aae1eac45a73a49a18e3677bdf19ca627bc320b3
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / backend.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file backend.cpp
24 *
25 * @brief Backend handles rasterization, pixel shading and output merger
26 * operations.
27 *
28 ******************************************************************************/
29
30 #include <smmintrin.h>
31
32 #include "rdtsc_core.h"
33 #include "backend.h"
34 #include "depthstencil.h"
35 #include "tilemgr.h"
36 #include "memory/tilingtraits.h"
37 #include "core/multisample.h"
38
39 #include <algorithm>
40
41 const __m128 vTileOffsetsX = {0.5, KNOB_TILE_X_DIM - 0.5, 0.5, KNOB_TILE_X_DIM - 0.5};
42 const __m128 vTileOffsetsY = {0.5, 0.5, KNOB_TILE_Y_DIM - 0.5, KNOB_TILE_Y_DIM - 0.5};
43
44 /// @todo move to common lib
45 #define MASKTOVEC(i3,i2,i1,i0) {-i0,-i1,-i2,-i3}
46 static const __m128 gMaskToVec[] = {
47 MASKTOVEC(0,0,0,0),
48 MASKTOVEC(0,0,0,1),
49 MASKTOVEC(0,0,1,0),
50 MASKTOVEC(0,0,1,1),
51 MASKTOVEC(0,1,0,0),
52 MASKTOVEC(0,1,0,1),
53 MASKTOVEC(0,1,1,0),
54 MASKTOVEC(0,1,1,1),
55 MASKTOVEC(1,0,0,0),
56 MASKTOVEC(1,0,0,1),
57 MASKTOVEC(1,0,1,0),
58 MASKTOVEC(1,0,1,1),
59 MASKTOVEC(1,1,0,0),
60 MASKTOVEC(1,1,0,1),
61 MASKTOVEC(1,1,1,0),
62 MASKTOVEC(1,1,1,1),
63 };
64
65 typedef void(*PFN_CLEAR_TILES)(DRAW_CONTEXT*, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t, DWORD[4]);
66 static PFN_CLEAR_TILES sClearTilesTable[NUM_SWR_FORMATS];
67
68 //////////////////////////////////////////////////////////////////////////
69 /// @brief Process compute work.
70 /// @param pDC - pointer to draw context (dispatch).
71 /// @param workerId - The unique worker ID that is assigned to this thread.
72 /// @param threadGroupId - the linear index for the thread group within the dispatch.
73 void ProcessComputeBE(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t threadGroupId)
74 {
75 RDTSC_START(BEDispatch);
76
77 SWR_CONTEXT *pContext = pDC->pContext;
78
79 const COMPUTE_DESC* pTaskData = (COMPUTE_DESC*)pDC->pDispatch->GetTasksData();
80 SWR_ASSERT(pTaskData != nullptr);
81
82 // Ensure spill fill memory has been allocated.
83 if (pDC->pSpillFill[workerId] == nullptr)
84 {
85 ///@todo Add state which indicates the spill fill size.
86 pDC->pSpillFill[workerId] = (uint8_t*)pDC->pArena->AllocAlignedSync(4096 * 1024, sizeof(float) * 8);
87 }
88
89 const API_STATE& state = GetApiState(pDC);
90
91 SWR_CS_CONTEXT csContext{ 0 };
92 csContext.tileCounter = threadGroupId;
93 csContext.dispatchDims[0] = pTaskData->threadGroupCountX;
94 csContext.dispatchDims[1] = pTaskData->threadGroupCountY;
95 csContext.dispatchDims[2] = pTaskData->threadGroupCountZ;
96 csContext.pTGSM = pContext->pScratch[workerId];
97 csContext.pSpillFillBuffer = pDC->pSpillFill[workerId];
98
99 state.pfnCsFunc(GetPrivateState(pDC), &csContext);
100
101 UPDATE_STAT(CsInvocations, state.totalThreadsInGroup);
102
103 RDTSC_STOP(BEDispatch, 1, 0);
104 }
105
106 void ProcessSyncBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
107 {
108 SYNC_DESC *pSync = (SYNC_DESC*)pUserData;
109
110 uint32_t x, y;
111 MacroTileMgr::getTileIndices(macroTile, x, y);
112 SWR_ASSERT(x == 0 && y == 0);
113
114 if (pSync->pfnCallbackFunc != nullptr)
115 {
116 pSync->pfnCallbackFunc(pSync->userData, pSync->userData2, pSync->userData3);
117 }
118 }
119
