle rasterization, then render the triangle.
801 */
802 void
803 sp_setup_tri(struct setup_context *setup,
804 const float (*v0)[4],
805 const float (*v1)[4],
806 const float (*v2)[4])
807 {
808 float det;
809
810 #if DEBUG_VERTS
811 debug_printf("Setup triangle:\n");
812 print_vertex(setup, v0);
813 print_vertex(setup, v1);
814 print_vertex(setup, v2);
815 #endif
816
817 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
818 return;
819
820 det = calc_det(v0, v1, v2);
821 /*
822 debug_printf("%s\n", __FUNCTION__ );
823 */
824
825 #if DEBUG_FRAGS
826 setup->numFragsEmitted = 0;
827 setup->numFragsWritten = 0;
828 #endif
829
830 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
831 return;
832
833 setup_tri_coefficients( setup );
834 setup_tri_edges( setup );
835
836 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
837
838 setup->span.y = 0;
839 setup->span.right[0] = 0;
840 setup->span.right[1] = 0;
841 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
842
843 /* init_constant_attribs( setup ); */
844
845 if (setup->oneoverarea < 0.0) {
846 /* emaj on left:
847 */
848 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
849 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
850 }
851 else {
852 /* emaj on right:
853 */
854 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
855 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
856 }
857
858 flush_spans( setup );
859
860 if (setup->softpipe->active_statistics_queries) {
861 setup->softpipe->pipeline_statistics.c_primitives++;
862 }
863
864 #if DEBUG_FRAGS
865 printf("Tri: %u frags emitted, %u written\n",
866 setup->numFragsEmitted,
867 setup->numFragsWritten);
868 #endif
869 }
870
871
872 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
873 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
874 */
875 static void
876 line_apply_cylindrical_wrap(float v0,
877 float v1,
878 uint cylindrical_wrap,
879 float output[2])
880 {
881 if (cylindrical_wrap) {
882 float delta;
883
884 delta = v1 - v0;
885 if (delta > 0.5f) {
886 v0 += 1.0f;
887 }
888 else if (delta < -0.5f) {
889 v1 += 1.0f;
890 }
891 }
892
893 output[0] = v0;
894 output[1] = v1;
895 }
896
897
898 /**
899 * Compute a0, dadx and dady for a linearly interpolated coefficient,
900 * for a line.
901 * v[0] and v[1] are vmin and vmax, respectively.
902 */
903 static void
904 line_linear_coeff(const struct setup_context *setup,
905 struct tgsi_interp_coef *coef,
906 uint i,
907 const float v[2])
908 {
909 const float da = v[1] - v[0];
910 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
911 const float dady = da * setup->emaj.dy * setup->oneoverarea;
912 coef->dadx[i] = dadx;
913 coef->dady[i] = dady;
914 coef->a0[i] = (v[0] -
915 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
916 dady * (setup->vmin[0][1] - setup->pixel_offset)));
917 }
918
919
920 /**
921 * Compute a0, dadx and dady for a perspective-corrected interpolant,
922 * for a line.
923 * v[0] and v[1] are vmin and vmax, respectively.
924 */
925 static void
926 line_persp_coeff(const struct setup_context *setup,
927 struct tgsi_interp_coef *coef,
928 uint i,
929 const float v[2])
930 {
931 const float a0 = v[0] * setup->vmin[0][3];
932 const float a1 = v[1] * setup->vmax[0][3];
933 const float da = a1 - a0;
934 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
935 const float dady = da * setup->emaj.dy * setup->oneoverarea;
936 coef->dadx[i] = dadx;
937 coef->dady[i] = dady;
938 coef->a0[i] = (a0 -
939 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
940 dady * (setup->vmin[0][1] - setup->pixel_offset)));
941 }
942
943
944 /**
945 * Compute the setup->coef[] array dadx, dady, a0 values.
946 * Must be called after setup->vmin,vmax are initialized.
