softpipe: Remove unused static function
[mesa.git] / src / gallium / drivers / softpipe / sp_tex_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * Texture sampling
31 *
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
35 */
36
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_format.h"
42 #include "util/u_memory.h"
43 #include "util/u_inlines.h"
44 #include "sp_quad.h" /* only for #define QUAD_* tokens */
45 #include "sp_tex_sample.h"
46 #include "sp_texture.h"
47 #include "sp_tex_tile_cache.h"
48
49
50 /** Set to one to help debug texture sampling */
51 #define DEBUG_TEX 0
52
53
54 /*
55 * Return fractional part of 'f'. Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61 static inline float
62 frac(float f)
63 {
64 return f - floorf(f);
65 }
66
67
68
69 /**
70 * Linear interpolation macro
71 */
72 static inline float
73 lerp(float a, float v0, float v1)
74 {
75 return v0 + a * (v1 - v0);
76 }
77
78
79 /**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization! If we find that's not true on some systems, convert
85 * to a macro.
86 */
87 static inline float
88 lerp_2d(float a, float b,
89 float v00, float v10, float v01, float v11)
90 {
91 const float temp0 = lerp(a, v00, v10);
92 const float temp1 = lerp(a, v01, v11);
93 return lerp(b, temp0, temp1);
94 }
95
96
97 /**
98 * As above, but 3D interpolation of 8 values.
99 */
100 static inline float
101 lerp_3d(float a, float b, float c,
102 float v000, float v100, float v010, float v110,
103 float v001, float v101, float v011, float v111)
104 {
105 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107 return lerp(c, temp0, temp1);
108 }
109
110
111
112 /**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value. To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118 static inline int
119 repeat(int coord, unsigned size)
120 {
121 return (coord + size * 1024) % size;
122 }
123
124
125 /**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode PIPE_TEX_WRAP_x
129 * \param s the incoming texcoords
130 * \param size the texture image size
131 * \param icoord returns the integer texcoords
132 */
133 static void
134 wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135 {
136 /* s limited to [0,1) */
137 /* i limited to [0,size-1] */
138 const int i = util_ifloor(s * size);
139 *icoord = repeat(i + offset, size);
140 }
141
142
143 static void
144 wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145 {
146 /* s limited to [0,1] */
147 /* i limited to [0,size-1] */
148 s *= size;
149 s += offset;
150 if (s <= 0.0F)
151 *icoord = 0;
152 else if (s >= size)
153 *icoord = size - 1;
154 else
155 *icoord = util_ifloor(s);
156 }
157
158
159 static void
160 wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161 {
162 /* s limited to [min,max] */
163 /* i limited to [0, size-1] */
164 const float min = 0.5F;
165 const float max = (float)size - 0.5F;
166
167 s *= size;
168 s += offset;
169
170 if (s < min)
171 *icoord = 0;
172 else if (s > max)
173 *icoord = size - 1;
174 else
175 *icoord = util_ifloor(s);
176 }
177
178
179 static void
180 wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181 {
182 /* s limited to [min,max] */
183 /* i limited to [-1, size] */
184 const float min = -0.5F;
185 const float max = size + 0.5F;
186
187 s *= size;
188 s += offset;
189 if (s <= min)
190 *icoord = -1;
191 else if (s >= max)
192 *icoord = size;
193 else
194 *icoord = util_ifloor(s);
195 }
196
197 static void
198 wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199 {
200 const float min = 1.0F / (2.0F * size);
201 const float max = 1.0F - min;
202 int flr;
203 float u;
204
205 s += (float)offset / size;
206 flr = util_ifloor(s);
207 u = frac(s);
208 if (flr & 1)
209 u = 1.0F - u;
210 if (u < min)
211 *icoord = 0;
212 else if (u > max)
213 *icoord = size - 1;
214 else
215 *icoord = util_ifloor(u * size);
216 }
217
218
219 static void
220 wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221 {
222 /* s limited to [0,1] */
223 /* i limited to [0,size-1] */
224 const float u = fabsf(s * size + offset);
225 if (u <= 0.0F)
226 *icoord = 0;
227 else if (u >= size)
228 *icoord = size - 1;
229 else
230 *icoord = util_ifloor(u);
231 }
232
233
234 static void
235 wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236 {
237 /* s limited to [min,max] */
238 /* i limited to [0, size-1] */
239 const float min = 0.5F;
240 const float max = (float)size - 0.5F;
241 const float u = fabsf(s * size + offset);
242
243 if (u < min)
244 *icoord = 0;
245 else if (u > max)
246 *icoord = size - 1;
247 else
248 *icoord = util_ifloor(u);
249 }
250
251
252 static void
253 wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254 {
255 /* u limited to [-0.5, size-0.5] */
256 const float min = -0.5F;
257 const float max = (float)size + 0.5F;
258 const float u = fabsf(s * size + offset);
259
260 if (u < min)
261 *icoord = -1;
262 else if (u > max)
263 *icoord = size;
264 else
265 *icoord = util_ifloor(u);
266 }
267
268
269 /**
270 * Used to compute texel locations for linear sampling
271 * \param wrapMode PIPE_TEX_WRAP_x
272 * \param s the texcoord
273 * \param size the texture image size
274 * \param icoord0 returns first texture index
275 * \param icoord1 returns second texture index (usually icoord0 + 1)
276 * \param w returns blend factor/weight between texture indices
277 * \param icoord returns the computed integer texture coord
278 */
279 static void
280 wrap_linear_repeat(float s, unsigned size, int offset,
281 int *icoord0, int *icoord1, float *w)
282 {
283 const float u = s * size - 0.5F;
284 *icoord0 = repeat(util_ifloor(u) + offset, size);
285 *icoord1 = repeat(*icoord0 + 1, size);
286 *w = frac(u);
287 }
288
289
290 static void
291 wrap_linear_clamp(float s, unsigned size, int offset,
292 int *icoord0, int *icoord1, float *w)
293 {
294 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295
296 *icoord0 = util_ifloor(u);
297 *icoord1 = *icoord0 + 1;
298 *w = frac(u);
299 }
300
301
302 static void
303 wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304 int *icoord0, int *icoord1, float *w)
305 {
306 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307 *icoord0 = util_ifloor(u);
308 *icoord1 = *icoord0 + 1;
309 if (*icoord0 < 0)
310 *icoord0 = 0;
311 if (*icoord1 >= (int) size)
312 *icoord1 = size - 1;
313 *w = frac(u);
314 }
315
316
317 static void
318 wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319 int *icoord0, int *icoord1, float *w)
320 {
321 const float min = -0.5F;
322 const float max = (float)size + 0.5F;
323 const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324 *icoord0 = util_ifloor(u);
325 *icoord1 = *icoord0 + 1;
326 *w = frac(u);
327 }
328
329
330 static void
331 wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332 int *icoord0, int *icoord1, float *w)
333 {
334 int flr;
335 float u;
336
337 s += (float)offset / size;
338 flr = util_ifloor(s);
339 u = frac(s);
340 if (flr & 1)
341 u = 1.0F - u;
342 u = u * size - 0.5F;
343 *icoord0 = util_ifloor(u);
344 *icoord1 = *icoord0 + 1;
345 if (*icoord0 < 0)
346 *icoord0 = 0;
347 if (*icoord1 >= (int) size)
348 *icoord1 = size - 1;
349 *w = frac(u);
350 }
351
352
353 static void
354 wrap_linear_mirror_clamp(float s, unsigned size, int offset,
355 int *icoord0, int *icoord1, float *w)
356 {
357 float u = fabsf(s * size + offset);
358 if (u >= size)
359 u = (float) size;
360 u -= 0.5F;
361 *icoord0 = util_ifloor(u);
362 *icoord1 = *icoord0 + 1;
363 *w = frac(u);
364 }
365
366
367 static void
368 wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
369 int *icoord0, int *icoord1, float *w)
370 {
371 float u = fabsf(s * size + offset);
372 if (u >= size)
373 u = (float) size;
374 u -= 0.5F;
375 *icoord0 = util_ifloor(u);
376 *icoord1 = *icoord0 + 1;
377 if (*icoord0 < 0)
378 *icoord0 = 0;
379 if (*icoord1 >= (int) size)
380 *icoord1 = size - 1;
381 *w = frac(u);
382 }
383
384
385 static void
386 wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
387 int *icoord0, int *icoord1, float *w)
388 {
389 const float min = -0.5F;
390 const float max = size + 0.5F;
391 const float t = fabsf(s * size + offset);
392 const float u = CLAMP(t, min, max) - 0.5F;
393 *icoord0 = util_ifloor(u);
394 *icoord1 = *icoord0 + 1;
395 *w = frac(u);
396 }
397
398
399 /**
400 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
401 */
402 static void
403 wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
404 {
405 const int i = util_ifloor(s);
406 *icoord = CLAMP(i + offset, 0, (int) size-1);
407 }
408
409
410 /**
411 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
412 */
413 static void
414 wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
415 {
416 *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
417 }
418
419
420 /**
421 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
422 */
423 static void
424 wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
425 {
426 *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
427 }
428
429
430 /**
431 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
432 */
433 static void
434 wrap_linear_unorm_clamp(float s, unsigned size, int offset,
435 int *icoord0, int *icoord1, float *w)
436 {
437 /* Not exactly what the spec says, but it matches NVIDIA output */
438 const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
439 *icoord0 = util_ifloor(u);
440 *icoord1 = *icoord0 + 1;
441 *w = frac(u);
442 }
443
444
445 /**
446 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
447 */
448 static void
449 wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
450 int *icoord0, int *icoord1, float *w)
451 {
452 const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
453 *icoord0 = util_ifloor(u);
454 *icoord1 = *icoord0 + 1;
455 if (*icoord1 > (int) size - 1)
456 *icoord1 = size - 1;
457 *w = frac(u);
458 }
459
460
461 /**
462 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
463 */
464 static void
465 wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
466 int *icoord0, int *icoord1, float *w)
467 {
468 const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
469 *icoord0 = util_ifloor(u);
470 *icoord1 = *icoord0 + 1;
471 if (*icoord1 > (int) size - 1)
472 *icoord1 = size - 1;
473 *w = frac(u);
474 }
475
476
477 /**
478 * Do coordinate to array index conversion. For array textures.
479 */
480 static inline int
481 coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
482 {
483 const int c = util_ifloor(coord + 0.5F);
484 return CLAMP(c, (int)first_layer, (int)last_layer);
485 }
486
487 static void
488 compute_gradient_1d(const float s[TGSI_QUAD_SIZE],
489 const float t[TGSI_QUAD_SIZE],
490 const float p[TGSI_QUAD_SIZE],
491 float derivs[3][2][TGSI_QUAD_SIZE])
492 {
493 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
494 derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
495 derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
496 }
497
498 static float
499 compute_lambda_1d_explicit_gradients(const struct sp_sampler_view *sview,
500 const float derivs[3][2][TGSI_QUAD_SIZE],
501 uint quad)
502 {
503 const struct pipe_resource *texture = sview->base.texture;
504 const float dsdx = fabsf(derivs[0][0][quad]);
505 const float dsdy = fabsf(derivs[0][1][quad]);
506 const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
507 return util_fast_log2(rho);
508 }
509
510
511 /**
512 * Examine the quad's texture coordinates to compute the partial
513 * derivatives w.r.t X and Y, then compute lambda (level of detail).
514 */
515 static float
516 compute_lambda_1d(const struct sp_sampler_view *sview,
517 const float s[TGSI_QUAD_SIZE],
518 const float t[TGSI_QUAD_SIZE],
519 const float p[TGSI_QUAD_SIZE])
520 {
521 float derivs[3][2][TGSI_QUAD_SIZE];
522 compute_gradient_1d(s, t, p, derivs);
523 return compute_lambda_1d_explicit_gradients(sview, derivs, 0);
524 }
525
526
527 static void
528 compute_gradient_2d(const float s[TGSI_QUAD_SIZE],
529 const float t[TGSI_QUAD_SIZE],
530 const float p[TGSI_QUAD_SIZE],
531 float derivs[3][2][TGSI_QUAD_SIZE])
532 {
533 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
534 derivs[0][0][0] = s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT];
535 derivs[0][1][0] = s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT];
536 derivs[1][0][0] = t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT];
537 derivs[1][1][0] = t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT];
538 }
539
540 static float
541 compute_lambda_2d_explicit_gradients(const struct sp_sampler_view *sview,
542 const float derivs[3][2][TGSI_QUAD_SIZE],
543 uint quad)
544 {
545 const struct pipe_resource *texture = sview->base.texture;
546 const float dsdx = fabsf(derivs[0][0][quad]);
547 const float dsdy = fabsf(derivs[0][1][quad]);
548 const float dtdx = fabsf(derivs[1][0][quad]);
549 const float dtdy = fabsf(derivs[1][1][quad]);
550 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
551 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
552 const float rho = MAX2(maxx, maxy);
553 return util_fast_log2(rho);
554 }
555
556
557 static float
558 compute_lambda_2d(const struct sp_sampler_view *sview,
559 const float s[TGSI_QUAD_SIZE],
560 const float t[TGSI_QUAD_SIZE],
561 const float p[TGSI_QUAD_SIZE])
562 {
563 float derivs[3][2][TGSI_QUAD_SIZE];
564 compute_gradient_2d(s, t, p, derivs);
565 return compute_lambda_2d_explicit_gradients(sview, derivs, 0);
566 }
567
568
569 static void
570 compute_gradient_3d(const float s[TGSI_QUAD_SIZE],
571 const float t[TGSI_QUAD_SIZE],
572 const float p[TGSI_QUAD_SIZE],
573 float derivs[3][2][TGSI_QUAD_SIZE])
574 {
575 memset(derivs, 0, 6 * TGSI_QUAD_SIZE * sizeof(float));
576 derivs[0][0][0] = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
577 derivs[0][1][0] = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
578 derivs[1][0][0] = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
579 derivs[1][1][0] = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
580 derivs[2][0][0] = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
581 derivs[2][1][0] = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
582 }
583
584 static float
585 compute_lambda_3d_explicit_gradients(const struct sp_sampler_view *sview,
586 const float derivs[3][2][TGSI_QUAD_SIZE],
587 uint quad)
588 {
589 const struct pipe_resource *texture = sview->base.texture;
590 const float dsdx = fabsf(derivs[0][0][quad]);
591 const float dsdy = fabsf(derivs[0][1][quad]);
592 const float dtdx = fabsf(derivs[1][0][quad]);
593 const float dtdy = fabsf(derivs[1][1][quad]);
594 const float dpdx = fabsf(derivs[2][0][quad]);
595 const float dpdy = fabsf(derivs[2][1][quad]);
596 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
597 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
598 const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
599 const float rho = MAX3(maxx, maxy, maxz);
600
601 return util_fast_log2(rho);
602 }
603
604
605 static float
606 compute_lambda_3d(const struct sp_sampler_view *sview,
607 const float s[TGSI_QUAD_SIZE],
608 const float t[TGSI_QUAD_SIZE],
609 const float p[TGSI_QUAD_SIZE])
610 {
611 float derivs[3][2][TGSI_QUAD_SIZE];
612 compute_gradient_3d(s, t, p, derivs);
613 return compute_lambda_3d_explicit_gradients(sview, derivs, 0);
614 }
615
616
617 static float
618 compute_lambda_cube_explicit_gradients(const struct sp_sampler_view *sview,
619 const float derivs[3][2][TGSI_QUAD_SIZE],
620 uint quad)
621 {
622 const struct pipe_resource *texture = sview->base.texture;
623 const float dsdx = fabsf(derivs[0][0][quad]);
624 const float dsdy = fabsf(derivs[0][1][quad]);
625 const float dtdx = fabsf(derivs[1][0][quad]);
626 const float dtdy = fabsf(derivs[1][1][quad]);
627 const float dpdx = fabsf(derivs[2][0][quad]);
628 const float dpdy = fabsf(derivs[2][1][quad]);
629 const float maxx = MAX2(dsdx, dsdy);
630 const float maxy = MAX2(dtdx, dtdy);
631 const float maxz = MAX2(dpdx, dpdy);
632 const float rho = MAX3(maxx, maxy, maxz) * u_minify(texture->width0, sview->base.u.tex.first_level) / 2.0f;
633
634 return util_fast_log2(rho);
635 }
636
637 static float
638 compute_lambda_cube(const struct sp_sampler_view *sview,
639 const float s[TGSI_QUAD_SIZE],
640 const float t[TGSI_QUAD_SIZE],
641 const float p[TGSI_QUAD_SIZE])
642 {
643 float derivs[3][2][TGSI_QUAD_SIZE];
644 compute_gradient_3d(s, t, p, derivs);
645 return compute_lambda_cube_explicit_gradients(sview, derivs, 0);
646 }
647
648 /**
649 * Compute lambda for a vertex texture sampler.
