softpipe: Prepare handling explicit gradients
[mesa.git] / src / gallium / drivers / softpipe / sp_tex_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * Texture sampling
31 *
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
35 */
36
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_format.h"
42 #include "util/u_memory.h"
43 #include "util/u_inlines.h"
44 #include "sp_quad.h" /* only for #define QUAD_* tokens */
45 #include "sp_tex_sample.h"
46 #include "sp_texture.h"
47 #include "sp_tex_tile_cache.h"
48
49
50 /** Set to one to help debug texture sampling */
51 #define DEBUG_TEX 0
52
53
54 /*
55 * Return fractional part of 'f'. Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61 static inline float
62 frac(float f)
63 {
64 return f - floorf(f);
65 }
66
67
68
69 /**
70 * Linear interpolation macro
71 */
72 static inline float
73 lerp(float a, float v0, float v1)
74 {
75 return v0 + a * (v1 - v0);
76 }
77
78
79 /**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization! If we find that's not true on some systems, convert
85 * to a macro.
86 */
87 static inline float
88 lerp_2d(float a, float b,
89 float v00, float v10, float v01, float v11)
90 {
91 const float temp0 = lerp(a, v00, v10);
92 const float temp1 = lerp(a, v01, v11);
93 return lerp(b, temp0, temp1);
94 }
95
96
97 /**
98 * As above, but 3D interpolation of 8 values.
99 */
100 static inline float
101 lerp_3d(float a, float b, float c,
102 float v000, float v100, float v010, float v110,
103 float v001, float v101, float v011, float v111)
104 {
105 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107 return lerp(c, temp0, temp1);
108 }
109
110
111
112 /**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value. To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118 static inline int
119 repeat(int coord, unsigned size)
120 {
121 return (coord + size * 1024) % size;
122 }
123
124
125 /**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode PIPE_TEX_WRAP_x
129 * \param s the incoming texcoords
130 * \param size the texture image size
131 * \param icoord returns the integer texcoords
132 */
133 static void
134 wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135 {
136 /* s limited to [0,1) */
137 /* i limited to [0,size-1] */
138 const int i = util_ifloor(s * size);
139 *icoord = repeat(i + offset, size);
140 }
141
142
143 static void
144 wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145 {
146 /* s limited to [0,1] */
147 /* i limited to [0,size-1] */
148 s *= size;
149 s += offset;
150 if (s <= 0.0F)
151 *icoord = 0;
152 else if (s >= size)
153 *icoord = size - 1;
154 else
155 *icoord = util_ifloor(s);
156 }
157
158
159 static void
160 wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161 {
162 /* s limited to [min,max] */
163 /* i limited to [0, size-1] */
164 const float min = 0.5F;
165 const float max = (float)size - 0.5F;
166
167 s *= size;
168 s += offset;
169
170 if (s < min)
171 *icoord = 0;
172 else if (s > max)
173 *icoord = size - 1;
174 else
175 *icoord = util_ifloor(s);
176 }
177
178
179 static void
180 wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181 {
182 /* s limited to [min,max] */
183 /* i limited to [-1, size] */
184 const float min = -0.5F;
185 const float max = size + 0.5F;
186
187 s *= size;
188 s += offset;
189 if (s <= min)
190 *icoord = -1;
191 else if (s >= max)
192 *icoord = size;
193 else
194 *icoord = util_ifloor(s);
195 }
196
197 static void
198 wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199 {
200 const float min = 1.0F / (2.0F * size);
201 const float max = 1.0F - min;
202 int flr;
203 float u;
204
205 s += (float)offset / size;
206 flr = util_ifloor(s);
207 u = frac(s);
208 if (flr & 1)
209 u = 1.0F - u;
210 if (u < min)
211 *icoord = 0;
212 else if (u > max)
213 *icoord = size - 1;
214 else
215 *icoord = util_ifloor(u * size);
216 }
217
218
219 static void
220 wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221 {
222 /* s limited to [0,1] */
223 /* i limited to [0,size-1] */
224 const float u = fabsf(s * size + offset);
225 if (u <= 0.0F)
226 *icoord = 0;
227 else if (u >= size)
228 *icoord = size - 1;
229 else
230 *icoord = util_ifloor(u);
231 }
232
233
234 static void
235 wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236 {
237 /* s limited to [min,max] */
238 /* i limited to [0, size-1] */
239 const float min = 0.5F;
240 const float max = (float)size - 0.5F;
241 const float u = fabsf(s * size + offset);
242
243 if (u < min)
244 *icoord = 0;
245 else if (u > max)
246 *icoord = size - 1;
247 else
248 *icoord = util_ifloor(u);
249 }
250
251
252 static void
253 wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254 {
255 /* u limited to [-0.5, size-0.5] */
256 const float min = -0.5F;
257 const float max = (float)size + 0.5F;
258 const float u = fabsf(s * size + offset);
259
260 if (u < min)
261 *icoord = -1;
262 else if (u > max)
263 *icoord = size;
264 else
265 *icoord = util_ifloor(u);
266 }
267
268
269 /**
270 * Used to compute texel locations for linear sampling
271 * \param wrapMode PIPE_TEX_WRAP_x
272 * \param s the texcoord
273 * \param size the texture image size
274 * \param icoord0 returns first texture index
275 * \param icoord1 returns second texture index (usually icoord0 + 1)
276 * \param w returns blend factor/weight between texture indices
277 * \param icoord returns the computed integer texture coord
278 */
279 static void
280 wrap_linear_repeat(float s, unsigned size, int offset,
281 int *icoord0, int *icoord1, float *w)
282 {
283 const float u = s * size - 0.5F;
284 *icoord0 = repeat(util_ifloor(u) + offset, size);
285 *icoord1 = repeat(*icoord0 + 1, size);
286 *w = frac(u);
287 }
288
289
290 static void
291 wrap_linear_clamp(float s, unsigned size, int offset,
292 int *icoord0, int *icoord1, float *w)
293 {
294 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295
296 *icoord0 = util_ifloor(u);
297 *icoord1 = *icoord0 + 1;
298 *w = frac(u);
299 }
300
301
302 static void
303 wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304 int *icoord0, int *icoord1, float *w)
305 {
306 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307 *icoord0 = util_ifloor(u);
308 *icoord1 = *icoord0 + 1;
309 if (*icoord0 < 0)
310 *icoord0 = 0;
311 if (*icoord1 >= (int) size)
312 *icoord1 = size - 1;
313 *w = frac(u);
314 }
315
316
317 static void
318 wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319 int *icoord0, int *icoord1, float *w)
320 {
321 const float min = -0.5F;
322 const float max = (float)size + 0.5F;
323 const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324 *icoord0 = util_ifloor(u);
325 *icoord1 = *icoord0 + 1;
326 *w = frac(u);
327 }
328
329
330 static void
331 wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332 int *icoord0, int *icoord1, float *w)
333 {
334 int flr;
335 float u;
336
337 s += (float)offset / size;
338 flr = util_ifloor(s);
339 u = frac(s);
340 if (flr & 1)
341 u = 1.0F - u;
342 u = u * size - 0.5F;
343 *icoord0 = util_ifloor(u);
344 *icoord1 = *icoord0 + 1;
345 if (*icoord0 < 0)
346 *icoord0 = 0;
347 if (*icoord1 >= (int) size)
348 *icoord1 = size - 1;
349 *w = frac(u);
350 }
351
352
353 static void
354 wrap_linear_mirror_clamp(float s, unsigned size, int offset,
355 int *icoord0, int *icoord1, float *w)
356 {
357 float u = fabsf(s * size + offset);
358 if (u >= size)
359 u = (float) size;
360 u -= 0.5F;
361 *icoord0 = util_ifloor(u);
362 *icoord1 = *icoord0 + 1;
363 *w = frac(u);
364 }
365
366
367 static void
368 wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
369 int *icoord0, int *icoord1, float *w)
370 {
371 float u = fabsf(s * size + offset);
372 if (u >= size)
373 u = (float) size;
374 u -= 0.5F;
375 *icoord0 = util_ifloor(u);
376 *icoord1 = *icoord0 + 1;
377 if (*icoord0 < 0)
378 *icoord0 = 0;
379 if (*icoord1 >= (int) size)
380 *icoord1 = size - 1;
381 *w = frac(u);
382 }
383
384
385 static void
386 wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
387 int *icoord0, int *icoord1, float *w)
388 {
389 const float min = -0.5F;
390 const float max = size + 0.5F;
391 const float t = fabsf(s * size + offset);
392 const float u = CLAMP(t, min, max) - 0.5F;
393 *icoord0 = util_ifloor(u);
394 *icoord1 = *icoord0 + 1;
395 *w = frac(u);
396 }
397
398
399 /**
400 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
401 */
402 static void
403 wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
404 {
405 const int i = util_ifloor(s);
406 *icoord = CLAMP(i + offset, 0, (int) size-1);
407 }
408
409
410 /**
411 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
412 */
413 static void
414 wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
415 {
416 *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
417 }
418
419
420 /**
421 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
422 */
423 static void
424 wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
425 {
426 *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
427 }
428
429
430 /**
431 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
432 */
433 static void
434 wrap_linear_unorm_clamp(float s, unsigned size, int offset,
435 int *icoord0, int *icoord1, float *w)
436 {
437 /* Not exactly what the spec says, but it matches NVIDIA output */
438 const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
439 *icoord0 = util_ifloor(u);
440 *icoord1 = *icoord0 + 1;
441 *w = frac(u);
442 }
443
444
445 /**
446 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
447 */
448 static void
449 wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
450 int *icoord0, int *icoord1, float *w)
451 {
452 const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
453 *icoord0 = util_ifloor(u);
454 *icoord1 = *icoord0 + 1;
455 if (*icoord1 > (int) size - 1)
456 *icoord1 = size - 1;
457 *w = frac(u);
458 }
459
460
461 /**
462 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
463 */
464 static void
465 wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
466 int *icoord0, int *icoord1, float *w)
467 {
468 const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
469 *icoord0 = util_ifloor(u);
470 *icoord1 = *icoord0 + 1;
471 if (*icoord1 > (int) size - 1)
472 *icoord1 = size - 1;
473 *w = frac(u);
474 }
475
476
477 /**
478 * Do coordinate to array index conversion. For array textures.
479 */
480 static inline int
481 coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
482 {
483 const int c = util_ifloor(coord + 0.5F);
484 return CLAMP(c, (int)first_layer, (int)last_layer);
485 }
486
487 static void
488 compute_gradient_1d(const float s[TGSI_QUAD_SIZE],
489 const float t[TGSI_QUAD_SIZE],
490 const float p[TGSI_QUAD_SIZE],
491 float derivs[3][2][TGSI_QUAD_SIZE])
492 {
493 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
494 derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
495 derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
496 }
497
498 static float
499 compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview,
500 const float derivs[3][2][TGSI_QUAD_SIZE],
501 uint quad)
502 {
503 const struct pipe_resource *texture = sview->base.texture;
504 const float dsdx = fabsf(derivs[0][0][quad]);
505 const float dsdy = fabsf(derivs[0][1][quad]);
506 const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
507 return util_fast_log2(rho);
508 }
509
510
511 /**
512 * Examine the quad's texture coordinates to compute the partial
513 * derivatives w.r.t X and Y, then compute lambda (level of detail).
514 */
515 static float
516 compute_lambda_1d(const struct sp_sampler_view *sview,
517 const float s[TGSI_QUAD_SIZE],
518 const float t[TGSI_QUAD_SIZE],
519 const float p[TGSI_QUAD_SIZE])
520 {
521 float derivs[3][2][TGSI_QUAD_SIZE];
522 compute_gradient_1d(s, t, p, derivs);
523 return compute_lambda_1d_explicit_gradients(sview, derivs, 0);
524 }
525
526
527 static void
528 compute_gradient_2d(const float s[TGSI_QUAD_SIZE],
529 const float t[TGSI_QUAD_SIZE],
530 const float p[TGSI_QUAD_SIZE],
531 float derivs[3][2][TGSI_QUAD_SIZE])
532 {
533 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
534 derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
535 derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
536 derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
537 derivs[1][1][0] = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT];
538 }
539
540 static float
541 compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview,
542 const float derivs[3][2][TGSI_QUAD_SIZE],
543 uint quad)
544 {
545 const struct pipe_resource *texture = sview->base.texture;
546 const float dsdx = fabsf(derivs[0][0][quad]);
547 const float dsdy = fabsf(derivs[0][1][quad]);
548 const float dtdx = fabsf(derivs[1][0][quad]);
549 const float dtdy = fabsf(derivs[1][1][quad]);
550 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
551 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
552 const float rho = MAX2(maxx, maxy);
553 return util_fast_log2(rho);
554 }
555
556
557 static float
558 compute_lambda_2d(const struct sp_sampler_view *sview,
559 const float s[TGSI_QUAD_SIZE],
560 const float t[TGSI_QUAD_SIZE],
561 const float p[TGSI_QUAD_SIZE])
562 {
563 float derivs[3][2][TGSI_QUAD_SIZE];
564 compute_gradient_2d(s, t, p, derivs);
565 return compute_lambda_2d_explicit_gradients(sview, derivs, 0);
566 }
567
568
569 static void
570 compute_gradient_3d(const float s[TGSI_QUAD_SIZE],
571 const float t[TGSI_QUAD_SIZE],
572 const float p[TGSI_QUAD_SIZE],
573 float derivs[3][2][TGSI_QUAD_SIZE])
574 {
575 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
576 derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
577 derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
578 derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
579 derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
580 derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
581 derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
582 }
583
584 static float
585 compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview,
586 const float derivs[3][2][TGSI_QUAD_SIZE],
587 uint quad)
588 {
589 const struct pipe_resource *texture = sview->base.texture;
590 const float dsdx = fabsf(derivs[0][0][quad]);
591 const float dsdy = fabsf(derivs[0][1][quad]);
592 const float dtdx = fabsf(derivs[1][0][quad]);
593 const float dtdy = fabsf(derivs[1][1][quad]);
594 const float dpdx = fabsf(derivs[2][0][quad]);
595 const float dpdy = fabsf(derivs[2][1][quad]);
596 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
597 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
598 const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
599 const float rho = MAX3(maxx, maxy, maxz);
600
601 return util_fast_log2(rho);
602 }
603
604
605 static float
606 compute_lambda_3d(const struct sp_sampler_view *sview,
607 const float s[TGSI_QUAD_SIZE],
608 const float t[TGSI_QUAD_SIZE],
609 const float p[TGSI_QUAD_SIZE])
610 {
611 float derivs[3][2][TGSI_QUAD_SIZE];
612 compute_gradient_3d(s, t, p, derivs);
613 return compute_lambda_3d_explicit_gradients(sview, derivs, 0);
614 }
615
616
617 static float
618 compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview,
619 const float derivs[3][2][TGSI_QUAD_SIZE],
620 uint quad)
621 {
622 const struct pipe_resource *texture = sview->base.texture;
623 const float dsdx = fabsf(derivs[0][0][quad]);
624 const float dsdy = fabsf(derivs[0][1][quad]);
625 const float dtdx = fabsf(derivs[1][0][quad]);
626 const float dtdy = fabsf(derivs[1][1][quad]);
627 const float dpdx = fabsf(derivs[2][0][quad]);
628 const float dpdy = fabsf(derivs[2][1][quad]);
629 const float maxx = MAX2(dsdx, dsdy);
630 const float maxy = MAX2(dtdx, dtdy);
631 const float maxz = MAX2(dpdx, dpdy);
632 const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f;
633
634 return util_fast_log2(rho);
635 }
636
637 static float
638 compute_lambda_cube(const struct sp_sampler_view *sview,
639 const float s[TGSI_QUAD_SIZE],
640 const float t[TGSI_QUAD_SIZE],
641 const float p[TGSI_QUAD_SIZE])
642 {
643 float derivs[3][2][TGSI_QUAD_SIZE];
644 compute_gradient_3d(s, t, p, derivs);
645 return compute_lambda_cube_explicit_gradients(sview, derivs, 0);
646 }
647
648 /**
649 * Compute lambda for a vertex texture sampler.
