Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
45
46
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
49
50
51 /**
52 * Triangle edge info
53 */
54 struct edge {
55 float dx; /**< X(v1) - X(v0), used only during setup */
56 float dy; /**< Y(v1) - Y(v0), used only during setup */
57 float dxdy; /**< dx/dy */
58 float sx, sy; /**< first sample point coord */
59 int lines; /**< number of lines on this edge */
60 };
61
62
63 /**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
67 */
68 #define MAX_QUADS 16
69
70
71 /**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
74 */
75 struct setup_context {
76 struct softpipe_context *softpipe;
77
78 /* Vertices are just an array of floats making up each attribute in
79 * turn. Currently fixed at 4 floats, but should change in time.
80 * Codegen will help cope with this.
81 */
82 const float (*vmax)[4];
83 const float (*vmid)[4];
84 const float (*vmin)[4];
85 const float (*vprovoke)[4];
86
87 struct edge ebot;
88 struct edge etop;
89 struct edge emaj;
90
91 float oneoverarea;
92 int facing;
93
94 float pixel_offset;
95 unsigned max_layer;
96
97 struct quad_header quad[MAX_QUADS];
98 struct quad_header *quad_ptrs[MAX_QUADS];
99 unsigned count;
100
101 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
102 struct tgsi_interp_coef posCoef; /* For Z, W */
103
104 struct {
105 int left[2]; /**< [0] = row0, [1] = row1 */
106 int right[2];
107 int y;
108 } span;
109
110 #if DEBUG_FRAGS
111 uint numFragsEmitted; /**< per primitive */
112 uint numFragsWritten; /**< per primitive */
113 #endif
114
115 unsigned cull_face; /* which faces cull */
116 unsigned nr_vertex_attrs;
117 };
118
119
120
121
122
123
124
125 /**
126 * Clip setup->quad against the scissor/surface bounds.
127 */
128 static inline void
129 quad_clip(struct setup_context *setup, struct quad_header *quad)
130 {
131 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
132 const int minx = (int) cliprect->minx;
133 const int maxx = (int) cliprect->maxx;
134 const int miny = (int) cliprect->miny;
135 const int maxy = (int) cliprect->maxy;
136
137 if (quad->input.x0 >= maxx ||
138 quad->input.y0 >= maxy ||
139 quad->input.x0 + 1 < minx ||
140 quad->input.y0 + 1 < miny) {
141 /* totally clipped */
142 quad->inout.mask = 0x0;
143 return;
144 }
145 if (quad->input.x0 < minx)
146 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
147 if (quad->input.y0 < miny)
148 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
149 if (quad->input.x0 == maxx - 1)
150 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
151 if (quad->input.y0 == maxy - 1)
152 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
153 }
154
155
156 /**
157 * Emit a quad (pass to next stage) with clipping.
158 */
159 static inline void
160 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
161 {
162 quad_clip( setup, quad );
163
164 if (quad->inout.mask) {
165 struct softpipe_context *sp = setup->softpipe;
166
167 #if DEBUG_FRAGS
168 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
169 #endif
170
171 sp->quad.first->run( sp->quad.first, &quad, 1 );
172 }
173 }
174
175
176
177 /**
178 * Given an X or Y coordinate, return the block/quad coordinate that it
179 * belongs to.
180 */
181 static inline int
182 block(int x)
183 {
184 return x & ~(2-1);
185 }
186
187
188 static inline int
189 block_x(int x)
190 {
191 return x & ~(16-1);
192 }
193
194
195 /**
196 * Render a horizontal span of quads
197 */
198 static void
199 flush_spans(struct setup_context *setup)
200 {
201 const int step = MAX_QUADS;
202 const int xleft0 = setup->span.left[0];
203 const int xleft1 = setup->span.left[1];
204 const int xright0 = setup->span.right[0];
205 const int xright1 = setup->span.right[1];
206 struct quad_stage *pipe = setup->softpipe->quad.first;
207
208 const int minleft = block_x(MIN2(xleft0, xleft1));
209 const int maxright = MAX2(xright0, xright1);
210 int x;
211
212 /* process quads in horizontal chunks of 16 */
213 for (x = minleft; x < maxright; x += step) {
214 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
215 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
216 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
217 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
218 unsigned lx = x;
219 unsigned q = 0;
220
221 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
222 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
223
224 /* These calculations fail when step == 32 and skip_right == 0.