120 void ProcessQueryStatsBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
121 {
122 QUERY_DESC* pQueryDesc = (QUERY_DESC*)pUserData;
123 SWR_STATS* pStats = pQueryDesc->pStats;
124 SWR_CONTEXT *pContext = pDC->pContext;
125
126 SWR_ASSERT(pStats != nullptr);
127
128 for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
129 {
130 pStats->DepthPassCount += pContext->stats[i].DepthPassCount;
131
132 pStats->IaVertices += pContext->stats[i].IaVertices;
133 pStats->IaPrimitives += pContext->stats[i].IaPrimitives;
134 pStats->VsInvocations += pContext->stats[i].VsInvocations;
135 pStats->HsInvocations += pContext->stats[i].HsInvocations;
136 pStats->DsInvocations += pContext->stats[i].DsInvocations;
137 pStats->GsInvocations += pContext->stats[i].GsInvocations;
138 pStats->PsInvocations += pContext->stats[i].PsInvocations;
139 pStats->CInvocations += pContext->stats[i].CInvocations;
140 pStats->CsInvocations += pContext->stats[i].CsInvocations;
141 pStats->CPrimitives += pContext->stats[i].CPrimitives;
142 pStats->GsPrimitives += pContext->stats[i].GsPrimitives;
143
144 for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
145 {
146 pStats->SoWriteOffset[stream] += pContext->stats[i].SoWriteOffset[stream];
147
148 /// @note client is required to provide valid write offset before every draw, so we clear
149 /// out the contents of the write offset when storing stats
150 pContext->stats[i].SoWriteOffset[stream] = 0;
151
152 pStats->SoPrimStorageNeeded[stream] += pContext->stats[i].SoPrimStorageNeeded[stream];
153 pStats->SoNumPrimsWritten[stream] += pContext->stats[i].SoNumPrimsWritten[stream];
154 }
155 }
156 }
157
158 template<SWR_FORMAT format>
159 void ClearRasterTile(BYTE *pTileBuffer, simdvector &value)
160 {
161 auto lambda = [&](int comp)
162 {
163 FormatTraits<format>::storeSOA(comp, pTileBuffer, value.v[comp]);
164 pTileBuffer += (KNOB_SIMD_WIDTH * FormatTraits<format>::GetBPC(comp) / 8);
165 };
166
167 const uint32_t numIter = (KNOB_TILE_Y_DIM / SIMD_TILE_Y_DIM) * (KNOB_TILE_X_DIM / SIMD_TILE_X_DIM);
168 for (uint32_t i = 0; i < numIter; ++i)
169 {
170 UnrollerL<0, FormatTraits<format>::numComps, 1>::step(lambda);
171 }
172 }
173
174 template<SWR_FORMAT format>
175 INLINE void ClearMacroTile(DRAW_CONTEXT *pDC, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t macroTile, DWORD clear[4])
176 {
177 // convert clear color to hottile format
178 // clear color is in RGBA float/uint32
179 simdvector vClear;
180 for (uint32_t comp = 0; comp < FormatTraits<format>::numComps; ++comp)
181 {
182 simdscalar vComp;
183 vComp = _simd_load1_ps((const float*)&clear[comp]);
184 if (FormatTraits<format>::isNormalized(comp))
185 {
186 vComp = _simd_mul_ps(vComp, _simd_set1_ps(FormatTraits<format>::fromFloat(comp)));
187 vComp = _simd_castsi_ps(_simd_cvtps_epi32(vComp));
188 }
189 vComp = FormatTraits<format>::pack(comp, vComp);
190 vClear.v[FormatTraits<format>::swizzle(comp)] = vComp;
191 }
192
193 uint32_t tileX, tileY;
194 MacroTileMgr::getTileIndices(macroTile, tileX, tileY);
195 const API_STATE& state = GetApiState(pDC);
196
197 int top = KNOB_MACROTILE_Y_DIM_FIXED * tileY;
198 int bottom = top + KNOB_MACROTILE_Y_DIM_FIXED - 1;
199 int left = KNOB_MACROTILE_X_DIM_FIXED * tileX;
200 int right = left + KNOB_MACROTILE_X_DIM_FIXED - 1;
201
202 // intersect with scissor
203 top = std::max(top, state.scissorInFixedPoint.top);