650 * Since there aren't derivatives to use, just return 0.
651 */
652 static float
653 compute_lambda_vert(const struct sp_sampler_view *sview,
654 const float s[TGSI_QUAD_SIZE],
655 const float t[TGSI_QUAD_SIZE],
656 const float p[TGSI_QUAD_SIZE])
657 {
658 return 0.0f;
659 }
660
661
662 static float
663 compute_lambda_vert_explicite_gradients(UNUSED const struct sp_sampler_view *sview,
664 UNUSED const float derivs[3][2][TGSI_QUAD_SIZE],
665 UNUSED int quad)
666 {
667 return 0.0f;
668 }
669
670
671 compute_lambda_from_grad_func
672 softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view,
673 enum pipe_shader_type shader)
674 {
675 switch (view->target) {
676 case PIPE_BUFFER:
677 case PIPE_TEXTURE_1D:
678 case PIPE_TEXTURE_1D_ARRAY:
679 return compute_lambda_1d_explicit_gradients;
680 case PIPE_TEXTURE_2D:
681 case PIPE_TEXTURE_2D_ARRAY:
682 case PIPE_TEXTURE_RECT:
683 return compute_lambda_2d_explicit_gradients;
684 case PIPE_TEXTURE_CUBE:
685 case PIPE_TEXTURE_CUBE_ARRAY:
686 return compute_lambda_cube_explicit_gradients;
687 case PIPE_TEXTURE_3D:
688 return compute_lambda_3d_explicit_gradients;
689 default:
690 assert(0);
691 return compute_lambda_1d_explicit_gradients;
692 }
693 }
694
695
696 /**
697 * Get a texel from a texture, using the texture tile cache.
698 *
699 * \param addr the template tex address containing cube, z, face info.
700 * \param x the x coord of texel within 2D image
701 * \param y the y coord of texel within 2D image
702 * \param rgba the quad to put the texel/color into
703 *
704 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
705 * sp_get_cached_tile_tex() function.
706 */
707
708
709
710 static inline const float *
711 get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview,
712 union tex_tile_address addr, int x, unsigned elmsize)
713 {
714 const struct softpipe_tex_cached_tile *tile;
715 addr.bits.x = x * elmsize / TEX_TILE_SIZE;
716 assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x);
717
718 x %= TEX_TILE_SIZE / elmsize;
719
720 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
721
722 return &tile->data.color[0][x][0];
723 }
724
725
726 static inline const float *
727 get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
728 union tex_tile_address addr, int x, int y)
729 {
730 const struct softpipe_tex_cached_tile *tile;
731 addr.bits.x = x / TEX_TILE_SIZE;
732 addr.bits.y = y / TEX_TILE_SIZE;
733 y %= TEX_TILE_SIZE;
734 x %= TEX_TILE_SIZE;
735
736 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
737
738 return &tile->data.color[y][x][0];
739 }
740
741
742 static inline const float *
743 get_texel_2d(const struct sp_sampler_view *sp_sview,
744 const struct sp_sampler *sp_samp,
745 union tex_tile_address addr, int x, int y)
746 {
747 const struct pipe_resource *texture = sp_sview->base.texture;
748 const unsigned level = addr.bits.level;
749
750 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
751 y < 0 || y >= (int) u_minify(texture->height0, level)) {
752 return sp_samp->base.border_color.f;
753 }
754 else {
755 return get_texel_2d_no_border( sp_sview, addr, x, y );
756 }
757 }
758
759
760 /*
761 * Here's the complete logic (HOLY CRAP) for finding next face and doing the
762 * corresponding coord wrapping, implemented by get_next_face,
763 * get_next_xcoord, get_next_ycoord.
764 * Read like that (first line):
765 * If face is +x and s coord is below zero, then
766 * new face is +z, new s is max , new t is old t
767 * (max is always cube size - 1).
768 *
769 * +x s- -> +z: s = max, t = t
770 * +x s+ -> -z: s = 0, t = t
771 * +x t- -> +y: s = max, t = max-s
772 * +x t+ -> -y: s = max, t = s
773 *
774 * -x s- -> -z: s = max, t = t
775 * -x s+ -> +z: s = 0, t = t
776 * -x t- -> +y: s = 0, t = s
777 * -x t+ -> -y: s = 0, t = max-s
778 *
779 * +y s- -> -x: s = t, t = 0
780 * +y s+ -> +x: s = max-t, t = 0
781 * +y t- -> -z: s = max-s, t = 0
782 * +y t+ -> +z: s = s, t = 0
783 *
784 * -y s- -> -x: s = max-t, t = max
785 * -y s+ -> +x: s = t, t = max
786 * -y t- -> +z: s = s, t = max
787 * -y t+ -> -z: s = max-s, t = max
788
789 * +z s- -> -x: s = max, t = t
790 * +z s+ -> +x: s = 0, t = t
791 * +z t- -> +y: s = s, t = max
792 * +z t+ -> -y: s = s, t = 0
793
794 * -z s- -> +x: s = max, t = t
795 * -z s+ -> -x: s = 0, t = t
796 * -z t- -> +y: s = max-s, t = 0
797 * -z t+ -> -y: s = max-s, t = max
798 */
799
800
801 /*
802 * seamless cubemap neighbour array.
803 * this array is used to find the adjacent face in each of 4 directions,
804 * left, right, up, down. (or -x, +x, -y, +y).
805 */
806 static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
807 /* pos X first then neg X is Z different, Y the same */
808 /* PIPE_TEX_FACE_POS_X,*/
809 { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
810 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
811 /* PIPE_TEX_FACE_NEG_X */
812 { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
813 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
814
815 /* pos Y first then neg Y is X different, X the same */
816 /* PIPE_TEX_FACE_POS_Y */
817 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
818 PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
819
820 /* PIPE_TEX_FACE_NEG_Y */
821 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
822 PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
823
824 /* pos Z first then neg Y is X different, X the same */
825 /* PIPE_TEX_FACE_POS_Z */
826 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
827 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
828
829 /* PIPE_TEX_FACE_NEG_Z */
830 { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
831 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
832 };
833
834 static inline unsigned
835 get_next_face(unsigned face, int idx)
836 {
837 return face_array[face][idx];
838 }
839
840 /*
841 * return a new xcoord based on old face, old coords, cube size
842 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
843 */
844 static inline int
845 get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
846 {
847 if ((face == 0 && fall_off_index != 1) ||
848 (face == 1 && fall_off_index == 0) ||
849 (face == 4 && fall_off_index == 0) ||
850 (face == 5 && fall_off_index == 0)) {
851 return max;
852 }
853 if ((face == 1 && fall_off_index != 0) ||
854 (face == 0 && fall_off_index == 1) ||
855 (face == 4 && fall_off_index == 1) ||
856 (face == 5 && fall_off_index == 1)) {
857 return 0;
858 }
859 if ((face == 4 && fall_off_index >= 2) ||
860 (face == 2 && fall_off_index == 3) ||
861 (face == 3 && fall_off_index == 2)) {
862 return xc;
863 }
864 if ((face == 5 && fall_off_index >= 2) ||
865 (face == 2 && fall_off_index == 2) ||
866 (face == 3 && fall_off_index == 3)) {
867 return max - xc;
868 }
869 if ((face == 2 && fall_off_index == 0) ||
870 (face == 3 && fall_off_index == 1)) {
871 return yc;
872 }
873 /* (face == 2 && fall_off_index == 1) ||
874 (face == 3 && fall_off_index == 0)) */
875 return max - yc;
876 }
877
878 /*
879 * return a new ycoord based on old face, old coords, cube size
880 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
881 */
882 static inline int
883 get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
884 {
885 if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
886 return yc;
887 }
888 if (face == 2 ||
889 (face == 4 && fall_off_index == 3) ||
890 (face == 5 && fall_off_index == 2)) {
891 return 0;
892 }
893 if (face == 3 ||
894 (face == 4 && fall_off_index == 2) ||
895 (face == 5 && fall_off_index == 3)) {
896 return max;
897 }
898 if ((face == 0 && fall_off_index == 3) ||
899 (face == 1 && fall_off_index == 2)) {
900 return xc;
901 }
902 /* (face == 0 && fall_off_index == 2) ||
903 (face == 1 && fall_off_index == 3) */
904 return max - xc;
905 }
906
907
908 /* Gather a quad of adjacent texels within a tile:
909 */
910 static inline void
911 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
912 union tex_tile_address addr,
913 unsigned x, unsigned y,
914 const float *out[4])
915 {
916 const struct softpipe_tex_cached_tile *tile;
917
918 addr.bits.x = x / TEX_TILE_SIZE;
919 addr.bits.y = y / TEX_TILE_SIZE;
920 y %= TEX_TILE_SIZE;
921 x %= TEX_TILE_SIZE;
922
923 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
924
925 out[0] = &tile->data.color[y ][x ][0];
926 out[1] = &tile->data.color[y ][x+1][0];
927 out[2] = &tile->data.color[y+1][x ][0];
928 out[3] = &tile->data.color[y+1][x+1][0];
929 }
930
931
932 /* Gather a quad of potentially non-adjacent texels:
933 */
934 static inline void
935 get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
936 union tex_tile_address addr,
937 int x0, int y0,
938 int x1, int y1,
939 const float *out[4])
940 {
941 out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
942 out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
943 out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
944 out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
945 }
946
947
948 /* 3d variants:
949 */
950 static inline const float *
951 get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
952 union tex_tile_address addr, int x, int y, int z)
953 {
954 const struct softpipe_tex_cached_tile *tile;
955
956 addr.bits.x = x / TEX_TILE_SIZE;
957 addr.bits.y = y / TEX_TILE_SIZE;
958 addr.bits.z = z;
959 y %= TEX_TILE_SIZE;
960 x %= TEX_TILE_SIZE;
961
962 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
963
964 return &tile->data.color[y][x][0];
965 }
966
967
968 static inline const float *
969 get_texel_3d(const struct sp_sampler_view *sp_sview,
970 const struct sp_sampler *sp_samp,
971 union tex_tile_address addr, int x, int y, int z)
972 {
973 const struct pipe_resource *texture = sp_sview->base.texture;
974 const unsigned level = addr.bits.level;
975
976 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
977 y < 0 || y >= (int) u_minify(texture->height0, level) ||
978 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
979 return sp_samp->base.border_color.f;
980 }
981 else {
982 return get_texel_3d_no_border( sp_sview, addr, x, y, z );
983 }
984 }
985
986
987 /* Get texel pointer for 1D array texture */
988 static inline const float *
989 get_texel_1d_array(const struct sp_sampler_view *sp_sview,
990 const struct sp_sampler *sp_samp,
991 union tex_tile_address addr, int x, int y)
992 {
993 const struct pipe_resource *texture = sp_sview->base.texture;
994 const unsigned level = addr.bits.level;
995
996 if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
997 return sp_samp->base.border_color.f;
998 }
999 else {
1000 return get_texel_2d_no_border(sp_sview, addr, x, y);
1001 }
1002 }
1003
1004
1005 /* Get texel pointer for 2D array texture */
1006 static inline const float *
1007 get_texel_2d_array(const struct sp_sampler_view *sp_sview,
1008 const struct sp_sampler *sp_samp,
1009 union tex_tile_address addr, int x, int y, int layer)
1010 {
1011 const struct pipe_resource *texture = sp_sview->base.texture;
1012 const unsigned level = addr.bits.level;
1013
1014 assert(layer < (int) texture->array_size);
1015 assert(layer >= 0);
1016
1017 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1018 y < 0 || y >= (int) u_minify(texture->height0, level)) {
1019 return sp_samp->base.border_color.f;
1020 }
1021 else {
1022 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1023 }
1024 }
1025
1026
1027 static inline const float *
1028 get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
1029 union tex_tile_address addr, int x, int y,
1030 float *corner, int layer, unsigned face)
1031 {
1032 const struct pipe_resource *texture = sp_sview->base.texture;
1033 const unsigned level = addr.bits.level;
1034 int new_x, new_y, max_x;
1035
1036 max_x = (int) u_minify(texture->width0, level);
1037
1038 assert(texture->width0 == texture->height0);
1039 new_x = x;
1040 new_y = y;
1041
1042 /* change the face */
1043 if (x < 0) {
1044 /*
1045 * Cheat with corners. They are difficult and I believe because we don't get
1046 * per-pixel faces we can actually have multiple corner texels per pixel,
1047 * which screws things up majorly in any case (as the per spec behavior is
1048 * to average the 3 remaining texels, which we might not have).
1049 * Hence just make sure that the 2nd coord is clamped, will simply pick the
1050 * sample which would have fallen off the x coord, but not y coord.