650 * Since there aren't derivatives to use, just return 0.
651 */
652 static float
653 compute_lambda_vert(const struct sp_sampler_view *sview,
654 const float s[TGSI_QUAD_SIZE],
655 const float t[TGSI_QUAD_SIZE],
656 const float p[TGSI_QUAD_SIZE])
657 {
658 return 0.0f;
659 }
660
661
662 compute_lambda_from_grad_func
663 softpipe_get_lambda_from_grad_func(const struct pipe_sampler_view *view,
664 enum pipe_shader_type shader)
665 {
666 switch (view->target) {
667 case PIPE_BUFFER:
668 case PIPE_TEXTURE_1D:
669 case PIPE_TEXTURE_1D_ARRAY:
670 return compute_lambda_1d_explicit_gradients;
671 case PIPE_TEXTURE_2D:
672 case PIPE_TEXTURE_2D_ARRAY:
673 case PIPE_TEXTURE_RECT:
674 return compute_lambda_2d_explicit_gradients;
675 case PIPE_TEXTURE_CUBE:
676 case PIPE_TEXTURE_CUBE_ARRAY:
677 return compute_lambda_cube_explicit_gradients;
678 case PIPE_TEXTURE_3D:
679 return compute_lambda_3d_explicit_gradients;
680 default:
681 assert(0);
682 return compute_lambda_1d_explicit_gradients;
683 }
684 }
685
686
687 /**
688 * Get a texel from a texture, using the texture tile cache.
689 *
690 * \param addr the template tex address containing cube, z, face info.
691 * \param x the x coord of texel within 2D image
692 * \param y the y coord of texel within 2D image
693 * \param rgba the quad to put the texel/color into
694 *
695 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
696 * sp_get_cached_tile_tex() function.
697 */
698
699
700
701 static inline const float *
702 get_texel_buffer_no_border(const struct sp_sampler_view *sp_sview,
703 union tex_tile_address addr, int x, unsigned elmsize)
704 {
705 const struct softpipe_tex_cached_tile *tile;
706 addr.bits.x = x * elmsize / TEX_TILE_SIZE;
707 assert(x * elmsize / TEX_TILE_SIZE == addr.bits.x);
708
709 x %= TEX_TILE_SIZE / elmsize;
710
711 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
712
713 return &tile->data.color[0][x][0];
714 }
715
716
717 static inline const float *
718 get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
719 union tex_tile_address addr, int x, int y)
720 {
721 const struct softpipe_tex_cached_tile *tile;
722 addr.bits.x = x / TEX_TILE_SIZE;
723 addr.bits.y = y / TEX_TILE_SIZE;
724 y %= TEX_TILE_SIZE;
725 x %= TEX_TILE_SIZE;
726
727 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
728
729 return &tile->data.color[y][x][0];
730 }
731
732
733 static inline const float *
734 get_texel_2d(const struct sp_sampler_view *sp_sview,
735 const struct sp_sampler *sp_samp,
736 union tex_tile_address addr, int x, int y)
737 {
738 const struct pipe_resource *texture = sp_sview->base.texture;
739 const unsigned level = addr.bits.level;
740
741 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
742 y < 0 || y >= (int) u_minify(texture->height0, level)) {
743 return sp_samp->base.border_color.f;
744 }
745 else {
746 return get_texel_2d_no_border( sp_sview, addr, x, y );
747 }
748 }
749
750
751 /*
752 * Here's the complete logic (HOLY CRAP) for finding next face and doing the
753 * corresponding coord wrapping, implemented by get_next_face,
754 * get_next_xcoord, get_next_ycoord.
755 * Read like that (first line):
756 * If face is +x and s coord is below zero, then
757 * new face is +z, new s is max , new t is old t
758 * (max is always cube size - 1).
759 *
760 * +x s- -> +z: s = max, t = t
761 * +x s+ -> -z: s = 0, t = t
762 * +x t- -> +y: s = max, t = max-s
763 * +x t+ -> -y: s = max, t = s
764 *
765 * -x s- -> -z: s = max, t = t
766 * -x s+ -> +z: s = 0, t = t
767 * -x t- -> +y: s = 0, t = s
768 * -x t+ -> -y: s = 0, t = max-s
769 *
770 * +y s- -> -x: s = t, t = 0
771 * +y s+ -> +x: s = max-t, t = 0
772 * +y t- -> -z: s = max-s, t = 0
773 * +y t+ -> +z: s = s, t = 0
774 *
775 * -y s- -> -x: s = max-t, t = max
776 * -y s+ -> +x: s = t, t = max
777 * -y t- -> +z: s = s, t = max
778 * -y t+ -> -z: s = max-s, t = max
779
780 * +z s- -> -x: s = max, t = t
781 * +z s+ -> +x: s = 0, t = t
782 * +z t- -> +y: s = s, t = max
783 * +z t+ -> -y: s = s, t = 0
784
785 * -z s- -> +x: s = max, t = t
786 * -z s+ -> -x: s = 0, t = t
787 * -z t- -> +y: s = max-s, t = 0
788 * -z t+ -> -y: s = max-s, t = max
789 */
790
791
792 /*
793 * seamless cubemap neighbour array.
794 * this array is used to find the adjacent face in each of 4 directions,
795 * left, right, up, down. (or -x, +x, -y, +y).
796 */
797 static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
798 /* pos X first then neg X is Z different, Y the same */
799 /* PIPE_TEX_FACE_POS_X,*/
800 { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
801 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
802 /* PIPE_TEX_FACE_NEG_X */
803 { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
804 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
805
806 /* pos Y first then neg Y is X different, X the same */
807 /* PIPE_TEX_FACE_POS_Y */
808 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
809 PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
810
811 /* PIPE_TEX_FACE_NEG_Y */
812 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
813 PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
814
815 /* pos Z first then neg Y is X different, X the same */
816 /* PIPE_TEX_FACE_POS_Z */
817 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
818 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
819
820 /* PIPE_TEX_FACE_NEG_Z */
821 { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
822 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
823 };
824
825 static inline unsigned
826 get_next_face(unsigned face, int idx)
827 {
828 return face_array[face][idx];
829 }
830
831 /*
832 * return a new xcoord based on old face, old coords, cube size
833 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
834 */
835 static inline int
836 get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
837 {
838 if ((face == 0 && fall_off_index != 1) ||
839 (face == 1 && fall_off_index == 0) ||
840 (face == 4 && fall_off_index == 0) ||
841 (face == 5 && fall_off_index == 0)) {
842 return max;
843 }
844 if ((face == 1 && fall_off_index != 0) ||
845 (face == 0 && fall_off_index == 1) ||
846 (face == 4 && fall_off_index == 1) ||
847 (face == 5 && fall_off_index == 1)) {
848 return 0;
849 }
850 if ((face == 4 && fall_off_index >= 2) ||
851 (face == 2 && fall_off_index == 3) ||
852 (face == 3 && fall_off_index == 2)) {
853 return xc;
854 }
855 if ((face == 5 && fall_off_index >= 2) ||
856 (face == 2 && fall_off_index == 2) ||
857 (face == 3 && fall_off_index == 3)) {
858 return max - xc;
859 }
860 if ((face == 2 && fall_off_index == 0) ||
861 (face == 3 && fall_off_index == 1)) {
862 return yc;
863 }
864 /* (face == 2 && fall_off_index == 1) ||
865 (face == 3 && fall_off_index == 0)) */
866 return max - yc;
867 }
868
869 /*
870 * return a new ycoord based on old face, old coords, cube size
871 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
872 */
873 static inline int
874 get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
875 {
876 if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
877 return yc;
878 }
879 if (face == 2 ||
880 (face == 4 && fall_off_index == 3) ||
881 (face == 5 && fall_off_index == 2)) {
882 return 0;
883 }
884 if (face == 3 ||
885 (face == 4 && fall_off_index == 2) ||
886 (face == 5 && fall_off_index == 3)) {
887 return max;
888 }
889 if ((face == 0 && fall_off_index == 3) ||
890 (face == 1 && fall_off_index == 2)) {
891 return xc;
892 }
893 /* (face == 0 && fall_off_index == 2) ||
894 (face == 1 && fall_off_index == 3) */
895 return max - xc;
896 }
897
898
899 /* Gather a quad of adjacent texels within a tile:
900 */
901 static inline void
902 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
903 union tex_tile_address addr,
904 unsigned x, unsigned y,
905 const float *out[4])
906 {
907 const struct softpipe_tex_cached_tile *tile;
908
909 addr.bits.x = x / TEX_TILE_SIZE;
910 addr.bits.y = y / TEX_TILE_SIZE;
911 y %= TEX_TILE_SIZE;
912 x %= TEX_TILE_SIZE;
913
914 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
915
916 out[0] = &tile->data.color[y ][x ][0];
917 out[1] = &tile->data.color[y ][x+1][0];
918 out[2] = &tile->data.color[y+1][x ][0];
919 out[3] = &tile->data.color[y+1][x+1][0];
920 }
921
922
923 /* Gather a quad of potentially non-adjacent texels:
924 */
925 static inline void
926 get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
927 union tex_tile_address addr,
928 int x0, int y0,
929 int x1, int y1,
930 const float *out[4])
931 {
932 out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
933 out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
934 out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
935 out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
936 }
937
938
939 /* 3d variants:
940 */
941 static inline const float *
942 get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
943 union tex_tile_address addr, int x, int y, int z)
944 {
945 const struct softpipe_tex_cached_tile *tile;
946
947 addr.bits.x = x / TEX_TILE_SIZE;
948 addr.bits.y = y / TEX_TILE_SIZE;
949 addr.bits.z = z;
950 y %= TEX_TILE_SIZE;
951 x %= TEX_TILE_SIZE;
952
953 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
954
955 return &tile->data.color[y][x][0];
956 }
957
958
959 static inline const float *
960 get_texel_3d(const struct sp_sampler_view *sp_sview,
961 const struct sp_sampler *sp_samp,
962 union tex_tile_address addr, int x, int y, int z)
963 {
964 const struct pipe_resource *texture = sp_sview->base.texture;
965 const unsigned level = addr.bits.level;
966
967 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
968 y < 0 || y >= (int) u_minify(texture->height0, level) ||
969 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
970 return sp_samp->base.border_color.f;
971 }
972 else {
973 return get_texel_3d_no_border( sp_sview, addr, x, y, z );
974 }
975 }
976
977
978 /* Get texel pointer for 1D array texture */
979 static inline const float *
980 get_texel_1d_array(const struct sp_sampler_view *sp_sview,
981 const struct sp_sampler *sp_samp,
982 union tex_tile_address addr, int x, int y)
983 {
984 const struct pipe_resource *texture = sp_sview->base.texture;
985 const unsigned level = addr.bits.level;
986
987 if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
988 return sp_samp->base.border_color.f;
989 }
990 else {
991 return get_texel_2d_no_border(sp_sview, addr, x, y);
992 }
993 }
994
995
996 /* Get texel pointer for 2D array texture */
997 static inline const float *
998 get_texel_2d_array(const struct sp_sampler_view *sp_sview,
999 const struct sp_sampler *sp_samp,
1000 union tex_tile_address addr, int x, int y, int layer)
1001 {
1002 const struct pipe_resource *texture = sp_sview->base.texture;
1003 const unsigned level = addr.bits.level;
1004
1005 assert(layer < (int) texture->array_size);
1006 assert(layer >= 0);
1007
1008 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1009 y < 0 || y >= (int) u_minify(texture->height0, level)) {
1010 return sp_samp->base.border_color.f;
1011 }
1012 else {
1013 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1014 }
1015 }
1016
1017
1018 static inline const float *
1019 get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
1020 union tex_tile_address addr, int x, int y,
1021 float *corner, int layer, unsigned face)
1022 {
1023 const struct pipe_resource *texture = sp_sview->base.texture;
1024 const unsigned level = addr.bits.level;
1025 int new_x, new_y, max_x;
1026
1027 max_x = (int) u_minify(texture->width0, level);
1028
1029 assert(texture->width0 == texture->height0);
1030 new_x = x;
1031 new_y = y;
1032
1033 /* change the face */
1034 if (x < 0) {
1035 /*
1036 * Cheat with corners. They are difficult and I believe because we don't get
1037 * per-pixel faces we can actually have multiple corner texels per pixel,
1038 * which screws things up majorly in any case (as the per spec behavior is
1039 * to average the 3 remaining texels, which we might not have).
