swr/rast: simdlib better separation of core vs knights avx512
[mesa.git] / src / gallium / drivers / swr / rasterizer / common / simdlib_128_avx512.inl
1 /****************************************************************************
2 * Copyright (C) 2017 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ****************************************************************************/
23 #if !defined(__SIMD_LIB_AVX512_HPP__)
24 #error Do not include this file directly, use "simdlib.hpp" instead.
25 #endif
26
27 //============================================================================
28 // SIMD128 AVX (512) implementation
29 //
30 // Since this implementation inherits from the AVX (2) implementation,
31 // the only operations below ones that replace AVX (2) operations.
32 // These use native AVX512 instructions with masking to enable a larger
33 // register set.
34 //============================================================================
35
36 private:
37 static SIMDINLINE __m512 __conv(Float r) { return _mm512_castps128_ps512(r.v); }
38 static SIMDINLINE __m512d __conv(Double r) { return _mm512_castpd128_pd512(r.v); }
39 static SIMDINLINE __m512i __conv(Integer r) { return _mm512_castsi128_si512(r.v); }
40 static SIMDINLINE Float __conv(__m512 r) { return _mm512_castps512_ps128(r); }
41 static SIMDINLINE Double __conv(__m512d r) { return _mm512_castpd512_pd128(r); }
42 static SIMDINLINE Integer __conv(__m512i r) { return _mm512_castsi512_si128(r); }
43 public:
44
45 #define SIMD_WRAPPER_1_(op, intrin, mask) \
46 static SIMDINLINE Float SIMDCALL op(Float a) \
47 {\
48 return __conv(_mm512_maskz_##intrin((mask), __conv(a)));\
49 }
50 #define SIMD_WRAPPER_1(op) SIMD_WRAPPER_1_(op, op, __mmask16(0xf))
51
52 #define SIMD_WRAPPER_1I_(op, intrin, mask) \
53 template<int ImmT> \
54 static SIMDINLINE Float SIMDCALL op(Float a) \
55 {\
56 return __conv(_mm512_maskz_##intrin((mask), __conv(a), ImmT));\
57 }
58 #define SIMD_WRAPPER_1I(op) SIMD_WRAPPER_1I_(op, op, __mmask16(0xf))
59
60 #define SIMD_WRAPPER_2_(op, intrin, mask) \
61 static SIMDINLINE Float SIMDCALL op(Float a, Float b) \
62 {\
63 return __conv(_mm512_maskz_##intrin((mask), __conv(a), __conv(b)));\
64 }
65 #define SIMD_WRAPPER_2(op) SIMD_WRAPPER_2_(op, op, __mmask16(0xf))
66
67 #define SIMD_WRAPPER_2I(op) \
68 template<int ImmT>\
69 static SIMDINLINE Float SIMDCALL op(Float a, Float b) \
70 {\
71 return __conv(_mm512_maskz_##op(0xf, __conv(a), __conv(b), ImmT));\
72 }
73
74 #define SIMD_WRAPPER_3_(op, intrin, mask) \
75 static SIMDINLINE Float SIMDCALL op(Float a, Float b, Float c) \
76 {\
77 return __conv(_mm512_maskz_##intrin((mask), __conv(a), __conv(b), __conv(c)));\
78 }
79 #define SIMD_WRAPPER_3(op) SIMD_WRAPPER_3_(op, op, __mmask16(0xf))
80
81 #define SIMD_DWRAPPER_2I(op) \
82 template<int ImmT>\
83 static SIMDINLINE Double SIMDCALL op(Double a, Double b) \
84 {\
85 return __conv(_mm512_maskz_##op(0x3, __conv(a), __conv(b), ImmT));\
86 }
87
88 #define SIMD_IWRAPPER_1_(op, intrin, mask) \
89 static SIMDINLINE Integer SIMDCALL op(Integer a) \
90 {\
91 return __conv(_mm512_maskz_##intrin((mask), __conv(a)));\
92 }
93 #define SIMD_IWRAPPER_1_32(op) SIMD_IWRAPPER_1_(op, op, __mmask16(0xf))
94
95 #define SIMD_IWRAPPER_1I_(op, intrin, mask) \
96 template<int ImmT> \
97 static SIMDINLINE Integer SIMDCALL op(Integer a) \
98 {\
99 return __conv(_mm512_maskz_##intrin((mask), __conv(a), ImmT));\
100 }
101 #define SIMD_IWRAPPER_1I_32(op) SIMD_IWRAPPER_1I_(op, op, __mmask16(0xf))
102
103 #define SIMD_IWRAPPER_2_(op, intrin, mask) \
