softpipe: support all TGSI fragment coord conventions (v4)
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keith@tungstengraphics.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50 /**
51 * Triangle edge info
52 */
53 struct edge {
54 float dx; /**< X(v1) - X(v0), used only during setup */
55 float dy; /**< Y(v1) - Y(v0), used only during setup */
56 float dxdy; /**< dx/dy */
57 float sx, sy; /**< first sample point coord */
58 int lines; /**< number of lines on this edge */
59 };
60
61
62 #define MAX_QUADS 16
63
64
65 /**
66 * Triangle setup info (derived from draw_stage).
67 * Also used for line drawing (taking some liberties).
68 */
69 struct setup_context {
70 struct softpipe_context *softpipe;
71
72 /* Vertices are just an array of floats making up each attribute in
73 * turn. Currently fixed at 4 floats, but should change in time.
74 * Codegen will help cope with this.
75 */
76 const float (*vmax)[4];
77 const float (*vmid)[4];
78 const float (*vmin)[4];
79 const float (*vprovoke)[4];
80
81 struct edge ebot;
82 struct edge etop;
83 struct edge emaj;
84
85 float oneoverarea;
86 int facing;
87
88 float pixel_offset;
89
90 struct quad_header quad[MAX_QUADS];
91 struct quad_header *quad_ptrs[MAX_QUADS];
92 unsigned count;
93
94 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
95 struct tgsi_interp_coef posCoef; /* For Z, W */
96
97 struct {
98 int left[2]; /**< [0] = row0, [1] = row1 */
99 int right[2];
100 int y;
101 } span;
102
103 #if DEBUG_FRAGS
104 uint numFragsEmitted; /**< per primitive */
105 uint numFragsWritten; /**< per primitive */
106 #endif
107
108 unsigned winding; /* which winding to cull */
109 unsigned nr_vertex_attrs;
110 };
111
112
113
114
115 /**
116 * Do triangle cull test using tri determinant (sign indicates orientation)
117 * \return true if triangle is to be culled.
118 */
119 static INLINE boolean
120 cull_tri(const struct setup_context *setup, float det)
121 {
122 if (det != 0) {
123 /* if (det < 0 then Z points toward camera and triangle is
124 * counter-clockwise winding.
125 */
126 unsigned winding = (det < 0) ? PIPE_WINDING_CCW : PIPE_WINDING_CW;
127
128 if ((winding & setup->winding) == 0)
129 return FALSE;
130 }
131
132 /* Culled:
133 */
134 return TRUE;
135 }
136
137
138
139 /**
140 * Clip setup->quad against the scissor/surface bounds.
141 */
142 static INLINE void
143 quad_clip( struct setup_context *setup, struct quad_header *quad )
144 {
145 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
146 const int minx = (int) cliprect->minx;
147 const int maxx = (int) cliprect->maxx;
148 const int miny = (int) cliprect->miny;
149 const int maxy = (int) cliprect->maxy;
150
151 if (quad->input.x0 >= maxx ||
152 quad->input.y0 >= maxy ||
153 quad->input.x0 + 1 < minx ||
154 quad->input.y0 + 1 < miny) {
155 /* totally clipped */
156 quad->inout.mask = 0x0;
157 return;
158 }
159 if (quad->input.x0 < minx)
160 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
161 if (quad->input.y0 < miny)
162 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
163 if (quad->input.x0 == maxx - 1)
164 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
165 if (quad->input.y0 == maxy - 1)
166 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
167 }
168
169
170 /**
171 * Emit a quad (pass to next stage) with clipping.
172 */
173 static INLINE void
174 clip_emit_quad( struct setup_context *setup, struct quad_header *quad )
175 {
176 quad_clip( setup, quad );
177
178 if (quad->inout.mask) {
179 struct softpipe_context *sp = setup->softpipe;
180
181 sp->quad.first->run( sp->quad.first, &quad, 1 );
182 }
183 }
184
185
186
187 /**
188 * Given an X or Y coordinate, return the block/quad coordinate that it
189 * belongs to.
190 */
191 static INLINE int block( int x )
192 {
193 return x & ~(2-1);
194 }
195
196 static INLINE int block_x( int x )
197 {
198 return x & ~(16-1);
199 }
200
201
202 /**
203 * Render a horizontal span of quads
204 */
205 static void flush_spans( struct setup_context *setup )
206 {
207 const int step = 16;
208 const int xleft0 = setup->span.left[0];
209 const int xleft1 = setup->span.left[1];
210 const int xright0 = setup->span.right[0];
211 const int xright1 = setup->span.right[1];
212 struct quad_stage *pipe = setup->softpipe->quad.first;
213
214
215 int minleft = block_x(MIN2(xleft0, xleft1));
216 int maxright = MAX2(xright0, xright1);
217 int x;
218
219 for (x = minleft; x < maxright; x += step) {
220 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
221 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
222 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
223 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
224 unsigned lx = x;
225 unsigned q = 0;
226
227 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
228 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
229
230 /* These calculations fail when step == 32 and skip_right == 0.