204 left = std::max(left, state.scissorInFixedPoint.left);
205 bottom = std::min(bottom, state.scissorInFixedPoint.bottom);
206 right = std::min(right, state.scissorInFixedPoint.right);
207
208 // translate to local hottile origin
209 top -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
210 bottom -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
211 left -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
212 right -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
213
214 // convert to raster tiles
215 top >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
216 bottom >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
217 left >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
218 right >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
219
220 const int numSamples = GetNumSamples(pDC->pState->state.rastState.sampleCount);
221 // compute steps between raster tile samples / raster tiles / macro tile rows
222 const uint32_t rasterTileSampleStep = KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<format>::bpp / 8;
223 const uint32_t rasterTileStep = (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * (FormatTraits<format>::bpp / 8)) * numSamples;
224 const uint32_t macroTileRowStep = (KNOB_MACROTILE_X_DIM / KNOB_TILE_X_DIM) * rasterTileStep;
225 const uint32_t pitch = (FormatTraits<format>::bpp * KNOB_MACROTILE_X_DIM / 8);
226
227 HOTTILE *pHotTile = pDC->pContext->pHotTileMgr->GetHotTile(pDC->pContext, pDC, macroTile, rt, true, numSamples);
228 uint32_t rasterTileStartOffset = (ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, left, top)) * numSamples;
229 uint8_t* pRasterTileRow = pHotTile->pBuffer + rasterTileStartOffset; //(ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, x, y)) * numSamples;
230
231 // loop over all raster tiles in the current hot tile
232 for (int y = top; y <= bottom; ++y)
233 {
234 uint8_t* pRasterTile = pRasterTileRow;
235 for (int x = left; x <= right; ++x)
236 {
237 for( int sampleNum = 0; sampleNum < numSamples; sampleNum++)
238 {
239 ClearRasterTile<format>(pRasterTile, vClear);
240 pRasterTile += rasterTileSampleStep;
241 }
242 }
243 pRasterTileRow += macroTileRowStep;
244 }
245
246 pHotTile->state = HOTTILE_DIRTY;
247 }
248
249
250 void ProcessClearBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
251 {
252 if (KNOB_FAST_CLEAR)
253 {
254 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
255 SWR_CONTEXT *pContext = pDC->pContext;
256 SWR_MULTISAMPLE_COUNT sampleCount = pDC->pState->state.rastState.sampleCount;
257 uint32_t numSamples = GetNumSamples(sampleCount);
258
259 SWR_ASSERT(pClear->flags.bits != 0); // shouldn't be here without a reason.
260
261 RDTSC_START(BEClear);
262
263 if (pClear->flags.mask & SWR_CLEAR_COLOR)
264 {
265 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_COLOR0, true, numSamples);
266 // All we want to do here is to mark the hot tile as being in a "needs clear" state.
267 pHotTile->clearData[0] = *(DWORD*)&(pClear->clearRTColor[0]);
268 pHotTile->clearData[1] = *(DWORD*)&(pClear->clearRTColor[1]);
269 pHotTile->clearData[2] = *(DWORD*)&(pClear->clearRTColor[2]);
270 pHotTile->clearData[3] = *(DWORD*)&(pClear->clearRTColor[3]);
271 pHotTile->state = HOTTILE_CLEAR;
272 }
273
274 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
275 {
276 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_DEPTH, true, numSamples);