225 */
226 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
227 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
228
229 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
230 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
231
232 if (mask0 | mask1) {
233 do {
234 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
235 if (quadmask) {
236 setup->quad[q].input.x0 = lx;
237 setup->quad[q].input.y0 = setup->span.y;
238 setup->quad[q].input.facing = setup->facing;
239 setup->quad[q].inout.mask = quadmask;
240 setup->quad_ptrs[q] = &setup->quad[q];
241 q++;
242 #if DEBUG_FRAGS
243 setup->numFragsEmitted += util_bitcount(quadmask);
244 #endif
245 }
246 mask0 >>= 2;
247 mask1 >>= 2;
248 lx += 2;
249 } while (mask0 | mask1);
250
251 pipe->run( pipe, setup->quad_ptrs, q );
252 }
253 }
254
255
256 setup->span.y = 0;
257 setup->span.right[0] = 0;
258 setup->span.right[1] = 0;
259 setup->span.left[0] = 1000000; /* greater than right[0] */
260 setup->span.left[1] = 1000000; /* greater than right[1] */
261 }
262
263
264 #if DEBUG_VERTS
265 static void
266 print_vertex(const struct setup_context *setup,
267 const float (*v)[4])
268 {
269 int i;
270 debug_printf(" Vertex: (%p)\n", (void *) v);
271 for (i = 0; i < setup->nr_vertex_attrs; i++) {
272 debug_printf(" %d: %f %f %f %f\n", i,
273 v[i][0], v[i][1], v[i][2], v[i][3]);
274 if (util_is_inf_or_nan(v[i][0])) {
275 debug_printf(" NaN!\n");
276 }
277 }
278 }
279 #endif
280
281
282 /**
283 * Sort the vertices from top to bottom order, setting up the triangle
284 * edge fields (ebot, emaj, etop).
285 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
286 */
287 static boolean
288 setup_sort_vertices(struct setup_context *setup,
289 float det,
290 const float (*v0)[4],
291 const float (*v1)[4],
292 const float (*v2)[4])
293 {
294 if (setup->softpipe->rasterizer->flatshade_first)
295 setup->vprovoke = v0;
296 else
297 setup->vprovoke = v2;
298
299 /* determine bottom to top order of vertices */
300 {
301 float y0 = v0[0][1];
302 float y1 = v1[0][1];
303 float y2 = v2[0][1];
304 if (y0 <= y1) {
305 if (y1 <= y2) {
306 /* y0<=y1<=y2 */
307 setup->vmin = v0;
308 setup->vmid = v1;
309 setup->vmax = v2;
310 }
311 else if (y2 <= y0) {
312 /* y2<=y0<=y1 */
313 setup->vmin = v2;
314 setup->vmid = v0;
315 setup->vmax = v1;
316 }
317 else {
318 /* y0<=y2<=y1 */
319 setup->vmin = v0;
320 setup->vmid = v2;
321 setup->vmax = v1;
322 }
323 }
324 else {
325 if (y0 <= y2) {
326 /* y1<=y0<=y2 */
327 setup->vmin = v1;
328 setup->vmid = v0;
329 setup->vmax = v2;
330 }
331 else if (y2 <= y1) {
332 /* y2<=y1<=y0 */
333 setup->vmin = v2;
334 setup->vmid = v1;
335 setup->vmax = v0;
336 }
337 else {
338 /* y1<=y2<=y0 */
339 setup->vmin = v1;
340 setup->vmid = v2;
341 setup->vmax = v0;
342 }
343 }
344 }
345
346 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
347 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
348 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
349 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
350 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
351 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
352
353 /*
354 * Compute triangle's area. Use 1/area to compute partial
355 * derivatives of attributes later.
356 *
357 * The area will be the same as prim->det, but the sign may be
358 * different depending on how the vertices get sorted above.
359 *
360 * To determine whether the primitive is front or back facing we
361 * use the prim->det value because its sign is correct.
362 */
363 {
364 const float area = (setup->emaj.dx * setup->ebot.dy -
365 setup->ebot.dx * setup->emaj.dy);
366
367 setup->oneoverarea = 1.0f / area;
368
369 /*
370 debug_printf("%s one-over-area %f area %f det %f\n",
371 __FUNCTION__, setup->oneoverarea, area, det );
372 */
373 if (util_is_inf_or_nan(setup->oneoverarea))
374 return FALSE;
375 }
376
377 /* We need to know if this is a front or back-facing triangle for:
378 * - the GLSL gl_FrontFacing fragment attribute (bool)
379 * - two-sided stencil test
380 * 0 = front-facing, 1 = back-facing
381 */
382 setup->facing =
383 ((det < 0.0) ^
384 (setup->softpipe->rasterizer->front_ccw));
385
386 {
387 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
388
389 if (face & setup->cull_face)
390 return FALSE;
391 }
392
393
394 /* Prepare pixel offset for rasterisation:
395 * - pixel center (0.5, 0.5) for GL, or
396 * - assume (0.0, 0.0) for other APIs.
397 */
398 if (setup->softpipe->rasterizer->half_pixel_center) {
399 setup->pixel_offset = 0.5f;
400 } else {
401 setup->pixel_offset = 0.0f;
402 }
403
404 return TRUE;
405 }
406
407
408 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
409 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
410 * Some combinations of coordinates produce invalid results,
411 * but this behaviour is acceptable.
412 */
413 static void
414 tri_apply_cylindrical_wrap(float v0,
415 float v1,
416 float v2,
417 uint cylindrical_wrap,
418 float output[3])
419 {
420 if (cylindrical_wrap) {
421 float delta;
422
423 delta = v1 - v0;
424 if (delta > 0.5f) {
425 v0 += 1.0f;
426 }
427 else if (delta < -0.5f) {
428 v1 += 1.0f;
429 }
430
431 delta = v2 - v1;
432 if (delta > 0.5f) {
433 v1 += 1.0f;
434 }
435 else if (delta < -0.5f) {
436 v2 += 1.0f;
437 }
438
439 delta = v0 - v2;
440 if (delta > 0.5f) {
441 v2 += 1.0f;
442 }
443 else if (delta < -0.5f) {
444 v0 += 1.0f;
445 }
446 }
447
448 output[0] = v0;
449 output[1] = v1;
450 output[2] = v2;
451 }
452
453
454 /**
455 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
456 * The value value comes from vertex[slot][i].