231 */
232 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
233 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
234
235 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
236 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
237
238 if (mask0 | mask1) {
239 do {
240 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
241 if (quadmask) {
242 setup->quad[q].input.x0 = lx;
243 setup->quad[q].input.y0 = setup->span.y;
244 setup->quad[q].input.facing = setup->facing;
245 setup->quad[q].inout.mask = quadmask;
246 setup->quad_ptrs[q] = &setup->quad[q];
247 q++;
248 }
249 mask0 >>= 2;
250 mask1 >>= 2;
251 lx += 2;
252 } while (mask0 | mask1);
253
254 pipe->run( pipe, setup->quad_ptrs, q );
255 }
256 }
257
258
259 setup->span.y = 0;
260 setup->span.right[0] = 0;
261 setup->span.right[1] = 0;
262 setup->span.left[0] = 1000000; /* greater than right[0] */
263 setup->span.left[1] = 1000000; /* greater than right[1] */
264 }
265
266
267 #if DEBUG_VERTS
268 static void print_vertex(const struct setup_context *setup,
269 const float (*v)[4])
270 {
271 int i;
272 debug_printf(" Vertex: (%p)\n", (void *) v);
273 for (i = 0; i < setup->nr_vertex_attrs; i++) {
274 debug_printf(" %d: %f %f %f %f\n", i,
275 v[i][0], v[i][1], v[i][2], v[i][3]);
276 if (util_is_inf_or_nan(v[i][0])) {
277 debug_printf(" NaN!\n");
278 }
279 }
280 }
281 #endif
282
283 /**
284 * Sort the vertices from top to bottom order, setting up the triangle
285 * edge fields (ebot, emaj, etop).
286 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
287 */
288 static boolean setup_sort_vertices( struct setup_context *setup,
289 float det,
290 const float (*v0)[4],
291 const float (*v1)[4],
292 const float (*v2)[4] )
293 {
294 setup->vprovoke = v2;
295
296 /* determine bottom to top order of vertices */
297 {
298 float y0 = v0[0][1];
299 float y1 = v1[0][1];
300 float y2 = v2[0][1];
301 if (y0 <= y1) {
302 if (y1 <= y2) {
303 /* y0<=y1<=y2 */
304 setup->vmin = v0;
305 setup->vmid = v1;
306 setup->vmax = v2;
307 }
308 else if (y2 <= y0) {
309 /* y2<=y0<=y1 */
310 setup->vmin = v2;
311 setup->vmid = v0;
312 setup->vmax = v1;
313 }
314 else {
315 /* y0<=y2<=y1 */
316 setup->vmin = v0;
317 setup->vmid = v2;
318 setup->vmax = v1;
319 }
320 }
321 else {
322 if (y0 <= y2) {
323 /* y1<=y0<=y2 */
324 setup->vmin = v1;
325 setup->vmid = v0;
326 setup->vmax = v2;
327 }
328 else if (y2 <= y1) {
329 /* y2<=y1<=y0 */
330 setup->vmin = v2;
331 setup->vmid = v1;
332 setup->vmax = v0;
333 }
334 else {
335 /* y1<=y2<=y0 */
336 setup->vmin = v1;
337 setup->vmid = v2;
338 setup->vmax = v0;
339 }
340 }
341 }
342
343 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
344 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
345 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
346 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
347 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
348 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
349
350 /*
351 * Compute triangle's area. Use 1/area to compute partial
352 * derivatives of attributes later.
353 *
354 * The area will be the same as prim->det, but the sign may be
355 * different depending on how the vertices get sorted above.
356 *
357 * To determine whether the primitive is front or back facing we
358 * use the prim->det value because its sign is correct.
359 */
360 {
361 const float area = (setup->emaj.dx * setup->ebot.dy -
362 setup->ebot.dx * setup->emaj.dy);
363
364 setup->oneoverarea = 1.0f / area;
365
366 /*
367 debug_printf("%s one-over-area %f area %f det %f\n",
368 __FUNCTION__, setup->oneoverarea, area, det );
369 */
370 if (util_is_inf_or_nan(setup->oneoverarea))
371 return FALSE;
372 }
373
374 /* We need to know if this is a front or back-facing triangle for:
375 * - the GLSL gl_FrontFacing fragment attribute (bool)
376 * - two-sided stencil test
377 */
378 setup->facing =
379 ((det > 0.0) ^
380 (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW));
381
382 /* Prepare pixel offset for rasterisation:
383 * - pixel center (0.5, 0.5) for GL, or
384 * - assume (0.0, 0.0) for other APIs.