1051 * So the filter weight of the samples will be wrong, but at least this
1052 * ensures that only valid texels near the corner are used.
1053 */
1054 if (y < 0 || y >= max_x) {
1055 y = CLAMP(y, 0, max_x - 1);
1056 }
1057 new_x = get_next_xcoord(face, 0, max_x -1, x, y);
1058 new_y = get_next_ycoord(face, 0, max_x -1, x, y);
1059 face = get_next_face(face, 0);
1060 } else if (x >= max_x) {
1061 if (y < 0 || y >= max_x) {
1062 y = CLAMP(y, 0, max_x - 1);
1063 }
1064 new_x = get_next_xcoord(face, 1, max_x -1, x, y);
1065 new_y = get_next_ycoord(face, 1, max_x -1, x, y);
1066 face = get_next_face(face, 1);
1067 } else if (y < 0) {
1068 new_x = get_next_xcoord(face, 2, max_x -1, x, y);
1069 new_y = get_next_ycoord(face, 2, max_x -1, x, y);
1070 face = get_next_face(face, 2);
1071 } else if (y >= max_x) {
1072 new_x = get_next_xcoord(face, 3, max_x -1, x, y);
1073 new_y = get_next_ycoord(face, 3, max_x -1, x, y);
1074 face = get_next_face(face, 3);
1075 }
1076
1077 return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
1078 }
1079
1080
1081 /* Get texel pointer for cube array texture */
1082 static inline const float *
1083 get_texel_cube_array(const struct sp_sampler_view *sp_sview,
1084 const struct sp_sampler *sp_samp,
1085 union tex_tile_address addr, int x, int y, int layer)
1086 {
1087 const struct pipe_resource *texture = sp_sview->base.texture;
1088 const unsigned level = addr.bits.level;
1089
1090 assert(layer < (int) texture->array_size);
1091 assert(layer >= 0);
1092
1093 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1094 y < 0 || y >= (int) u_minify(texture->height0, level)) {
1095 return sp_samp->base.border_color.f;
1096 }
1097 else {
1098 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1099 }
1100 }
1101 /**
1102 * Given the logbase2 of a mipmap's base level size and a mipmap level,
1103 * return the size (in texels) of that mipmap level.
1104 * For example, if level[0].width = 256 then base_pot will be 8.
1105 * If level = 2, then we'll return 64 (the width at level=2).
1106 * Return 1 if level > base_pot.
1107 */
1108 static inline unsigned
1109 pot_level_size(unsigned base_pot, unsigned level)
1110 {
1111 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
1112 }
1113
1114
1115 static void
1116 print_sample(const char *function, const float *rgba)
1117 {
1118 debug_printf("%s %g %g %g %g\n",
1119 function,
1120 rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
1121 }
1122
1123
1124 static void
1125 print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1126 {
1127 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
1128 function,
1129 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
1130 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
1131 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
1132 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
1133 }
1134
1135
1136 /* Some image-filter fastpaths:
1137 */
1138 static inline void
1139 img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
1140 const struct sp_sampler *sp_samp,
1141 const struct img_filter_args *args,
1142 float *rgba)
1143 {
1144 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1145 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1146 const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
1147 const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1148 union tex_tile_address addr;
1149 int c;
1150
1151 const float u = (args->s * xpot - 0.5F) + args->offset[0];
1152 const float v = (args->t * ypot - 0.5F) + args->offset[1];
1153
1154 const int uflr = util_ifloor(u);
1155 const int vflr = util_ifloor(v);
1156
1157 const float xw = u - (float)uflr;
1158 const float yw = v - (float)vflr;
1159
1160 const int x0 = uflr & (xpot - 1);
1161 const int y0 = vflr & (ypot - 1);
1162
1163 const float *tx[4];
1164
1165 addr.value = 0;
1166 addr.bits.level = args->level;
1167 addr.bits.z = sp_sview->base.u.tex.first_layer;
1168
1169 /* Can we fetch all four at once:
1170 */
1171 if (x0 < xmax && y0 < ymax) {
1172 get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1173 }
1174 else {
1175 const unsigned x1 = (x0 + 1) & (xpot - 1);
1176 const unsigned y1 = (y0 + 1) & (ypot - 1);
1177 get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1178 }
1179
1180 /* interpolate R, G, B, A */
1181 for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1182 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1183 tx[0][c], tx[1][c],
1184 tx[2][c], tx[3][c]);
1185 }
1186
1187 if (DEBUG_TEX) {
1188 print_sample(__FUNCTION__, rgba);
1189 }
1190 }
1191
1192
1193 static inline void
1194 img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1195 const struct sp_sampler *sp_samp,
1196 const struct img_filter_args *args,
1197 float *rgba)
1198 {
1199 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1200 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1201 const float *out;
1202 union tex_tile_address addr;
1203 int c;
1204
1205 const float u = args->s * xpot + args->offset[0];
1206 const float v = args->t * ypot + args->offset[1];
1207
1208 const int uflr = util_ifloor(u);
1209 const int vflr = util_ifloor(v);
1210
1211 const int x0 = uflr & (xpot - 1);
1212 const int y0 = vflr & (ypot - 1);
1213
1214 addr.value = 0;
1215 addr.bits.level = args->level;
1216 addr.bits.z = sp_sview->base.u.tex.first_layer;
1217
1218 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1219 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1220 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1221
1222 if (DEBUG_TEX) {
1223 print_sample(__FUNCTION__, rgba);
1224 }
1225 }
1226
1227
1228 static inline void
1229 img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1230 const struct sp_sampler *sp_samp,
1231 const struct img_filter_args *args,
1232 float *rgba)
1233 {
1234 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1235 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1236 union tex_tile_address addr;
1237 int c;
1238
1239 const float u = args->s * xpot + args->offset[0];
1240 const float v = args->t * ypot + args->offset[1];
1241
1242 int x0, y0;
1243 const float *out;
1244
1245 addr.value = 0;
1246 addr.bits.level = args->level;
1247 addr.bits.z = sp_sview->base.u.tex.first_layer;
1248
1249 x0 = util_ifloor(u);
1250 if (x0 < 0)
1251 x0 = 0;
1252 else if (x0 > (int) xpot - 1)
1253 x0 = xpot - 1;
1254
1255 y0 = util_ifloor(v);
1256 if (y0 < 0)
1257 y0 = 0;
1258 else if (y0 > (int) ypot - 1)
1259 y0 = ypot - 1;
1260
1261 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1262 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1263 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1264
1265 if (DEBUG_TEX) {
1266 print_sample(__FUNCTION__, rgba);
1267 }
1268 }
1269
1270
1271 static void
1272 img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1273 const struct sp_sampler *sp_samp,
1274 const struct img_filter_args *args,
1275 float *rgba)
1276 {
1277 const struct pipe_resource *texture = sp_sview->base.texture;
1278 const int width = u_minify(texture->width0, args->level);
1279 int x;
1280 union tex_tile_address addr;
1281 const float *out;
1282 int c;
1283
1284 assert(width > 0);
1285
1286 addr.value = 0;
1287 addr.bits.level = args->level;
1288
1289 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1290
1291 out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1292 sp_sview->base.u.tex.first_layer);
1293 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1294 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1295
1296 if (DEBUG_TEX) {
1297 print_sample(__FUNCTION__, rgba);
1298 }
1299 }
1300
1301
1302 static void
1303 img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1304 const struct sp_sampler *sp_samp,
1305 const struct img_filter_args *args,
1306 float *rgba)
1307 {
1308 const struct pipe_resource *texture = sp_sview->base.texture;
1309 const int width = u_minify(texture->width0, args->level);
1310 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1311 sp_sview->base.u.tex.last_layer);
1312 int x;
1313 union tex_tile_address addr;
1314 const float *out;
1315 int c;
1316
1317 assert(width > 0);
1318
1319 addr.value = 0;
1320 addr.bits.level = args->level;
1321
1322 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1323
1324 out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1325 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1326 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1327
1328 if (DEBUG_TEX) {
1329 print_sample(__FUNCTION__, rgba);
1330 }
1331 }
1332
1333
1334 static void
1335 img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1336 const struct sp_sampler *sp_samp,
1337 const struct img_filter_args *args,
1338 float *rgba)
1339 {
1340 const struct pipe_resource *texture = sp_sview->base.texture;
1341 const int width = u_minify(texture->width0, args->level);
1342 const int height = u_minify(texture->height0, args->level);
1343 int x, y;
1344 union tex_tile_address addr;
1345 const float *out;
1346 int c;
1347
1348 assert(width > 0);
1349 assert(height > 0);
1350
1351 addr.value = 0;
1352 addr.bits.level = args->level;
1353 addr.bits.z = sp_sview->base.u.tex.first_layer;
1354
1355 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1356 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1357
1358 out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1359 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1360 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1361
1362 if (DEBUG_TEX) {
1363 print_sample(__FUNCTION__, rgba);
1364 }
1365 }
1366
1367
1368 static void
1369 img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1370 const struct sp_sampler *sp_samp,
1371 const struct img_filter_args *args,
1372 float *rgba)
1373 {
1374 const struct pipe_resource *texture = sp_sview->base.texture;
1375 const int width = u_minify(texture->width0, args->level);
1376 const int height = u_minify(texture->height0, args->level);
1377 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1378 sp_sview->base.u.tex.last_layer);
1379 int x, y;
1380 union tex_tile_address addr;
1381 const float *out;
1382 int c;
1383
1384 assert(width > 0);
1385 assert(height > 0);
1386
1387 addr.value = 0;
1388 addr.bits.level = args->level;
1389
1390 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1391 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1392
1393 out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1394 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1395 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1396
1397 if (DEBUG_TEX) {
1398 print_sample(__FUNCTION__, rgba);
1399 }
1400 }
1401
1402
1403 static void
1404 img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1405 const struct sp_sampler *sp_samp,
1406 const struct img_filter_args *args,
1407 float *rgba)
1408 {
1409 const struct pipe_resource *texture = sp_sview->base.texture;
1410 const int width = u_minify(texture->width0, args->level);
1411 const int height = u_minify(texture->height0, args->level);
1412 const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1413 int x, y;
1414 union tex_tile_address addr;
1415 const float *out;
1416 int c;
1417
1418 assert(width > 0);
1419 assert(height > 0);
1420
1421 addr.value = 0;
1422 addr.bits.level = args->level;
1423
1424 /*
1425 * If NEAREST filtering is done within a miplevel, always apply wrap
1426 * mode CLAMP_TO_EDGE.
1427 */
1428 if (sp_samp->base.seamless_cube_map) {
1429 wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1430 wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1431 } else {
1432 /* Would probably make sense to ignore mode and just do edge clamp */
1433 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1434 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1435 }
1436
1437 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1438 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1439 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1440
1441 if (DEBUG_TEX) {
1442 print_sample(__FUNCTION__, rgba);
1443 }
1444 }
1445
1446 static void
1447 img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1448 const struct sp_sampler *sp_samp,
1449 const struct img_filter_args *args,
1450 float *rgba)
1451 {
1452 const struct pipe_resource *texture = sp_sview->base.texture;
1453 const int width = u_minify(texture->width0, args->level);
1454 const int height = u_minify(texture->height0, args->level);
1455 const int layerface =
1456 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1457 sp_sview->base.u.tex.first_layer,
1458 sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1459 int x, y;
1460 union tex_tile_address addr;
1461 const float *out;
1462 int c;
1463
1464 assert(width > 0);
1465 assert(height > 0);
1466
1467 addr.value = 0;
1468 addr.bits.level = args->level;
1469
1470 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1471 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1472
1473 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1474 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1475 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1476
1477 if (DEBUG_TEX) {
1478 print_sample(__FUNCTION__, rgba);
1479 }
1480 }
1481
1482 static void
1483 img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1484 const struct sp_sampler *sp_samp,
1485 const struct img_filter_args *args,
1486 float *rgba)
1487 {
1488 const struct pipe_resource *texture = sp_sview->base.texture;
1489 const int width = u_minify(texture->width0, args->level);
1490 const int height = u_minify(texture->height0, args->level);
1491 const int depth = u_minify(texture->depth0, args->level);
1492 int x, y, z;
1493 union tex_tile_address addr;
1494 const float *out;
1495 int c;
1496
1497 assert(width > 0);
1498 assert(height > 0);
1499 assert(depth > 0);
1500
1501 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1502 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1503 sp_samp->nearest_texcoord_p(args->p, depth, args->offset[2], &z);
1504
1505 addr.value = 0;
1506 addr.bits.level = args->level;
1507
1508 out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1509 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1510 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1511 }
1512
1513
1514 static void
1515 img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1516 const struct sp_sampler *sp_samp,
1517 const struct img_filter_args *args,
1518 float *rgba)
1519 {
1520 const struct pipe_resource *texture = sp_sview->base.texture;
1521 const int width = u_minify(texture->width0, args->level);
1522 int x0, x1;
1523 float xw; /* weights */
1524 union tex_tile_address addr;
1525 const float *tx0, *tx1;
1526 int c;
1527
1528 assert(width > 0);
1529
1530 addr.value = 0;
1531 addr.bits.level = args->level;
1532
1533 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1534
1535 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1536 sp_sview->base.u.tex.first_layer);
1537 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1538 sp_sview->base.u.tex.first_layer);
1539
1540 /* interpolate R, G, B, A */
1541 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1542 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1543 }
1544
1545
1546 static void
1547 img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1548 const struct sp_sampler *sp_samp,
1549 const struct img_filter_args *args,
1550 float *rgba)
1551 {
1552 const struct pipe_resource *texture = sp_sview->base.texture;
1553 const int width = u_minify(texture->width0, args->level);
1554 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1555 sp_sview->base.u.tex.last_layer);
1556 int x0, x1;
1557 float xw; /* weights */
1558 union tex_tile_address addr;
1559 const float *tx0, *tx1;
1560 int c;
1561
1562 assert(width > 0);
1563
1564 addr.value = 0;
1565 addr.bits.level = args->level;
1566
1567 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1568
1569 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1570 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1571
1572 /* interpolate R, G, B, A */
1573 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1574 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1575 }
1576
1577 /*
1578 * Retrieve the gathered value, need to convert to the
1579 * TGSI expected interface, and take component select
1580 * and swizzling into account.
1581 */
1582 static float
1583 get_gather_value(const struct sp_sampler_view *sp_sview,
1584 int chan_in, int comp_sel,
1585 const float *tx[4])
1586 {
1587 int chan;
1588 unsigned swizzle;
1589
1590 /*
1591 * softpipe samples in a different order
1592 * to TGSI expects, so we need to swizzle,
1593 * the samples into the correct slots.