457 * The result will be put into setup->coef[slot].a0[i].
458 * \param slot which attribute slot
459 * \param i which component of the slot (0..3)
460 */
461 static void
462 const_coeff(struct setup_context *setup,
463 struct tgsi_interp_coef *coef,
464 uint vertSlot, uint i)
465 {
466 assert(i <= 3);
467
468 coef->dadx[i] = 0;
469 coef->dady[i] = 0;
470
471 /* need provoking vertex info!
472 */
473 coef->a0[i] = setup->vprovoke[vertSlot][i];
474 }
475
476
477 /**
478 * Compute a0, dadx and dady for a linearly interpolated coefficient,
479 * for a triangle.
480 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
481 */
482 static void
483 tri_linear_coeff(struct setup_context *setup,
484 struct tgsi_interp_coef *coef,
485 uint i,
486 const float v[3])
487 {
488 float botda = v[1] - v[0];
489 float majda = v[2] - v[0];
490 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
491 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
492 float dadx = a * setup->oneoverarea;
493 float dady = b * setup->oneoverarea;
494
495 assert(i <= 3);
496
497 coef->dadx[i] = dadx;
498 coef->dady[i] = dady;
499
500 /* calculate a0 as the value which would be sampled for the
501 * fragment at (0,0), taking into account that we want to sample at
502 * pixel centers, in other words (pixel_offset, pixel_offset).
503 *
504 * this is neat but unfortunately not a good way to do things for
505 * triangles with very large values of dadx or dady as it will
506 * result in the subtraction and re-addition from a0 of a very
507 * large number, which means we'll end up loosing a lot of the
508 * fractional bits and precision from a0. the way to fix this is
509 * to define a0 as the sample at a pixel center somewhere near vmin
510 * instead - i'll switch to this later.
511 */
512 coef->a0[i] = (v[0] -
513 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
514 dady * (setup->vmin[0][1] - setup->pixel_offset)));
515 }
516
517
518 /**
519 * Compute a0, dadx and dady for a perspective-corrected interpolant,
520 * for a triangle.
521 * We basically multiply the vertex value by 1/w before computing
522 * the plane coefficients (a0, dadx, dady).
523 * Later, when we compute the value at a particular fragment position we'll
524 * divide the interpolated value by the interpolated W at that fragment.
525 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
526 */
527 static void
528 tri_persp_coeff(struct setup_context *setup,
529 struct tgsi_interp_coef *coef,
530 uint i,
531 const float v[3])
532 {
533 /* premultiply by 1/w (v[0][3] is always W):
534 */
535 float mina = v[0] * setup->vmin[0][3];
536 float mida = v[1] * setup->vmid[0][3];
537 float maxa = v[2] * setup->vmax[0][3];
538 float botda = mida - mina;
539 float majda = maxa - mina;
540 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
541 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
542 float dadx = a * setup->oneoverarea;
543 float dady = b * setup->oneoverarea;
544
545 assert(i <= 3);
546
547 coef->dadx[i] = dadx;
548 coef->dady[i] = dady;
549 coef->a0[i] = (mina -
550 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
551 dady * (setup->vmin[0][1] - setup->pixel_offset)));
552 }
553
554
555 /**
556 * Special coefficient setup for gl_FragCoord.
557 * X and Y are trivial, though Y may have to be inverted for OpenGL.
558 * Z and W are copied from posCoef which should have already been computed.
559 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
560 */
561 static void
562 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
563 {
564 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
565 boolean origin_lower_left =
566 fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
567 boolean pixel_center_integer =
568 fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
569
570 /*X*/
571 setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
572 setup->coef[slot].dadx[0] = 1.0f;
573 setup->coef[slot].dady[0] = 0.0f;
574 /*Y*/
575 setup->coef[slot].a0[1] =
576 (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
577 + (pixel_center_integer ? 0.0f : 0.5f);
578 setup->coef[slot].dadx[1] = 0.0f;
579 setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
580 /*Z*/
581 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
582 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
583 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
584 /*W*/
585 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
586 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
587 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
588 }
589
590
591
592 /**
593 * Compute the setup->coef[] array dadx, dady, a0 values.