1040 * Hence just make sure that the 2nd coord is clamped, will simply pick the
1041 * sample which would have fallen off the x coord, but not y coord.
1042 * So the filter weight of the samples will be wrong, but at least this
1043 * ensures that only valid texels near the corner are used.
1044 */
1045 if (y < 0 || y >= max_x) {
1046 y = CLAMP(y, 0, max_x - 1);
1047 }
1048 new_x = get_next_xcoord(face, 0, max_x -1, x, y);
1049 new_y = get_next_ycoord(face, 0, max_x -1, x, y);
1050 face = get_next_face(face, 0);
1051 } else if (x >= max_x) {
1052 if (y < 0 || y >= max_x) {
1053 y = CLAMP(y, 0, max_x - 1);
1054 }
1055 new_x = get_next_xcoord(face, 1, max_x -1, x, y);
1056 new_y = get_next_ycoord(face, 1, max_x -1, x, y);
1057 face = get_next_face(face, 1);
1058 } else if (y < 0) {
1059 new_x = get_next_xcoord(face, 2, max_x -1, x, y);
1060 new_y = get_next_ycoord(face, 2, max_x -1, x, y);
1061 face = get_next_face(face, 2);
1062 } else if (y >= max_x) {
1063 new_x = get_next_xcoord(face, 3, max_x -1, x, y);
1064 new_y = get_next_ycoord(face, 3, max_x -1, x, y);
1065 face = get_next_face(face, 3);
1066 }
1067
1068 return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
1069 }
1070
1071
1072 /* Get texel pointer for cube array texture */
1073 static inline const float *
1074 get_texel_cube_array(const struct sp_sampler_view *sp_sview,
1075 const struct sp_sampler *sp_samp,
1076 union tex_tile_address addr, int x, int y, int layer)
1077 {
1078 const struct pipe_resource *texture = sp_sview->base.texture;
1079 const unsigned level = addr.bits.level;
1080
1081 assert(layer < (int) texture->array_size);
1082 assert(layer >= 0);
1083
1084 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
1085 y < 0 || y >= (int) u_minify(texture->height0, level)) {
1086 return sp_samp->base.border_color.f;
1087 }
1088 else {
1089 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
1090 }
1091 }
1092 /**
1093 * Given the logbase2 of a mipmap's base level size and a mipmap level,
1094 * return the size (in texels) of that mipmap level.
1095 * For example, if level[0].width = 256 then base_pot will be 8.
1096 * If level = 2, then we'll return 64 (the width at level=2).
1097 * Return 1 if level > base_pot.
1098 */
1099 static inline unsigned
1100 pot_level_size(unsigned base_pot, unsigned level)
1101 {
1102 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
1103 }
1104
1105
1106 static void
1107 print_sample(const char *function, const float *rgba)
1108 {
1109 debug_printf("%s %g %g %g %g\n",
1110 function,
1111 rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
1112 }
1113
1114
1115 static void
1116 print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1117 {
1118 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
1119 function,
1120 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
1121 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
1122 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
1123 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
1124 }
1125
1126
1127 /* Some image-filter fastpaths:
1128 */
1129 static inline void
1130 img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
1131 const struct sp_sampler *sp_samp,
1132 const struct img_filter_args *args,
1133 float *rgba)
1134 {
1135 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1136 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1137 const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
1138 const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1139 union tex_tile_address addr;
1140 int c;
1141
1142 const float u = (args->s * xpot - 0.5F) + args->offset[0];
1143 const float v = (args->t * ypot - 0.5F) + args->offset[1];
1144
1145 const int uflr = util_ifloor(u);
1146 const int vflr = util_ifloor(v);
1147
1148 const float xw = u - (float)uflr;
1149 const float yw = v - (float)vflr;
1150
1151 const int x0 = uflr & (xpot - 1);
1152 const int y0 = vflr & (ypot - 1);
1153
1154 const float *tx[4];
1155
1156 addr.value = 0;
1157 addr.bits.level = args->level;
1158 addr.bits.z = sp_sview->base.u.tex.first_layer;
1159
1160 /* Can we fetch all four at once:
1161 */
1162 if (x0 < xmax && y0 < ymax) {
1163 get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1164 }
1165 else {
1166 const unsigned x1 = (x0 + 1) & (xpot - 1);
1167 const unsigned y1 = (y0 + 1) & (ypot - 1);
1168 get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1169 }
1170
1171 /* interpolate R, G, B, A */
1172 for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1173 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1174 tx[0][c], tx[1][c],
1175 tx[2][c], tx[3][c]);
1176 }
1177
1178 if (DEBUG_TEX) {
1179 print_sample(__FUNCTION__, rgba);
1180 }
1181 }
1182
1183
1184 static inline void
1185 img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1186 const struct sp_sampler *sp_samp,
1187 const struct img_filter_args *args,
1188 float *rgba)
1189 {
1190 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1191 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1192 const float *out;
1193 union tex_tile_address addr;
1194 int c;
1195
1196 const float u = args->s * xpot + args->offset[0];
1197 const float v = args->t * ypot + args->offset[1];
1198
1199 const int uflr = util_ifloor(u);
1200 const int vflr = util_ifloor(v);
1201
1202 const int x0 = uflr & (xpot - 1);
1203 const int y0 = vflr & (ypot - 1);
1204
1205 addr.value = 0;
1206 addr.bits.level = args->level;
1207 addr.bits.z = sp_sview->base.u.tex.first_layer;
1208
1209 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1210 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1211 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1212
1213 if (DEBUG_TEX) {
1214 print_sample(__FUNCTION__, rgba);
1215 }
1216 }
1217
1218
1219 static inline void
1220 img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1221 const struct sp_sampler *sp_samp,
1222 const struct img_filter_args *args,
1223 float *rgba)
1224 {
1225 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1226 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1227 union tex_tile_address addr;
1228 int c;
1229
1230 const float u = args->s * xpot + args->offset[0];
1231 const float v = args->t * ypot + args->offset[1];
1232
1233 int x0, y0;
1234 const float *out;
1235
1236 addr.value = 0;
1237 addr.bits.level = args->level;
1238 addr.bits.z = sp_sview->base.u.tex.first_layer;
1239
1240 x0 = util_ifloor(u);
1241 if (x0 < 0)
1242 x0 = 0;
1243 else if (x0 > (int) xpot - 1)
1244 x0 = xpot - 1;
1245
1246 y0 = util_ifloor(v);
1247 if (y0 < 0)
1248 y0 = 0;
1249 else if (y0 > (int) ypot - 1)
1250 y0 = ypot - 1;
1251
1252 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1253 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1254 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1255
1256 if (DEBUG_TEX) {
1257 print_sample(__FUNCTION__, rgba);
1258 }
1259 }
1260
1261
1262 static void
1263 img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1264 const struct sp_sampler *sp_samp,
1265 const struct img_filter_args *args,
1266 float *rgba)
1267 {
1268 const struct pipe_resource *texture = sp_sview->base.texture;
1269 const int width = u_minify(texture->width0, args->level);
1270 int x;
1271 union tex_tile_address addr;
1272 const float *out;
1273 int c;
1274
1275 assert(width > 0);
1276
1277 addr.value = 0;
1278 addr.bits.level = args->level;
1279
1280 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1281
1282 out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1283 sp_sview->base.u.tex.first_layer);
1284 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1285 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1286
1287 if (DEBUG_TEX) {
1288 print_sample(__FUNCTION__, rgba);
1289 }
1290 }
1291
1292
1293 static void
1294 img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1295 const struct sp_sampler *sp_samp,
1296 const struct img_filter_args *args,
1297 float *rgba)
1298 {
1299 const struct pipe_resource *texture = sp_sview->base.texture;
1300 const int width = u_minify(texture->width0, args->level);
1301 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1302 sp_sview->base.u.tex.last_layer);
1303 int x;
1304 union tex_tile_address addr;
1305 const float *out;
1306 int c;
1307
1308 assert(width > 0);
1309
1310 addr.value = 0;
1311 addr.bits.level = args->level;
1312
1313 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1314
1315 out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1316 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1317 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1318
1319 if (DEBUG_TEX) {
1320 print_sample(__FUNCTION__, rgba);
1321 }
1322 }
1323
1324
1325 static void
1326 img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1327 const struct sp_sampler *sp_samp,
1328 const struct img_filter_args *args,
1329 float *rgba)
1330 {
1331 const struct pipe_resource *texture = sp_sview->base.texture;
1332 const int width = u_minify(texture->width0, args->level);
1333 const int height = u_minify(texture->height0, args->level);
1334 int x, y;
1335 union tex_tile_address addr;
1336 const float *out;
1337 int c;
1338
1339 assert(width > 0);
1340 assert(height > 0);
1341
1342 addr.value = 0;
1343 addr.bits.level = args->level;
1344 addr.bits.z = sp_sview->base.u.tex.first_layer;
1345
1346 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1347 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1348
1349 out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1350 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1351 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1352
1353 if (DEBUG_TEX) {
1354 print_sample(__FUNCTION__, rgba);
1355 }
1356 }
1357
1358
1359 static void
1360 img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1361 const struct sp_sampler *sp_samp,
1362 const struct img_filter_args *args,
1363 float *rgba)
1364 {
1365 const struct pipe_resource *texture = sp_sview->base.texture;
1366 const int width = u_minify(texture->width0, args->level);
1367 const int height = u_minify(texture->height0, args->level);
1368 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1369 sp_sview->base.u.tex.last_layer);
1370 int x, y;
1371 union tex_tile_address addr;
1372 const float *out;
1373 int c;
1374
1375 assert(width > 0);
1376 assert(height > 0);
1377
1378 addr.value = 0;
1379 addr.bits.level = args->level;
1380
1381 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1382 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1383
1384 out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1385 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1386 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1387
1388 if (DEBUG_TEX) {
1389 print_sample(__FUNCTION__, rgba);
1390 }
1391 }
1392
1393
1394 static void
1395 img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1396 const struct sp_sampler *sp_samp,
1397 const struct img_filter_args *args,
1398 float *rgba)
1399 {
1400 const struct pipe_resource *texture = sp_sview->base.texture;
1401 const int width = u_minify(texture->width0, args->level);
1402 const int height = u_minify(texture->height0, args->level);
1403 const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1404 int x, y;
1405 union tex_tile_address addr;
1406 const float *out;
1407 int c;
1408
1409 assert(width > 0);
1410 assert(height > 0);
1411
1412 addr.value = 0;
1413 addr.bits.level = args->level;
1414
1415 /*
1416 * If NEAREST filtering is done within a miplevel, always apply wrap
1417 * mode CLAMP_TO_EDGE.
1418 */
1419 if (sp_samp->base.seamless_cube_map) {
1420 wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1421 wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1422 } else {
1423 /* Would probably make sense to ignore mode and just do edge clamp */
1424 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1425 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1426 }
1427
1428 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1429 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1430 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1431
1432 if (DEBUG_TEX) {
1433 print_sample(__FUNCTION__, rgba);
1434 }
1435 }
1436
1437 static void
1438 img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1439 const struct sp_sampler *sp_samp,
1440 const struct img_filter_args *args,
1441 float *rgba)
1442 {
1443 const struct pipe_resource *texture = sp_sview->base.texture;
1444 const int width = u_minify(texture->width0, args->level);
1445 const int height = u_minify(texture->height0, args->level);
1446 const int layerface =
1447 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1448 sp_sview->base.u.tex.first_layer,
1449 sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1450 int x, y;
1451 union tex_tile_address addr;
1452 const float *out;
1453 int c;
1454
1455 assert(width > 0);
1456 assert(height > 0);
1457
1458 addr.value = 0;
1459 addr.bits.level = args->level;
1460
1461 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1462 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1463
1464 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1465 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1466 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1467
1468 if (DEBUG_TEX) {
1469 print_sample(__FUNCTION__, rgba);
1470 }
1471 }
1472
1473 static void
1474 img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1475 const struct sp_sampler *sp_samp,
1476 const struct img_filter_args *args,
1477 float *rgba)
1478 {
1479 const struct pipe_resource *texture = sp_sview->base.texture;
1480 const int width = u_minify(texture->width0, args->level);
1481 const int height = u_minify(texture->height0, args->level);
1482 const int depth = u_minify(texture->depth0, args->level);
1483 int x, y, z;
1484 union tex_tile_address addr;
1485 const float *out;
1486 int c;
1487
1488 assert(width > 0);
1489 assert(height > 0);
1490 assert(depth > 0);
1491
1492 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1493 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1494 sp_samp->nearest_texcoord_p(args->p, depth, args->offset[2], &z);
1495
1496 addr.value = 0;
1497 addr.bits.level = args->level;
1498
1499 out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1500 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1501 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1502 }
1503
1504
1505 static void
1506 img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1507 const struct sp_sampler *sp_samp,
1508 const struct img_filter_args *args,
1509 float *rgba)
1510 {
1511 const struct pipe_resource *texture = sp_sview->base.texture;
1512 const int width = u_minify(texture->width0, args->level);
1513 int x0, x1;
1514 float xw; /* weights */
1515 union tex_tile_address addr;
1516 const float *tx0, *tx1;
1517 int c;
1518
1519 assert(width > 0);
1520
1521 addr.value = 0;
1522 addr.bits.level = args->level;
1523
1524 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1525
1526 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1527 sp_sview->base.u.tex.first_layer);
1528 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1529 sp_sview->base.u.tex.first_layer);
1530
1531 /* interpolate R, G, B, A */
1532 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1533 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1534 }
1535
1536
1537 static void
1538 img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1539 const struct sp_sampler *sp_samp,
1540 const struct img_filter_args *args,
1541 float *rgba)
1542 {
1543 const struct pipe_resource *texture = sp_sview->base.texture;
1544 const int width = u_minify(texture->width0, args->level);
1545 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1546 sp_sview->base.u.tex.last_layer);
1547 int x0, x1;
1548 float xw; /* weights */
1549 union tex_tile_address addr;
1550 const float *tx0, *tx1;
1551 int c;
1552
1553 assert(width > 0);
1554
1555 addr.value = 0;
1556 addr.bits.level = args->level;
1557
1558 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1559
1560 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1561 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1562
1563 /* interpolate R, G, B, A */
1564 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1565 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1566 }
1567
1568 /*
1569 * Retrieve the gathered value, need to convert to the
1570 * TGSI expected interface, and take component select
1571 * and swizzling into account.