277 pHotTile->clearData[0] = *(DWORD*)&pClear->clearDepth;
278 pHotTile->state = HOTTILE_CLEAR;
279 }
280
281 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
282 {
283 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_STENCIL, true, numSamples);
284
285 pHotTile->clearData[0] = *(DWORD*)&pClear->clearStencil;
286 pHotTile->state = HOTTILE_CLEAR;
287 }
288
289 RDTSC_STOP(BEClear, 0, 0);
290 }
291 else
292 {
293 // Legacy clear
294 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
295 RDTSC_START(BEClear);
296
297 if (pClear->flags.mask & SWR_CLEAR_COLOR)
298 {
299 /// @todo clear data should come in as RGBA32_FLOAT
300 DWORD clearData[4];
301 float clearFloat[4];
302 clearFloat[0] = ((BYTE*)(&pClear->clearRTColor))[0] / 255.0f;
303 clearFloat[1] = ((BYTE*)(&pClear->clearRTColor))[1] / 255.0f;
304 clearFloat[2] = ((BYTE*)(&pClear->clearRTColor))[2] / 255.0f;
305 clearFloat[3] = ((BYTE*)(&pClear->clearRTColor))[3] / 255.0f;
306 clearData[0] = *(DWORD*)&clearFloat[0];
307 clearData[1] = *(DWORD*)&clearFloat[1];
308 clearData[2] = *(DWORD*)&clearFloat[2];
309 clearData[3] = *(DWORD*)&clearFloat[3];
310
311 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_COLOR_HOT_TILE_FORMAT];
312 SWR_ASSERT(pfnClearTiles != nullptr);
313
314 pfnClearTiles(pDC, SWR_ATTACHMENT_COLOR0, macroTile, clearData);
315 }
316
317 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
318 {
319 DWORD clearData[4];
320 clearData[0] = *(DWORD*)&pClear->clearDepth;
321 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_DEPTH_HOT_TILE_FORMAT];
322 SWR_ASSERT(pfnClearTiles != nullptr);
323
324 pfnClearTiles(pDC, SWR_ATTACHMENT_DEPTH, macroTile, clearData);
325 }
326
327 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
328 {
329 uint32_t value = pClear->clearStencil;
330 DWORD clearData[4];
331 clearData[0] = *(DWORD*)&value;
332 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_STENCIL_HOT_TILE_FORMAT];
333
334 pfnClearTiles(pDC, SWR_ATTACHMENT_STENCIL, macroTile, clearData);
335 }
336
337 RDTSC_STOP(BEClear, 0, 0);
338 }
339 }
340
341
342 void ProcessStoreTileBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
343 {
344 RDTSC_START(BEStoreTiles);
345 STORE_TILES_DESC *pDesc = (STORE_TILES_DESC*)pData;
346 SWR_CONTEXT *pContext = pDC->pContext;
347
348 #ifdef KNOB_ENABLE_RDTSC
349 uint32_t numTiles = 0;
350 #endif
351 SWR_FORMAT srcFormat;
352 switch (pDesc->attachment)
353 {
354 case SWR_ATTACHMENT_COLOR0:
355 case SWR_ATTACHMENT_COLOR1:
356 case SWR_ATTACHMENT_COLOR2:
357 case SWR_ATTACHMENT_COLOR3:
358 case SWR_ATTACHMENT_COLOR4:
359 case SWR_ATTACHMENT_COLOR5:
360 case SWR_ATTACHMENT_COLOR6:
361 case SWR_ATTACHMENT_COLOR7: srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
362 case SWR_ATTACHMENT_DEPTH: srcFormat = KNOB_DEPTH_HOT_TILE_FORMAT; break;
363 case SWR_ATTACHMENT_STENCIL: srcFormat = KNOB_STENCIL_HOT_TILE_FORMAT; break;
364 default: SWR_ASSERT(false, "Unknown attachment: %d", pDesc->attachment); srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
365 }
366
367 uint32_t x, y;
368 MacroTileMgr::getTileIndices(macroTile, x, y);
369
370 // Only need to store the hottile if it's been rendered to...
371 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, pDesc->attachment, false);
372 if (pHotTile)
373 {
374 // clear if clear is pending (i.e., not rendered to), then mark as dirty for store.