594 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
595 */
596 static void
597 setup_tri_coefficients(struct setup_context *setup)
598 {
599 struct softpipe_context *softpipe = setup->softpipe;
600 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
601 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
602 uint fragSlot;
603 float v[3];
604
605 /* z and w are done by linear interpolation:
606 */
607 v[0] = setup->vmin[0][2];
608 v[1] = setup->vmid[0][2];
609 v[2] = setup->vmax[0][2];
610 tri_linear_coeff(setup, &setup->posCoef, 2, v);
611
612 v[0] = setup->vmin[0][3];
613 v[1] = setup->vmid[0][3];
614 v[2] = setup->vmax[0][3];
615 tri_linear_coeff(setup, &setup->posCoef, 3, v);
616
617 /* setup interpolation for all the remaining attributes:
618 */
619 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
620 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
621 uint j;
622
623 switch (vinfo->attrib[fragSlot].interp_mode) {
624 case INTERP_CONSTANT:
625 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
626 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
627 break;
628 case INTERP_LINEAR:
629 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
630 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
631 setup->vmid[vertSlot][j],
632 setup->vmax[vertSlot][j],
633 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
634 v);
635 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
636 }
637 break;
638 case INTERP_PERSPECTIVE:
639 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
640 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
641 setup->vmid[vertSlot][j],
642 setup->vmax[vertSlot][j],
643 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
644 v);
645 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
646 }
647 break;
648 case INTERP_POS:
649 setup_fragcoord_coeff(setup, fragSlot);
650 break;
651 default:
652 assert(0);
653 }
654
655 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
656 /* convert 0 to 1.0 and 1 to -1.0 */
657 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
658 setup->coef[fragSlot].dadx[0] = 0.0;
659 setup->coef[fragSlot].dady[0] = 0.0;
660 }
661
662 if (0) {
663 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
664 debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
665 fragSlot, "xyzw"[j],
666 setup->coef[fragSlot].a0[j],
667 setup->coef[fragSlot].dadx[j],
668 setup->coef[fragSlot].dady[j]);
669 }
670 }
671 }
672 }
673
674
675 static void
676 setup_tri_edges(struct setup_context *setup)
677 {
678 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
679 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
680
681 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
682 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
683 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
684
685 setup->emaj.sy = ceilf(vmin_y);
686 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
687 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
688 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
689
690 setup->etop.sy = ceilf(vmid_y);
691 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
692 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
693 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
694
695 setup->ebot.sy = ceilf(vmin_y);
696 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
697 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
698 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
699 }
700
701
702 /**
703 * Render the upper or lower half of a triangle.
704 * Scissoring/cliprect is applied here too.
705 */
706 static void
707 subtriangle(struct setup_context *setup,
708 struct edge *eleft,
709 struct edge *eright,
710 int lines)
711 {
712 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
713 const int minx = (int) cliprect->minx;
714 const int maxx = (int) cliprect->maxx;
715 const int miny = (int) cliprect->miny;
716 const int maxy = (int) cliprect->maxy;
717 int y, start_y, finish_y;
718 int sy = (int)eleft->sy;
719
720 assert((int)eleft->sy == (int) eright->sy);
721 assert(lines >= 0);
722
723 /* clip top/bottom */
724 start_y = sy;
725 if (start_y < miny)
726 start_y = miny;
727
728 finish_y = sy + lines;
729 if (finish_y > maxy)
730 finish_y = maxy;
731
732 start_y -= sy;
733 finish_y -= sy;
734
735 /*
736 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
737 */
738
739 for (y = start_y; y < finish_y; y++) {
740
741 /* avoid accumulating adds as floats don't have the precision to
742 * accurately iterate large triangle edges that way. luckily we
743 * can just multiply these days.
744 *
745 * this is all drowned out by the attribute interpolation anyway.
746 */
747 int left = (int)(eleft->sx + y * eleft->dxdy);
748 int right = (int)(eright->sx + y * eright->dxdy);
749
750 /* clip left/right */
751 if (left < minx)
752 left = minx;
753 if (right > maxx)
754 right = maxx;
755
756 if (left < right) {
757 int _y = sy + y;
758 if (block(_y) != setup->span.y) {
759 flush_spans(setup);
760 setup->span.y = block(_y);
761 }
762
763 setup->span.left[_y&1] = left;
764 setup->span.right[_y&1] = right;
765 }
766 }
767
768
769 /* save the values so that emaj can be restarted:
770 */
771 eleft->sx += lines * eleft->dxdy;
772 eright->sx += lines * eright->dxdy;
773 eleft->sy += lines;
774 eright->sy += lines;
775 }
776
777
778 /**
779 * Recalculate prim's determinant. This is needed as we don't have
780 * get this information through the vbuf_render interface & we must
781 * calculate it here.
782 */
783 static float
784 calc_det(const float (*v0)[4],
785 const float (*v1)[4],
786 const float (*v2)[4])
787 {
788 /* edge vectors e = v0 - v2, f = v1 - v2 */
789 const float ex = v0[0][0] - v2[0][0];
790 const float ey = v0[0][1] - v2[0][1];
791 const float fx = v1[0][0] - v2[0][0];
792 const float fy = v1[0][1] - v2[0][1];
793
794 /* det = cross(e,f).z */
795 return ex * fy - ey * fx;
796 }
797
798
799 /**
800 * Do setup for triangle rasterization, then render the triangle.