1572 */
1573 static float
1574 get_gather_value(const struct sp_sampler_view *sp_sview,
1575 int chan_in, int comp_sel,
1576 const float *tx[4])
1577 {
1578 int chan;
1579 unsigned swizzle;
1580
1581 /*
1582 * softpipe samples in a different order
1583 * to TGSI expects, so we need to swizzle,
1584 * the samples into the correct slots.
1585 */
1586 switch (chan_in) {
1587 case 0:
1588 chan = 2;
1589 break;
1590 case 1:
1591 chan = 3;
1592 break;
1593 case 2:
1594 chan = 1;
1595 break;
1596 case 3:
1597 chan = 0;
1598 break;
1599 default:
1600 assert(0);
1601 return 0.0;
1602 }
1603
1604 /* pick which component to use for the swizzle */
1605 switch (comp_sel) {
1606 case 0:
1607 swizzle = sp_sview->base.swizzle_r;
1608 break;
1609 case 1:
1610 swizzle = sp_sview->base.swizzle_g;
1611 break;
1612 case 2:
1613 swizzle = sp_sview->base.swizzle_b;
1614 break;
1615 case 3:
1616 swizzle = sp_sview->base.swizzle_a;
1617 break;
1618 default:
1619 assert(0);
1620 return 0.0;
1621 }
1622
1623 /* get correct result using the channel and swizzle */
1624 switch (swizzle) {
1625 case PIPE_SWIZZLE_0:
1626 return 0.0;
1627 case PIPE_SWIZZLE_1:
1628 return 1.0;
1629 default:
1630 return tx[chan][swizzle];
1631 }
1632 }
1633
1634
1635 static void
1636 img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1637 const struct sp_sampler *sp_samp,
1638 const struct img_filter_args *args,
1639 float *rgba)
1640 {
1641 const struct pipe_resource *texture = sp_sview->base.texture;
1642 const int width = u_minify(texture->width0, args->level);
1643 const int height = u_minify(texture->height0, args->level);
1644 int x0, y0, x1, y1;
1645 float xw, yw; /* weights */
1646 union tex_tile_address addr;
1647 const float *tx[4];
1648 int c;
1649
1650 assert(width > 0);
1651 assert(height > 0);
1652
1653 addr.value = 0;
1654 addr.bits.level = args->level;
1655 addr.bits.z = sp_sview->base.u.tex.first_layer;
1656
1657 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1658 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1659
1660 tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1661 tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1662 tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1663 tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1664
1665 if (args->gather_only) {
1666 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1667 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1668 args->gather_comp,
1669 tx);
1670 } else {
1671 /* interpolate R, G, B, A */
1672 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1673 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1674 tx[0][c], tx[1][c],
1675 tx[2][c], tx[3][c]);
1676 }
1677 }
1678
1679
1680 static void
1681 img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1682 const struct sp_sampler *sp_samp,
1683 const struct img_filter_args *args,
1684 float *rgba)
1685 {
1686 const struct pipe_resource *texture = sp_sview->base.texture;
1687 const int width = u_minify(texture->width0, args->level);
1688 const int height = u_minify(texture->height0, args->level);
1689 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1690 sp_sview->base.u.tex.last_layer);
1691 int x0, y0, x1, y1;
1692 float xw, yw; /* weights */
1693 union tex_tile_address addr;
1694 const float *tx[4];
1695 int c;
1696
1697 assert(width > 0);
1698 assert(height > 0);
1699
1700 addr.value = 0;
1701 addr.bits.level = args->level;
1702
1703 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1704 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1705
1706 tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1707 tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1708 tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1709 tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1710
1711 if (args->gather_only) {
1712 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1713 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1714 args->gather_comp,
1715 tx);
1716 } else {
1717 /* interpolate R, G, B, A */
1718 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1719 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1720 tx[0][c], tx[1][c],
1721 tx[2][c], tx[3][c]);
1722 }
1723 }
1724
1725
1726 static void
1727 img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1728 const struct sp_sampler *sp_samp,
1729 const struct img_filter_args *args,
1730 float *rgba)
1731 {
1732 const struct pipe_resource *texture = sp_sview->base.texture;
1733 const int width = u_minify(texture->width0, args->level);
1734 const int height = u_minify(texture->height0, args->level);
1735 const int layer = sp_sview->base.u.tex.first_layer;
1736 int x0, y0, x1, y1;
1737 float xw, yw; /* weights */
1738 union tex_tile_address addr;
1739 const float *tx[4];
1740 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1741 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1742 int c;
1743
1744 assert(width > 0);
1745 assert(height > 0);
1746
1747 addr.value = 0;
1748 addr.bits.level = args->level;
1749
1750 /*
1751 * For seamless if LINEAR filtering is done within a miplevel,
1752 * always apply wrap mode CLAMP_TO_BORDER.
1753 */
1754 if (sp_samp->base.seamless_cube_map) {
1755 /* Note this is a bit overkill, actual clamping is not required */
1756 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1757 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1758 } else {
1759 /* Would probably make sense to ignore mode and just do edge clamp */
1760 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1761 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1762 }
1763
1764 if (sp_samp->base.seamless_cube_map) {
1765 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1766 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1767 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1768 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1769 } else {
1770 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1771 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1772 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1773 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1774 }
1775
1776 if (args->gather_only) {
1777 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1778 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1779 args->gather_comp,
1780 tx);
1781 } else {
1782 /* interpolate R, G, B, A */
1783 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1784 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1785 tx[0][c], tx[1][c],
1786 tx[2][c], tx[3][c]);
1787 }
1788 }
1789
1790
1791 static void
1792 img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1793 const struct sp_sampler *sp_samp,
1794 const struct img_filter_args *args,
1795 float *rgba)
1796 {
1797 const struct pipe_resource *texture = sp_sview->base.texture;
1798 const int width = u_minify(texture->width0, args->level);
1799 const int height = u_minify(texture->height0, args->level);
1800 const int layer =
1801 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1802 sp_sview->base.u.tex.first_layer,
1803 sp_sview->base.u.tex.last_layer - 5);
1804 int x0, y0, x1, y1;
1805 float xw, yw; /* weights */
1806 union tex_tile_address addr;
1807 const float *tx[4];
1808 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1809 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1810 int c;
1811
1812 assert(width > 0);
1813 assert(height > 0);
1814
1815 addr.value = 0;
1816 addr.bits.level = args->level;
1817
1818 /*
1819 * For seamless if LINEAR filtering is done within a miplevel,
1820 * always apply wrap mode CLAMP_TO_BORDER.
1821 */
1822 if (sp_samp->base.seamless_cube_map) {
1823 /* Note this is a bit overkill, actual clamping is not required */
1824 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1825 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1826 } else {
1827 /* Would probably make sense to ignore mode and just do edge clamp */
1828 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1829 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1830 }
1831
1832 if (sp_samp->base.seamless_cube_map) {
1833 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1834 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1835 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1836 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1837 } else {
1838 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1839 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1840 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1841 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1842 }
1843
1844 if (args->gather_only) {
1845 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1846 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1847 args->gather_comp,
1848 tx);
1849 } else {
1850 /* interpolate R, G, B, A */
1851 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1852 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1853 tx[0][c], tx[1][c],
1854 tx[2][c], tx[3][c]);
1855 }
1856 }
1857
1858 static void
1859 img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1860 const struct sp_sampler *sp_samp,
1861 const struct img_filter_args *args,
1862 float *rgba)
1863 {
1864 const struct pipe_resource *texture = sp_sview->base.texture;
1865 const int width = u_minify(texture->width0, args->level);
1866 const int height = u_minify(texture->height0, args->level);
1867 const int depth = u_minify(texture->depth0, args->level);
1868 int x0, x1, y0, y1, z0, z1;
1869 float xw, yw, zw; /* interpolation weights */
1870 union tex_tile_address addr;
1871 const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1872 int c;
1873
1874 addr.value = 0;
1875 addr.bits.level = args->level;
1876
1877 assert(width > 0);
1878 assert(height > 0);
1879 assert(depth > 0);
1880
1881 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1882 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1883 sp_samp->linear_texcoord_p(args->p, depth, args->offset[2], &z0, &z1, &zw);
1884
1885 tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1886 tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1887 tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1888 tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1889
1890 tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1891 tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1892 tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1893 tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1894
1895 /* interpolate R, G, B, A */
1896 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1897 rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
1898 tx00[c], tx01[c],
1899 tx02[c], tx03[c],
1900 tx10[c], tx11[c],
1901 tx12[c], tx13[c]);
1902 }
1903
1904
1905 /* Calculate level of detail for every fragment,
1906 * with lambda already computed.
1907 * Note that lambda has already been biased by global LOD bias.
1908 * \param biased_lambda per-quad lambda.
1909 * \param lod_in per-fragment lod_bias or explicit_lod.
1910 * \param lod returns the per-fragment lod.
1911 */
1912 static inline void
1913 compute_lod(const struct pipe_sampler_state *sampler,
1914 enum tgsi_sampler_control control,
1915 const float biased_lambda,
1916 const float lod_in[TGSI_QUAD_SIZE],
1917 float lod[TGSI_QUAD_SIZE])
1918 {
1919 const float min_lod = sampler->min_lod;
1920 const float max_lod = sampler->max_lod;
1921 uint i;
1922
1923 switch (control) {
1924 case TGSI_SAMPLER_LOD_NONE:
1925 case TGSI_SAMPLER_LOD_ZERO:
1926 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1927 break;
1928 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1929 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1930 lod[i] = lod_in[i];
1931 break;
1932 case TGSI_SAMPLER_LOD_BIAS:
1933 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1934 lod[i] = biased_lambda + lod_in[i];
1935 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1936 }
1937 break;
1938 case TGSI_SAMPLER_LOD_EXPLICIT:
1939 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1940 lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1941 }
1942 break;
1943 default:
1944 assert(0);
1945 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1946 }
1947 }
1948
1949
1950 /* Calculate level of detail for every fragment. The computed value is not
1951 * clamped to lod_min and lod_max.
1952 * \param lod_in per-fragment lod_bias or explicit_lod.
1953 * \param lod results per-fragment lod.
1954 */
1955 static inline void
1956 compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1957 const struct sp_sampler *sp_samp,
1958 const float s[TGSI_QUAD_SIZE],
1959 const float t[TGSI_QUAD_SIZE],
1960 const float p[TGSI_QUAD_SIZE],
1961 const float derivs[3][2][TGSI_QUAD_SIZE],
1962 const float lod_in[TGSI_QUAD_SIZE],
1963 enum tgsi_sampler_control control,
1964 float lod[TGSI_QUAD_SIZE])
1965 {
1966 const struct pipe_sampler_state *sampler = &sp_samp->base;
1967 const float lod_bias = sampler->lod_bias;
1968 float lambda;
1969 uint i;
1970
1971 switch (control) {
1972 case TGSI_SAMPLER_LOD_NONE:
1973 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1974 lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1975 break;
1976 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1977 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1978 lod[i] = sp_sview->compute_lambda_from_grad(sp_sview, derivs, i);
1979 break;
1980 case TGSI_SAMPLER_LOD_BIAS:
1981 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1982 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1983 lod[i] = lambda + lod_in[i];
1984 }
1985 break;
1986 case TGSI_SAMPLER_LOD_EXPLICIT:
1987 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1988 lod[i] = lod_in[i] + lod_bias;
1989 }
1990 break;
1991 case TGSI_SAMPLER_LOD_ZERO:
1992 case TGSI_SAMPLER_GATHER:
1993 lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
1994 break;
1995 default:
1996 assert(0);
1997 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1998 }
1999 }
2000
2001 /* Calculate level of detail for every fragment.
2002 * \param lod_in per-fragment lod_bias or explicit_lod.
2003 * \param lod results per-fragment lod.
2004 */
2005 static inline void
2006 compute_lambda_lod(const struct sp_sampler_view *sp_sview,
2007 const struct sp_sampler *sp_samp,
2008 const float s[TGSI_QUAD_SIZE],
2009 const float t[TGSI_QUAD_SIZE],
2010 const float p[TGSI_QUAD_SIZE],
2011 float derivs[3][2][TGSI_QUAD_SIZE],
2012 const float lod_in[TGSI_QUAD_SIZE],
2013 enum tgsi_sampler_control control,
2014 float lod[TGSI_QUAD_SIZE])
2015 {
2016 const struct pipe_sampler_state *sampler = &sp_samp->base;
2017 const float min_lod = sampler->min_lod;
2018 const float max_lod = sampler->max_lod;
2019 int i;
2020
2021 compute_lambda_lod_unclamped(sp_sview, sp_samp,
2022 s, t, p, derivs, lod_in, control, lod);
2023 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2024 lod[i] = CLAMP(lod[i], min_lod, max_lod);
2025 }
2026 }
2027
2028 static inline unsigned
2029 get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
2030 {
2031 /* gather component is stored in lod_in slot as unsigned */
2032 return (*(unsigned int *)lod_in) & 0x3;
2033 }
2034
2035 /**
2036 * Clamps given lod to both lod limits and mip level limits. Clamping to the
2037 * latter limits is done so that lod is relative to the first (base) level.