385 */
386 if (setup->softpipe->rasterizer->gl_rasterization_rules) {
387 setup->pixel_offset = 0.5f;
388 } else {
389 setup->pixel_offset = 0.0f;
390 }
391
392 return TRUE;
393 }
394
395
396 /**
397 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
398 * The value value comes from vertex[slot][i].
399 * The result will be put into setup->coef[slot].a0[i].
400 * \param slot which attribute slot
401 * \param i which component of the slot (0..3)
402 */
403 static void const_coeff( struct setup_context *setup,
404 struct tgsi_interp_coef *coef,
405 uint vertSlot, uint i)
406 {
407 assert(i <= 3);
408
409 coef->dadx[i] = 0;
410 coef->dady[i] = 0;
411
412 /* need provoking vertex info!
413 */
414 coef->a0[i] = setup->vprovoke[vertSlot][i];
415 }
416
417
418 /**
419 * Compute a0, dadx and dady for a linearly interpolated coefficient,
420 * for a triangle.
421 */
422 static void tri_linear_coeff( struct setup_context *setup,
423 struct tgsi_interp_coef *coef,
424 uint vertSlot, uint i)
425 {
426 float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i];
427 float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
428 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
429 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
430 float dadx = a * setup->oneoverarea;
431 float dady = b * setup->oneoverarea;
432
433 assert(i <= 3);
434
435 coef->dadx[i] = dadx;
436 coef->dady[i] = dady;
437
438 /* calculate a0 as the value which would be sampled for the
439 * fragment at (0,0), taking into account that we want to sample at
440 * pixel centers, in other words (pixel_offset, pixel_offset).
441 *
442 * this is neat but unfortunately not a good way to do things for
443 * triangles with very large values of dadx or dady as it will
444 * result in the subtraction and re-addition from a0 of a very
445 * large number, which means we'll end up loosing a lot of the
446 * fractional bits and precision from a0. the way to fix this is
447 * to define a0 as the sample at a pixel center somewhere near vmin
448 * instead - i'll switch to this later.
449 */
450 coef->a0[i] = (setup->vmin[vertSlot][i] -
451 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
452 dady * (setup->vmin[0][1] - setup->pixel_offset)));
453
454 /*
455 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
456 slot, "xyzw"[i],
457 setup->coef[slot].a0[i],
458 setup->coef[slot].dadx[i],
459 setup->coef[slot].dady[i]);
460 */
461 }
462
463
464 /**
465 * Compute a0, dadx and dady for a perspective-corrected interpolant,
466 * for a triangle.
467 * We basically multiply the vertex value by 1/w before computing
468 * the plane coefficients (a0, dadx, dady).
469 * Later, when we compute the value at a particular fragment position we'll
470 * divide the interpolated value by the interpolated W at that fragment.
471 */
472 static void tri_persp_coeff( struct setup_context *setup,
473 struct tgsi_interp_coef *coef,
474 uint vertSlot, uint i)
475 {
476 /* premultiply by 1/w (v[0][3] is always W):
477 */
478 float mina = setup->vmin[vertSlot][i] * setup->vmin[0][3];
479 float mida = setup->vmid[vertSlot][i] * setup->vmid[0][3];
480 float maxa = setup->vmax[vertSlot][i] * setup->vmax[0][3];
481 float botda = mida - mina;
482 float majda = maxa - mina;
483 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
484 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
485 float dadx = a * setup->oneoverarea;
486 float dady = b * setup->oneoverarea;
487
488 /*
489 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
490 setup->vmin[vertSlot][i],
491 setup->vmid[vertSlot][i],
492 setup->vmax[vertSlot][i]
493 );
494 */
495 assert(i <= 3);
496
497 coef->dadx[i] = dadx;
498 coef->dady[i] = dady;
499 coef->a0[i] = (mina -
500 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
501 dady * (setup->vmin[0][1] - setup->pixel_offset)));
502 }
503
504
505 /**
506 * Special coefficient setup for gl_FragCoord.
507 * X and Y are trivial, though Y may have to be inverted for OpenGL.
508 * Z and W are copied from posCoef which should have already been computed.
509 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
510 */
511 static void
512 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
513 {
514 struct sp_fragment_shader* spfs = setup->softpipe->fs;
515 /*X*/
516 setup->coef[slot].a0[0] = spfs->pixel_center_integer ? 0.0 : 0.5;
517 setup->coef[slot].dadx[0] = 1.0;
518 setup->coef[slot].dady[0] = 0.0;
519 /*Y*/
520 setup->coef[slot].a0[1] =
521 (spfs->origin_lower_left ? setup->softpipe->framebuffer.height : 0)
522 + (spfs->pixel_center_integer ? 0.0 : 0.5);
523 setup->coef[slot].dadx[1] = 0.0;
524 setup->coef[slot].dady[1] = spfs->origin_lower_left ? -1.0 : 1.0;
525 /*Z*/
526 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
527 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
528 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
529 /*W*/
530 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
531 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
532 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
533 }
534
535
536
537 /**
538 * Compute the setup->coef[] array dadx, dady, a0 values.