1594 */
1595 switch (chan_in) {
1596 case 0:
1597 chan = 2;
1598 break;
1599 case 1:
1600 chan = 3;
1601 break;
1602 case 2:
1603 chan = 1;
1604 break;
1605 case 3:
1606 chan = 0;
1607 break;
1608 default:
1609 assert(0);
1610 return 0.0;
1611 }
1612
1613 /* pick which component to use for the swizzle */
1614 switch (comp_sel) {
1615 case 0:
1616 swizzle = sp_sview->base.swizzle_r;
1617 break;
1618 case 1:
1619 swizzle = sp_sview->base.swizzle_g;
1620 break;
1621 case 2:
1622 swizzle = sp_sview->base.swizzle_b;
1623 break;
1624 case 3:
1625 swizzle = sp_sview->base.swizzle_a;
1626 break;
1627 default:
1628 assert(0);
1629 return 0.0;
1630 }
1631
1632 /* get correct result using the channel and swizzle */
1633 switch (swizzle) {
1634 case PIPE_SWIZZLE_0:
1635 return 0.0;
1636 case PIPE_SWIZZLE_1:
1637 return 1.0;
1638 default:
1639 return tx[chan][swizzle];
1640 }
1641 }
1642
1643
1644 static void
1645 img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1646 const struct sp_sampler *sp_samp,
1647 const struct img_filter_args *args,
1648 float *rgba)
1649 {
1650 const struct pipe_resource *texture = sp_sview->base.texture;
1651 const int width = u_minify(texture->width0, args->level);
1652 const int height = u_minify(texture->height0, args->level);
1653 int x0, y0, x1, y1;
1654 float xw, yw; /* weights */
1655 union tex_tile_address addr;
1656 const float *tx[4];
1657 int c;
1658
1659 assert(width > 0);
1660 assert(height > 0);
1661
1662 addr.value = 0;
1663 addr.bits.level = args->level;
1664 addr.bits.z = sp_sview->base.u.tex.first_layer;
1665
1666 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1667 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1668
1669 tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1670 tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1671 tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1672 tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1673
1674 if (args->gather_only) {
1675 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1676 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1677 args->gather_comp,
1678 tx);
1679 } else {
1680 /* interpolate R, G, B, A */
1681 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1682 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1683 tx[0][c], tx[1][c],
1684 tx[2][c], tx[3][c]);
1685 }
1686 }
1687
1688
1689 static void
1690 img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1691 const struct sp_sampler *sp_samp,
1692 const struct img_filter_args *args,
1693 float *rgba)
1694 {
1695 const struct pipe_resource *texture = sp_sview->base.texture;
1696 const int width = u_minify(texture->width0, args->level);
1697 const int height = u_minify(texture->height0, args->level);
1698 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1699 sp_sview->base.u.tex.last_layer);
1700 int x0, y0, x1, y1;
1701 float xw, yw; /* weights */
1702 union tex_tile_address addr;
1703 const float *tx[4];
1704 int c;
1705
1706 assert(width > 0);
1707 assert(height > 0);
1708
1709 addr.value = 0;
1710 addr.bits.level = args->level;
1711
1712 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1713 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1714
1715 tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1716 tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1717 tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1718 tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1719
1720 if (args->gather_only) {
1721 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1722 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1723 args->gather_comp,
1724 tx);
1725 } else {
1726 /* interpolate R, G, B, A */
1727 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1728 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1729 tx[0][c], tx[1][c],
1730 tx[2][c], tx[3][c]);
1731 }
1732 }
1733
1734
1735 static void
1736 img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1737 const struct sp_sampler *sp_samp,
1738 const struct img_filter_args *args,
1739 float *rgba)
1740 {
1741 const struct pipe_resource *texture = sp_sview->base.texture;
1742 const int width = u_minify(texture->width0, args->level);
1743 const int height = u_minify(texture->height0, args->level);
1744 const int layer = sp_sview->base.u.tex.first_layer;
1745 int x0, y0, x1, y1;
1746 float xw, yw; /* weights */
1747 union tex_tile_address addr;
1748 const float *tx[4];
1749 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1750 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1751 int c;
1752
1753 assert(width > 0);
1754 assert(height > 0);
1755
1756 addr.value = 0;
1757 addr.bits.level = args->level;
1758
1759 /*
1760 * For seamless if LINEAR filtering is done within a miplevel,
1761 * always apply wrap mode CLAMP_TO_BORDER.
1762 */
1763 if (sp_samp->base.seamless_cube_map) {
1764 /* Note this is a bit overkill, actual clamping is not required */
1765 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1766 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1767 } else {
1768 /* Would probably make sense to ignore mode and just do edge clamp */
1769 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1770 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1771 }
1772
1773 if (sp_samp->base.seamless_cube_map) {
1774 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1775 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1776 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1777 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1778 } else {
1779 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1780 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1781 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1782 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1783 }
1784
1785 if (args->gather_only) {
1786 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1787 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1788 args->gather_comp,
1789 tx);
1790 } else {
1791 /* interpolate R, G, B, A */
1792 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1793 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1794 tx[0][c], tx[1][c],
1795 tx[2][c], tx[3][c]);
1796 }
1797 }
1798
1799
1800 static void
1801 img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1802 const struct sp_sampler *sp_samp,
1803 const struct img_filter_args *args,
1804 float *rgba)
1805 {
1806 const struct pipe_resource *texture = sp_sview->base.texture;
1807 const int width = u_minify(texture->width0, args->level);
1808 const int height = u_minify(texture->height0, args->level);
1809 const int layer =
1810 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1811 sp_sview->base.u.tex.first_layer,
1812 sp_sview->base.u.tex.last_layer - 5);
1813 int x0, y0, x1, y1;
1814 float xw, yw; /* weights */
1815 union tex_tile_address addr;
1816 const float *tx[4];
1817 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1818 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1819 int c;
1820
1821 assert(width > 0);
1822 assert(height > 0);
1823
1824 addr.value = 0;
1825 addr.bits.level = args->level;
1826
1827 /*
1828 * For seamless if LINEAR filtering is done within a miplevel,
1829 * always apply wrap mode CLAMP_TO_BORDER.
1830 */
1831 if (sp_samp->base.seamless_cube_map) {
1832 /* Note this is a bit overkill, actual clamping is not required */
1833 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1834 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1835 } else {
1836 /* Would probably make sense to ignore mode and just do edge clamp */
1837 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1838 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1839 }
1840
1841 if (sp_samp->base.seamless_cube_map) {
1842 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1843 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1844 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1845 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1846 } else {
1847 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1848 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1849 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1850 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1851 }
1852
1853 if (args->gather_only) {
1854 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1855 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1856 args->gather_comp,
1857 tx);
1858 } else {
1859 /* interpolate R, G, B, A */
1860 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1861 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1862 tx[0][c], tx[1][c],
1863 tx[2][c], tx[3][c]);
1864 }
1865 }
1866
1867 static void
1868 img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1869 const struct sp_sampler *sp_samp,
1870 const struct img_filter_args *args,
1871 float *rgba)
1872 {
1873 const struct pipe_resource *texture = sp_sview->base.texture;
1874 const int width = u_minify(texture->width0, args->level);
1875 const int height = u_minify(texture->height0, args->level);
1876 const int depth = u_minify(texture->depth0, args->level);
1877 int x0, x1, y0, y1, z0, z1;
1878 float xw, yw, zw; /* interpolation weights */
1879 union tex_tile_address addr;
1880 const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1881 int c;
1882
1883 addr.value = 0;
1884 addr.bits.level = args->level;
1885
1886 assert(width > 0);
1887 assert(height > 0);
1888 assert(depth > 0);
1889
1890 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1891 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1892 sp_samp->linear_texcoord_p(args->p, depth, args->offset[2], &z0, &z1, &zw);
1893
1894 tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1895 tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1896 tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1897 tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1898
1899 tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1900 tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1901 tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1902 tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1903
1904 /* interpolate R, G, B, A */
1905 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1906 rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
1907 tx00[c], tx01[c],
1908 tx02[c], tx03[c],
1909 tx10[c], tx11[c],
1910 tx12[c], tx13[c]);
1911 }
1912
1913
1914 /* Calculate level of detail for every fragment,
1915 * with lambda already computed.
1916 * Note that lambda has already been biased by global LOD bias.
1917 * \param biased_lambda per-quad lambda.
1918 * \param lod_in per-fragment lod_bias or explicit_lod.
1919 * \param lod returns the per-fragment lod.
1920 */
1921 static inline void
1922 compute_lod(const struct pipe_sampler_state *sampler,
1923 enum tgsi_sampler_control control,
1924 const float biased_lambda,
1925 const float lod_in[TGSI_QUAD_SIZE],
1926 float lod[TGSI_QUAD_SIZE])
1927 {
1928 const float min_lod = sampler->min_lod;
1929 const float max_lod = sampler->max_lod;
1930 uint i;
1931
1932 switch (control) {
1933 case TGSI_SAMPLER_LOD_NONE:
1934 case TGSI_SAMPLER_LOD_ZERO:
1935 /* XXX FIXME */
1936 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1937 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1938 break;
1939 case TGSI_SAMPLER_LOD_BIAS:
1940 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1941 lod[i] = biased_lambda + lod_in[i];
1942 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1943 }
1944 break;
1945 case TGSI_SAMPLER_LOD_EXPLICIT:
1946 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1947 lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1948 }
1949 break;
1950 default:
1951 assert(0);
1952 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1953 }
1954 }
1955
1956
1957 /* Calculate level of detail for every fragment. The computed value is not
1958 * clamped to lod_min and lod_max.
1959 * \param lod_in per-fragment lod_bias or explicit_lod.
1960 * \param lod results per-fragment lod.
1961 */
1962 static inline void
1963 compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1964 const struct sp_sampler *sp_samp,
1965 const float s[TGSI_QUAD_SIZE],
1966 const float t[TGSI_QUAD_SIZE],
1967 const float p[TGSI_QUAD_SIZE],
1968 const float lod_in[TGSI_QUAD_SIZE],
1969 enum tgsi_sampler_control control,
1970 float lod[TGSI_QUAD_SIZE])
1971 {
1972 const struct pipe_sampler_state *sampler = &sp_samp->base;
1973 const float lod_bias = sampler->lod_bias;
1974 float lambda;
1975 uint i;
1976
1977 switch (control) {
1978 case TGSI_SAMPLER_LOD_NONE:
1979 /* XXX FIXME */
1980 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1981 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1982 lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1983 break;
1984 case TGSI_SAMPLER_LOD_BIAS:
1985 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1986 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1987 lod[i] = lambda + lod_in[i];
1988 }
1989 break;
1990 case TGSI_SAMPLER_LOD_EXPLICIT:
1991 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1992 lod[i] = lod_in[i] + lod_bias;
1993 }
1994 break;
1995 case TGSI_SAMPLER_LOD_ZERO:
1996 case TGSI_SAMPLER_GATHER:
1997 lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
1998 break;
1999 default:
2000 assert(0);
2001 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
2002 }
2003 }
2004
2005 /* Calculate level of detail for every fragment.
2006 * \param lod_in per-fragment lod_bias or explicit_lod.
2007 * \param lod results per-fragment lod.
2008 */
2009 static inline void
2010 compute_lambda_lod(const struct sp_sampler_view *sp_sview,
2011 const struct sp_sampler *sp_samp,
2012 const float s[TGSI_QUAD_SIZE],
2013 const float t[TGSI_QUAD_SIZE],
2014 const float p[TGSI_QUAD_SIZE],
2015 const float lod_in[TGSI_QUAD_SIZE],
2016 enum tgsi_sampler_control control,
2017 float lod[TGSI_QUAD_SIZE])
2018 {
2019 const struct pipe_sampler_state *sampler = &sp_samp->base;
2020 const float min_lod = sampler->min_lod;
2021 const float max_lod = sampler->max_lod;
2022 int i;
2023
2024 compute_lambda_lod_unclamped(sp_sview, sp_samp,
2025 s, t, p, lod_in, control, lod);
2026 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2027 lod[i] = CLAMP(lod[i], min_lod, max_lod);
2028 }
2029 }
2030
2031 static inline unsigned
2032 get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
2033 {
2034 /* gather component is stored in lod_in slot as unsigned */
2035 return (*(unsigned int *)lod_in) & 0x3;
2036 }
2037
2038 /**
2039 * Clamps given lod to both lod limits and mip level limits. Clamping to the
2040 * latter limits is done so that lod is relative to the first (base) level.