2038 */
2039 static void
2040 clamp_lod(const struct sp_sampler_view *sp_sview,
2041 const struct sp_sampler *sp_samp,
2042 const float lod[TGSI_QUAD_SIZE],
2043 float clamped[TGSI_QUAD_SIZE])
2044 {
2045 const float min_lod = sp_samp->base.min_lod;
2046 const float max_lod = sp_samp->base.max_lod;
2047 const float min_level = sp_sview->base.u.tex.first_level;
2048 const float max_level = sp_sview->base.u.tex.last_level;
2049 int i;
2050
2051 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2052 float cl = lod[i];
2053
2054 cl = CLAMP(cl, min_lod, max_lod);
2055 cl = CLAMP(cl, 0, max_level - min_level);
2056 clamped[i] = cl;
2057 }
2058 }
2059
2060 /**
2061 * Get mip level relative to base level for linear mip filter
2062 */
2063 static void
2064 mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
2065 const struct sp_sampler *sp_samp,
2066 const float lod[TGSI_QUAD_SIZE],
2067 float level[TGSI_QUAD_SIZE])
2068 {
2069 clamp_lod(sp_sview, sp_samp, lod, level);
2070 }
2071
2072 static void
2073 mip_filter_linear(const struct sp_sampler_view *sp_sview,
2074 const struct sp_sampler *sp_samp,
2075 img_filter_func min_filter,
2076 img_filter_func mag_filter,
2077 const float s[TGSI_QUAD_SIZE],
2078 const float t[TGSI_QUAD_SIZE],
2079 const float p[TGSI_QUAD_SIZE],
2080 int gather_comp,
2081 const float lod[TGSI_QUAD_SIZE],
2082 const struct filter_args *filt_args,
2083 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2084 {
2085 const struct pipe_sampler_view *psview = &sp_sview->base;
2086 int j;
2087 struct img_filter_args args;
2088
2089 args.offset = filt_args->offset;
2090 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2091 args.gather_comp = gather_comp;
2092
2093 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2094 const int level0 = psview->u.tex.first_level + (int)lod[j];
2095
2096 args.s = s[j];
2097 args.t = t[j];
2098 args.p = p[j];
2099 args.face_id = filt_args->faces[j];
2100
2101 if (lod[j] <= 0.0 && !args.gather_only) {
2102 args.level = psview->u.tex.first_level;
2103 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2104 }
2105 else if (level0 >= (int) psview->u.tex.last_level) {
2106 args.level = psview->u.tex.last_level;
2107 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2108 }
2109 else {
2110 float levelBlend = frac(lod[j]);
2111 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2112 int c;
2113
2114 args.level = level0;
2115 min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
2116 args.level = level0+1;
2117 min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
2118
2119 for (c = 0; c < 4; c++) {
2120 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2121 }
2122 }
2123 }
2124
2125 if (DEBUG_TEX) {
2126 print_sample_4(__FUNCTION__, rgba);
2127 }
2128 }
2129
2130
2131 /**
2132 * Get mip level relative to base level for nearest mip filter
2133 */
2134 static void
2135 mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
2136 const struct sp_sampler *sp_samp,
2137 const float lod[TGSI_QUAD_SIZE],
2138 float level[TGSI_QUAD_SIZE])
2139 {
2140 int j;
2141
2142 clamp_lod(sp_sview, sp_samp, lod, level);
2143 for (j = 0; j < TGSI_QUAD_SIZE; j++)
2144 /* TODO: It should rather be:
2145 * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2146 */
2147 level[j] = (int)(level[j] + 0.5F);
2148 }
2149
2150 /**
2151 * Compute nearest mipmap level from texcoords.
2152 * Then sample the texture level for four elements of a quad.
2153 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
2154 */
2155 static void
2156 mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2157 const struct sp_sampler *sp_samp,
2158 img_filter_func min_filter,
2159 img_filter_func mag_filter,
2160 const float s[TGSI_QUAD_SIZE],
2161 const float t[TGSI_QUAD_SIZE],
2162 const float p[TGSI_QUAD_SIZE],
2163 int gather_component,
2164 const float lod[TGSI_QUAD_SIZE],
2165 const struct filter_args *filt_args,
2166 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2167 {
2168 const struct pipe_sampler_view *psview = &sp_sview->base;
2169 int j;
2170 struct img_filter_args args;
2171
2172 args.offset = filt_args->offset;
2173 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2174 args.gather_comp = gather_component;
2175
2176 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2177 args.s = s[j];
2178 args.t = t[j];
2179 args.p = p[j];
2180 args.face_id = filt_args->faces[j];
2181
2182 if (lod[j] <= 0.0f && !args.gather_only) {
2183 args.level = psview->u.tex.first_level;
2184 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2185 } else {
2186 const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2187 args.level = MIN2(level, (int)psview->u.tex.last_level);
2188 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2189 }
2190 }
2191
2192 if (DEBUG_TEX) {
2193 print_sample_4(__FUNCTION__, rgba);
2194 }
2195 }
2196
2197
2198 /**
2199 * Get mip level relative to base level for none mip filter
2200 */
2201 static void
2202 mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2203 const struct sp_sampler *sp_samp,
2204 const float lod[TGSI_QUAD_SIZE],
2205 float level[TGSI_QUAD_SIZE])
2206 {
2207 int j;
2208
2209 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2210 level[j] = 0;
2211 }
2212 }
2213
2214 static void
2215 mip_filter_none(const struct sp_sampler_view *sp_sview,
2216 const struct sp_sampler *sp_samp,
2217 img_filter_func min_filter,
2218 img_filter_func mag_filter,
2219 const float s[TGSI_QUAD_SIZE],
2220 const float t[TGSI_QUAD_SIZE],
2221 const float p[TGSI_QUAD_SIZE],
2222 int gather_component,
2223 const float lod[TGSI_QUAD_SIZE],
2224 const struct filter_args *filt_args,
2225 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2226 {
2227 int j;
2228 struct img_filter_args args;
2229
2230 args.level = sp_sview->base.u.tex.first_level;
2231 args.offset = filt_args->offset;
2232 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2233 args.gather_comp = gather_component;
2234
2235 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2236 args.s = s[j];
2237 args.t = t[j];
2238 args.p = p[j];
2239 args.face_id = filt_args->faces[j];
2240 if (lod[j] <= 0.0f && !args.gather_only) {
2241 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2242 }
2243 else {
2244 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2245 }
2246 }
2247 }
2248
2249
2250 /**
2251 * Get mip level relative to base level for none mip filter
2252 */
2253 static void
2254 mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2255 const struct sp_sampler *sp_samp,
2256 const float lod[TGSI_QUAD_SIZE],
2257 float level[TGSI_QUAD_SIZE])
2258 {
2259 mip_rel_level_none(sp_sview, sp_samp, lod, level);
2260 }
2261
2262 static void
2263 mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2264 const struct sp_sampler *sp_samp,
2265 img_filter_func min_filter,
2266 img_filter_func mag_filter,
2267 const float s[TGSI_QUAD_SIZE],
2268 const float t[TGSI_QUAD_SIZE],
2269 const float p[TGSI_QUAD_SIZE],
2270 int gather_comp,
2271 const float lod_in[TGSI_QUAD_SIZE],
2272 const struct filter_args *filt_args,
2273 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2274 {
2275 int j;
2276 struct img_filter_args args;
2277 args.level = sp_sview->base.u.tex.first_level;
2278 args.offset = filt_args->offset;
2279 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2280 args.gather_comp = gather_comp;
2281 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2282 args.s = s[j];
2283 args.t = t[j];
2284 args.p = p[j];
2285 args.face_id = filt_args->faces[j];
2286 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2287 }
2288 }
2289
2290
2291 /* For anisotropic filtering */
2292 #define WEIGHT_LUT_SIZE 1024
2293
2294 static const float *weightLut = NULL;
2295
2296 /**
2297 * Creates the look-up table used to speed-up EWA sampling
2298 */
2299 static void
2300 create_filter_table(void)
2301 {
2302 unsigned i;
2303 if (!weightLut) {
2304 float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2305
2306 for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2307 const float alpha = 2;
2308 const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2309 const float weight = (float) exp(-alpha * r2);
2310 lut[i] = weight;
2311 }
2312 weightLut = lut;
2313 }
2314 }
2315
2316
2317 /**
2318 * Elliptical weighted average (EWA) filter for producing high quality
2319 * anisotropic filtered results.
2320 * Based on the Higher Quality Elliptical Weighted Average Filter
2321 * published by Paul S. Heckbert in his Master's Thesis
2322 * "Fundamentals of Texture Mapping and Image Warping" (1989)
2323 */
2324 static void
2325 img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2326 const struct sp_sampler *sp_samp,
2327 img_filter_func min_filter,
2328 img_filter_func mag_filter,
2329 const float s[TGSI_QUAD_SIZE],
2330 const float t[TGSI_QUAD_SIZE],
2331 const float p[TGSI_QUAD_SIZE],
2332 const uint faces[TGSI_QUAD_SIZE],
2333 const int8_t *offset,
2334 unsigned level,
2335 const float dudx, const float dvdx,
2336 const float dudy, const float dvdy,
2337 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2338 {
2339 const struct pipe_resource *texture = sp_sview->base.texture;
2340
2341 // ??? Won't the image filters blow up if level is negative?
2342 const unsigned level0 = level > 0 ? level : 0;
2343 const float scaling = 1.0f / (1 << level0);
2344 const int width = u_minify(texture->width0, level0);
2345 const int height = u_minify(texture->height0, level0);
2346 struct img_filter_args args;
2347 const float ux = dudx * scaling;
2348 const float vx = dvdx * scaling;
2349 const float uy = dudy * scaling;
2350 const float vy = dvdy * scaling;
2351
2352 /* compute ellipse coefficients to bound the region:
2353 * A*x*x + B*x*y + C*y*y = F.
2354 */
2355 float A = vx*vx+vy*vy+1;
2356 float B = -2*(ux*vx+uy*vy);
2357 float C = ux*ux+uy*uy+1;
2358 float F = A*C-B*B/4.0f;
2359
2360 /* check if it is an ellipse */
2361 /* assert(F > 0.0); */
2362
2363 /* Compute the ellipse's (u,v) bounding box in texture space */
2364 const float d = -B*B+4.0f*C*A;
2365 const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */
2366 const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2367
2368 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2369 float s_buffer[TGSI_QUAD_SIZE];
2370 float t_buffer[TGSI_QUAD_SIZE];
2371 float weight_buffer[TGSI_QUAD_SIZE];
2372 int j;
2373
2374 /* For each quad, the du and dx values are the same and so the ellipse is
2375 * also the same. Note that texel/image access can only be performed using
2376 * a quad, i.e. it is not possible to get the pixel value for a single
2377 * tex coord. In order to have a better performance, the access is buffered
2378 * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2379 * full, then the pixel values are read from the image.
2380 */
2381 const float ddq = 2 * A;
2382
2383 /* Scale ellipse formula to directly index the Filter Lookup Table.
2384 * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2385 */
2386 const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2387 A *= formScale;
2388 B *= formScale;
2389 C *= formScale;
2390 /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2391
2392 args.level = level;
2393 args.offset = offset;
2394
2395 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2396 /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2397 * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2398 * value, q, is less than F, we're inside the ellipse
2399 */
2400 const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2401 const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2402
2403 const int u0 = (int) floorf(tex_u - box_u);
2404 const int u1 = (int) ceilf(tex_u + box_u);
2405 const int v0 = (int) floorf(tex_v - box_v);
2406 const int v1 = (int) ceilf(tex_v + box_v);
2407 const float U = u0 - tex_u;
2408
2409 float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2410 unsigned buffer_next = 0;
2411 float den = 0;
2412 int v;
2413 args.face_id = faces[j];
2414
2415 for (v = v0; v <= v1; ++v) {
2416 const float V = v - tex_v;
2417 float dq = A * (2 * U + 1) + B * V;
2418 float q = (C * V + B * U) * V + A * U * U;
2419
2420 int u;
2421 for (u = u0; u <= u1; ++u) {
2422 /* Note that the ellipse has been pre-scaled so F =
2423 * WEIGHT_LUT_SIZE - 1
2424 */
2425 if (q < WEIGHT_LUT_SIZE) {
2426 /* as a LUT is used, q must never be negative;
2427 * should not happen, though
2428 */
2429 const int qClamped = q >= 0.0F ? q : 0;
2430 const float weight = weightLut[qClamped];
2431
2432 weight_buffer[buffer_next] = weight;
2433 s_buffer[buffer_next] = u / ((float) width);
2434 t_buffer[buffer_next] = v / ((float) height);
2435
2436 buffer_next++;
2437 if (buffer_next == TGSI_QUAD_SIZE) {
2438 /* 4 texel coords are in the buffer -> read it now */
2439 unsigned jj;
2440 /* it is assumed that samp->min_img_filter is set to
2441 * img_filter_2d_nearest or one of the
2442 * accelerated img_filter_2d_nearest_XXX functions.
2443 */
2444 for (jj = 0; jj < buffer_next; jj++) {
2445 args.s = s_buffer[jj];
2446 args.t = t_buffer[jj];
2447 args.p = p[jj];
2448 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2449 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2450 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2451 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2452 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2453 }
2454
2455 buffer_next = 0;
2456 }
2457
2458 den += weight;
2459 }
2460 q += dq;
2461 dq += ddq;
2462 }
2463 }
2464
2465 /* if the tex coord buffer contains unread values, we will read
2466 * them now.
2467 */
2468 if (buffer_next > 0) {
2469 unsigned jj;
2470 /* it is assumed that samp->min_img_filter is set to
2471 * img_filter_2d_nearest or one of the
2472 * accelerated img_filter_2d_nearest_XXX functions.
2473 */
2474 for (jj = 0; jj < buffer_next; jj++) {
2475 args.s = s_buffer[jj];
2476 args.t = t_buffer[jj];
2477 args.p = p[jj];
2478 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2479 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2480 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2481 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2482 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2483 }
2484 }
2485
2486 if (den <= 0.0F) {
2487 /* Reaching this place would mean that no pixels intersected
2488 * the ellipse. This should never happen because the filter
2489 * we use always intersects at least one pixel.
2490 */
2491
2492 /*rgba[0]=0;
2493 rgba[1]=0;
2494 rgba[2]=0;
2495 rgba[3]=0;*/
2496 /* not enough pixels in resampling, resort to direct interpolation */
2497 args.s = s[j];
2498 args.t = t[j];
2499 args.p = p[j];
2500 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2501 den = 1;
2502 num[0] = rgba_temp[0][j];
2503 num[1] = rgba_temp[1][j];
2504 num[2] = rgba_temp[2][j];
2505 num[3] = rgba_temp[3][j];
2506 }
2507
2508 rgba[0][j] = num[0] / den;
2509 rgba[1][j] = num[1] / den;
2510 rgba[2][j] = num[2] / den;
2511 rgba[3][j] = num[3] / den;
2512 }
2513 }
2514
2515
2516 /**
2517 * Get mip level relative to base level for linear mip filter
2518 */
2519 static void
2520 mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2521 const struct sp_sampler *sp_samp,
2522 const float lod[TGSI_QUAD_SIZE],
2523 float level[TGSI_QUAD_SIZE])
2524 {
2525 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2526 }
2527
2528 /**
2529 * Sample 2D texture using an anisotropic filter.