801 */
802 void
803 sp_setup_tri(struct setup_context *setup,
804 const float (*v0)[4],
805 const float (*v1)[4],
806 const float (*v2)[4])
807 {
808 float det;
809 uint layer = 0;
810 #if DEBUG_VERTS
811 debug_printf("Setup triangle:\n");
812 print_vertex(setup, v0);
813 print_vertex(setup, v1);
814 print_vertex(setup, v2);
815 #endif
816
817 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
818 return;
819
820 det = calc_det(v0, v1, v2);
821 /*
822 debug_printf("%s\n", __FUNCTION__ );
823 */
824
825 #if DEBUG_FRAGS
826 setup->numFragsEmitted = 0;
827 setup->numFragsWritten = 0;
828 #endif
829
830 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
831 return;
832
833 setup_tri_coefficients( setup );
834 setup_tri_edges( setup );
835
836 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
837
838 setup->span.y = 0;
839 setup->span.right[0] = 0;
840 setup->span.right[1] = 0;
841 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
842 if (setup->softpipe->layer_slot > 0) {
843 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
844 layer = MIN2(layer, setup->max_layer);
845 }
846 setup->quad[0].input.layer = layer;
847
848 /* init_constant_attribs( setup ); */
849
850 if (setup->oneoverarea < 0.0) {
851 /* emaj on left:
852 */
853 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
854 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
855 }
856 else {
857 /* emaj on right:
858 */
859 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
860 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
861 }
862
863 flush_spans( setup );
864
865 if (setup->softpipe->active_statistics_queries) {
866 setup->softpipe->pipeline_statistics.c_primitives++;
867 }
868
869 #if DEBUG_FRAGS
870 printf("Tri: %u frags emitted, %u written\n",
871 setup->numFragsEmitted,
872 setup->numFragsWritten);
873 #endif
874 }
875
876
877 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
878 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
879 */
880 static void
881 line_apply_cylindrical_wrap(float v0,
882 float v1,
883 uint cylindrical_wrap,
884 float output[2])
885 {
886 if (cylindrical_wrap) {
887 float delta;
888
889 delta = v1 - v0;
890 if (delta > 0.5f) {
891 v0 += 1.0f;
892 }
893 else if (delta < -0.5f) {
894 v1 += 1.0f;
895 }
896 }
897
898 output[0] = v0;
899 output[1] = v1;
900 }
901
902
903 /**
904 * Compute a0, dadx and dady for a linearly interpolated coefficient,
905 * for a line.
906 * v[0] and v[1] are vmin and vmax, respectively.
907 */
908 static void
909 line_linear_coeff(const struct setup_context *setup,
910 struct tgsi_interp_coef *coef,
911 uint i,
912 const float v[2])
913 {
914 const float da = v[1] - v[0];
915 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
916 const float dady = da * setup->emaj.dy * setup->oneoverarea;
917 coef->dadx[i] = dadx;
918 coef->dady[i] = dady;
919 coef->a0[i] = (v[0] -
920 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
921 dady * (setup->vmin[0][1] - setup->pixel_offset)));
922 }
923
924
925 /**
926 * Compute a0, dadx and dady for a perspective-corrected interpolant,
927 * for a line.
928 * v[0] and v[1] are vmin and vmax, respectively.
929 */
930 static void
931 line_persp_coeff(const struct setup_context *setup,
932 struct tgsi_interp_coef *coef,
933 uint i,
934 const float v[2])
935 {
936 const float a0 = v[0] * setup->vmin[0][3];
937 const float a1 = v[1] * setup->vmax[0][3];
938 const float da = a1 - a0;
939 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
940 const float dady = da * setup->emaj.dy * setup->oneoverarea;
941 coef->dadx[i] = dadx;
942 coef->dady[i] = dady;
943 coef->a0[i] = (a0 -
944 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
945 dady * (setup->vmin[0][1] - setup->pixel_offset)));
946 }
947
948
949 /**
950 * Compute the setup->coef[] array dadx, dady, a0 values.
951 * Must be called after setup->vmin,vmax are initialized.
952 */
953 static boolean
954 setup_line_coefficients(struct setup_context *setup,
955 const float (*v0)[4],
956 const float (*v1)[4])
957 {
958 struct softpipe_context *softpipe = setup->softpipe;
959 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
960 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
961 uint fragSlot;
962 float area;
963 float v[2];
964
965 /* use setup->vmin, vmax to point to vertices */
966 if (softpipe->rasterizer->flatshade_first)
967 setup->vprovoke = v0;
968 else
969 setup->vprovoke = v1;
970 setup->vmin = v0;
971 setup->vmax = v1;
972
973 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
974 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
975
976 /* NOTE: this is not really area but something proportional to it */
977 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
978 if (area == 0.0f || util_is_inf_or_nan(area))
979 return FALSE;
980 setup->oneoverarea = 1.0f / area;
981
982 /* z and w are done by linear interpolation:
983 */
984 v[0] = setup->vmin[0][2];
985 v[1] = setup->vmax[0][2];
986 line_linear_coeff(setup, &setup->posCoef, 2, v);
987
988 v[0] = setup->vmin[0][3];
989 v[1] = setup->vmax[0][3];
990 line_linear_coeff(setup, &setup->posCoef, 3, v);
991
992 /* setup interpolation for all the remaining attributes:
993 */
994 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
995 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
996 uint j;
997
998 switch (vinfo->attrib[fragSlot].interp_mode) {
999 case INTERP_CONSTANT:
1000 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1001 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1002 break;
1003 case INTERP_LINEAR:
1004 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1005 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1006 setup->vmax[vertSlot][j],
1007 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1008 v);
1009 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1010 }
1011 break;
1012 case INTERP_PERSPECTIVE:
1013 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1014 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1015 setup->vmax[vertSlot][j],
1016 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1017 v);
1018 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1019 }
1020 break;
1021 case INTERP_POS:
1022 setup_fragcoord_coeff(setup, fragSlot);
1023 break;
1024 default:
1025 assert(0);
1026 }
1027
1028 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1029 /* convert 0 to 1.0 and 1 to -1.0 */
1030 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1031 setup->coef[fragSlot].dadx[0] = 0.0;
1032 setup->coef[fragSlot].dady[0] = 0.0;
1033 }
1034 }
1035 return TRUE;
1036 }
1037
1038
1039 /**
1040 * Plot a pixel in a line segment.