2041 */
2042 static void
2043 clamp_lod(const struct sp_sampler_view *sp_sview,
2044 const struct sp_sampler *sp_samp,
2045 const float lod[TGSI_QUAD_SIZE],
2046 float clamped[TGSI_QUAD_SIZE])
2047 {
2048 const float min_lod = sp_samp->base.min_lod;
2049 const float max_lod = sp_samp->base.max_lod;
2050 const float min_level = sp_sview->base.u.tex.first_level;
2051 const float max_level = sp_sview->base.u.tex.last_level;
2052 int i;
2053
2054 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2055 float cl = lod[i];
2056
2057 cl = CLAMP(cl, min_lod, max_lod);
2058 cl = CLAMP(cl, 0, max_level - min_level);
2059 clamped[i] = cl;
2060 }
2061 }
2062
2063 /**
2064 * Get mip level relative to base level for linear mip filter
2065 */
2066 static void
2067 mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
2068 const struct sp_sampler *sp_samp,
2069 const float lod[TGSI_QUAD_SIZE],
2070 float level[TGSI_QUAD_SIZE])
2071 {
2072 clamp_lod(sp_sview, sp_samp, lod, level);
2073 }
2074
2075 static void
2076 mip_filter_linear(const struct sp_sampler_view *sp_sview,
2077 const struct sp_sampler *sp_samp,
2078 img_filter_func min_filter,
2079 img_filter_func mag_filter,
2080 const float s[TGSI_QUAD_SIZE],
2081 const float t[TGSI_QUAD_SIZE],
2082 const float p[TGSI_QUAD_SIZE],
2083 const float c0[TGSI_QUAD_SIZE],
2084 const float lod_in[TGSI_QUAD_SIZE],
2085 const struct filter_args *filt_args,
2086 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2087 {
2088 const struct pipe_sampler_view *psview = &sp_sview->base;
2089 int j;
2090 float lod[TGSI_QUAD_SIZE];
2091 struct img_filter_args args;
2092
2093 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2094
2095 args.offset = filt_args->offset;
2096 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2097 args.gather_comp = get_gather_component(lod_in);
2098
2099 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2100 const int level0 = psview->u.tex.first_level + (int)lod[j];
2101
2102 args.s = s[j];
2103 args.t = t[j];
2104 args.p = p[j];
2105 args.face_id = filt_args->faces[j];
2106
2107 if (lod[j] <= 0.0 && !args.gather_only) {
2108 args.level = psview->u.tex.first_level;
2109 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2110 }
2111 else if (level0 >= (int) psview->u.tex.last_level) {
2112 args.level = psview->u.tex.last_level;
2113 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2114 }
2115 else {
2116 float levelBlend = frac(lod[j]);
2117 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2118 int c;
2119
2120 args.level = level0;
2121 min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
2122 args.level = level0+1;
2123 min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
2124
2125 for (c = 0; c < 4; c++) {
2126 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2127 }
2128 }
2129 }
2130
2131 if (DEBUG_TEX) {
2132 print_sample_4(__FUNCTION__, rgba);
2133 }
2134 }
2135
2136
2137 /**
2138 * Get mip level relative to base level for nearest mip filter
2139 */
2140 static void
2141 mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
2142 const struct sp_sampler *sp_samp,
2143 const float lod[TGSI_QUAD_SIZE],
2144 float level[TGSI_QUAD_SIZE])
2145 {
2146 int j;
2147
2148 clamp_lod(sp_sview, sp_samp, lod, level);
2149 for (j = 0; j < TGSI_QUAD_SIZE; j++)
2150 /* TODO: It should rather be:
2151 * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2152 */
2153 level[j] = (int)(level[j] + 0.5F);
2154 }
2155
2156 /**
2157 * Compute nearest mipmap level from texcoords.
2158 * Then sample the texture level for four elements of a quad.
2159 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
2160 */
2161 static void
2162 mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2163 const struct sp_sampler *sp_samp,
2164 img_filter_func min_filter,
2165 img_filter_func mag_filter,
2166 const float s[TGSI_QUAD_SIZE],
2167 const float t[TGSI_QUAD_SIZE],
2168 const float p[TGSI_QUAD_SIZE],
2169 const float c0[TGSI_QUAD_SIZE],
2170 const float lod_in[TGSI_QUAD_SIZE],
2171 const struct filter_args *filt_args,
2172 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2173 {
2174 const struct pipe_sampler_view *psview = &sp_sview->base;
2175 float lod[TGSI_QUAD_SIZE];
2176 int j;
2177 struct img_filter_args args;
2178
2179 args.offset = filt_args->offset;
2180 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2181 args.gather_comp = get_gather_component(lod_in);
2182
2183 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2184
2185 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2186 args.s = s[j];
2187 args.t = t[j];
2188 args.p = p[j];
2189 args.face_id = filt_args->faces[j];
2190
2191 if (lod[j] <= 0.0 && !args.gather_only) {
2192 args.level = psview->u.tex.first_level;
2193 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2194 } else {
2195 const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2196 args.level = MIN2(level, (int)psview->u.tex.last_level);
2197 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2198 }
2199 }
2200
2201 if (DEBUG_TEX) {
2202 print_sample_4(__FUNCTION__, rgba);
2203 }
2204 }
2205
2206
2207 /**
2208 * Get mip level relative to base level for none mip filter
2209 */
2210 static void
2211 mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2212 const struct sp_sampler *sp_samp,
2213 const float lod[TGSI_QUAD_SIZE],
2214 float level[TGSI_QUAD_SIZE])
2215 {
2216 int j;
2217
2218 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2219 level[j] = 0;
2220 }
2221 }
2222
2223 static void
2224 mip_filter_none(const struct sp_sampler_view *sp_sview,
2225 const struct sp_sampler *sp_samp,
2226 img_filter_func min_filter,
2227 img_filter_func mag_filter,
2228 const float s[TGSI_QUAD_SIZE],
2229 const float t[TGSI_QUAD_SIZE],
2230 const float p[TGSI_QUAD_SIZE],
2231 const float c0[TGSI_QUAD_SIZE],
2232 const float lod_in[TGSI_QUAD_SIZE],
2233 const struct filter_args *filt_args,
2234 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2235 {
2236 float lod[TGSI_QUAD_SIZE];
2237 int j;
2238 struct img_filter_args args;
2239
2240 args.level = sp_sview->base.u.tex.first_level;
2241 args.offset = filt_args->offset;
2242 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2243
2244 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2245
2246 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2247 args.s = s[j];
2248 args.t = t[j];
2249 args.p = p[j];
2250 args.face_id = filt_args->faces[j];
2251 if (lod[j] <= 0.0f && !args.gather_only) {
2252 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2253 }
2254 else {
2255 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2256 }
2257 }
2258 }
2259
2260
2261 /**
2262 * Get mip level relative to base level for none mip filter
2263 */
2264 static void
2265 mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2266 const struct sp_sampler *sp_samp,
2267 const float lod[TGSI_QUAD_SIZE],
2268 float level[TGSI_QUAD_SIZE])
2269 {
2270 mip_rel_level_none(sp_sview, sp_samp, lod, level);
2271 }
2272
2273 static void
2274 mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2275 const struct sp_sampler *sp_samp,
2276 img_filter_func min_filter,
2277 img_filter_func mag_filter,
2278 const float s[TGSI_QUAD_SIZE],
2279 const float t[TGSI_QUAD_SIZE],
2280 const float p[TGSI_QUAD_SIZE],
2281 const float c0[TGSI_QUAD_SIZE],
2282 const float lod_in[TGSI_QUAD_SIZE],
2283 const struct filter_args *filt_args,
2284 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2285 {
2286 int j;
2287 struct img_filter_args args;
2288 args.level = sp_sview->base.u.tex.first_level;
2289 args.offset = filt_args->offset;
2290 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2291 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2292 args.s = s[j];
2293 args.t = t[j];
2294 args.p = p[j];
2295 args.face_id = filt_args->faces[j];
2296 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2297 }
2298 }
2299
2300
2301 /* For anisotropic filtering */
2302 #define WEIGHT_LUT_SIZE 1024
2303
2304 static const float *weightLut = NULL;
2305
2306 /**
2307 * Creates the look-up table used to speed-up EWA sampling
2308 */
2309 static void
2310 create_filter_table(void)
2311 {
2312 unsigned i;
2313 if (!weightLut) {
2314 float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2315
2316 for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2317 const float alpha = 2;
2318 const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2319 const float weight = (float) exp(-alpha * r2);
2320 lut[i] = weight;
2321 }
2322 weightLut = lut;
2323 }
2324 }
2325
2326
2327 /**
2328 * Elliptical weighted average (EWA) filter for producing high quality
2329 * anisotropic filtered results.
2330 * Based on the Higher Quality Elliptical Weighted Average Filter
2331 * published by Paul S. Heckbert in his Master's Thesis
2332 * "Fundamentals of Texture Mapping and Image Warping" (1989)
2333 */
2334 static void
2335 img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2336 const struct sp_sampler *sp_samp,
2337 img_filter_func min_filter,
2338 img_filter_func mag_filter,
2339 const float s[TGSI_QUAD_SIZE],
2340 const float t[TGSI_QUAD_SIZE],
2341 const float p[TGSI_QUAD_SIZE],
2342 const uint faces[TGSI_QUAD_SIZE],
2343 const int8_t *offset,
2344 unsigned level,
2345 const float dudx, const float dvdx,
2346 const float dudy, const float dvdy,
2347 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2348 {
2349 const struct pipe_resource *texture = sp_sview->base.texture;
2350
2351 // ??? Won't the image filters blow up if level is negative?
2352 const unsigned level0 = level > 0 ? level : 0;
2353 const float scaling = 1.0f / (1 << level0);
2354 const int width = u_minify(texture->width0, level0);
2355 const int height = u_minify(texture->height0, level0);
2356 struct img_filter_args args;
2357 const float ux = dudx * scaling;
2358 const float vx = dvdx * scaling;
2359 const float uy = dudy * scaling;
2360 const float vy = dvdy * scaling;
2361
2362 /* compute ellipse coefficients to bound the region:
2363 * A*x*x + B*x*y + C*y*y = F.
2364 */
2365 float A = vx*vx+vy*vy+1;
2366 float B = -2*(ux*vx+uy*vy);
2367 float C = ux*ux+uy*uy+1;
2368 float F = A*C-B*B/4.0f;
2369
2370 /* check if it is an ellipse */
2371 /* assert(F > 0.0); */
2372
2373 /* Compute the ellipse's (u,v) bounding box in texture space */
2374 const float d = -B*B+4.0f*C*A;
2375 const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */
2376 const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2377
2378 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2379 float s_buffer[TGSI_QUAD_SIZE];
2380 float t_buffer[TGSI_QUAD_SIZE];
2381 float weight_buffer[TGSI_QUAD_SIZE];
2382 int j;
2383
2384 /* For each quad, the du and dx values are the same and so the ellipse is
2385 * also the same. Note that texel/image access can only be performed using
2386 * a quad, i.e. it is not possible to get the pixel value for a single
2387 * tex coord. In order to have a better performance, the access is buffered
2388 * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2389 * full, then the pixel values are read from the image.
2390 */
2391 const float ddq = 2 * A;
2392
2393 /* Scale ellipse formula to directly index the Filter Lookup Table.
2394 * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2395 */
2396 const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2397 A *= formScale;
2398 B *= formScale;
2399 C *= formScale;
2400 /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2401
2402 args.level = level;
2403 args.offset = offset;
2404
2405 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2406 /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2407 * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2408 * value, q, is less than F, we're inside the ellipse
2409 */
2410 const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2411 const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2412
2413 const int u0 = (int) floorf(tex_u - box_u);
2414 const int u1 = (int) ceilf(tex_u + box_u);
2415 const int v0 = (int) floorf(tex_v - box_v);
2416 const int v1 = (int) ceilf(tex_v + box_v);
2417 const float U = u0 - tex_u;
2418
2419 float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2420 unsigned buffer_next = 0;
2421 float den = 0;
2422 int v;
2423 args.face_id = faces[j];
2424
2425 for (v = v0; v <= v1; ++v) {
2426 const float V = v - tex_v;
2427 float dq = A * (2 * U + 1) + B * V;
2428 float q = (C * V + B * U) * V + A * U * U;
2429
2430 int u;
2431 for (u = u0; u <= u1; ++u) {
2432 /* Note that the ellipse has been pre-scaled so F =
2433 * WEIGHT_LUT_SIZE - 1
2434 */
2435 if (q < WEIGHT_LUT_SIZE) {
2436 /* as a LUT is used, q must never be negative;
2437 * should not happen, though
2438 */
2439 const int qClamped = q >= 0.0F ? q : 0;
2440 const float weight = weightLut[qClamped];
2441
2442 weight_buffer[buffer_next] = weight;
2443 s_buffer[buffer_next] = u / ((float) width);
2444 t_buffer[buffer_next] = v / ((float) height);
2445
2446 buffer_next++;
2447 if (buffer_next == TGSI_QUAD_SIZE) {
2448 /* 4 texel coords are in the buffer -> read it now */
2449 unsigned jj;
2450 /* it is assumed that samp->min_img_filter is set to
2451 * img_filter_2d_nearest or one of the
2452 * accelerated img_filter_2d_nearest_XXX functions.
2453 */
2454 for (jj = 0; jj < buffer_next; jj++) {
2455 args.s = s_buffer[jj];
2456 args.t = t_buffer[jj];
2457 args.p = p[jj];
2458 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2459 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2460 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2461 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2462 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2463 }
2464
2465 buffer_next = 0;
2466 }
2467
2468 den += weight;
2469 }
2470 q += dq;
2471 dq += ddq;
2472 }
2473 }
2474
2475 /* if the tex coord buffer contains unread values, we will read
2476 * them now.
2477 */
2478 if (buffer_next > 0) {
2479 unsigned jj;
2480 /* it is assumed that samp->min_img_filter is set to
2481 * img_filter_2d_nearest or one of the
2482 * accelerated img_filter_2d_nearest_XXX functions.
2483 */
2484 for (jj = 0; jj < buffer_next; jj++) {
2485 args.s = s_buffer[jj];
2486 args.t = t_buffer[jj];
2487 args.p = p[jj];
2488 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2489 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2490 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2491 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2492 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2493 }
2494 }
2495
2496 if (den <= 0.0F) {
2497 /* Reaching this place would mean that no pixels intersected
2498 * the ellipse. This should never happen because the filter
2499 * we use always intersects at least one pixel.
2500 */
2501
2502 /*rgba[0]=0;
2503 rgba[1]=0;
2504 rgba[2]=0;
2505 rgba[3]=0;*/
2506 /* not enough pixels in resampling, resort to direct interpolation */
2507 args.s = s[j];
2508 args.t = t[j];
2509 args.p = p[j];
2510 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2511 den = 1;
2512 num[0] = rgba_temp[0][j];
2513 num[1] = rgba_temp[1][j];
2514 num[2] = rgba_temp[2][j];
2515 num[3] = rgba_temp[3][j];
2516 }
2517
2518 rgba[0][j] = num[0] / den;
2519 rgba[1][j] = num[1] / den;
2520 rgba[2][j] = num[2] / den;
2521 rgba[3][j] = num[3] / den;
2522 }
2523 }
2524
2525
2526 /**
2527 * Get mip level relative to base level for linear mip filter
2528 */
2529 static void
2530 mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2531 const struct sp_sampler *sp_samp,
2532 const float lod[TGSI_QUAD_SIZE],
2533 float level[TGSI_QUAD_SIZE])
2534 {
2535 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2536 }
2537
2538 /**
2539 * Sample 2D texture using an anisotropic filter.