539 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
540 */
541 static void setup_tri_coefficients( struct setup_context *setup )
542 {
543 struct softpipe_context *softpipe = setup->softpipe;
544 const struct sp_fragment_shader *spfs = softpipe->fs;
545 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
546 uint fragSlot;
547
548 /* z and w are done by linear interpolation:
549 */
550 tri_linear_coeff(setup, &setup->posCoef, 0, 2);
551 tri_linear_coeff(setup, &setup->posCoef, 0, 3);
552
553 /* setup interpolation for all the remaining attributes:
554 */
555 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
556 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
557 uint j;
558
559 switch (vinfo->attrib[fragSlot].interp_mode) {
560 case INTERP_CONSTANT:
561 for (j = 0; j < NUM_CHANNELS; j++)
562 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
563 break;
564 case INTERP_LINEAR:
565 for (j = 0; j < NUM_CHANNELS; j++)
566 tri_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
567 break;
568 case INTERP_PERSPECTIVE:
569 for (j = 0; j < NUM_CHANNELS; j++)
570 tri_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
571 break;
572 case INTERP_POS:
573 setup_fragcoord_coeff(setup, fragSlot);
574 break;
575 default:
576 assert(0);
577 }
578
579 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
580 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
581 setup->coef[fragSlot].dadx[0] = 0.0;
582 setup->coef[fragSlot].dady[0] = 0.0;
583 }
584 }
585 }
586
587
588
589 static void setup_tri_edges( struct setup_context *setup )
590 {
591 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
592 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
593
594 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
595 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
596 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
597
598 setup->emaj.sy = ceilf(vmin_y);
599 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
600 setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
601 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
602
603 setup->etop.sy = ceilf(vmid_y);
604 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
605 setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
606 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
607
608 setup->ebot.sy = ceilf(vmin_y);
609 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
610 setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
611 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
612 }
613
614
615 /**
616 * Render the upper or lower half of a triangle.
617 * Scissoring/cliprect is applied here too.
618 */
619 static void subtriangle( struct setup_context *setup,
620 struct edge *eleft,
621 struct edge *eright,
622 unsigned lines )
623 {
624 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
625 const int minx = (int) cliprect->minx;
626 const int maxx = (int) cliprect->maxx;
627 const int miny = (int) cliprect->miny;
628 const int maxy = (int) cliprect->maxy;
629 int y, start_y, finish_y;
630 int sy = (int)eleft->sy;
631
632 assert((int)eleft->sy == (int) eright->sy);
633
634 /* clip top/bottom */
635 start_y = sy;
636 if (start_y < miny)
637 start_y = miny;
638
639 finish_y = sy + lines;
640 if (finish_y > maxy)
641 finish_y = maxy;
642
643 start_y -= sy;
644 finish_y -= sy;
645
646 /*
647 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
648 */
649
650 for (y = start_y; y < finish_y; y++) {
651
652 /* avoid accumulating adds as floats don't have the precision to
653 * accurately iterate large triangle edges that way. luckily we
654 * can just multiply these days.
655 *
656 * this is all drowned out by the attribute interpolation anyway.
657 */
658 int left = (int)(eleft->sx + y * eleft->dxdy);
659 int right = (int)(eright->sx + y * eright->dxdy);
660
661 /* clip left/right */
662 if (left < minx)
663 left = minx;
664 if (right > maxx)
665 right = maxx;
666
667 if (left < right) {
668 int _y = sy + y;
669 if (block(_y) != setup->span.y) {
670 flush_spans(setup);
671 setup->span.y = block(_y);
672 }
673
674 setup->span.left[_y&1] = left;
675 setup->span.right[_y&1] = right;
676 }
677 }
678
679
680 /* save the values so that emaj can be restarted:
681 */
682 eleft->sx += lines * eleft->dxdy;
683 eright->sx += lines * eright->dxdy;
684 eleft->sy += lines;
685 eright->sy += lines;
686 }
687
688
689 /**
690 * Recalculate prim's determinant. This is needed as we don't have
691 * get this information through the vbuf_render interface & we must
692 * calculate it here.
693 */
694 static float
695 calc_det( const float (*v0)[4],
696 const float (*v1)[4],
697 const float (*v2)[4] )
698 {
699 /* edge vectors e = v0 - v2, f = v1 - v2 */
700 const float ex = v0[0][0] - v2[0][0];
701 const float ey = v0[0][1] - v2[0][1];
702 const float fx = v1[0][0] - v2[0][0];
703 const float fy = v1[0][1] - v2[0][1];
704
705 /* det = cross(e,f).z */
706 return ex * fy - ey * fx;
707 }
708
709
710 /**
711 * Do setup for triangle rasterization, then render the triangle.