1041 */
1042 static inline void
1043 plot(struct setup_context *setup, int x, int y)
1044 {
1045 const int iy = y & 1;
1046 const int ix = x & 1;
1047 const int quadX = x - ix;
1048 const int quadY = y - iy;
1049 const int mask = (1 << ix) << (2 * iy);
1050
1051 if (quadX != setup->quad[0].input.x0 ||
1052 quadY != setup->quad[0].input.y0)
1053 {
1054 /* flush prev quad, start new quad */
1055
1056 if (setup->quad[0].input.x0 != -1)
1057 clip_emit_quad( setup, &setup->quad[0] );
1058
1059 setup->quad[0].input.x0 = quadX;
1060 setup->quad[0].input.y0 = quadY;
1061 setup->quad[0].inout.mask = 0x0;
1062 }
1063
1064 setup->quad[0].inout.mask |= mask;
1065 }
1066
1067
1068 /**
1069 * Do setup for line rasterization, then render the line.
1070 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1071 * to handle stippling and wide lines.
1072 */
1073 void
1074 sp_setup_line(struct setup_context *setup,
1075 const float (*v0)[4],
1076 const float (*v1)[4])
1077 {
1078 int x0 = (int) v0[0][0];
1079 int x1 = (int) v1[0][0];
1080 int y0 = (int) v0[0][1];
1081 int y1 = (int) v1[0][1];
1082 int dx = x1 - x0;
1083 int dy = y1 - y0;
1084 int xstep, ystep;
1085 uint layer = 0;
1086
1087 #if DEBUG_VERTS
1088 debug_printf("Setup line:\n");
1089 print_vertex(setup, v0);
1090 print_vertex(setup, v1);
1091 #endif
1092
1093 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1094 return;
1095
1096 if (dx == 0 && dy == 0)
1097 return;
1098
1099 if (!setup_line_coefficients(setup, v0, v1))
1100 return;
1101
1102 assert(v0[0][0] < 1.0e9);
1103 assert(v0[0][1] < 1.0e9);
1104 assert(v1[0][0] < 1.0e9);
1105 assert(v1[0][1] < 1.0e9);
1106
1107 if (dx < 0) {
1108 dx = -dx; /* make positive */
1109 xstep = -1;
1110 }
1111 else {
1112 xstep = 1;
1113 }
1114
1115 if (dy < 0) {
1116 dy = -dy; /* make positive */
1117 ystep = -1;
1118 }
1119 else {
1120 ystep = 1;
1121 }
1122
1123 assert(dx >= 0);
1124 assert(dy >= 0);
1125 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1126
1127 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1128 setup->quad[0].inout.mask = 0x0;
1129 if (setup->softpipe->layer_slot > 0) {
1130 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1131 layer = MIN2(layer, setup->max_layer);
1132 }
1133 setup->quad[0].input.layer = layer;
1134
1135 /* XXX temporary: set coverage to 1.0 so the line appears
1136 * if AA mode happens to be enabled.
1137 */
1138 setup->quad[0].input.coverage[0] =
1139 setup->quad[0].input.coverage[1] =
1140 setup->quad[0].input.coverage[2] =
1141 setup->quad[0].input.coverage[3] = 1.0;
1142
1143 if (dx > dy) {
1144 /*** X-major line ***/
1145 int i;
1146 const int errorInc = dy + dy;
1147 int error = errorInc - dx;
1148 const int errorDec = error - dx;
1149
1150 for (i = 0; i < dx; i++) {
1151 plot(setup, x0, y0);
1152
1153 x0 += xstep;
1154 if (error < 0) {
1155 error += errorInc;
1156 }
1157 else {
1158 error += errorDec;
1159 y0 += ystep;
1160 }
1161 }
1162 }
1163 else {
1164 /*** Y-major line ***/
1165 int i;
1166 const int errorInc = dx + dx;
1167 int error = errorInc - dy;
1168 const int errorDec = error - dy;
1169
1170 for (i = 0; i < dy; i++) {
1171 plot(setup, x0, y0);
1172
1173 y0 += ystep;
1174 if (error < 0) {
1175 error += errorInc;
1176 }
1177 else {
1178 error += errorDec;
1179 x0 += xstep;
1180 }
1181 }
1182 }
1183
1184 /* draw final quad */
1185 if (setup->quad[0].inout.mask) {
1186 clip_emit_quad( setup, &setup->quad[0] );
1187 }
1188 }
1189
1190
1191 static void
1192 point_persp_coeff(const struct setup_context *setup,
1193 const float (*vert)[4],
1194 struct tgsi_interp_coef *coef,
1195 uint vertSlot, uint i)
1196 {
1197 assert(i <= 3);
1198 coef->dadx[i] = 0.0F;
1199 coef->dady[i] = 0.0F;
1200 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1201 }
1202
1203
1204 /**
1205 * Do setup for point rasterization, then render the point.