375 if (pHotTile->state == HOTTILE_CLEAR)
376 {
377 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[srcFormat];
378 SWR_ASSERT(pfnClearTiles != nullptr);
379
380 pfnClearTiles(pDC, pDesc->attachment, macroTile, pHotTile->clearData);
381 }
382
383 if (pHotTile->state == HOTTILE_DIRTY || pDesc->postStoreTileState == (SWR_TILE_STATE)HOTTILE_DIRTY)
384 {
385 int destX = KNOB_MACROTILE_X_DIM * x;
386 int destY = KNOB_MACROTILE_Y_DIM * y;
387
388 pContext->pfnStoreTile(GetPrivateState(pDC), srcFormat,
389 pDesc->attachment, destX, destY, pHotTile->renderTargetArrayIndex, pHotTile->pBuffer);
390 }
391
392
393 if (pHotTile->state == HOTTILE_DIRTY || pHotTile->state == HOTTILE_RESOLVED)
394 {
395 pHotTile->state = (HOTTILE_STATE)pDesc->postStoreTileState;
396 }
397 }
398 RDTSC_STOP(BEStoreTiles, numTiles, pDC->drawId);
399 }
400
401
402 void ProcessInvalidateTilesBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
403 {
404 INVALIDATE_TILES_DESC *pDesc = (INVALIDATE_TILES_DESC*)pData;
405 SWR_CONTEXT *pContext = pDC->pContext;
406
407 for (uint32_t i = 0; i < SWR_NUM_ATTACHMENTS; ++i)
408 {
409 if (pDesc->attachmentMask & (1 << i))
410 {
411 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, (SWR_RENDERTARGET_ATTACHMENT)i, false);
412 if (pHotTile)
413 {
414 pHotTile->state = HOTTILE_INVALID;
415 }
416 }
417 }
418 }
419
420 #if KNOB_SIMD_WIDTH == 8
421 const __m256 vCenterOffsetsX = {0.5, 1.5, 0.5, 1.5, 2.5, 3.5, 2.5, 3.5};
422 const __m256 vCenterOffsetsY = {0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 1.5, 1.5};
423 const __m256 vULOffsetsX = {0.0, 1.0, 0.0, 1.0, 2.0, 3.0, 2.0, 3.0};
424 const __m256 vULOffsetsY = {0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0};
425 #else
426 #error Unsupported vector width
427 #endif
428
429 INLINE
430 bool CanEarlyZ(const SWR_PS_STATE *pPSState)
431 {
432 return (pPSState->forceEarlyZ || (!pPSState->writesODepth && !pPSState->usesSourceDepth && !pPSState->usesUAV));
433 }
434
435 simdmask ComputeUserClipMask(uint8_t clipMask, float* pUserClipBuffer, simdscalar vI, simdscalar vJ)
436 {
437 simdscalar vClipMask = _simd_setzero_ps();
438 uint32_t numClipDistance = _mm_popcnt_u32(clipMask);
439
440 for (uint32_t i = 0; i < numClipDistance; ++i)
441 {
442 // pull triangle clip distance values from clip buffer
443 simdscalar vA = _simd_broadcast_ss(pUserClipBuffer++);
444 simdscalar vB = _simd_broadcast_ss(pUserClipBuffer++);
445 simdscalar vC = _simd_broadcast_ss(pUserClipBuffer++);
446
447 // interpolate
448 simdscalar vInterp = vplaneps(vA, vB, vC, vI, vJ);
449
450 // clip if interpolated clip distance is < 0 || NAN
451 simdscalar vCull = _simd_cmp_ps(_simd_setzero_ps(), vInterp, _CMP_NLE_UQ);
452
453 vClipMask = _simd_or_ps(vClipMask, vCull);
454 }
455
456 return _simd_movemask_ps(vClipMask);
457 }
458
459 template<bool perspMask>
460 INLINE void CalcPixelBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
461 {
462 if(perspMask)
463 {
464 // evaluate I,J
465 psContext.vI.center = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.center, psContext.vY.center);
466 psContext.vJ.center = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.center, psContext.vY.center);
467 psContext.vI.center = _simd_mul_ps(psContext.vI.center, coeffs.vRecipDet);
468 psContext.vJ.center = _simd_mul_ps(psContext.vJ.center, coeffs.vRecipDet);
469
470 // interpolate 1/w
471 psContext.vOneOverW.center = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.center, psContext.vJ.center);
472 }
473 }
474
475 template<bool perspMask>
476 INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
477 {
478 if(perspMask)
479 {
480 // evaluate I,J
481 psContext.vI.sample = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.sample, psContext.vY.sample);
482 psContext.vJ.sample = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.sample, psContext.vY.sample);
483 psContext.vI.sample = _simd_mul_ps(psContext.vI.sample, coeffs.vRecipDet);
484 psContext.vJ.sample = _simd_mul_ps(psContext.vJ.sample, coeffs.vRecipDet);
485
486 // interpolate 1/w
487 psContext.vOneOverW.sample = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.sample, psContext.vJ.sample);
488 }
489 }
490
491
492 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
493 // Centroid behaves exactly as follows :
494 // (1) If all samples in the primitive are covered, the attribute is evaluated at the pixel center (even if the sample pattern does not happen to
495 // have a sample location there).
496 // (2) Else the attribute is evaluated at the first covered sample, in increasing order of sample index, where sample coverage is after ANDing the
497 // coverage with the SampleMask Rasterizer State.