947 */
948 static boolean
949 setup_line_coefficients(struct setup_context *setup,
950 const float (*v0)[4],
951 const float (*v1)[4])
952 {
953 struct softpipe_context *softpipe = setup->softpipe;
954 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
955 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
956 uint fragSlot;
957 float area;
958 float v[2];
959
960 /* use setup->vmin, vmax to point to vertices */
961 if (softpipe->rasterizer->flatshade_first)
962 setup->vprovoke = v0;
963 else
964 setup->vprovoke = v1;
965 setup->vmin = v0;
966 setup->vmax = v1;
967
968 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
969 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
970
971 /* NOTE: this is not really area but something proportional to it */
972 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
973 if (area == 0.0f || util_is_inf_or_nan(area))
974 return FALSE;
975 setup->oneoverarea = 1.0f / area;
976
977 /* z and w are done by linear interpolation:
978 */
979 v[0] = setup->vmin[0][2];
980 v[1] = setup->vmax[0][2];
981 line_linear_coeff(setup, &setup->posCoef, 2, v);
982
983 v[0] = setup->vmin[0][3];
984 v[1] = setup->vmax[0][3];
985 line_linear_coeff(setup, &setup->posCoef, 3, v);
986
987 /* setup interpolation for all the remaining attributes:
988 */
989 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
990 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
991 uint j;
992
993 switch (vinfo->attrib[fragSlot].interp_mode) {
994 case INTERP_CONSTANT:
995 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
996 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
997 break;
998 case INTERP_LINEAR:
999 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1000 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1001 setup->vmax[vertSlot][j],
1002 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1003 v);
1004 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1005 }
1006 break;
1007 case INTERP_PERSPECTIVE:
1008 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1009 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1010 setup->vmax[vertSlot][j],
1011 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1012 v);
1013 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1014 }
1015 break;
1016 case INTERP_POS:
1017 setup_fragcoord_coeff(setup, fragSlot);
1018 break;
1019 default:
1020 assert(0);
1021 }
1022
1023 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1024 /* convert 0 to 1.0 and 1 to -1.0 */
1025 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1026 setup->coef[fragSlot].dadx[0] = 0.0;
1027 setup->coef[fragSlot].dady[0] = 0.0;
1028 }
1029 }
1030 return TRUE;
1031 }
1032
1033
1034 /**
1035 * Plot a pixel in a line segment.
1036 */
1037 static INLINE void
1038 plot(struct setup_context *setup, int x, int y)
1039 {
1040 const int iy = y & 1;
1041 const int ix = x & 1;
1042 const int quadX = x - ix;
1043 const int quadY = y - iy;
1044 const int mask = (1 << ix) << (2 * iy);
1045
1046 if (quadX != setup->quad[0].input.x0 ||
1047 quadY != setup->quad[0].input.y0)
1048 {
1049 /* flush prev quad, start new quad */
1050
1051 if (setup->quad[0].input.x0 != -1)
1052 clip_emit_quad( setup, &setup->quad[0] );
1053
1054 setup->quad[0].input.x0 = quadX;
1055 setup->quad[0].input.y0 = quadY;
1056 setup->quad[0].inout.mask = 0x0;
1057 }
1058
1059 setup->quad[0].inout.mask |= mask;
1060 }
1061
1062
1063 /**
1064 * Do setup for line rasterization, then render the line.
1065 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1066 * to handle stippling and wide lines.