1206 * Round or square points...
1207 * XXX could optimize a lot for 1-pixel points.
1208 */
1209 void
1210 sp_setup_point(struct setup_context *setup,
1211 const float (*v0)[4])
1212 {
1213 struct softpipe_context *softpipe = setup->softpipe;
1214 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1215 const int sizeAttr = setup->softpipe->psize_slot;
1216 const float size
1217 = sizeAttr > 0 ? v0[sizeAttr][0]
1218 : setup->softpipe->rasterizer->point_size;
1219 const float halfSize = 0.5F * size;
1220 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1221 const float x = v0[0][0]; /* Note: data[0] is always position */
1222 const float y = v0[0][1];
1223 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1224 uint fragSlot;
1225 uint layer = 0;
1226 #if DEBUG_VERTS
1227 debug_printf("Setup point:\n");
1228 print_vertex(setup, v0);
1229 #endif
1230
1231 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1232 return;
1233
1234 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1235
1236 if (setup->softpipe->layer_slot > 0) {
1237 layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1238 layer = MIN2(layer, setup->max_layer);
1239 }
1240 setup->quad[0].input.layer = layer;
1241
1242 /* For points, all interpolants are constant-valued.
1243 * However, for point sprites, we'll need to setup texcoords appropriately.
1244 * XXX: which coefficients are the texcoords???
1245 * We may do point sprites as textured quads...
1246 *
1247 * KW: We don't know which coefficients are texcoords - ultimately
1248 * the choice of what interpolation mode to use for each attribute
1249 * should be determined by the fragment program, using
1250 * per-attribute declaration statements that include interpolation
1251 * mode as a parameter. So either the fragment program will have
1252 * to be adjusted for pointsprite vs normal point behaviour, or
1253 * otherwise a special interpolation mode will have to be defined
1254 * which matches the required behaviour for point sprites. But -
1255 * the latter is not a feature of normal hardware, and as such
1256 * probably should be ruled out on that basis.
1257 */
1258 setup->vprovoke = v0;
1259
1260 /* setup Z, W */
1261 const_coeff(setup, &setup->posCoef, 0, 2);
1262 const_coeff(setup, &setup->posCoef, 0, 3);
1263
1264 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1265 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1266 uint j;
1267
1268 switch (vinfo->attrib[fragSlot].interp_mode) {
1269 case INTERP_CONSTANT:
1270 /* fall-through */
1271 case INTERP_LINEAR:
1272 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1273 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1274 break;
1275 case INTERP_PERSPECTIVE:
1276 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1277 point_persp_coeff(setup, setup->vprovoke,
1278 &setup->coef[fragSlot], vertSlot, j);
1279 break;
1280 case INTERP_POS:
1281 setup_fragcoord_coeff(setup, fragSlot);
1282 break;
1283 default:
1284 assert(0);
1285 }
1286
1287 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1288 /* convert 0 to 1.0 and 1 to -1.0 */
1289 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1290 setup->coef[fragSlot].dadx[0] = 0.0;
1291 setup->coef[fragSlot].dady[0] = 0.0;
1292 }
1293 }
1294
1295
1296 if (halfSize <= 0.5 && !round) {
1297 /* special case for 1-pixel points */
1298 const int ix = ((int) x) & 1;
1299 const int iy = ((int) y) & 1;
1300 setup->quad[0].input.x0 = (int) x - ix;
1301 setup->quad[0].input.y0 = (int) y - iy;
1302 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1303 clip_emit_quad( setup, &setup->quad[0] );
1304 }
1305 else {
1306 if (round) {
1307 /* rounded points */
1308 const int ixmin = block((int) (x - halfSize));
1309 const int ixmax = block((int) (x + halfSize));
1310 const int iymin = block((int) (y - halfSize));
1311 const int iymax = block((int) (y + halfSize));
1312 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1313 const float rmax = halfSize + 0.7071F;
1314 const float rmin2 = MAX2(0.0F, rmin * rmin);
1315 const float rmax2 = rmax * rmax;
1316 const float cscale = 1.0F / (rmax2 - rmin2);
1317 int ix, iy;
1318
1319 for (iy = iymin; iy <= iymax; iy += 2) {
1320 for (ix = ixmin; ix <= ixmax; ix += 2) {
1321 float dx, dy, dist2, cover;
1322
1323 setup->quad[0].inout.mask = 0x0;
1324
1325 dx = (ix + 0.5f) - x;
1326 dy = (iy + 0.5f) - y;
1327 dist2 = dx * dx + dy * dy;
1328 if (dist2 <= rmax2) {
1329 cover = 1.0F - (dist2 - rmin2) * cscale;
1330 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1331 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1332 }
1333
1334 dx = (ix + 1.5f) - x;