712 */
713 void sp_setup_tri( struct setup_context *setup,
714 const float (*v0)[4],
715 const float (*v1)[4],
716 const float (*v2)[4] )
717 {
718 float det;
719
720 #if DEBUG_VERTS
721 debug_printf("Setup triangle:\n");
722 print_vertex(setup, v0);
723 print_vertex(setup, v1);
724 print_vertex(setup, v2);
725 #endif
726
727 if (setup->softpipe->no_rast)
728 return;
729
730 det = calc_det(v0, v1, v2);
731 /*
732 debug_printf("%s\n", __FUNCTION__ );
733 */
734
735 #if DEBUG_FRAGS
736 setup->numFragsEmitted = 0;
737 setup->numFragsWritten = 0;
738 #endif
739
740 if (cull_tri( setup, det ))
741 return;
742
743 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
744 return;
745 setup_tri_coefficients( setup );
746 setup_tri_edges( setup );
747
748 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
749
750 setup->span.y = 0;
751 setup->span.right[0] = 0;
752 setup->span.right[1] = 0;
753 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
754
755 /* init_constant_attribs( setup ); */
756
757 if (setup->oneoverarea < 0.0) {
758 /* emaj on left:
759 */
760 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
761 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
762 }
763 else {
764 /* emaj on right:
765 */
766 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
767 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
768 }
769
770 flush_spans( setup );
771
772 #if DEBUG_FRAGS
773 printf("Tri: %u frags emitted, %u written\n",
774 setup->numFragsEmitted,
775 setup->numFragsWritten);
776 #endif
777 }
778
779
780
781 /**
782 * Compute a0, dadx and dady for a linearly interpolated coefficient,
783 * for a line.
784 */
785 static void
786 line_linear_coeff(const struct setup_context *setup,
787 struct tgsi_interp_coef *coef,
788 uint vertSlot, uint i)
789 {
790 const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i];
791 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
792 const float dady = da * setup->emaj.dy * setup->oneoverarea;
793 coef->dadx[i] = dadx;
794 coef->dady[i] = dady;
795 coef->a0[i] = (setup->vmin[vertSlot][i] -
796 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
797 dady * (setup->vmin[0][1] - setup->pixel_offset)));
798 }
799
800
801 /**
802 * Compute a0, dadx and dady for a perspective-corrected interpolant,
803 * for a line.
804 */
805 static void
806 line_persp_coeff(const struct setup_context *setup,
807 struct tgsi_interp_coef *coef,
808 uint vertSlot, uint i)
809 {
810 /* XXX double-check/verify this arithmetic */
811 const float a0 = setup->vmin[vertSlot][i] * setup->vmin[0][3];
812 const float a1 = setup->vmax[vertSlot][i] * setup->vmax[0][3];
813 const float da = a1 - a0;
814 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
815 const float dady = da * setup->emaj.dy * setup->oneoverarea;
816 coef->dadx[i] = dadx;
817 coef->dady[i] = dady;
818 coef->a0[i] = (setup->vmin[vertSlot][i] -
819 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
820 dady * (setup->vmin[0][1] - setup->pixel_offset)));
821 }
822
823
824 /**
825 * Compute the setup->coef[] array dadx, dady, a0 values.
826 * Must be called after setup->vmin,vmax are initialized.
827 */
828 static INLINE boolean
829 setup_line_coefficients(struct setup_context *setup,
830 const float (*v0)[4],
831 const float (*v1)[4])
832 {
833 struct softpipe_context *softpipe = setup->softpipe;
834 const struct sp_fragment_shader *spfs = softpipe->fs;
835 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
836 uint fragSlot;
837 float area;
838
839 /* use setup->vmin, vmax to point to vertices */
840 if (softpipe->rasterizer->flatshade_first)
841 setup->vprovoke = v0;
842 else
843 setup->vprovoke = v1;
844 setup->vmin = v0;
845 setup->vmax = v1;
846
847 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
848 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
849
850 /* NOTE: this is not really area but something proportional to it */
851 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
852 if (area == 0.0f || util_is_inf_or_nan(area))
853 return FALSE;
854 setup->oneoverarea = 1.0f / area;
855
856 /* z and w are done by linear interpolation:
857 */
858 line_linear_coeff(setup, &setup->posCoef, 0, 2);
859 line_linear_coeff(setup, &setup->posCoef, 0, 3);
860
861 /* setup interpolation for all the remaining attributes:
862 */
863 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
864 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
865 uint j;
866
867 switch (vinfo->attrib[fragSlot].interp_mode) {
868 case INTERP_CONSTANT:
869 for (j = 0; j < NUM_CHANNELS; j++)
870 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
871 break;
872 case INTERP_LINEAR:
873 for (j = 0; j < NUM_CHANNELS; j++)
874 line_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
875 break;
876 case INTERP_PERSPECTIVE:
877 for (j = 0; j < NUM_CHANNELS; j++)
878 line_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
879 break;
880 case INTERP_POS:
881 setup_fragcoord_coeff(setup, fragSlot);
882 break;
883 default:
884 assert(0);
885 }
886
887 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
888 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
889 setup->coef[fragSlot].dadx[0] = 0.0;
890 setup->coef[fragSlot].dady[0] = 0.0;
891 }
892 }
893 return TRUE;
894 }
895
896
897 /**
898 * Plot a pixel in a line segment.