2540 */
2541 static void
2542 mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2543 const struct sp_sampler *sp_samp,
2544 img_filter_func min_filter,
2545 img_filter_func mag_filter,
2546 const float s[TGSI_QUAD_SIZE],
2547 const float t[TGSI_QUAD_SIZE],
2548 const float p[TGSI_QUAD_SIZE],
2549 const float c0[TGSI_QUAD_SIZE],
2550 const float lod_in[TGSI_QUAD_SIZE],
2551 const struct filter_args *filt_args,
2552 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2553 {
2554 const struct pipe_resource *texture = sp_sview->base.texture;
2555 const struct pipe_sampler_view *psview = &sp_sview->base;
2556 int level0;
2557 float lambda;
2558 float lod[TGSI_QUAD_SIZE];
2559
2560 const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2561 const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2562 const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2563 const float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2564 const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2565 const float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2566 struct img_filter_args args;
2567
2568 args.offset = filt_args->offset;
2569
2570 if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2571 filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2572 /* XXX FIXME */
2573 filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2574 /* note: instead of working with Px and Py, we will use the
2575 * squared length instead, to avoid sqrt.
2576 */
2577 const float Px2 = dudx * dudx + dvdx * dvdx;
2578 const float Py2 = dudy * dudy + dvdy * dvdy;
2579
2580 float Pmax2;
2581 float Pmin2;
2582 float e;
2583 const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2584
2585 if (Px2 < Py2) {
2586 Pmax2 = Py2;
2587 Pmin2 = Px2;
2588 }
2589 else {
2590 Pmax2 = Px2;
2591 Pmin2 = Py2;
2592 }
2593
2594 /* if the eccentricity of the ellipse is too big, scale up the shorter
2595 * of the two vectors to limit the maximum amount of work per pixel
2596 */
2597 e = Pmax2 / Pmin2;
2598 if (e > maxEccentricity) {
2599 /* float s=e / maxEccentricity;
2600 minor[0] *= s;
2601 minor[1] *= s;
2602 Pmin2 *= s; */
2603 Pmin2 = Pmax2 / maxEccentricity;
2604 }
2605
2606 /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2607 * this since 0.5*log(x) = log(sqrt(x))
2608 */
2609 lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2610 compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2611 }
2612 else {
2613 assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2614 filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2615 compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2616 }
2617
2618 /* XXX: Take into account all lod values.
2619 */
2620 lambda = lod[0];
2621 level0 = psview->u.tex.first_level + (int)lambda;
2622
2623 /* If the ellipse covers the whole image, we can
2624 * simply return the average of the whole image.
2625 */
2626 if (level0 >= (int) psview->u.tex.last_level) {
2627 int j;
2628 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2629 args.s = s[j];
2630 args.t = t[j];
2631 args.p = p[j];
2632 args.level = psview->u.tex.last_level;
2633 args.face_id = filt_args->faces[j];
2634 /*
2635 * XXX: we overwrote any linear filter with nearest, so this
2636 * isn't right (albeit if last level is 1x1 and no border it
2637 * will work just the same).
2638 */
2639 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2640 }
2641 }
2642 else {
2643 /* don't bother interpolating between multiple LODs; it doesn't
2644 * seem to be worth the extra running time.
2645 */
2646 img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2647 s, t, p, filt_args->faces, filt_args->offset,
2648 level0, dudx, dvdx, dudy, dvdy, rgba);
2649 }
2650
2651 if (DEBUG_TEX) {
2652 print_sample_4(__FUNCTION__, rgba);
2653 }
2654 }
2655
2656 /**
2657 * Get mip level relative to base level for linear mip filter
2658 */
2659 static void
2660 mip_rel_level_linear_2d_linear_repeat_POT(
2661 const struct sp_sampler_view *sp_sview,
2662 const struct sp_sampler *sp_samp,
2663 const float lod[TGSI_QUAD_SIZE],
2664 float level[TGSI_QUAD_SIZE])
2665 {
2666 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2667 }
2668
2669 /**
2670 * Specialized version of mip_filter_linear with hard-wired calls to
2671 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2672 */
2673 static void
2674 mip_filter_linear_2d_linear_repeat_POT(
2675 const struct sp_sampler_view *sp_sview,
2676 const struct sp_sampler *sp_samp,
2677 img_filter_func min_filter,
2678 img_filter_func mag_filter,
2679 const float s[TGSI_QUAD_SIZE],
2680 const float t[TGSI_QUAD_SIZE],
2681 const float p[TGSI_QUAD_SIZE],
2682 const float c0[TGSI_QUAD_SIZE],
2683 const float lod_in[TGSI_QUAD_SIZE],
2684 const struct filter_args *filt_args,
2685 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2686 {
2687 const struct pipe_sampler_view *psview = &sp_sview->base;
2688 int j;
2689 float lod[TGSI_QUAD_SIZE];
2690
2691 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2692
2693 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2694 const int level0 = psview->u.tex.first_level + (int)lod[j];
2695 struct img_filter_args args;
2696 /* Catches both negative and large values of level0:
2697 */
2698 args.s = s[j];
2699 args.t = t[j];
2700 args.p = p[j];
2701 args.face_id = filt_args->faces[j];
2702 args.offset = filt_args->offset;
2703 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2704 if ((unsigned)level0 >= psview->u.tex.last_level) {
2705 if (level0 < 0)
2706 args.level = psview->u.tex.first_level;
2707 else
2708 args.level = psview->u.tex.last_level;
2709 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2710 &rgba[0][j]);
2711
2712 }
2713 else {
2714 const float levelBlend = frac(lod[j]);
2715 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2716 int c;
2717
2718 args.level = level0;
2719 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2720 args.level = level0+1;
2721 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2722
2723 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2724 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2725 }
2726 }
2727
2728 if (DEBUG_TEX) {
2729 print_sample_4(__FUNCTION__, rgba);
2730 }
2731 }
2732
2733 static const struct sp_filter_funcs funcs_linear = {
2734 mip_rel_level_linear,
2735 mip_filter_linear
2736 };
2737
2738 static const struct sp_filter_funcs funcs_nearest = {
2739 mip_rel_level_nearest,
2740 mip_filter_nearest
2741 };
2742
2743 static const struct sp_filter_funcs funcs_none = {
2744 mip_rel_level_none,
2745 mip_filter_none
2746 };
2747
2748 static const struct sp_filter_funcs funcs_none_no_filter_select = {
2749 mip_rel_level_none_no_filter_select,
2750 mip_filter_none_no_filter_select
2751 };
2752
2753 static const struct sp_filter_funcs funcs_linear_aniso = {
2754 mip_rel_level_linear_aniso,
2755 mip_filter_linear_aniso
2756 };
2757
2758 static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2759 mip_rel_level_linear_2d_linear_repeat_POT,
2760 mip_filter_linear_2d_linear_repeat_POT
2761 };
2762
2763 /**
2764 * Do shadow/depth comparisons.
2765 */
2766 static void
2767 sample_compare(const struct sp_sampler_view *sp_sview,
2768 const struct sp_sampler *sp_samp,
2769 const float s[TGSI_QUAD_SIZE],
2770 const float t[TGSI_QUAD_SIZE],
2771 const float p[TGSI_QUAD_SIZE],
2772 const float c0[TGSI_QUAD_SIZE],
2773 const float c1[TGSI_QUAD_SIZE],
2774 enum tgsi_sampler_control control,
2775 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2776 {
2777 const struct pipe_sampler_state *sampler = &sp_samp->base;
2778 int j, v;
2779 int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2780 float pc[4];
2781 const struct util_format_description *format_desc =
2782 util_format_description(sp_sview->base.format);
2783 /* not entirely sure we couldn't end up with non-valid swizzle here */
2784 const unsigned chan_type =
2785 format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2786 format_desc->channel[format_desc->swizzle[0]].type :
2787 UTIL_FORMAT_TYPE_FLOAT;
2788 const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2789
2790 /**
2791 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2792 * for 2D Array texture we need to use the 'c0' (aka Q).
2793 * When we sampled the depth texture, the depth value was put into all
2794 * RGBA channels. We look at the red channel here.
2795 */
2796
2797 if (sp_sview->base.target == PIPE_TEXTURE_2D_ARRAY ||
2798 sp_sview->base.target == PIPE_TEXTURE_CUBE) {
2799 pc[0] = c0[0];
2800 pc[1] = c0[1];
2801 pc[2] = c0[2];
2802 pc[3] = c0[3];
2803 } else if (sp_sview->base.target == PIPE_TEXTURE_CUBE_ARRAY) {
2804 pc[0] = c1[0];
2805 pc[1] = c1[1];
2806 pc[2] = c1[2];
2807 pc[3] = c1[3];
2808 } else {
2809 pc[0] = p[0];
2810 pc[1] = p[1];
2811 pc[2] = p[2];
2812 pc[3] = p[3];
2813 }
2814
2815 if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2816 /*
2817 * clamping is a result of conversion to texture format, hence
2818 * doesn't happen with floats. Technically also should do comparison
2819 * in texture format (quantization!).
2820 */
2821 pc[0] = CLAMP(pc[0], 0.0F, 1.0F);
2822 pc[1] = CLAMP(pc[1], 0.0F, 1.0F);
2823 pc[2] = CLAMP(pc[2], 0.0F, 1.0F);
2824 pc[3] = CLAMP(pc[3], 0.0F, 1.0F);
2825 }
2826
2827 for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2828 /* compare four texcoords vs. four texture samples */
2829 switch (sampler->compare_func) {
2830 case PIPE_FUNC_LESS:
2831 k[v][0] = pc[0] < rgba[v][0];
2832 k[v][1] = pc[1] < rgba[v][1];
2833 k[v][2] = pc[2] < rgba[v][2];
2834 k[v][3] = pc[3] < rgba[v][3];
2835 break;
2836 case PIPE_FUNC_LEQUAL:
2837 k[v][0] = pc[0] <= rgba[v][0];
2838 k[v][1] = pc[1] <= rgba[v][1];
2839 k[v][2] = pc[2] <= rgba[v][2];
2840 k[v][3] = pc[3] <= rgba[v][3];
2841 break;
2842 case PIPE_FUNC_GREATER:
2843 k[v][0] = pc[0] > rgba[v][0];
2844 k[v][1] = pc[1] > rgba[v][1];
2845 k[v][2] = pc[2] > rgba[v][2];
2846 k[v][3] = pc[3] > rgba[v][3];
2847 break;
2848 case PIPE_FUNC_GEQUAL:
2849 k[v][0] = pc[0] >= rgba[v][0];
2850 k[v][1] = pc[1] >= rgba[v][1];
2851 k[v][2] = pc[2] >= rgba[v][2];
2852 k[v][3] = pc[3] >= rgba[v][3];
2853 break;
2854 case PIPE_FUNC_EQUAL:
2855 k[v][0] = pc[0] == rgba[v][0];
2856 k[v][1] = pc[1] == rgba[v][1];
2857 k[v][2] = pc[2] == rgba[v][2];
2858 k[v][3] = pc[3] == rgba[v][3];
2859 break;
2860 case PIPE_FUNC_NOTEQUAL:
2861 k[v][0] = pc[0] != rgba[v][0];
2862 k[v][1] = pc[1] != rgba[v][1];
2863 k[v][2] = pc[2] != rgba[v][2];
2864 k[v][3] = pc[3] != rgba[v][3];
2865 break;
2866 case PIPE_FUNC_ALWAYS:
2867 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2868 break;
2869 case PIPE_FUNC_NEVER:
2870 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2871 break;
2872 default:
2873 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2874 assert(0);
2875 break;
2876 }
2877 }
2878
2879 if (is_gather) {
2880 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2881 for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2882 rgba[v][j] = k[v][j];
2883 }
2884 }
2885 } else {
2886 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2887 rgba[0][j] = k[0][j];
2888 rgba[1][j] = k[0][j];
2889 rgba[2][j] = k[0][j];
2890 rgba[3][j] = 1.0F;
2891 }
2892 }
2893 }
2894
2895 static void
2896 do_swizzling(const struct pipe_sampler_view *sview,
2897 float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2898 float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2899 {
2900 int j;
2901 const unsigned swizzle_r = sview->swizzle_r;
2902 const unsigned swizzle_g = sview->swizzle_g;
2903 const unsigned swizzle_b = sview->swizzle_b;
2904 const unsigned swizzle_a = sview->swizzle_a;
2905 float oneval = util_format_is_pure_integer(sview->format) ? uif(1) : 1.0f;
2906
2907 switch (swizzle_r) {
2908 case PIPE_SWIZZLE_0:
2909 for (j = 0; j < 4; j++)
2910 out[0][j] = 0.0f;
2911 break;
2912 case PIPE_SWIZZLE_1:
2913 for (j = 0; j < 4; j++)
2914 out[0][j] = oneval;
2915 break;
2916 default:
2917 assert(swizzle_r < 4);
2918 for (j = 0; j < 4; j++)
2919 out[0][j] = in[swizzle_r][j];
2920 }
2921
2922 switch (swizzle_g) {
2923 case PIPE_SWIZZLE_0:
2924 for (j = 0; j < 4; j++)
2925 out[1][j] = 0.0f;
2926 break;
2927 case PIPE_SWIZZLE_1:
2928 for (j = 0; j < 4; j++)
2929 out[1][j] = oneval;
2930 break;
2931 default:
2932 assert(swizzle_g < 4);
2933 for (j = 0; j < 4; j++)
2934 out[1][j] = in[swizzle_g][j];
2935 }
2936
2937 switch (swizzle_b) {
2938 case PIPE_SWIZZLE_0:
2939 for (j = 0; j < 4; j++)
2940 out[2][j] = 0.0f;
2941 break;
2942 case PIPE_SWIZZLE_1:
2943 for (j = 0; j < 4; j++)
2944 out[2][j] = oneval;
2945 break;
2946 default:
2947 assert(swizzle_b < 4);
2948 for (j = 0; j < 4; j++)
2949 out[2][j] = in[swizzle_b][j];
2950 }
2951
2952 switch (swizzle_a) {
2953 case PIPE_SWIZZLE_0:
2954 for (j = 0; j < 4; j++)
2955 out[3][j] = 0.0f;
2956 break;
2957 case PIPE_SWIZZLE_1:
2958 for (j = 0; j < 4; j++)
2959 out[3][j] = oneval;
2960 break;
2961 default:
2962 assert(swizzle_a < 4);
2963 for (j = 0; j < 4; j++)
2964 out[3][j] = in[swizzle_a][j];
2965 }
2966 }
2967
2968
2969 static wrap_nearest_func
2970 get_nearest_unorm_wrap(unsigned mode)
2971 {
2972 switch (mode) {
2973 case PIPE_TEX_WRAP_CLAMP:
2974 return wrap_nearest_unorm_clamp;
2975 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2976 return wrap_nearest_unorm_clamp_to_edge;
2977 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2978 return wrap_nearest_unorm_clamp_to_border;
2979 default:
2980 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2981 return wrap_nearest_unorm_clamp;
2982 }
2983 }
2984
2985
2986 static wrap_nearest_func
2987 get_nearest_wrap(unsigned mode)
2988 {
2989 switch (mode) {
2990 case PIPE_TEX_WRAP_REPEAT:
2991 return wrap_nearest_repeat;
2992 case PIPE_TEX_WRAP_CLAMP:
2993 return wrap_nearest_clamp;
2994 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2995 return wrap_nearest_clamp_to_edge;
2996 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2997 return wrap_nearest_clamp_to_border;
2998 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2999 return wrap_nearest_mirror_repeat;
3000 case PIPE_TEX_WRAP_MIRROR_CLAMP:
3001 return wrap_nearest_mirror_clamp;
3002 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
3003 return wrap_nearest_mirror_clamp_to_edge;
3004 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
3005 return wrap_nearest_mirror_clamp_to_border;
3006 default:
3007 assert(0);
3008 return wrap_nearest_repeat;
3009 }
3010 }
3011
3012
3013 static wrap_linear_func
3014 get_linear_unorm_wrap(unsigned mode)
3015 {
3016 switch (mode) {
3017 case PIPE_TEX_WRAP_CLAMP:
3018 return wrap_linear_unorm_clamp;
3019 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3020 return wrap_linear_unorm_clamp_to_edge;
3021 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3022 return wrap_linear_unorm_clamp_to_border;
3023 default:
3024 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
3025 return wrap_linear_unorm_clamp;
3026 }
3027 }
3028
3029
3030 static wrap_linear_func
3031 get_linear_wrap(unsigned mode)
3032 {
3033 switch (mode) {
3034 case PIPE_TEX_WRAP_REPEAT:
3035 return wrap_linear_repeat;
3036 case PIPE_TEX_WRAP_CLAMP:
3037 return wrap_linear_clamp;
3038 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3039 return wrap_linear_clamp_to_edge;
3040 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3041 return wrap_linear_clamp_to_border;
3042 case PIPE_TEX_WRAP_MIRROR_REPEAT:
3043 return wrap_linear_mirror_repeat;
3044 case PIPE_TEX_WRAP_MIRROR_CLAMP:
3045 return wrap_linear_mirror_clamp;
3046 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
3047 return wrap_linear_mirror_clamp_to_edge;
3048 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
3049 return wrap_linear_mirror_clamp_to_border;
3050 default:
3051 assert(0);
3052 return wrap_linear_repeat;
3053 }
3054 }
3055
3056
3057 /**
3058 * Is swizzling needed for the given state key?