1067 */
1068 void
1069 sp_setup_line(struct setup_context *setup,
1070 const float (*v0)[4],
1071 const float (*v1)[4])
1072 {
1073 int x0 = (int) v0[0][0];
1074 int x1 = (int) v1[0][0];
1075 int y0 = (int) v0[0][1];
1076 int y1 = (int) v1[0][1];
1077 int dx = x1 - x0;
1078 int dy = y1 - y0;
1079 int xstep, ystep;
1080
1081 #if DEBUG_VERTS
1082 debug_printf("Setup line:\n");
1083 print_vertex(setup, v0);
1084 print_vertex(setup, v1);
1085 #endif
1086
1087 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1088 return;
1089
1090 if (dx == 0 && dy == 0)
1091 return;
1092
1093 if (!setup_line_coefficients(setup, v0, v1))
1094 return;
1095
1096 assert(v0[0][0] < 1.0e9);
1097 assert(v0[0][1] < 1.0e9);
1098 assert(v1[0][0] < 1.0e9);
1099 assert(v1[0][1] < 1.0e9);
1100
1101 if (dx < 0) {
1102 dx = -dx; /* make positive */
1103 xstep = -1;
1104 }
1105 else {
1106 xstep = 1;
1107 }
1108
1109 if (dy < 0) {
1110 dy = -dy; /* make positive */
1111 ystep = -1;
1112 }
1113 else {
1114 ystep = 1;
1115 }
1116
1117 assert(dx >= 0);
1118 assert(dy >= 0);
1119 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1120
1121 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1122 setup->quad[0].inout.mask = 0x0;
1123
1124 /* XXX temporary: set coverage to 1.0 so the line appears
1125 * if AA mode happens to be enabled.
1126 */
1127 setup->quad[0].input.coverage[0] =
1128 setup->quad[0].input.coverage[1] =
1129 setup->quad[0].input.coverage[2] =
1130 setup->quad[0].input.coverage[3] = 1.0;
1131
1132 if (dx > dy) {
1133 /*** X-major line ***/
1134 int i;
1135 const int errorInc = dy + dy;
1136 int error = errorInc - dx;
1137 const int errorDec = error - dx;
1138
1139 for (i = 0; i < dx; i++) {
1140 plot(setup, x0, y0);
1141
1142 x0 += xstep;
1143 if (error < 0) {
1144 error += errorInc;
1145 }
1146 else {
1147 error += errorDec;
1148 y0 += ystep;
1149 }
1150 }
1151 }
1152 else {
1153 /*** Y-major line ***/
1154 int i;
1155 const int errorInc = dx + dx;
1156 int error = errorInc - dy;
1157 const int errorDec = error - dy;
1158
1159 for (i = 0; i < dy; i++) {
1160 plot(setup, x0, y0);
1161
1162 y0 += ystep;
1163 if (error < 0) {
1164 error += errorInc;
1165 }
1166 else {
1167 error += errorDec;
1168 x0 += xstep;
1169 }
1170 }
1171 }
1172
1173 /* draw final quad */
1174 if (setup->quad[0].inout.mask) {
1175 clip_emit_quad( setup, &setup->quad[0] );
1176 }
1177 }
1178
1179
1180 static void
1181 point_persp_coeff(const struct setup_context *setup,
1182 const float (*vert)[4],
1183 struct tgsi_interp_coef *coef,
1184 uint vertSlot, uint i)
1185 {
1186 assert(i <= 3);
1187 coef->dadx[i] = 0.0F;
1188 coef->dady[i] = 0.0F;
1189 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1190 }
1191
1192
1193 /**
1194 * Do setup for point rasterization, then render the point.
1195 * Round or square points...
1196 * XXX could optimize a lot for 1-pixel points.
1197 */
1198 void
1199 sp_setup_point(struct setup_context *setup,
1200 const float (*v0)[4])
1201 {
1202 struct softpipe_context *softpipe = setup->softpipe;
1203 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1204 const int sizeAttr = setup->softpipe->psize_slot;
1205 const float size
1206 = sizeAttr > 0 ? v0[sizeAttr][0]
1207 : setup->softpipe->rasterizer->point_size;
1208 const float halfSize = 0.5F * size;
1209 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1210 const float x = v0[0][0]; /* Note: data[0] is always position */
1211 const float y = v0[0][1];
1212 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1213 uint fragSlot;
1214
1215 #if DEBUG_VERTS
1216 debug_printf("Setup point:\n");
1217 print_vertex(setup, v0);
1218 #endif
1219
1220 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1221 return;
1222
1223 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1224
1225 /* For points, all interpolants are constant-valued.