899 */
900 static INLINE void
901 plot(struct setup_context *setup, int x, int y)
902 {
903 const int iy = y & 1;
904 const int ix = x & 1;
905 const int quadX = x - ix;
906 const int quadY = y - iy;
907 const int mask = (1 << ix) << (2 * iy);
908
909 if (quadX != setup->quad[0].input.x0 ||
910 quadY != setup->quad[0].input.y0)
911 {
912 /* flush prev quad, start new quad */
913
914 if (setup->quad[0].input.x0 != -1)
915 clip_emit_quad( setup, &setup->quad[0] );
916
917 setup->quad[0].input.x0 = quadX;
918 setup->quad[0].input.y0 = quadY;
919 setup->quad[0].inout.mask = 0x0;
920 }
921
922 setup->quad[0].inout.mask |= mask;
923 }
924
925
926 /**
927 * Do setup for line rasterization, then render the line.
928 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
929 * to handle stippling and wide lines.
930 */
931 void
932 sp_setup_line(struct setup_context *setup,
933 const float (*v0)[4],
934 const float (*v1)[4])
935 {
936 int x0 = (int) v0[0][0];
937 int x1 = (int) v1[0][0];
938 int y0 = (int) v0[0][1];
939 int y1 = (int) v1[0][1];
940 int dx = x1 - x0;
941 int dy = y1 - y0;
942 int xstep, ystep;
943
944 #if DEBUG_VERTS
945 debug_printf("Setup line:\n");
946 print_vertex(setup, v0);
947 print_vertex(setup, v1);
948 #endif
949
950 if (setup->softpipe->no_rast)
951 return;
952
953 if (dx == 0 && dy == 0)
954 return;
955
956 if (!setup_line_coefficients(setup, v0, v1))
957 return;
958
959 assert(v0[0][0] < 1.0e9);
960 assert(v0[0][1] < 1.0e9);
961 assert(v1[0][0] < 1.0e9);
962 assert(v1[0][1] < 1.0e9);
963
964 if (dx < 0) {
965 dx = -dx; /* make positive */
966 xstep = -1;
967 }
968 else {
969 xstep = 1;
970 }
971
972 if (dy < 0) {
973 dy = -dy; /* make positive */
974 ystep = -1;
975 }
976 else {
977 ystep = 1;
978 }
979
980 assert(dx >= 0);
981 assert(dy >= 0);
982 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
983
984 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
985 setup->quad[0].inout.mask = 0x0;
986
987 /* XXX temporary: set coverage to 1.0 so the line appears
988 * if AA mode happens to be enabled.
989 */
990 setup->quad[0].input.coverage[0] =
991 setup->quad[0].input.coverage[1] =
992 setup->quad[0].input.coverage[2] =
993 setup->quad[0].input.coverage[3] = 1.0;
994
995 if (dx > dy) {
996 /*** X-major line ***/
997 int i;
998 const int errorInc = dy + dy;
999 int error = errorInc - dx;
1000 const int errorDec = error - dx;
1001
1002 for (i = 0; i < dx; i++) {
1003 plot(setup, x0, y0);
1004
1005 x0 += xstep;
1006 if (error < 0) {
1007 error += errorInc;
1008 }
1009 else {
1010 error += errorDec;
1011 y0 += ystep;
1012 }
1013 }
1014 }
1015 else {
1016 /*** Y-major line ***/
1017 int i;
1018 const int errorInc = dx + dx;
1019 int error = errorInc - dy;
1020 const int errorDec = error - dy;
1021
1022 for (i = 0; i < dy; i++) {
1023 plot(setup, x0, y0);
1024
1025 y0 += ystep;
1026 if (error < 0) {
1027 error += errorInc;
1028 }
1029 else {
1030 error += errorDec;
1031 x0 += xstep;
1032 }
1033 }
1034 }
1035
1036 /* draw final quad */
1037 if (setup->quad[0].inout.mask) {
1038 clip_emit_quad( setup, &setup->quad[0] );
1039 }
1040 }
1041
1042
1043 static void
1044 point_persp_coeff(const struct setup_context *setup,
1045 const float (*vert)[4],
1046 struct tgsi_interp_coef *coef,
1047 uint vertSlot, uint i)
1048 {
1049 assert(i <= 3);
1050 coef->dadx[i] = 0.0F;
1051 coef->dady[i] = 0.0F;
1052 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1053 }
1054
1055
1056 /**
1057 * Do setup for point rasterization, then render the point.