2530 */
2531 static void
2532 mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2533 const struct sp_sampler *sp_samp,
2534 img_filter_func min_filter,
2535 img_filter_func mag_filter,
2536 const float s[TGSI_QUAD_SIZE],
2537 const float t[TGSI_QUAD_SIZE],
2538 const float p[TGSI_QUAD_SIZE],
2539 UNUSED int gather_comp,
2540 const float lod_in[TGSI_QUAD_SIZE],
2541 const struct filter_args *filt_args,
2542 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2543 {
2544 const struct pipe_resource *texture = sp_sview->base.texture;
2545 const struct pipe_sampler_view *psview = &sp_sview->base;
2546 int level0;
2547 float lambda;
2548 float lod[TGSI_QUAD_SIZE];
2549
2550 const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2551 const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2552 const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2553 const float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2554 const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2555 const float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2556 struct img_filter_args args;
2557
2558 args.offset = filt_args->offset;
2559
2560 if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2561 filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2562 /* XXX FIXME */
2563 filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2564 /* note: instead of working with Px and Py, we will use the
2565 * squared length instead, to avoid sqrt.
2566 */
2567 const float Px2 = dudx * dudx + dvdx * dvdx;
2568 const float Py2 = dudy * dudy + dvdy * dvdy;
2569
2570 float Pmax2;
2571 float Pmin2;
2572 float e;
2573 const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2574
2575 if (Px2 < Py2) {
2576 Pmax2 = Py2;
2577 Pmin2 = Px2;
2578 }
2579 else {
2580 Pmax2 = Px2;
2581 Pmin2 = Py2;
2582 }
2583
2584 /* if the eccentricity of the ellipse is too big, scale up the shorter
2585 * of the two vectors to limit the maximum amount of work per pixel
2586 */
2587 e = Pmax2 / Pmin2;
2588 if (e > maxEccentricity) {
2589 /* float s=e / maxEccentricity;
2590 minor[0] *= s;
2591 minor[1] *= s;
2592 Pmin2 *= s; */
2593 Pmin2 = Pmax2 / maxEccentricity;
2594 }
2595
2596 /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2597 * this since 0.5*log(x) = log(sqrt(x))
2598 */
2599 lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2600 compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2601 }
2602 else {
2603 assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2604 filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2605 compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2606 }
2607
2608 /* XXX: Take into account all lod values.
2609 */
2610 lambda = lod[0];
2611 level0 = psview->u.tex.first_level + (int)lambda;
2612
2613 /* If the ellipse covers the whole image, we can
2614 * simply return the average of the whole image.
2615 */
2616 if (level0 >= (int) psview->u.tex.last_level) {
2617 int j;
2618 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2619 args.s = s[j];
2620 args.t = t[j];
2621 args.p = p[j];
2622 args.level = psview->u.tex.last_level;
2623 args.face_id = filt_args->faces[j];
2624 /*
2625 * XXX: we overwrote any linear filter with nearest, so this
2626 * isn't right (albeit if last level is 1x1 and no border it
2627 * will work just the same).
2628 */
2629 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2630 }
2631 }
2632 else {
2633 /* don't bother interpolating between multiple LODs; it doesn't
2634 * seem to be worth the extra running time.
2635 */
2636 img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2637 s, t, p, filt_args->faces, filt_args->offset,
2638 level0, dudx, dvdx, dudy, dvdy, rgba);
2639 }
2640
2641 if (DEBUG_TEX) {
2642 print_sample_4(__FUNCTION__, rgba);
2643 }
2644 }
2645
2646 /**
2647 * Get mip level relative to base level for linear mip filter
2648 */
2649 static void
2650 mip_rel_level_linear_2d_linear_repeat_POT(
2651 const struct sp_sampler_view *sp_sview,
2652 const struct sp_sampler *sp_samp,
2653 const float lod[TGSI_QUAD_SIZE],
2654 float level[TGSI_QUAD_SIZE])
2655 {
2656 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2657 }
2658
2659 /**
2660 * Specialized version of mip_filter_linear with hard-wired calls to
2661 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2662 */
2663 static void
2664 mip_filter_linear_2d_linear_repeat_POT(
2665 const struct sp_sampler_view *sp_sview,
2666 const struct sp_sampler *sp_samp,
2667 img_filter_func min_filter,
2668 img_filter_func mag_filter,
2669 const float s[TGSI_QUAD_SIZE],
2670 const float t[TGSI_QUAD_SIZE],
2671 const float p[TGSI_QUAD_SIZE],
2672 int gather_comp,
2673 const float lod[TGSI_QUAD_SIZE],
2674 const struct filter_args *filt_args,
2675 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2676 {
2677 const struct pipe_sampler_view *psview = &sp_sview->base;
2678 int j;
2679
2680 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2681 const int level0 = psview->u.tex.first_level + (int)lod[j];
2682 struct img_filter_args args;
2683 /* Catches both negative and large values of level0:
2684 */
2685 args.s = s[j];
2686 args.t = t[j];
2687 args.p = p[j];
2688 args.face_id = filt_args->faces[j];
2689 args.offset = filt_args->offset;
2690 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2691 args.gather_comp = gather_comp;
2692 if ((unsigned)level0 >= psview->u.tex.last_level) {
2693 if (level0 < 0)
2694 args.level = psview->u.tex.first_level;
2695 else
2696 args.level = psview->u.tex.last_level;
2697 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2698 &rgba[0][j]);
2699
2700 }
2701 else {
2702 const float levelBlend = frac(lod[j]);
2703 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2704 int c;
2705
2706 args.level = level0;
2707 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2708 args.level = level0+1;
2709 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2710
2711 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2712 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2713 }
2714 }
2715
2716 if (DEBUG_TEX) {
2717 print_sample_4(__FUNCTION__, rgba);
2718 }
2719 }
2720
2721 static const struct sp_filter_funcs funcs_linear = {
2722 mip_rel_level_linear,
2723 mip_filter_linear
2724 };
2725
2726 static const struct sp_filter_funcs funcs_nearest = {
2727 mip_rel_level_nearest,
2728 mip_filter_nearest
2729 };
2730
2731 static const struct sp_filter_funcs funcs_none = {
2732 mip_rel_level_none,
2733 mip_filter_none
2734 };
2735
2736 static const struct sp_filter_funcs funcs_none_no_filter_select = {
2737 mip_rel_level_none_no_filter_select,
2738 mip_filter_none_no_filter_select
2739 };
2740
2741 static const struct sp_filter_funcs funcs_linear_aniso = {
2742 mip_rel_level_linear_aniso,
2743 mip_filter_linear_aniso
2744 };
2745
2746 static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2747 mip_rel_level_linear_2d_linear_repeat_POT,
2748 mip_filter_linear_2d_linear_repeat_POT
2749 };
2750
2751 /**
2752 * Do shadow/depth comparisons.
2753 */
2754 static void
2755 sample_compare(const struct sp_sampler_view *sp_sview,
2756 const struct sp_sampler *sp_samp,
2757 const float c0[TGSI_QUAD_SIZE],
2758 enum tgsi_sampler_control control,
2759 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2760 {
2761 const struct pipe_sampler_state *sampler = &sp_samp->base;
2762 int j, v;
2763 int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2764 float pc[4];
2765 const struct util_format_description *format_desc =
2766 util_format_description(sp_sview->base.format);
2767 /* not entirely sure we couldn't end up with non-valid swizzle here */
2768 const unsigned chan_type =
2769 format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2770 format_desc->channel[format_desc->swizzle[0]].type :
2771 UTIL_FORMAT_TYPE_FLOAT;
2772 const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2773
2774 /**
2775 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2776 * for 2D Array texture we need to use the 'c0' (aka Q).
2777 * When we sampled the depth texture, the depth value was put into all
2778 * RGBA channels. We look at the red channel here.
2779 */
2780
2781
2782
2783 if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2784 /*
2785 * clamping is a result of conversion to texture format, hence
2786 * doesn't happen with floats. Technically also should do comparison
2787 * in texture format (quantization!).
2788 */
2789 pc[0] = CLAMP(c0[0], 0.0F, 1.0F);
2790 pc[1] = CLAMP(c0[1], 0.0F, 1.0F);
2791 pc[2] = CLAMP(c0[2], 0.0F, 1.0F);
2792 pc[3] = CLAMP(c0[3], 0.0F, 1.0F);
2793 } else {
2794 pc[0] = c0[0];
2795 pc[1] = c0[1];
2796 pc[2] = c0[2];
2797 pc[3] = c0[3];
2798 }
2799
2800 for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2801 /* compare four texcoords vs. four texture samples */
2802 switch (sampler->compare_func) {
2803 case PIPE_FUNC_LESS:
2804 k[v][0] = pc[0] < rgba[v][0];
2805 k[v][1] = pc[1] < rgba[v][1];
2806 k[v][2] = pc[2] < rgba[v][2];
2807 k[v][3] = pc[3] < rgba[v][3];
2808 break;
2809 case PIPE_FUNC_LEQUAL:
2810 k[v][0] = pc[0] <= rgba[v][0];
2811 k[v][1] = pc[1] <= rgba[v][1];
2812 k[v][2] = pc[2] <= rgba[v][2];
2813 k[v][3] = pc[3] <= rgba[v][3];
2814 break;
2815 case PIPE_FUNC_GREATER:
2816 k[v][0] = pc[0] > rgba[v][0];
2817 k[v][1] = pc[1] > rgba[v][1];
2818 k[v][2] = pc[2] > rgba[v][2];
2819 k[v][3] = pc[3] > rgba[v][3];
2820 break;
2821 case PIPE_FUNC_GEQUAL:
2822 k[v][0] = pc[0] >= rgba[v][0];
2823 k[v][1] = pc[1] >= rgba[v][1];
2824 k[v][2] = pc[2] >= rgba[v][2];
2825 k[v][3] = pc[3] >= rgba[v][3];
2826 break;
2827 case PIPE_FUNC_EQUAL:
2828 k[v][0] = pc[0] == rgba[v][0];
2829 k[v][1] = pc[1] == rgba[v][1];
2830 k[v][2] = pc[2] == rgba[v][2];
2831 k[v][3] = pc[3] == rgba[v][3];
2832 break;
2833 case PIPE_FUNC_NOTEQUAL:
2834 k[v][0] = pc[0] != rgba[v][0];
2835 k[v][1] = pc[1] != rgba[v][1];
2836 k[v][2] = pc[2] != rgba[v][2];
2837 k[v][3] = pc[3] != rgba[v][3];
2838 break;
2839 case PIPE_FUNC_ALWAYS:
2840 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2841 break;
2842 case PIPE_FUNC_NEVER:
2843 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2844 break;
2845 default:
2846 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2847 assert(0);
2848 break;
2849 }
2850 }
2851
2852 if (is_gather) {
2853 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2854 for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2855 rgba[v][j] = k[v][j];
2856 }
2857 }
2858 } else {
2859 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2860 rgba[0][j] = k[0][j];
2861 rgba[1][j] = k[0][j];
2862 rgba[2][j] = k[0][j];
2863 rgba[3][j] = 1.0F;
2864 }
2865 }
2866 }
2867
2868 static void
2869 do_swizzling(const struct pipe_sampler_view *sview,
2870 float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2871 float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2872 {
2873 int j;
2874 const unsigned swizzle_r = sview->swizzle_r;
2875 const unsigned swizzle_g = sview->swizzle_g;
2876 const unsigned swizzle_b = sview->swizzle_b;
2877 const unsigned swizzle_a = sview->swizzle_a;
2878 float oneval = util_format_is_pure_integer(sview->format) ? uif(1) : 1.0f;
2879
2880 switch (swizzle_r) {
2881 case PIPE_SWIZZLE_0:
2882 for (j = 0; j < 4; j++)
2883 out[0][j] = 0.0f;
2884 break;
2885 case PIPE_SWIZZLE_1:
2886 for (j = 0; j < 4; j++)
2887 out[0][j] = oneval;
2888 break;
2889 default:
2890 assert(swizzle_r < 4);
2891 for (j = 0; j < 4; j++)
2892 out[0][j] = in[swizzle_r][j];
2893 }
2894
2895 switch (swizzle_g) {
2896 case PIPE_SWIZZLE_0:
2897 for (j = 0; j < 4; j++)
2898 out[1][j] = 0.0f;
2899 break;
2900 case PIPE_SWIZZLE_1:
2901 for (j = 0; j < 4; j++)
2902 out[1][j] = oneval;
2903 break;
2904 default:
2905 assert(swizzle_g < 4);
2906 for (j = 0; j < 4; j++)
2907 out[1][j] = in[swizzle_g][j];
2908 }
2909
2910 switch (swizzle_b) {
2911 case PIPE_SWIZZLE_0:
2912 for (j = 0; j < 4; j++)
2913 out[2][j] = 0.0f;
2914 break;
2915 case PIPE_SWIZZLE_1:
2916 for (j = 0; j < 4; j++)
2917 out[2][j] = oneval;
2918 break;
2919 default:
2920 assert(swizzle_b < 4);
2921 for (j = 0; j < 4; j++)
2922 out[2][j] = in[swizzle_b][j];
2923 }
2924
2925 switch (swizzle_a) {
2926 case PIPE_SWIZZLE_0:
2927 for (j = 0; j < 4; j++)
2928 out[3][j] = 0.0f;
2929 break;
2930 case PIPE_SWIZZLE_1:
2931 for (j = 0; j < 4; j++)
2932 out[3][j] = oneval;
2933 break;
2934 default:
2935 assert(swizzle_a < 4);
2936 for (j = 0; j < 4; j++)
2937 out[3][j] = in[swizzle_a][j];
2938 }
2939 }
2940
2941
2942 static wrap_nearest_func
2943 get_nearest_unorm_wrap(unsigned mode)
2944 {
2945 switch (mode) {
2946 case PIPE_TEX_WRAP_CLAMP:
2947 return wrap_nearest_unorm_clamp;
2948 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2949 return wrap_nearest_unorm_clamp_to_edge;
2950 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2951 return wrap_nearest_unorm_clamp_to_border;
2952 default:
2953 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2954 return wrap_nearest_unorm_clamp;
2955 }
2956 }
2957
2958
2959 static wrap_nearest_func
2960 get_nearest_wrap(unsigned mode)
2961 {
2962 switch (mode) {
2963 case PIPE_TEX_WRAP_REPEAT:
2964 return wrap_nearest_repeat;
2965 case PIPE_TEX_WRAP_CLAMP:
2966 return wrap_nearest_clamp;
2967 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2968 return wrap_nearest_clamp_to_edge;
2969 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2970 return wrap_nearest_clamp_to_border;
2971 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2972 return wrap_nearest_mirror_repeat;
2973 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2974 return wrap_nearest_mirror_clamp;
2975 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2976 return wrap_nearest_mirror_clamp_to_edge;
2977 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2978 return wrap_nearest_mirror_clamp_to_border;
2979 default:
2980 assert(0);
2981 return wrap_nearest_repeat;
2982 }
2983 }
2984
2985
2986 static wrap_linear_func
2987 get_linear_unorm_wrap(unsigned mode)
2988 {
2989 switch (mode) {
2990 case PIPE_TEX_WRAP_CLAMP:
2991 return wrap_linear_unorm_clamp;
2992 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2993 return wrap_linear_unorm_clamp_to_edge;
2994 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2995 return wrap_linear_unorm_clamp_to_border;
2996 default:
2997 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2998 return wrap_linear_unorm_clamp;
2999 }
3000 }
3001
3002
3003 static wrap_linear_func
3004 get_linear_wrap(unsigned mode)
3005 {
3006 switch (mode) {
3007 case PIPE_TEX_WRAP_REPEAT:
3008 return wrap_linear_repeat;
3009 case PIPE_TEX_WRAP_CLAMP:
3010 return wrap_linear_clamp;
3011 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
3012 return wrap_linear_clamp_to_edge;
3013 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
3014 return wrap_linear_clamp_to_border;
3015 case PIPE_TEX_WRAP_MIRROR_REPEAT:
3016 return wrap_linear_mirror_repeat;
3017 case PIPE_TEX_WRAP_MIRROR_CLAMP:
3018 return wrap_linear_mirror_clamp;
3019 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
3020 return wrap_linear_mirror_clamp_to_edge;
3021 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
3022 return wrap_linear_mirror_clamp_to_border;
3023 default:
3024 assert(0);
3025 return wrap_linear_repeat;
3026 }
3027 }
3028
3029
3030 /**
3031 * Is swizzling needed for the given state key?