1226 * However, for point sprites, we'll need to setup texcoords appropriately.
1227 * XXX: which coefficients are the texcoords???
1228 * We may do point sprites as textured quads...
1229 *
1230 * KW: We don't know which coefficients are texcoords - ultimately
1231 * the choice of what interpolation mode to use for each attribute
1232 * should be determined by the fragment program, using
1233 * per-attribute declaration statements that include interpolation
1234 * mode as a parameter. So either the fragment program will have
1235 * to be adjusted for pointsprite vs normal point behaviour, or
1236 * otherwise a special interpolation mode will have to be defined
1237 * which matches the required behaviour for point sprites. But -
1238 * the latter is not a feature of normal hardware, and as such
1239 * probably should be ruled out on that basis.
1240 */
1241 setup->vprovoke = v0;
1242
1243 /* setup Z, W */
1244 const_coeff(setup, &setup->posCoef, 0, 2);
1245 const_coeff(setup, &setup->posCoef, 0, 3);
1246
1247 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1248 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1249 uint j;
1250
1251 switch (vinfo->attrib[fragSlot].interp_mode) {
1252 case INTERP_CONSTANT:
1253 /* fall-through */
1254 case INTERP_LINEAR:
1255 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1256 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1257 break;
1258 case INTERP_PERSPECTIVE:
1259 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1260 point_persp_coeff(setup, setup->vprovoke,
1261 &setup->coef[fragSlot], vertSlot, j);
1262 break;
1263 case INTERP_POS:
1264 setup_fragcoord_coeff(setup, fragSlot);
1265 break;
1266 default:
1267 assert(0);
1268 }
1269
1270 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1271 /* convert 0 to 1.0 and 1 to -1.0 */
1272 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1273 setup->coef[fragSlot].dadx[0] = 0.0;
1274 setup->coef[fragSlot].dady[0] = 0.0;
1275 }
1276 }
1277
1278
1279 if (halfSize <= 0.5 && !round) {
1280 /* special case for 1-pixel points */
1281 const int ix = ((int) x) & 1;
1282 const int iy = ((int) y) & 1;
1283 setup->quad[0].input.x0 = (int) x - ix;
1284 setup->quad[0].input.y0 = (int) y - iy;
1285 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1286 clip_emit_quad( setup, &setup->quad[0] );
1287 }
1288 else {
1289 if (round) {
1290 /* rounded points */
1291 const int ixmin = block((int) (x - halfSize));
1292 const int ixmax = block((int) (x + halfSize));
1293 const int iymin = block((int) (y - halfSize));
1294 const int iymax = block((int) (y + halfSize));
1295 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1296 const float rmax = halfSize + 0.7071F;
1297 const float rmin2 = MAX2(0.0F, rmin * rmin);
1298 const float rmax2 = rmax * rmax;
1299 const float cscale = 1.0F / (rmax2 - rmin2);
1300 int ix, iy;
1301
1302 for (iy = iymin; iy <= iymax; iy += 2) {
1303 for (ix = ixmin; ix <= ixmax; ix += 2) {
1304 float dx, dy, dist2, cover;
1305
1306 setup->quad[0].inout.mask = 0x0;
1307
1308 dx = (ix + 0.5f) - x;
1309 dy = (iy + 0.5f) - y;
1310 dist2 = dx * dx + dy * dy;
1311 if (dist2 <= rmax2) {
1312 cover = 1.0F - (dist2 - rmin2) * cscale;
1313 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1314 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1315 }
1316
1317 dx = (ix + 1.5f) - x;
1318 dy = (iy + 0.5f) - y;
1319 dist2 = dx * dx + dy * dy;
1320 if (dist2 <= rmax2) {
1321 cover = 1.0F - (dist2 - rmin2) * cscale;
1322 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1323 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1324 }
1325
1326 dx = (ix + 0.5f) - x;
1327 dy = (iy + 1.5f) - y;