1335 dy = (iy + 0.5f) - y;
1336 dist2 = dx * dx + dy * dy;
1337 if (dist2 <= rmax2) {
1338 cover = 1.0F - (dist2 - rmin2) * cscale;
1339 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1340 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1341 }
1342
1343 dx = (ix + 0.5f) - x;
1344 dy = (iy + 1.5f) - y;
1345 dist2 = dx * dx + dy * dy;
1346 if (dist2 <= rmax2) {
1347 cover = 1.0F - (dist2 - rmin2) * cscale;
1348 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1349 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1350 }
1351
1352 dx = (ix + 1.5f) - x;
1353 dy = (iy + 1.5f) - y;
1354 dist2 = dx * dx + dy * dy;
1355 if (dist2 <= rmax2) {
1356 cover = 1.0F - (dist2 - rmin2) * cscale;
1357 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1358 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1359 }
1360
1361 if (setup->quad[0].inout.mask) {
1362 setup->quad[0].input.x0 = ix;
1363 setup->quad[0].input.y0 = iy;
1364 clip_emit_quad( setup, &setup->quad[0] );
1365 }
1366 }
1367 }
1368 }
1369 else {
1370 /* square points */
1371 const int xmin = (int) (x + 0.75 - halfSize);
1372 const int ymin = (int) (y + 0.25 - halfSize);
1373 const int xmax = xmin + (int) size;
1374 const int ymax = ymin + (int) size;
1375 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1376 const int ixmin = block(xmin);
1377 const int ixmax = block(xmax - 1);
1378 const int iymin = block(ymin);
1379 const int iymax = block(ymax - 1);
1380 int ix, iy;
1381
1382 /*
1383 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1384 */
1385 for (iy = iymin; iy <= iymax; iy += 2) {
1386 uint rowMask = 0xf;
1387 if (iy < ymin) {
1388 /* above the top edge */
1389 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1390 }
1391 if (iy + 1 >= ymax) {
1392 /* below the bottom edge */
1393 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1394 }
1395
1396 for (ix = ixmin; ix <= ixmax; ix += 2) {
1397 uint mask = rowMask;
1398
1399 if (ix < xmin) {
1400 /* fragment is past left edge of point, turn off left bits */
1401 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1402 }
1403 if (ix + 1 >= xmax) {
1404 /* past the right edge */
1405 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1406 }
1407
1408 setup->quad[0].inout.mask = mask;
1409 setup->quad[0].input.x0 = ix;
1410 setup->quad[0].input.y0 = iy;
1411 clip_emit_quad( setup, &setup->quad[0] );
1412 }
1413 }
1414 }
1415 }
1416 }
1417
1418
1419 /**
1420 * Called by vbuf code just before we start buffering primitives.
1421 */
1422 void
1423 sp_setup_prepare(struct setup_context *setup)
1424 {
1425 struct softpipe_context *sp = setup->softpipe;
1426 int i;
1427 unsigned max_layer = ~0;
1428 if (sp->dirty) {
1429 softpipe_update_derived(sp, sp->reduced_api_prim);
1430 }
1431
1432 /* Note: nr_attrs is only used for debugging (vertex printing) */
1433 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1434
1435 /*
1436 * Determine how many layers the fb has (used for clamping layer value).
1437 * OpenGL (but not d3d10) permits different amount of layers per rt, however
1438 * results are undefined if layer exceeds the amount of layers of ANY
1439 * attachment hence don't need separate per cbuf and zsbuf max.
1440 */
1441 for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1442 struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1443 if (cbuf) {
1444 max_layer = MIN2(max_layer,
1445 cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1446
1447 }
1448 }
1449
1450 setup->max_layer = max_layer;
1451
1452 sp->quad.first->begin( sp->quad.first );
1453
1454 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1455 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1456 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1457 /* we'll do culling */
1458 setup->cull_face = sp->rasterizer->cull_face;
1459 }
1460 else {
1461 /* 'draw' will do culling */
1462 setup->cull_face = PIPE_FACE_NONE;
1463 }
1464 }
1465
1466
1467 void
1468 sp_setup_destroy_context(struct setup_context *setup)
1469 {
1470 FREE( setup );
1471 }
1472
1473
1474 /**
1475 * Create a new primitive setup/render stage.
1476 */
1477 struct setup_context *
1478 sp_setup_create_context(struct softpipe_context *softpipe)
1479 {
1480 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1481 unsigned i;
1482
1483 setup->softpipe = softpipe;
1484
1485 for (i = 0; i < MAX_QUADS; i++) {
1486 setup->quad[i].coef = setup->coef;
1487 setup->quad[i].posCoef = &setup->posCoef;
1488 }
1489
1490 setup->span.left[0] = 1000000; /* greater than right[0] */
1491 setup->span.left[1] = 1000000; /* greater than right[1] */
1492
1493 return setup;
1494 }