1058 * Round or square points...
1059 * XXX could optimize a lot for 1-pixel points.
1060 */
1061 void
1062 sp_setup_point( struct setup_context *setup,
1063 const float (*v0)[4] )
1064 {
1065 struct softpipe_context *softpipe = setup->softpipe;
1066 const struct sp_fragment_shader *spfs = softpipe->fs;
1067 const int sizeAttr = setup->softpipe->psize_slot;
1068 const float size
1069 = sizeAttr > 0 ? v0[sizeAttr][0]
1070 : setup->softpipe->rasterizer->point_size;
1071 const float halfSize = 0.5F * size;
1072 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1073 const float x = v0[0][0]; /* Note: data[0] is always position */
1074 const float y = v0[0][1];
1075 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1076 uint fragSlot;
1077
1078 #if DEBUG_VERTS
1079 debug_printf("Setup point:\n");
1080 print_vertex(setup, v0);
1081 #endif
1082
1083 if (softpipe->no_rast)
1084 return;
1085
1086 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1087
1088 /* For points, all interpolants are constant-valued.
1089 * However, for point sprites, we'll need to setup texcoords appropriately.
1090 * XXX: which coefficients are the texcoords???
1091 * We may do point sprites as textured quads...
1092 *
1093 * KW: We don't know which coefficients are texcoords - ultimately
1094 * the choice of what interpolation mode to use for each attribute
1095 * should be determined by the fragment program, using
1096 * per-attribute declaration statements that include interpolation
1097 * mode as a parameter. So either the fragment program will have
1098 * to be adjusted for pointsprite vs normal point behaviour, or
1099 * otherwise a special interpolation mode will have to be defined
1100 * which matches the required behaviour for point sprites. But -
1101 * the latter is not a feature of normal hardware, and as such
1102 * probably should be ruled out on that basis.
1103 */
1104 setup->vprovoke = v0;
1105
1106 /* setup Z, W */
1107 const_coeff(setup, &setup->posCoef, 0, 2);
1108 const_coeff(setup, &setup->posCoef, 0, 3);
1109
1110 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
1111 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1112 uint j;
1113
1114 switch (vinfo->attrib[fragSlot].interp_mode) {
1115 case INTERP_CONSTANT:
1116 /* fall-through */
1117 case INTERP_LINEAR:
1118 for (j = 0; j < NUM_CHANNELS; j++)
1119 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1120 break;
1121 case INTERP_PERSPECTIVE:
1122 for (j = 0; j < NUM_CHANNELS; j++)
1123 point_persp_coeff(setup, setup->vprovoke,
1124 &setup->coef[fragSlot], vertSlot, j);
1125 break;
1126 case INTERP_POS:
1127 setup_fragcoord_coeff(setup, fragSlot);
1128 break;
1129 default:
1130 assert(0);
1131 }
1132
1133 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1134 setup->coef[fragSlot].a0[0] = 1.0f - setup->facing;
1135 setup->coef[fragSlot].dadx[0] = 0.0;
1136 setup->coef[fragSlot].dady[0] = 0.0;
1137 }
1138 }
1139
1140
1141 if (halfSize <= 0.5 && !round) {
1142 /* special case for 1-pixel points */
1143 const int ix = ((int) x) & 1;
1144 const int iy = ((int) y) & 1;
1145 setup->quad[0].input.x0 = (int) x - ix;
1146 setup->quad[0].input.y0 = (int) y - iy;
1147 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1148 clip_emit_quad( setup, &setup->quad[0] );
1149 }
1150 else {
1151 if (round) {
1152 /* rounded points */
1153 const int ixmin = block((int) (x - halfSize));
1154 const int ixmax = block((int) (x + halfSize));
1155 const int iymin = block((int) (y - halfSize));
1156 const int iymax = block((int) (y + halfSize));
1157 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1158 const float rmax = halfSize + 0.7071F;
1159 const float rmin2 = MAX2(0.0F, rmin * rmin);
1160 const float rmax2 = rmax * rmax;
1161 const float cscale = 1.0F / (rmax2 - rmin2);
1162 int ix, iy;
1163
1164 for (iy = iymin; iy <= iymax; iy += 2) {
1165 for (ix = ixmin; ix <= ixmax; ix += 2) {
1166 float dx, dy, dist2, cover;
1167
1168 setup->quad[0].inout.mask = 0x0;
1169
1170 dx = (ix + 0.5f) - x;
1171 dy = (iy + 0.5f) - y;
1172 dist2 = dx * dx + dy * dy;