3032 */
3033 static inline bool
3034 any_swizzle(const struct pipe_sampler_view *view)
3035 {
3036 return (view->swizzle_r != PIPE_SWIZZLE_X ||
3037 view->swizzle_g != PIPE_SWIZZLE_Y ||
3038 view->swizzle_b != PIPE_SWIZZLE_Z ||
3039 view->swizzle_a != PIPE_SWIZZLE_W);
3040 }
3041
3042
3043 static img_filter_func
3044 get_img_filter(const struct sp_sampler_view *sp_sview,
3045 const struct pipe_sampler_state *sampler,
3046 unsigned filter, bool gather)
3047 {
3048 switch (sp_sview->base.target) {
3049 case PIPE_BUFFER:
3050 case PIPE_TEXTURE_1D:
3051 if (filter == PIPE_TEX_FILTER_NEAREST)
3052 return img_filter_1d_nearest;
3053 else
3054 return img_filter_1d_linear;
3055 break;
3056 case PIPE_TEXTURE_1D_ARRAY:
3057 if (filter == PIPE_TEX_FILTER_NEAREST)
3058 return img_filter_1d_array_nearest;
3059 else
3060 return img_filter_1d_array_linear;
3061 break;
3062 case PIPE_TEXTURE_2D:
3063 case PIPE_TEXTURE_RECT:
3064 /* Try for fast path:
3065 */
3066 if (!gather && sp_sview->pot2d &&
3067 sampler->wrap_s == sampler->wrap_t &&
3068 sampler->normalized_coords)
3069 {
3070 switch (sampler->wrap_s) {
3071 case PIPE_TEX_WRAP_REPEAT:
3072 switch (filter) {
3073 case PIPE_TEX_FILTER_NEAREST:
3074 return img_filter_2d_nearest_repeat_POT;
3075 case PIPE_TEX_FILTER_LINEAR:
3076 return img_filter_2d_linear_repeat_POT;
3077 default:
3078 break;
3079 }
3080 break;
3081 case PIPE_TEX_WRAP_CLAMP:
3082 switch (filter) {
3083 case PIPE_TEX_FILTER_NEAREST:
3084 return img_filter_2d_nearest_clamp_POT;
3085 default:
3086 break;
3087 }
3088 }
3089 }
3090 /* Otherwise use default versions:
3091 */
3092 if (filter == PIPE_TEX_FILTER_NEAREST)
3093 return img_filter_2d_nearest;
3094 else
3095 return img_filter_2d_linear;
3096 break;
3097 case PIPE_TEXTURE_2D_ARRAY:
3098 if (filter == PIPE_TEX_FILTER_NEAREST)
3099 return img_filter_2d_array_nearest;
3100 else
3101 return img_filter_2d_array_linear;
3102 break;
3103 case PIPE_TEXTURE_CUBE:
3104 if (filter == PIPE_TEX_FILTER_NEAREST)
3105 return img_filter_cube_nearest;
3106 else
3107 return img_filter_cube_linear;
3108 break;
3109 case PIPE_TEXTURE_CUBE_ARRAY:
3110 if (filter == PIPE_TEX_FILTER_NEAREST)
3111 return img_filter_cube_array_nearest;
3112 else
3113 return img_filter_cube_array_linear;
3114 break;
3115 case PIPE_TEXTURE_3D:
3116 if (filter == PIPE_TEX_FILTER_NEAREST)
3117 return img_filter_3d_nearest;
3118 else
3119 return img_filter_3d_linear;
3120 break;
3121 default:
3122 assert(0);
3123 return img_filter_1d_nearest;
3124 }
3125 }
3126
3127 /**
3128 * Get mip filter funcs, and optionally both img min filter and img mag
3129 * filter. Note that both img filter function pointers must be either non-NULL
3130 * or NULL.
3131 */
3132 static void
3133 get_filters(const struct sp_sampler_view *sp_sview,
3134 const struct sp_sampler *sp_samp,
3135 const enum tgsi_sampler_control control,
3136 const struct sp_filter_funcs **funcs,
3137 img_filter_func *min,
3138 img_filter_func *mag)
3139 {
3140 assert(funcs);
3141 if (control == TGSI_SAMPLER_GATHER) {
3142 *funcs = &funcs_nearest;
3143 if (min) {
3144 *min = get_img_filter(sp_sview, &sp_samp->base,
3145 PIPE_TEX_FILTER_LINEAR, true);
3146 }
3147 } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3148 *funcs = &funcs_linear_2d_linear_repeat_POT;
3149 } else {
3150 *funcs = sp_samp->filter_funcs;
3151 if (min) {
3152 assert(mag);
3153 *min = get_img_filter(sp_sview, &sp_samp->base,
3154 sp_samp->min_img_filter, false);
3155 if (sp_samp->min_mag_equal) {
3156 *mag = *min;
3157 } else {
3158 *mag = get_img_filter(sp_sview, &sp_samp->base,
3159 sp_samp->base.mag_img_filter, false);
3160 }
3161 }
3162 }
3163 }
3164
3165 static void
3166 sample_mip(const struct sp_sampler_view *sp_sview,
3167 const struct sp_sampler *sp_samp,
3168 const float s[TGSI_QUAD_SIZE],
3169 const float t[TGSI_QUAD_SIZE],
3170 const float p[TGSI_QUAD_SIZE],
3171 const float c0[TGSI_QUAD_SIZE],
3172 int gather_comp,
3173 const float lod[TGSI_QUAD_SIZE],
3174 const struct filter_args *filt_args,
3175 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3176 {
3177 const struct sp_filter_funcs *funcs = NULL;
3178 img_filter_func min_img_filter = NULL;
3179 img_filter_func mag_img_filter = NULL;
3180
3181 get_filters(sp_sview, sp_samp, filt_args->control,
3182 &funcs, &min_img_filter, &mag_img_filter);
3183
3184 funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3185 s, t, p, gather_comp, lod, filt_args, rgba);
3186
3187 if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3188 sample_compare(sp_sview, sp_samp, c0, filt_args->control, rgba);
3189 }
3190
3191 if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3192 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3193 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3194 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3195 }
3196
3197 }
3198
3199
3200 /**
3201 * This function uses cube texture coordinates to choose a face of a cube and
3202 * computes the 2D cube face coordinates. Puts face info into the sampler
3203 * faces[] array.
3204 */
3205 static void
3206 convert_cube(const struct sp_sampler_view *sp_sview,
3207 const struct sp_sampler *sp_samp,
3208 const float s[TGSI_QUAD_SIZE],
3209 const float t[TGSI_QUAD_SIZE],
3210 const float p[TGSI_QUAD_SIZE],
3211 const float c0[TGSI_QUAD_SIZE],
3212 float ssss[TGSI_QUAD_SIZE],
3213 float tttt[TGSI_QUAD_SIZE],
3214 float pppp[TGSI_QUAD_SIZE],
3215 uint faces[TGSI_QUAD_SIZE])
3216 {
3217 unsigned j;
3218
3219 pppp[0] = c0[0];
3220 pppp[1] = c0[1];
3221 pppp[2] = c0[2];
3222 pppp[3] = c0[3];
3223 /*
3224 major axis
3225 direction target sc tc ma
3226 ---------- ------------------------------- --- --- ---
3227 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
3228 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
3229 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
3230 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
3231 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
3232 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
3233 */
3234
3235 /* Choose the cube face and compute new s/t coords for the 2D face.
3236 *
3237 * Use the same cube face for all four pixels in the quad.
3238 *
3239 * This isn't ideal, but if we want to use a different cube face
3240 * per pixel in the quad, we'd have to also compute the per-face
3241 * LOD here too. That's because the four post-face-selection
3242 * texcoords are no longer related to each other (they're
3243 * per-face!) so we can't use subtraction to compute the partial
3244 * deriviates to compute the LOD. Doing so (near cube edges
3245 * anyway) gives us pretty much random values.
3246 */
3247 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3248 const float rx = s[j], ry = t[j], rz = p[j];
3249 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3250
3251 if (arx >= ary && arx >= arz) {
3252 const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3253 const uint face = (rx >= 0.0F) ?
3254 PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3255 const float ima = -0.5F / fabsf(s[j]);
3256 ssss[j] = sign * p[j] * ima + 0.5F;
3257 tttt[j] = t[j] * ima + 0.5F;
3258 faces[j] = face;
3259 }
3260 else if (ary >= arx && ary >= arz) {
3261 const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3262 const uint face = (ry >= 0.0F) ?
3263 PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3264 const float ima = -0.5F / fabsf(t[j]);
3265 ssss[j] = -s[j] * ima + 0.5F;
3266 tttt[j] = sign * -p[j] * ima + 0.5F;
3267 faces[j] = face;
3268 }
3269 else {
3270 const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3271 const uint face = (rz >= 0.0F) ?
3272 PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3273 const float ima = -0.5F / fabsf(p[j]);
3274 ssss[j] = sign * -s[j] * ima + 0.5F;
3275 tttt[j] = t[j] * ima + 0.5F;
3276 faces[j] = face;
3277 }
3278 }
3279 }
3280
3281
3282 static void
3283 sp_get_dims(const struct sp_sampler_view *sp_sview,
3284 int level,
3285 int dims[4])
3286 {
3287 const struct pipe_sampler_view *view = &sp_sview->base;
3288 const struct pipe_resource *texture = view->texture;
3289
3290 if (view->target == PIPE_BUFFER) {
3291 dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3292 /* the other values are undefined, but let's avoid potential valgrind
3293 * warnings.
3294 */
3295 dims[1] = dims[2] = dims[3] = 0;
3296 return;
3297 }
3298
3299 /* undefined according to EXT_gpu_program */
3300 level += view->u.tex.first_level;
3301 if (level > view->u.tex.last_level)
3302 return;
3303
3304 dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3305 dims[0] = u_minify(texture->width0, level);
3306
3307 switch (view->target) {
3308 case PIPE_TEXTURE_1D_ARRAY:
3309 dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3310 /* fallthrough */
3311 case PIPE_TEXTURE_1D:
3312 return;
3313 case PIPE_TEXTURE_2D_ARRAY:
3314 dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3315 /* fallthrough */
3316 case PIPE_TEXTURE_2D:
3317 case PIPE_TEXTURE_CUBE:
3318 case PIPE_TEXTURE_RECT:
3319 dims[1] = u_minify(texture->height0, level);
3320 return;
3321 case PIPE_TEXTURE_3D:
3322 dims[1] = u_minify(texture->height0, level);
3323 dims[2] = u_minify(texture->depth0, level);
3324 return;
3325 case PIPE_TEXTURE_CUBE_ARRAY:
3326 dims[1] = u_minify(texture->height0, level);
3327 dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3328 break;
3329 default:
3330 assert(!"unexpected texture target in sp_get_dims()");
3331 return;
3332 }
3333 }
3334
3335 /**
3336 * This function is only used for getting unfiltered texels via the
3337 * TXF opcode. The GL spec says that out-of-bounds texel fetches
3338 * produce undefined results. Instead of crashing, lets just clamp
3339 * coords to the texture image size.