3059 */
3060 static inline bool
3061 any_swizzle(const struct pipe_sampler_view *view)
3062 {
3063 return (view->swizzle_r != PIPE_SWIZZLE_X ||
3064 view->swizzle_g != PIPE_SWIZZLE_Y ||
3065 view->swizzle_b != PIPE_SWIZZLE_Z ||
3066 view->swizzle_a != PIPE_SWIZZLE_W);
3067 }
3068
3069
3070 static img_filter_func
3071 get_img_filter(const struct sp_sampler_view *sp_sview,
3072 const struct pipe_sampler_state *sampler,
3073 unsigned filter, bool gather)
3074 {
3075 switch (sp_sview->base.target) {
3076 case PIPE_BUFFER:
3077 case PIPE_TEXTURE_1D:
3078 if (filter == PIPE_TEX_FILTER_NEAREST)
3079 return img_filter_1d_nearest;
3080 else
3081 return img_filter_1d_linear;
3082 break;
3083 case PIPE_TEXTURE_1D_ARRAY:
3084 if (filter == PIPE_TEX_FILTER_NEAREST)
3085 return img_filter_1d_array_nearest;
3086 else
3087 return img_filter_1d_array_linear;
3088 break;
3089 case PIPE_TEXTURE_2D:
3090 case PIPE_TEXTURE_RECT:
3091 /* Try for fast path:
3092 */
3093 if (!gather && sp_sview->pot2d &&
3094 sampler->wrap_s == sampler->wrap_t &&
3095 sampler->normalized_coords)
3096 {
3097 switch (sampler->wrap_s) {
3098 case PIPE_TEX_WRAP_REPEAT:
3099 switch (filter) {
3100 case PIPE_TEX_FILTER_NEAREST:
3101 return img_filter_2d_nearest_repeat_POT;
3102 case PIPE_TEX_FILTER_LINEAR:
3103 return img_filter_2d_linear_repeat_POT;
3104 default:
3105 break;
3106 }
3107 break;
3108 case PIPE_TEX_WRAP_CLAMP:
3109 switch (filter) {
3110 case PIPE_TEX_FILTER_NEAREST:
3111 return img_filter_2d_nearest_clamp_POT;
3112 default:
3113 break;
3114 }
3115 }
3116 }
3117 /* Otherwise use default versions:
3118 */
3119 if (filter == PIPE_TEX_FILTER_NEAREST)
3120 return img_filter_2d_nearest;
3121 else
3122 return img_filter_2d_linear;
3123 break;
3124 case PIPE_TEXTURE_2D_ARRAY:
3125 if (filter == PIPE_TEX_FILTER_NEAREST)
3126 return img_filter_2d_array_nearest;
3127 else
3128 return img_filter_2d_array_linear;
3129 break;
3130 case PIPE_TEXTURE_CUBE:
3131 if (filter == PIPE_TEX_FILTER_NEAREST)
3132 return img_filter_cube_nearest;
3133 else
3134 return img_filter_cube_linear;
3135 break;
3136 case PIPE_TEXTURE_CUBE_ARRAY:
3137 if (filter == PIPE_TEX_FILTER_NEAREST)
3138 return img_filter_cube_array_nearest;
3139 else
3140 return img_filter_cube_array_linear;
3141 break;
3142 case PIPE_TEXTURE_3D:
3143 if (filter == PIPE_TEX_FILTER_NEAREST)
3144 return img_filter_3d_nearest;
3145 else
3146 return img_filter_3d_linear;
3147 break;
3148 default:
3149 assert(0);
3150 return img_filter_1d_nearest;
3151 }
3152 }
3153
3154 /**
3155 * Get mip filter funcs, and optionally both img min filter and img mag
3156 * filter. Note that both img filter function pointers must be either non-NULL
3157 * or NULL.
3158 */
3159 static void
3160 get_filters(const struct sp_sampler_view *sp_sview,
3161 const struct sp_sampler *sp_samp,
3162 const enum tgsi_sampler_control control,
3163 const struct sp_filter_funcs **funcs,
3164 img_filter_func *min,
3165 img_filter_func *mag)
3166 {
3167 assert(funcs);
3168 if (control == TGSI_SAMPLER_GATHER) {
3169 *funcs = &funcs_nearest;
3170 if (min) {
3171 *min = get_img_filter(sp_sview, &sp_samp->base,
3172 PIPE_TEX_FILTER_LINEAR, true);
3173 }
3174 } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3175 *funcs = &funcs_linear_2d_linear_repeat_POT;
3176 } else {
3177 *funcs = sp_samp->filter_funcs;
3178 if (min) {
3179 assert(mag);
3180 *min = get_img_filter(sp_sview, &sp_samp->base,
3181 sp_samp->min_img_filter, false);
3182 if (sp_samp->min_mag_equal) {
3183 *mag = *min;
3184 } else {
3185 *mag = get_img_filter(sp_sview, &sp_samp->base,
3186 sp_samp->base.mag_img_filter, false);
3187 }
3188 }
3189 }
3190 }
3191
3192 static void
3193 sample_mip(const struct sp_sampler_view *sp_sview,
3194 const struct sp_sampler *sp_samp,
3195 const float s[TGSI_QUAD_SIZE],
3196 const float t[TGSI_QUAD_SIZE],
3197 const float p[TGSI_QUAD_SIZE],
3198 const float c0[TGSI_QUAD_SIZE],
3199 const float lod[TGSI_QUAD_SIZE],
3200 const struct filter_args *filt_args,
3201 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3202 {
3203 const struct sp_filter_funcs *funcs = NULL;
3204 img_filter_func min_img_filter = NULL;
3205 img_filter_func mag_img_filter = NULL;
3206
3207 get_filters(sp_sview, sp_samp, filt_args->control,
3208 &funcs, &min_img_filter, &mag_img_filter);
3209
3210 funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3211 s, t, p, c0, lod, filt_args, rgba);
3212
3213 if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3214 sample_compare(sp_sview, sp_samp, s, t, p, c0,
3215 lod, filt_args->control, rgba);
3216 }
3217
3218 if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3219 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3220 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3221 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3222 }
3223
3224 }
3225
3226
3227 /**
3228 * This function uses cube texture coordinates to choose a face of a cube and
3229 * computes the 2D cube face coordinates. Puts face info into the sampler
3230 * faces[] array.
3231 */
3232 static void
3233 convert_cube(const struct sp_sampler_view *sp_sview,
3234 const struct sp_sampler *sp_samp,
3235 const float s[TGSI_QUAD_SIZE],
3236 const float t[TGSI_QUAD_SIZE],
3237 const float p[TGSI_QUAD_SIZE],
3238 const float c0[TGSI_QUAD_SIZE],
3239 float ssss[TGSI_QUAD_SIZE],
3240 float tttt[TGSI_QUAD_SIZE],
3241 float pppp[TGSI_QUAD_SIZE],
3242 uint faces[TGSI_QUAD_SIZE])
3243 {
3244 unsigned j;
3245
3246 pppp[0] = c0[0];
3247 pppp[1] = c0[1];
3248 pppp[2] = c0[2];
3249 pppp[3] = c0[3];
3250 /*
3251 major axis
3252 direction target sc tc ma
3253 ---------- ------------------------------- --- --- ---
3254 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
3255 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
3256 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
3257 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
3258 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
3259 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
3260 */
3261
3262 /* Choose the cube face and compute new s/t coords for the 2D face.
3263 *
3264 * Use the same cube face for all four pixels in the quad.
3265 *
3266 * This isn't ideal, but if we want to use a different cube face
3267 * per pixel in the quad, we'd have to also compute the per-face
3268 * LOD here too. That's because the four post-face-selection
3269 * texcoords are no longer related to each other (they're
3270 * per-face!) so we can't use subtraction to compute the partial
3271 * deriviates to compute the LOD. Doing so (near cube edges
3272 * anyway) gives us pretty much random values.
3273 */
3274 {
3275 /* use the average of the four pixel's texcoords to choose the face */
3276 const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
3277 const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
3278 const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
3279 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3280
3281 if (arx >= ary && arx >= arz) {
3282 const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3283 const uint face = (rx >= 0.0F) ?
3284 PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3285 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3286 const float ima = -0.5F / fabsf(s[j]);
3287 ssss[j] = sign * p[j] * ima + 0.5F;
3288 tttt[j] = t[j] * ima + 0.5F;
3289 faces[j] = face;
3290 }
3291 }
3292 else if (ary >= arx && ary >= arz) {
3293 const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3294 const uint face = (ry >= 0.0F) ?
3295 PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3296 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3297 const float ima = -0.5F / fabsf(t[j]);
3298 ssss[j] = -s[j] * ima + 0.5F;
3299 tttt[j] = sign * -p[j] * ima + 0.5F;
3300 faces[j] = face;
3301 }
3302 }
3303 else {
3304 const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3305 const uint face = (rz >= 0.0F) ?
3306 PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3307 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3308 const float ima = -0.5F / fabsf(p[j]);
3309 ssss[j] = sign * -s[j] * ima + 0.5F;
3310 tttt[j] = t[j] * ima + 0.5F;
3311 faces[j] = face;
3312 }
3313 }
3314 }
3315 }
3316
3317
3318 static void
3319 sp_get_dims(const struct sp_sampler_view *sp_sview,
3320 int level,
3321 int dims[4])
3322 {
3323 const struct pipe_sampler_view *view = &sp_sview->base;
3324 const struct pipe_resource *texture = view->texture;
3325
3326 if (view->target == PIPE_BUFFER) {
3327 dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3328 /* the other values are undefined, but let's avoid potential valgrind
3329 * warnings.
3330 */
3331 dims[1] = dims[2] = dims[3] = 0;
3332 return;
3333 }
3334
3335 /* undefined according to EXT_gpu_program */
3336 level += view->u.tex.first_level;
3337 if (level > view->u.tex.last_level)
3338 return;
3339
3340 dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3341 dims[0] = u_minify(texture->width0, level);
3342
3343 switch (view->target) {
3344 case PIPE_TEXTURE_1D_ARRAY:
3345 dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3346 /* fallthrough */
3347 case PIPE_TEXTURE_1D:
3348 return;
3349 case PIPE_TEXTURE_2D_ARRAY:
3350 dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3351 /* fallthrough */
3352 case PIPE_TEXTURE_2D:
3353 case PIPE_TEXTURE_CUBE:
3354 case PIPE_TEXTURE_RECT:
3355 dims[1] = u_minify(texture->height0, level);
3356 return;
3357 case PIPE_TEXTURE_3D:
3358 dims[1] = u_minify(texture->height0, level);
3359 dims[2] = u_minify(texture->depth0, level);
3360 return;
3361 case PIPE_TEXTURE_CUBE_ARRAY:
3362 dims[1] = u_minify(texture->height0, level);
3363 dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3364 break;
3365 default:
3366 assert(!"unexpected texture target in sp_get_dims()");
3367 return;
3368 }
3369 }
3370
3371 /**
3372 * This function is only used for getting unfiltered texels via the
3373 * TXF opcode. The GL spec says that out-of-bounds texel fetches
3374 * produce undefined results. Instead of crashing, lets just clamp
3375 * coords to the texture image size.