1173 if (dist2 <= rmax2) {
1174 cover = 1.0F - (dist2 - rmin2) * cscale;
1175 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1176 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1177 }
1178
1179 dx = (ix + 1.5f) - x;
1180 dy = (iy + 0.5f) - y;
1181 dist2 = dx * dx + dy * dy;
1182 if (dist2 <= rmax2) {
1183 cover = 1.0F - (dist2 - rmin2) * cscale;
1184 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1185 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1186 }
1187
1188 dx = (ix + 0.5f) - x;
1189 dy = (iy + 1.5f) - y;
1190 dist2 = dx * dx + dy * dy;
1191 if (dist2 <= rmax2) {
1192 cover = 1.0F - (dist2 - rmin2) * cscale;
1193 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1194 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1195 }
1196
1197 dx = (ix + 1.5f) - x;
1198 dy = (iy + 1.5f) - y;
1199 dist2 = dx * dx + dy * dy;
1200 if (dist2 <= rmax2) {
1201 cover = 1.0F - (dist2 - rmin2) * cscale;
1202 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1203 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1204 }
1205
1206 if (setup->quad[0].inout.mask) {
1207 setup->quad[0].input.x0 = ix;
1208 setup->quad[0].input.y0 = iy;
1209 clip_emit_quad( setup, &setup->quad[0] );
1210 }
1211 }
1212 }
1213 }
1214 else {
1215 /* square points */
1216 const int xmin = (int) (x + 0.75 - halfSize);
1217 const int ymin = (int) (y + 0.25 - halfSize);
1218 const int xmax = xmin + (int) size;
1219 const int ymax = ymin + (int) size;
1220 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1221 const int ixmin = block(xmin);
1222 const int ixmax = block(xmax - 1);
1223 const int iymin = block(ymin);
1224 const int iymax = block(ymax - 1);
1225 int ix, iy;
1226
1227 /*
1228 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1229 */
1230 for (iy = iymin; iy <= iymax; iy += 2) {
1231 uint rowMask = 0xf;
1232 if (iy < ymin) {
1233 /* above the top edge */
1234 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1235 }
1236 if (iy + 1 >= ymax) {
1237 /* below the bottom edge */
1238 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1239 }
1240
1241 for (ix = ixmin; ix <= ixmax; ix += 2) {
1242 uint mask = rowMask;
1243
1244 if (ix < xmin) {
1245 /* fragment is past left edge of point, turn off left bits */
1246 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1247 }
1248 if (ix + 1 >= xmax) {
1249 /* past the right edge */
1250 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1251 }
1252
1253 setup->quad[0].inout.mask = mask;
1254 setup->quad[0].input.x0 = ix;
1255 setup->quad[0].input.y0 = iy;
1256 clip_emit_quad( setup, &setup->quad[0] );
1257 }
1258 }
1259 }
1260 }
1261 }
1262
1263 void sp_setup_prepare( struct setup_context *setup )
1264 {
1265 struct softpipe_context *sp = setup->softpipe;
1266
1267 if (sp->dirty) {
1268 softpipe_update_derived(sp);
1269 }
1270
1271 /* Note: nr_attrs is only used for debugging (vertex printing) */
1272 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1273
1274 sp->quad.first->begin( sp->quad.first );
1275
1276 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1277 sp->rasterizer->fill_cw == PIPE_POLYGON_MODE_FILL &&
1278 sp->rasterizer->fill_ccw == PIPE_POLYGON_MODE_FILL) {
1279 /* we'll do culling */
1280 setup->winding = sp->rasterizer->cull_mode;
1281 }
1282 else {
1283 /* 'draw' will do culling */
1284 setup->winding = PIPE_WINDING_NONE;
1285 }
1286 }
1287
1288
1289
1290 void sp_setup_destroy_context( struct setup_context *setup )
1291 {
1292 FREE( setup );
1293 }
1294
1295
1296 /**
1297 * Create a new primitive setup/render stage.
1298 */
1299 struct setup_context *sp_setup_create_context( struct softpipe_context *softpipe )
1300 {
1301 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1302 unsigned i;
1303
1304 setup->softpipe = softpipe;
1305
1306 for (i = 0; i < MAX_QUADS; i++) {
1307 setup->quad[i].coef = setup->coef;
1308 setup->quad[i].posCoef = &setup->posCoef;
1309 }
1310
1311 setup->span.left[0] = 1000000; /* greater than right[0] */
1312 setup->span.left[1] = 1000000; /* greater than right[1] */
1313
1314 return setup;
1315 }
1316