3340 */
3341 static void
3342 sp_get_texels(const struct sp_sampler_view *sp_sview,
3343 const int v_i[TGSI_QUAD_SIZE],
3344 const int v_j[TGSI_QUAD_SIZE],
3345 const int v_k[TGSI_QUAD_SIZE],
3346 const int lod[TGSI_QUAD_SIZE],
3347 const int8_t offset[3],
3348 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3349 {
3350 union tex_tile_address addr;
3351 const struct pipe_resource *texture = sp_sview->base.texture;
3352 int j, c;
3353 const float *tx;
3354 /* TODO write a better test for LOD */
3355 const unsigned level =
3356 sp_sview->base.target == PIPE_BUFFER ? 0 :
3357 CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3358 sp_sview->base.u.tex.first_level,
3359 sp_sview->base.u.tex.last_level);
3360 const int width = u_minify(texture->width0, level);
3361 const int height = u_minify(texture->height0, level);
3362 const int depth = u_minify(texture->depth0, level);
3363 unsigned elem_size, first_element, last_element;
3364
3365 addr.value = 0;
3366 addr.bits.level = level;
3367
3368 switch (sp_sview->base.target) {
3369 case PIPE_BUFFER:
3370 elem_size = util_format_get_blocksize(sp_sview->base.format);
3371 first_element = sp_sview->base.u.buf.offset / elem_size;
3372 last_element = (sp_sview->base.u.buf.offset +
3373 sp_sview->base.u.buf.size) / elem_size - 1;
3374 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3375 const int x = CLAMP(v_i[j] + offset[0] +
3376 first_element,
3377 first_element,
3378 last_element);
3379 tx = get_texel_buffer_no_border(sp_sview, addr, x, elem_size);
3380 for (c = 0; c < 4; c++) {
3381 rgba[c][j] = tx[c];
3382 }
3383 }
3384 break;
3385 case PIPE_TEXTURE_1D:
3386 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3387 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3388 tx = get_texel_2d_no_border(sp_sview, addr, x,
3389 sp_sview->base.u.tex.first_layer);
3390 for (c = 0; c < 4; c++) {
3391 rgba[c][j] = tx[c];
3392 }
3393 }
3394 break;
3395 case PIPE_TEXTURE_1D_ARRAY:
3396 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3397 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3398 const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3399 sp_sview->base.u.tex.last_layer);
3400 tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3401 for (c = 0; c < 4; c++) {
3402 rgba[c][j] = tx[c];
3403 }
3404 }
3405 break;
3406 case PIPE_TEXTURE_2D:
3407 case PIPE_TEXTURE_RECT:
3408 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3409 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3410 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3411 tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3412 sp_sview->base.u.tex.first_layer);
3413 for (c = 0; c < 4; c++) {
3414 rgba[c][j] = tx[c];
3415 }
3416 }
3417 break;
3418 case PIPE_TEXTURE_2D_ARRAY:
3419 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3420 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3421 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3422 const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3423 sp_sview->base.u.tex.last_layer);
3424 tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3425 for (c = 0; c < 4; c++) {
3426 rgba[c][j] = tx[c];
3427 }
3428 }
3429 break;
3430 case PIPE_TEXTURE_3D:
3431 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3432 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3433 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3434 int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3435 tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3436 for (c = 0; c < 4; c++) {
3437 rgba[c][j] = tx[c];
3438 }
3439 }
3440 break;
3441 case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3442 case PIPE_TEXTURE_CUBE_ARRAY:
3443 default:
3444 assert(!"Unknown or CUBE texture type in TXF processing\n");
3445 break;
3446 }
3447
3448 if (sp_sview->need_swizzle) {
3449 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3450 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3451 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3452 }
3453 }
3454
3455
3456 void *
3457 softpipe_create_sampler_state(struct pipe_context *pipe,
3458 const struct pipe_sampler_state *sampler)
3459 {
3460 struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3461
3462 samp->base = *sampler;
3463
3464 /* Note that (for instance) linear_texcoord_s and
3465 * nearest_texcoord_s may be active at the same time, if the
3466 * sampler min_img_filter differs from its mag_img_filter.
3467 */
3468 if (sampler->normalized_coords) {
3469 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3470 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3471 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3472
3473 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3474 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3475 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3476 }
3477 else {
3478 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3479 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3480 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3481
3482 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3483 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3484 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3485 }
3486
3487 samp->min_img_filter = sampler->min_img_filter;
3488
3489 switch (sampler->min_mip_filter) {
3490 case PIPE_TEX_MIPFILTER_NONE:
3491 if (sampler->min_img_filter == sampler->mag_img_filter)
3492 samp->filter_funcs = &funcs_none_no_filter_select;
3493 else
3494 samp->filter_funcs = &funcs_none;
3495 break;
3496
3497 case PIPE_TEX_MIPFILTER_NEAREST:
3498 samp->filter_funcs = &funcs_nearest;
3499 break;
3500
3501 case PIPE_TEX_MIPFILTER_LINEAR:
3502 if (sampler->min_img_filter == sampler->mag_img_filter &&
3503 sampler->normalized_coords &&
3504 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3505 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3506 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3507 sampler->max_anisotropy <= 1) {
3508 samp->min_mag_equal_repeat_linear = TRUE;
3509 }
3510 samp->filter_funcs = &funcs_linear;
3511
3512 /* Anisotropic filtering extension. */
3513 if (sampler->max_anisotropy > 1) {
3514 samp->filter_funcs = &funcs_linear_aniso;
3515
3516 /* Override min_img_filter:
3517 * min_img_filter needs to be set to NEAREST since we need to access
3518 * each texture pixel as it is and weight it later; using linear
3519 * filters will have incorrect results.
3520 * By setting the filter to NEAREST here, we can avoid calling the
3521 * generic img_filter_2d_nearest in the anisotropic filter function,
3522 * making it possible to use one of the accelerated implementations
3523 */
3524 samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3525
3526 /* on first access create the lookup table containing the filter weights. */
3527 if (!weightLut) {
3528 create_filter_table();
3529 }
3530 }
3531 break;
3532 }
3533 if (samp->min_img_filter == sampler->mag_img_filter) {
3534 samp->min_mag_equal = TRUE;
3535 }
3536
3537 return (void *)samp;
3538 }
3539
3540
3541 compute_lambda_func
3542 softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3543 enum pipe_shader_type shader)
3544 {
3545 if (shader != PIPE_SHADER_FRAGMENT)
3546 return compute_lambda_vert;
3547
3548 switch (view->target) {
3549 case PIPE_BUFFER:
3550 case PIPE_TEXTURE_1D:
3551 case PIPE_TEXTURE_1D_ARRAY:
3552 return compute_lambda_1d;
3553 case PIPE_TEXTURE_2D:
3554 case PIPE_TEXTURE_2D_ARRAY:
3555 case PIPE_TEXTURE_RECT:
3556 return compute_lambda_2d;
3557 case PIPE_TEXTURE_CUBE:
3558 case PIPE_TEXTURE_CUBE_ARRAY:
3559 return compute_lambda_cube;
3560 case PIPE_TEXTURE_3D:
3561 return compute_lambda_3d;
3562 default:
3563 assert(0);
3564 return compute_lambda_1d;
3565 }
3566 }
3567
3568
3569 struct pipe_sampler_view *
3570 softpipe_create_sampler_view(struct pipe_context *pipe,
3571 struct pipe_resource *resource,
3572 const struct pipe_sampler_view *templ)
3573 {
3574 struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3575 const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3576
3577 if (sview) {
3578 struct pipe_sampler_view *view = &sview->base;
3579 *view = *templ;
3580 view->reference.count = 1;
3581 view->texture = NULL;
3582 pipe_resource_reference(&view->texture, resource);
3583 view->context = pipe;
3584
3585 #ifdef DEBUG
3586 /*
3587 * This is possibly too lenient, but the primary reason is just
3588 * to catch state trackers which forget to initialize this, so
3589 * it only catches clearly impossible view targets.
3590 */
3591 if (view->target != resource->target) {
3592 if (view->target == PIPE_TEXTURE_1D)
3593 assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3594 else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3595 assert(resource->target == PIPE_TEXTURE_1D);
3596 else if (view->target == PIPE_TEXTURE_2D)
3597 assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3598 resource->target == PIPE_TEXTURE_CUBE ||
3599 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3600 else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3601 assert(resource->target == PIPE_TEXTURE_2D ||
3602 resource->target == PIPE_TEXTURE_CUBE ||
3603 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3604 else if (view->target == PIPE_TEXTURE_CUBE)
3605 assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3606 resource->target == PIPE_TEXTURE_2D_ARRAY);
3607 else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3608 assert(resource->target == PIPE_TEXTURE_CUBE ||
3609 resource->target == PIPE_TEXTURE_2D_ARRAY);
3610 else
3611 assert(0);
3612 }
3613 #endif
3614
3615 if (any_swizzle(view)) {
3616 sview->need_swizzle = TRUE;
3617 }
3618
3619 sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3620 view->target == PIPE_TEXTURE_CUBE_ARRAY);
3621 sview->pot2d = spr->pot &&
3622 (view->target == PIPE_TEXTURE_2D ||
3623 view->target == PIPE_TEXTURE_RECT);
3624
3625 sview->xpot = util_logbase2( resource->width0 );
3626 sview->ypot = util_logbase2( resource->height0 );
3627 }
3628
3629 return (struct pipe_sampler_view *) sview;
3630 }
3631
3632
3633 static inline const struct sp_tgsi_sampler *
3634 sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3635 {
3636 return (const struct sp_tgsi_sampler *)sampler;
3637 }
3638
3639
3640 static void
3641 sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3642 const unsigned sview_index,
3643 int level, int dims[4])
3644 {
3645 const struct sp_tgsi_sampler *sp_samp =
3646 sp_tgsi_sampler_cast_c(tgsi_sampler);
3647
3648 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3649 /* always have a view here but texture is NULL if no sampler view was set. */
3650 if (!sp_samp->sp_sview[sview_index].base.texture) {
3651 dims[0] = dims[1] = dims[2] = dims[3] = 0;
3652 return;
3653 }
3654 sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3655 }
3656
3657
3658 static void prepare_compare_values(enum pipe_texture_target target,
3659 const float p[TGSI_QUAD_SIZE],
3660 const float c0[TGSI_QUAD_SIZE],
3661 const float c1[TGSI_QUAD_SIZE],
3662 float pc[TGSI_QUAD_SIZE])
3663 {
3664 if (target == PIPE_TEXTURE_2D_ARRAY ||
3665 target == PIPE_TEXTURE_CUBE) {
3666 pc[0] = c0[0];
3667 pc[1] = c0[1];
3668 pc[2] = c0[2];
3669 pc[3] = c0[3];
3670 } else if (target == PIPE_TEXTURE_CUBE_ARRAY) {
3671 pc[0] = c1[0];
3672 pc[1] = c1[1];
3673 pc[2] = c1[2];
3674 pc[3] = c1[3];
3675 } else {
3676 pc[0] = p[0];
3677 pc[1] = p[1];
3678 pc[2] = p[2];
3679 pc[3] = p[3];
3680 }
3681 }
3682
3683 static void
3684 sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3685 const unsigned sview_index,
3686 const unsigned sampler_index,
3687 const float s[TGSI_QUAD_SIZE],
3688 const float t[TGSI_QUAD_SIZE],
3689 const float p[TGSI_QUAD_SIZE],
3690 const float c0[TGSI_QUAD_SIZE],
3691 const float lod_in[TGSI_QUAD_SIZE],
3692 float derivs[3][2][TGSI_QUAD_SIZE],
3693 const int8_t offset[3],
3694 enum tgsi_sampler_control control,
3695 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3696 {
3697 const struct sp_tgsi_sampler *sp_tgsi_samp =
3698 sp_tgsi_sampler_cast_c(tgsi_sampler);
3699 const struct sp_sampler_view *sp_sview;
3700 const struct sp_sampler *sp_samp;
3701 struct filter_args filt_args;
3702 float compare_values[TGSI_QUAD_SIZE];
3703 float lod[TGSI_QUAD_SIZE];
3704
3705 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3706 assert(sampler_index < PIPE_MAX_SAMPLERS);
3707 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3708
3709 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3710 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3711 /* always have a view here but texture is NULL if no sampler view was set. */
3712 if (!sp_sview->base.texture) {
3713 int i, j;
3714 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3715 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3716 rgba[j][i] = 0.0f;
3717 }
3718 }
3719 return;
3720 }
3721
3722 if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE)
3723 prepare_compare_values(sp_sview->base.target, p, c0, lod_in, compare_values);
3724
3725 filt_args.control = control;
3726 filt_args.offset = offset;
3727 int gather_comp = get_gather_component(lod_in);
3728
3729 compute_lambda_lod(sp_sview,sp_samp, s, t, p, derivs, lod_in, control, lod);
3730
3731 if (sp_sview->need_cube_convert) {
3732 float cs[TGSI_QUAD_SIZE];
3733 float ct[TGSI_QUAD_SIZE];
3734 float cp[TGSI_QUAD_SIZE];
3735 uint faces[TGSI_QUAD_SIZE];
3736
3737 convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3738
3739 filt_args.faces = faces;
3740 sample_mip(sp_sview, sp_samp, cs, ct, cp, compare_values, gather_comp, lod, &filt_args, rgba);
3741 } else {
3742 static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3743
3744 filt_args.faces = zero_faces;
3745 sample_mip(sp_sview, sp_samp, s, t, p, compare_values, gather_comp, lod, &filt_args, rgba);
3746 }
3747 }
3748
3749 static void
3750 sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3751 const unsigned sview_index,
3752 const unsigned sampler_index,
3753 const float s[TGSI_QUAD_SIZE],
3754 const float t[TGSI_QUAD_SIZE],
3755 const float p[TGSI_QUAD_SIZE],
3756 const float c0[TGSI_QUAD_SIZE],
3757 const enum tgsi_sampler_control control,
3758 float mipmap[TGSI_QUAD_SIZE],
3759 float lod[TGSI_QUAD_SIZE])
3760 {
3761 static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3762 static const float dummy_grad[3][2][TGSI_QUAD_SIZE];
3763
3764 const struct sp_tgsi_sampler *sp_tgsi_samp =
3765 sp_tgsi_sampler_cast_c(tgsi_sampler);
3766 const struct sp_sampler_view *sp_sview;
3767 const struct sp_sampler *sp_samp;
3768 const struct sp_filter_funcs *funcs;
3769 int i;
3770
3771 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3772 assert(sampler_index < PIPE_MAX_SAMPLERS);
3773 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3774
3775 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3776 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3777 /* always have a view here but texture is NULL if no sampler view was
3778 * set. */
3779 if (!sp_sview->base.texture) {
3780 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3781 mipmap[i] = 0.0f;
3782 lod[i] = 0.0f;
3783 }
3784 return;
3785 }
3786 compute_lambda_lod_unclamped(sp_sview, sp_samp,
3787 s, t, p, dummy_grad, lod_in, control, lod);
3788
3789 get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3790 funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3791 }
3792
3793 static void
3794 sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3795 const unsigned sview_index,
3796 const int i[TGSI_QUAD_SIZE],
3797 const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3798 const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3799 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3800 {
3801 const struct sp_tgsi_sampler *sp_samp =
3802 sp_tgsi_sampler_cast_c(tgsi_sampler);
3803
3804 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3805 /* always have a view here but texture is NULL if no sampler view was set. */
3806 if (!sp_samp->sp_sview[sview_index].base.texture) {
3807 int i, j;
3808 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3809 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3810 rgba[j][i] = 0.0f;
3811 }
3812 }
3813 return;
3814 }
3815 sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3816 }
3817
3818
3819 struct sp_tgsi_sampler *
3820 sp_create_tgsi_sampler(void)
3821 {
3822 struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3823 if (!samp)
3824 return NULL;
3825
3826 samp->base.get_dims = sp_tgsi_get_dims;
3827 samp->base.get_samples = sp_tgsi_get_samples;
3828 samp->base.get_texel = sp_tgsi_get_texel;
3829 samp->base.query_lod = sp_tgsi_query_lod;
3830
3831 return samp;
3832 }