1328 dist2 = dx * dx + dy * dy;
1329 if (dist2 <= rmax2) {
1330 cover = 1.0F - (dist2 - rmin2) * cscale;
1331 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1332 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1333 }
1334
1335 dx = (ix + 1.5f) - x;
1336 dy = (iy + 1.5f) - y;
1337 dist2 = dx * dx + dy * dy;
1338 if (dist2 <= rmax2) {
1339 cover = 1.0F - (dist2 - rmin2) * cscale;
1340 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1341 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1342 }
1343
1344 if (setup->quad[0].inout.mask) {
1345 setup->quad[0].input.x0 = ix;
1346 setup->quad[0].input.y0 = iy;
1347 clip_emit_quad( setup, &setup->quad[0] );
1348 }
1349 }
1350 }
1351 }
1352 else {
1353 /* square points */
1354 const int xmin = (int) (x + 0.75 - halfSize);
1355 const int ymin = (int) (y + 0.25 - halfSize);
1356 const int xmax = xmin + (int) size;
1357 const int ymax = ymin + (int) size;
1358 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1359 const int ixmin = block(xmin);
1360 const int ixmax = block(xmax - 1);
1361 const int iymin = block(ymin);
1362 const int iymax = block(ymax - 1);
1363 int ix, iy;
1364
1365 /*
1366 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1367 */
1368 for (iy = iymin; iy <= iymax; iy += 2) {
1369 uint rowMask = 0xf;
1370 if (iy < ymin) {
1371 /* above the top edge */
1372 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1373 }
1374 if (iy + 1 >= ymax) {
1375 /* below the bottom edge */
1376 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1377 }
1378
1379 for (ix = ixmin; ix <= ixmax; ix += 2) {
1380 uint mask = rowMask;
1381
1382 if (ix < xmin) {
1383 /* fragment is past left edge of point, turn off left bits */
1384 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1385 }
1386 if (ix + 1 >= xmax) {
1387 /* past the right edge */
1388 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1389 }
1390
1391 setup->quad[0].inout.mask = mask;
1392 setup->quad[0].input.x0 = ix;
1393 setup->quad[0].input.y0 = iy;
1394 clip_emit_quad( setup, &setup->quad[0] );
1395 }
1396 }
1397 }
1398 }
1399 }
1400
1401
1402 /**
1403 * Called by vbuf code just before we start buffering primitives.
1404 */
1405 void
1406 sp_setup_prepare(struct setup_context *setup)
1407 {
1408 struct softpipe_context *sp = setup->softpipe;
1409
1410 if (sp->dirty) {
1411 softpipe_update_derived(sp, sp->reduced_api_prim);
1412 }
1413
1414 /* Note: nr_attrs is only used for debugging (vertex printing) */
1415 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1416
1417 sp->quad.first->begin( sp->quad.first );
1418
1419 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1420 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1421 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1422 /* we'll do culling */
1423 setup->cull_face = sp->rasterizer->cull_face;
1424 }
1425 else {
1426 /* 'draw' will do culling */
1427 setup->cull_face = PIPE_FACE_NONE;
1428 }
1429 }
1430
1431
1432 void
1433 sp_setup_destroy_context(struct setup_context *setup)
1434 {
1435 FREE( setup );
1436 }
1437
1438
1439 /**
1440 * Create a new primitive setup/render stage.
1441 */
1442 struct setup_context *
1443 sp_setup_create_context(struct softpipe_context *softpipe)
1444 {
1445 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1446 unsigned i;
1447
1448 setup->softpipe = softpipe;
1449
1450 for (i = 0; i < MAX_QUADS; i++) {
1451 setup->quad[i].coef = setup->coef;
1452 setup->quad[i].posCoef = &setup->posCoef;
1453 }
1454
1455 setup->span.left[0] = 1000000; /* greater than right[0] */
1456 setup->span.left[1] = 1000000; /* greater than right[1] */
1457
1458 return setup;
1459 }