104 static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \
105 {\
106 return __conv(_mm512_maskz_##intrin((mask), __conv(a), __conv(b)));\
107 }
108 #define SIMD_IWRAPPER_2_32(op) SIMD_IWRAPPER_2_(op, op, __mmask16(0xf))
109
110 #define SIMD_IWRAPPER_2I(op) \
111 template<int ImmT>\
112 static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \
113 {\
114 return __conv(_mm512_maskz_##op(0xf, __conv(a), __conv(b), ImmT));\
115 }
116
117 //-----------------------------------------------------------------------
118 // Single precision floating point arithmetic operations
119 //-----------------------------------------------------------------------
120 SIMD_WRAPPER_2(add_ps); // return a + b
121 SIMD_WRAPPER_2(div_ps); // return a / b
122 SIMD_WRAPPER_3(fmadd_ps); // return (a * b) + c
123 SIMD_WRAPPER_3(fmsub_ps); // return (a * b) - c
124 SIMD_WRAPPER_2(max_ps); // return (a > b) ? a : b
125 SIMD_WRAPPER_2(min_ps); // return (a < b) ? a : b
126 SIMD_WRAPPER_2(mul_ps); // return a * b
127 SIMD_WRAPPER_1_(rcp_ps, rcp14_ps, __mmask16(0xf)); // return 1.0f / a
128 SIMD_WRAPPER_1_(rsqrt_ps, rsqrt14_ps, __mmask16(0xf)); // return 1.0f / sqrt(a)
129 SIMD_WRAPPER_2(sub_ps); // return a - b
130
131 //-----------------------------------------------------------------------
132 // Integer (various width) arithmetic operations
133 //-----------------------------------------------------------------------
134 SIMD_IWRAPPER_1_32(abs_epi32); // return absolute_value(a) (int32)
135 SIMD_IWRAPPER_2_32(add_epi32); // return a + b (int32)
136 SIMD_IWRAPPER_2_32(max_epi32); // return (a > b) ? a : b (int32)
137 SIMD_IWRAPPER_2_32(max_epu32); // return (a > b) ? a : b (uint32)
138 SIMD_IWRAPPER_2_32(min_epi32); // return (a < b) ? a : b (int32)
139 SIMD_IWRAPPER_2_32(min_epu32); // return (a < b) ? a : b (uint32)
140 SIMD_IWRAPPER_2_32(mul_epi32); // return a * b (int32)
141
142 // SIMD_IWRAPPER_2_8(add_epi8); // return a + b (int8)
143 // SIMD_IWRAPPER_2_8(adds_epu8); // return ((a + b) > 0xff) ? 0xff : (a + b) (uint8)
144
145 // return (a * b) & 0xFFFFFFFF
146 //
147 // Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
148 // and store the low 32 bits of the intermediate integers in dst.
149 SIMD_IWRAPPER_2_32(mullo_epi32);
150 SIMD_IWRAPPER_2_32(sub_epi32); // return a - b (int32)
151
152 // SIMD_IWRAPPER_2_64(sub_epi64); // return a - b (int64)
153 // SIMD_IWRAPPER_2_8(subs_epu8); // return (b > a) ? 0 : (a - b) (uint8)
154
155 //-----------------------------------------------------------------------
156 // Logical operations
157 //-----------------------------------------------------------------------
158 SIMD_IWRAPPER_2_(and_si, and_epi32, __mmask16(0xf)); // return a & b (int)
159 SIMD_IWRAPPER_2_(andnot_si, andnot_epi32, __mmask16(0xf)); // return (~a) & b (int)
160 SIMD_IWRAPPER_2_(or_si, or_epi32, __mmask16(0xf)); // return a | b (int)
161 SIMD_IWRAPPER_2_(xor_si, xor_epi32, __mmask16(0xf)); // return a ^ b (int)
162
163
164 //-----------------------------------------------------------------------
165 // Shift operations
166 //-----------------------------------------------------------------------
167 SIMD_IWRAPPER_1I_32(slli_epi32); // return a << ImmT
168 SIMD_IWRAPPER_2_32(sllv_epi32); // return a << b (uint32)
169 SIMD_IWRAPPER_1I_32(srai_epi32); // return a >> ImmT (int32)
170 SIMD_IWRAPPER_1I_32(srli_epi32); // return a >> ImmT (uint32)
171 SIMD_IWRAPPER_2_32(srlv_epi32); // return a >> b (uint32)
172
173 // use AVX2 version
174 //SIMD_IWRAPPER_1I_(srli_si, srli_si256); // return a >> (ImmT*8) (uint)