3376 */
3377 static void
3378 sp_get_texels(const struct sp_sampler_view *sp_sview,
3379 const int v_i[TGSI_QUAD_SIZE],
3380 const int v_j[TGSI_QUAD_SIZE],
3381 const int v_k[TGSI_QUAD_SIZE],
3382 const int lod[TGSI_QUAD_SIZE],
3383 const int8_t offset[3],
3384 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3385 {
3386 union tex_tile_address addr;
3387 const struct pipe_resource *texture = sp_sview->base.texture;
3388 int j, c;
3389 const float *tx;
3390 /* TODO write a better test for LOD */
3391 const unsigned level =
3392 sp_sview->base.target == PIPE_BUFFER ? 0 :
3393 CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3394 sp_sview->base.u.tex.first_level,
3395 sp_sview->base.u.tex.last_level);
3396 const int width = u_minify(texture->width0, level);
3397 const int height = u_minify(texture->height0, level);
3398 const int depth = u_minify(texture->depth0, level);
3399 unsigned elem_size, first_element, last_element;
3400
3401 addr.value = 0;
3402 addr.bits.level = level;
3403
3404 switch (sp_sview->base.target) {
3405 case PIPE_BUFFER:
3406 elem_size = util_format_get_blocksize(sp_sview->base.format);
3407 first_element = sp_sview->base.u.buf.offset / elem_size;
3408 last_element = (sp_sview->base.u.buf.offset +
3409 sp_sview->base.u.buf.size) / elem_size - 1;
3410 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3411 const int x = CLAMP(v_i[j] + offset[0] +
3412 first_element,
3413 first_element,
3414 last_element);
3415 tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size);
3416 for (c = 0; c < 4; c++) {
3417 rgba[c][j] = tx[c];
3418 }
3419 }
3420 break;
3421 case PIPE_TEXTURE_1D:
3422 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3423 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3424 tx = get_texel_2d_no_border(sp_sview, addr, x,
3425 sp_sview->base.u.tex.first_layer);
3426 for (c = 0; c < 4; c++) {
3427 rgba[c][j] = tx[c];
3428 }
3429 }
3430 break;
3431 case PIPE_TEXTURE_1D_ARRAY:
3432 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3433 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3434 const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3435 sp_sview->base.u.tex.last_layer);
3436 tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3437 for (c = 0; c < 4; c++) {
3438 rgba[c][j] = tx[c];
3439 }
3440 }
3441 break;
3442 case PIPE_TEXTURE_2D:
3443 case PIPE_TEXTURE_RECT:
3444 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3445 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3446 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3447 tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3448 sp_sview->base.u.tex.first_layer);
3449 for (c = 0; c < 4; c++) {
3450 rgba[c][j] = tx[c];
3451 }
3452 }
3453 break;
3454 case PIPE_TEXTURE_2D_ARRAY:
3455 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3456 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3457 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3458 const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3459 sp_sview->base.u.tex.last_layer);
3460 tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3461 for (c = 0; c < 4; c++) {
3462 rgba[c][j] = tx[c];
3463 }
3464 }
3465 break;
3466 case PIPE_TEXTURE_3D:
3467 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3468 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3469 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3470 int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3471 tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3472 for (c = 0; c < 4; c++) {
3473 rgba[c][j] = tx[c];
3474 }
3475 }
3476 break;
3477 case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3478 case PIPE_TEXTURE_CUBE_ARRAY:
3479 default:
3480 assert(!"Unknown or CUBE texture type in TXF processing\n");
3481 break;
3482 }
3483
3484 if (sp_sview->need_swizzle) {
3485 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3486 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3487 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3488 }
3489 }
3490
3491
3492 void *
3493 softpipe_create_sampler_state(struct pipe_context *pipe,
3494 const struct pipe_sampler_state *sampler)
3495 {
3496 struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3497
3498 samp->base = *sampler;
3499
3500 /* Note that (for instance) linear_texcoord_s and
3501 * nearest_texcoord_s may be active at the same time, if the
3502 * sampler min_img_filter differs from its mag_img_filter.
3503 */
3504 if (sampler->normalized_coords) {
3505 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3506 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3507 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3508
3509 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3510 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3511 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3512 }
3513 else {
3514 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3515 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3516 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3517
3518 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3519 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3520 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3521 }
3522
3523 samp->min_img_filter = sampler->min_img_filter;
3524
3525 switch (sampler->min_mip_filter) {
3526 case PIPE_TEX_MIPFILTER_NONE:
3527 if (sampler->min_img_filter == sampler->mag_img_filter)
3528 samp->filter_funcs = &funcs_none_no_filter_select;
3529 else
3530 samp->filter_funcs = &funcs_none;
3531 break;
3532
3533 case PIPE_TEX_MIPFILTER_NEAREST:
3534 samp->filter_funcs = &funcs_nearest;
3535 break;
3536
3537 case PIPE_TEX_MIPFILTER_LINEAR:
3538 if (sampler->min_img_filter == sampler->mag_img_filter &&
3539 sampler->normalized_coords &&
3540 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3541 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3542 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3543 sampler->max_anisotropy <= 1) {
3544 samp->min_mag_equal_repeat_linear = TRUE;
3545 }
3546 samp->filter_funcs = &funcs_linear;
3547
3548 /* Anisotropic filtering extension. */
3549 if (sampler->max_anisotropy > 1) {
3550 samp->filter_funcs = &funcs_linear_aniso;
3551
3552 /* Override min_img_filter:
3553 * min_img_filter needs to be set to NEAREST since we need to access
3554 * each texture pixel as it is and weight it later; using linear
3555 * filters will have incorrect results.
3556 * By setting the filter to NEAREST here, we can avoid calling the
3557 * generic img_filter_2d_nearest in the anisotropic filter function,
3558 * making it possible to use one of the accelerated implementations
3559 */
3560 samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3561
3562 /* on first access create the lookup table containing the filter weights. */
3563 if (!weightLut) {
3564 create_filter_table();
3565 }
3566 }
3567 break;
3568 }
3569 if (samp->min_img_filter == sampler->mag_img_filter) {
3570 samp->min_mag_equal = TRUE;
3571 }
3572
3573 return (void *)samp;
3574 }
3575
3576
3577 compute_lambda_func
3578 softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3579 enum pipe_shader_type shader)
3580 {
3581 if (shader != PIPE_SHADER_FRAGMENT)
3582 return compute_lambda_vert;
3583
3584 switch (view->target) {
3585 case PIPE_BUFFER:
3586 case PIPE_TEXTURE_1D:
3587 case PIPE_TEXTURE_1D_ARRAY:
3588 return compute_lambda_1d;
3589 case PIPE_TEXTURE_2D:
3590 case PIPE_TEXTURE_2D_ARRAY:
3591 case PIPE_TEXTURE_RECT:
3592 case PIPE_TEXTURE_CUBE:
3593 case PIPE_TEXTURE_CUBE_ARRAY:
3594 return compute_lambda_2d;
3595 case PIPE_TEXTURE_3D:
3596 return compute_lambda_3d;
3597 default:
3598 assert(0);
3599 return compute_lambda_1d;
3600 }
3601 }
3602
3603
3604 struct pipe_sampler_view *
3605 softpipe_create_sampler_view(struct pipe_context *pipe,
3606 struct pipe_resource *resource,
3607 const struct pipe_sampler_view *templ)
3608 {
3609 struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3610 const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3611
3612 if (sview) {
3613 struct pipe_sampler_view *view = &sview->base;
3614 *view = *templ;
3615 view->reference.count = 1;
3616 view->texture = NULL;
3617 pipe_resource_reference(&view->texture, resource);
3618 view->context = pipe;
3619
3620 #ifdef DEBUG
3621 /*
3622 * This is possibly too lenient, but the primary reason is just
3623 * to catch state trackers which forget to initialize this, so
3624 * it only catches clearly impossible view targets.
3625 */
3626 if (view->target != resource->target) {
3627 if (view->target == PIPE_TEXTURE_1D)
3628 assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3629 else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3630 assert(resource->target == PIPE_TEXTURE_1D);
3631 else if (view->target == PIPE_TEXTURE_2D)
3632 assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3633 resource->target == PIPE_TEXTURE_CUBE ||
3634 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3635 else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3636 assert(resource->target == PIPE_TEXTURE_2D ||
3637 resource->target == PIPE_TEXTURE_CUBE ||
3638 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3639 else if (view->target == PIPE_TEXTURE_CUBE)
3640 assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3641 resource->target == PIPE_TEXTURE_2D_ARRAY);
3642 else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3643 assert(resource->target == PIPE_TEXTURE_CUBE ||
3644 resource->target == PIPE_TEXTURE_2D_ARRAY);
3645 else
3646 assert(0);
3647 }
3648 #endif
3649
3650 if (any_swizzle(view)) {
3651 sview->need_swizzle = TRUE;
3652 }
3653
3654 sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3655 view->target == PIPE_TEXTURE_CUBE_ARRAY);
3656 sview->pot2d = spr->pot &&
3657 (view->target == PIPE_TEXTURE_2D ||
3658 view->target == PIPE_TEXTURE_RECT);
3659
3660 sview->xpot = util_logbase2( resource->width0 );
3661 sview->ypot = util_logbase2( resource->height0 );
3662 }
3663
3664 return (struct pipe_sampler_view *) sview;
3665 }
3666
3667
3668 static inline const struct sp_tgsi_sampler *
3669 sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3670 {
3671 return (const struct sp_tgsi_sampler *)sampler;
3672 }
3673
3674
3675 static void
3676 sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3677 const unsigned sview_index,
3678 int level, int dims[4])
3679 {
3680 const struct sp_tgsi_sampler *sp_samp =
3681 sp_tgsi_sampler_cast_c(tgsi_sampler);
3682
3683 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3684 /* always have a view here but texture is NULL if no sampler view was set. */
3685 if (!sp_samp->sp_sview[sview_index].base.texture) {
3686 dims[0] = dims[1] = dims[2] = dims[3] = 0;
3687 return;
3688 }
3689 sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3690 }
3691
3692
3693 static void
3694 sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3695 const unsigned sview_index,
3696 const unsigned sampler_index,
3697 const float s[TGSI_QUAD_SIZE],
3698 const float t[TGSI_QUAD_SIZE],
3699 const float p[TGSI_QUAD_SIZE],
3700 const float c0[TGSI_QUAD_SIZE],
3701 const float lod[TGSI_QUAD_SIZE],
3702 float derivs[3][2][TGSI_QUAD_SIZE],
3703 const int8_t offset[3],
3704 enum tgsi_sampler_control control,
3705 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3706 {
3707 const struct sp_tgsi_sampler *sp_tgsi_samp =
3708 sp_tgsi_sampler_cast_c(tgsi_sampler);
3709 const struct sp_sampler_view *sp_sview;
3710 const struct sp_sampler *sp_samp;
3711 struct filter_args filt_args;
3712
3713 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3714 assert(sampler_index < PIPE_MAX_SAMPLERS);
3715 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3716
3717 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3718 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3719 /* always have a view here but texture is NULL if no sampler view was set. */
3720 if (!sp_sview->base.texture) {
3721 int i, j;
3722 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3723 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3724 rgba[j][i] = 0.0f;
3725 }
3726 }
3727 return;
3728 }
3729
3730 filt_args.control = control;
3731 filt_args.offset = offset;
3732
3733 if (sp_sview->need_cube_convert) {
3734 float cs[TGSI_QUAD_SIZE];
3735 float ct[TGSI_QUAD_SIZE];
3736 float cp[TGSI_QUAD_SIZE];
3737 uint faces[TGSI_QUAD_SIZE];
3738
3739 convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3740
3741 filt_args.faces = faces;
3742 sample_mip(sp_sview, sp_samp, cs, ct, cp, c0, lod, &filt_args, rgba);
3743 } else {
3744 static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3745
3746 filt_args.faces = zero_faces;
3747 sample_mip(sp_sview, sp_samp, s, t, p, c0, lod, &filt_args, rgba);
3748 }
3749 }
3750
3751 static void
3752 sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3753 const unsigned sview_index,
3754 const unsigned sampler_index,
3755 const float s[TGSI_QUAD_SIZE],
3756 const float t[TGSI_QUAD_SIZE],
3757 const float p[TGSI_QUAD_SIZE],
3758 const float c0[TGSI_QUAD_SIZE],
3759 const enum tgsi_sampler_control control,
3760 float mipmap[TGSI_QUAD_SIZE],
3761 float lod[TGSI_QUAD_SIZE])
3762 {
3763 static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3764
3765 const struct sp_tgsi_sampler *sp_tgsi_samp =
3766 sp_tgsi_sampler_cast_c(tgsi_sampler);
3767 const struct sp_sampler_view *sp_sview;
3768 const struct sp_sampler *sp_samp;
3769 const struct sp_filter_funcs *funcs;
3770 int i;
3771
3772 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3773 assert(sampler_index < PIPE_MAX_SAMPLERS);
3774 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3775
3776 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3777 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3778 /* always have a view here but texture is NULL if no sampler view was
3779 * set. */
3780 if (!sp_sview->base.texture) {
3781 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3782 mipmap[i] = 0.0f;
3783 lod[i] = 0.0f;
3784 }
3785 return;
3786 }
3787
3788 if (sp_sview->need_cube_convert) {
3789 float cs[TGSI_QUAD_SIZE];
3790 float ct[TGSI_QUAD_SIZE];
3791 float cp[TGSI_QUAD_SIZE];
3792 uint unused_faces[TGSI_QUAD_SIZE];
3793
3794 convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, unused_faces);
3795 compute_lambda_lod_unclamped(sp_sview, sp_samp,
3796 cs, ct, cp, lod_in, control, lod);
3797 } else {
3798 compute_lambda_lod_unclamped(sp_sview, sp_samp,
3799 s, t, p, lod_in, control, lod);
3800 }
3801
3802 get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3803 funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3804 }
3805
3806 static void
3807 sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3808 const unsigned sview_index,
3809 const int i[TGSI_QUAD_SIZE],
3810 const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3811 const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3812 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3813 {
3814 const struct sp_tgsi_sampler *sp_samp =
3815 sp_tgsi_sampler_cast_c(tgsi_sampler);
3816
3817 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3818 /* always have a view here but texture is NULL if no sampler view was set. */
3819 if (!sp_samp->sp_sview[sview_index].base.texture) {
3820 int i, j;
3821 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3822 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3823 rgba[j][i] = 0.0f;
3824 }
3825 }
3826 return;
3827 }
3828 sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3829 }
3830
3831
3832 struct sp_tgsi_sampler *
3833 sp_create_tgsi_sampler(void)
3834 {
3835 struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3836 if (!samp)
3837 return NULL;
3838
3839 samp->base.get_dims = sp_tgsi_get_dims;
3840 samp->base.get_samples = sp_tgsi_get_samples;
3841 samp->base.get_texel = sp_tgsi_get_texel;
3842 samp->base.query_lod = sp_tgsi_query_lod;
3843
3844 return samp;
3845 }