175
176 //-----------------------------------------------------------------------
177 // Conversion operations (Use AVX2 versions)
178 //-----------------------------------------------------------------------
179 // SIMD_IWRAPPER_1L(cvtepu8_epi16, 0xffff); // return (int16)a (uint8 --> int16)
180 // SIMD_IWRAPPER_1L(cvtepu8_epi32, 0xff); // return (int32)a (uint8 --> int32)
181 // SIMD_IWRAPPER_1L(cvtepu16_epi32, 0xff); // return (int32)a (uint16 --> int32)
182 // SIMD_IWRAPPER_1L(cvtepu16_epi64, 0xf); // return (int64)a (uint16 --> int64)
183 // SIMD_IWRAPPER_1L(cvtepu32_epi64, 0xf); // return (int64)a (uint32 --> int64)
184
185 //-----------------------------------------------------------------------
186 // Comparison operations (Use AVX2 versions
187 //-----------------------------------------------------------------------
188 //SIMD_IWRAPPER_2_CMP(cmpeq_epi8); // return a == b (int8)
189 //SIMD_IWRAPPER_2_CMP(cmpeq_epi16); // return a == b (int16)
190 //SIMD_IWRAPPER_2_CMP(cmpeq_epi32); // return a == b (int32)
191 //SIMD_IWRAPPER_2_CMP(cmpeq_epi64); // return a == b (int64)
192 //SIMD_IWRAPPER_2_CMP(cmpgt_epi8,); // return a > b (int8)
193 //SIMD_IWRAPPER_2_CMP(cmpgt_epi16); // return a > b (int16)
194 //SIMD_IWRAPPER_2_CMP(cmpgt_epi32); // return a > b (int32)
195 //SIMD_IWRAPPER_2_CMP(cmpgt_epi64); // return a > b (int64)
196 //
197 //static SIMDINLINE Integer SIMDCALL cmplt_epi32(Integer a, Integer b) // return a < b (int32)
198 //{
199 // return cmpgt_epi32(b, a);
200 //}
201
202 //-----------------------------------------------------------------------
203 // Blend / shuffle / permute operations
204 //-----------------------------------------------------------------------
205 // SIMD_IWRAPPER_2_8(packs_epi16); // int16 --> int8 See documentation for _mm256_packs_epi16 and _mm512_packs_epi16
206 // SIMD_IWRAPPER_2_16(packs_epi32); // int32 --> int16 See documentation for _mm256_packs_epi32 and _mm512_packs_epi32
207 // SIMD_IWRAPPER_2_8(packus_epi16); // uint16 --> uint8 See documentation for _mm256_packus_epi16 and _mm512_packus_epi16
208 // SIMD_IWRAPPER_2_16(packus_epi32); // uint32 --> uint16 See documentation for _mm256_packus_epi32 and _mm512_packus_epi32
209 // SIMD_IWRAPPER_2_(permute_epi32, permutevar8x32_epi32);
210
211 //static SIMDINLINE Float SIMDCALL permute_ps(Float a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (float)
212 //{
213 // return _mm256_permutevar8x32_ps(a, swiz);
214 //}
215
216 SIMD_IWRAPPER_1I_32(shuffle_epi32);
217 //template<int ImmT>
218 //static SIMDINLINE Integer SIMDCALL shuffle_epi64(Integer a, Integer b)
219 //{
220 // return castpd_si(shuffle_pd<ImmT>(castsi_pd(a), castsi_pd(b)));
221 //}
222 //SIMD_IWRAPPER_2(shuffle_epi8);
223 SIMD_IWRAPPER_2_32(unpackhi_epi32);
224 SIMD_IWRAPPER_2_32(unpacklo_epi32);
225
226 // SIMD_IWRAPPER_2_16(unpackhi_epi16);
227 // SIMD_IWRAPPER_2_64(unpackhi_epi64);
228 // SIMD_IWRAPPER_2_8(unpackhi_epi8);
229 // SIMD_IWRAPPER_2_16(unpacklo_epi16);
230 // SIMD_IWRAPPER_2_64(unpacklo_epi64);
231 // SIMD_IWRAPPER_2_8(unpacklo_epi8);
232
233 //-----------------------------------------------------------------------
234 // Load / store operations
235 //-----------------------------------------------------------------------
236 static SIMDINLINE Float SIMDCALL load_ps(float const *p) // return *p (loads SIMD width elements from memory)
237 {
238 return __conv(_mm512_maskz_loadu_ps(__mmask16(0xf), p));
239 }
240
241 static SIMDINLINE Integer SIMDCALL load_si(Integer const *p) // return *p
242 {
243 return __conv(_mm512_maskz_loadu_epi32(__mmask16(0xf), p));
244 }
245
246 static SIMDINLINE Float SIMDCALL loadu_ps(float const *p) // return *p (same as load_ps but allows for unaligned mem)
247 {
248 return __conv(_mm512_maskz_loadu_ps(__mmask16(0xf), p));
249 }
250
251 static SIMDINLINE Integer SIMDCALL loadu_si(Integer const *p) // return *p (same as load_si but allows for unaligned mem)
252 {
253 return __conv(_mm512_maskz_loadu_epi32(__mmask16(0xf), p));
254 }
255
256 template<ScaleFactor ScaleT>
257 static SIMDINLINE Float SIMDCALL i32gather_ps(float const* p, Integer idx) // return *(float*)(((int8*)p) + (idx * ScaleT))
258 {
259 return __conv(_mm512_mask_i32gather_ps(
260 _mm512_setzero_ps(),
261 __mmask16(0xf),
262 __conv(idx),
263 p,
264 static_cast<int>(ScaleT)));
265 }
266
267 // for each element: (mask & (1 << 31)) ? (i32gather_ps<ScaleT>(p, idx), mask = 0) : old
268 template<ScaleFactor ScaleT>
269 static SIMDINLINE Float SIMDCALL mask_i32gather_ps(Float old, float const* p, Integer idx, Float mask)
270 {
271 __mmask16 m = 0xf;
272 m = _mm512_mask_test_epi32_mask(m, _mm512_castps_si512(__conv(mask)),
273 _mm512_set1_epi32(0x8000000));
274 return __conv(_mm512_mask_i32gather_ps(
275 __conv(old),
276 m,
277 __conv(idx),
278 p,
279 static_cast<int>(ScaleT)));
280 }
281
282 // static SIMDINLINE uint32_t SIMDCALL movemask_epi8(Integer a)
283 // {
284 // __mmask64 m = 0xffffull;
285 // return static_cast<uint32_t>(
286 // _mm512_mask_test_epi8_mask(m, __conv(a), _mm512_set1_epi8(0x80)));
287 // }
288
289 static SIMDINLINE void SIMDCALL maskstore_ps(float *p, Integer mask, Float src)
290 {
291 __mmask16 m = 0xf;
292 m = _mm512_mask_test_epi32_mask(m, __conv(mask), _mm512_set1_epi32(0x80000000));
293 _mm512_mask_storeu_ps(p, m, __conv(src));
294 }
295
296 static SIMDINLINE void SIMDCALL store_ps(float *p, Float a) // *p = a (stores all elements contiguously in memory)
297 {
298 _mm512_mask_storeu_ps(p, __mmask16(0xf), __conv(a));
299 }
300
301 static SIMDINLINE void SIMDCALL store_si(Integer *p, Integer a) // *p = a
302 {
303 _mm512_mask_storeu_epi32(p, __mmask16(0xf), __conv(a));
304 }
305
306 static SIMDINLINE Float SIMDCALL vmask_ps(int32_t mask)
307 {
308 return castsi_ps(__conv(_mm512_maskz_set1_epi32(__mmask16(mask & 0xf), -1)));
309 }
310
311 //=======================================================================
312 // Legacy interface (available only in SIMD256 width)
313 //=======================================================================
314
315 #undef SIMD_WRAPPER_1_
316 #undef SIMD_WRAPPER_1
317 #undef SIMD_WRAPPER_1I_
318 #undef SIMD_WRAPPER_1I
319 #undef SIMD_WRAPPER_2_
320 #undef SIMD_WRAPPER_2
321 #undef SIMD_WRAPPER_2I
322 #undef SIMD_WRAPPER_3_
323 #undef SIMD_WRAPPER_3
324 #undef SIMD_DWRAPPER_1_
325 #undef SIMD_DWRAPPER_1
326 #undef SIMD_DWRAPPER_1I_
327 #undef SIMD_DWRAPPER_1I
328 #undef SIMD_DWRAPPER_2_
329 #undef SIMD_DWRAPPER_2
330 #undef SIMD_DWRAPPER_2I
331 #undef SIMD_IWRAPPER_1_
332 #undef SIMD_IWRAPPER_1_8
333 #undef SIMD_IWRAPPER_1_16
334 #undef SIMD_IWRAPPER_1_32
335 #undef SIMD_IWRAPPER_1_64
336 #undef SIMD_IWRAPPER_1I_
337 #undef SIMD_IWRAPPER_1I_8
338 #undef SIMD_IWRAPPER_1I_16
339 #undef SIMD_IWRAPPER_1I_32
340 #undef SIMD_IWRAPPER_1I_64
341 #undef SIMD_IWRAPPER_2_
342 #undef SIMD_IWRAPPER_2_8
343 #undef SIMD_IWRAPPER_2_16
344 #undef SIMD_IWRAPPER_2_32
345 #undef SIMD_IWRAPPER_2_64
346 #undef SIMD_IWRAPPER_2I
347 //#undef SIMD_IWRAPPER_2I_8
348 //#undef SIMD_IWRAPPER_2I_16
349 //#undef SIMD_IWRAPPER_2I_32
350 //#undef SIMD_IWRAPPER_2I_64