498 // (3) If no samples are covered, such as on helper pixels executed off the bounds of a primitive to fill out 2x2 pixel stamps, the attribute is
499 // evaluated as follows : If the SampleMask Rasterizer state is a subset of the samples in the pixel, then the first sample covered by the
500 // SampleMask Rasterizer State is the evaluation point.Otherwise (full SampleMask), the pixel center is the evaluation point.
501 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
502 template<SWR_MULTISAMPLE_COUNT sampleCount, bool bForcedSampleCount>
503 INLINE void CalcCentroidPos(SWR_PS_CONTEXT &psContext, const uint64_t *const coverageMask, const uint32_t sampleMask,
504 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
505 {
506 uint32_t inputMask[KNOB_SIMD_WIDTH];
507
508 generateInputCoverage<sampleCount, 1, bForcedSampleCount>(coverageMask, inputMask, sampleMask);
509
510 // Case (2) - partially covered pixel
511
512 // scan for first covered sample per pixel in the 4x2 span
513 unsigned long sampleNum[KNOB_SIMD_WIDTH];
514 (inputMask[0] > 0) ? (_BitScanForward(&sampleNum[0], inputMask[0])) : (sampleNum[0] = 0);
515 (inputMask[1] > 0) ? (_BitScanForward(&sampleNum[1], inputMask[1])) : (sampleNum[1] = 0);
516 (inputMask[2] > 0) ? (_BitScanForward(&sampleNum[2], inputMask[2])) : (sampleNum[2] = 0);
517 (inputMask[3] > 0) ? (_BitScanForward(&sampleNum[3], inputMask[3])) : (sampleNum[3] = 0);
518 (inputMask[4] > 0) ? (_BitScanForward(&sampleNum[4], inputMask[4])) : (sampleNum[4] = 0);
519 (inputMask[5] > 0) ? (_BitScanForward(&sampleNum[5], inputMask[5])) : (sampleNum[5] = 0);
520 (inputMask[6] > 0) ? (_BitScanForward(&sampleNum[6], inputMask[6])) : (sampleNum[6] = 0);
521 (inputMask[7] > 0) ? (_BitScanForward(&sampleNum[7], inputMask[7])) : (sampleNum[7] = 0);
522
523 // look up and set the sample offsets from UL pixel corner for first covered sample
524 __m256 vXSample = _mm256_set_ps(MultisampleTraits<sampleCount>::X(sampleNum[7]),
525 MultisampleTraits<sampleCount>::X(sampleNum[6]),
526 MultisampleTraits<sampleCount>::X(sampleNum[5]),
527 MultisampleTraits<sampleCount>::X(sampleNum[4]),
528 MultisampleTraits<sampleCount>::X(sampleNum[3]),
529 MultisampleTraits<sampleCount>::X(sampleNum[2]),
530 MultisampleTraits<sampleCount>::X(sampleNum[1]),
531 MultisampleTraits<sampleCount>::X(sampleNum[0]));
532
533 __m256 vYSample = _mm256_set_ps(MultisampleTraits<sampleCount>::Y(sampleNum[7]),
534 MultisampleTraits<sampleCount>::Y(sampleNum[6]),
535 MultisampleTraits<sampleCount>::Y(sampleNum[5]),
536 MultisampleTraits<sampleCount>::Y(sampleNum[4]),
537 MultisampleTraits<sampleCount>::Y(sampleNum[3]),
538 MultisampleTraits<sampleCount>::Y(sampleNum[2]),
539 MultisampleTraits<sampleCount>::Y(sampleNum[1]),
540 MultisampleTraits<sampleCount>::Y(sampleNum[0]));
541 // add sample offset to UL pixel corner
542 vXSample = _simd_add_ps(vXSamplePosUL, vXSample);
543 vYSample = _simd_add_ps(vYSamplePosUL, vYSample);
544
545 // Case (1) and case (3b) - All samples covered or not covered with full SampleMask
546 static const __m256i vFullyCoveredMask = MultisampleTraits<sampleCount>::FullSampleMask();
547 __m256i vInputCoveragei = _mm256_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]);
548 __m256i vAllSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vFullyCoveredMask);
549
550 static const __m256i vZero = _simd_setzero_si();
551 const __m256i vSampleMask = _simd_and_si(_simd_set1_epi32(sampleMask), vFullyCoveredMask);
552 __m256i vNoSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vZero);
553 __m256i vIsFullSampleMask = _simd_cmpeq_epi32(vSampleMask, vFullyCoveredMask);
554 __m256i vCase3b = _simd_and_si(vNoSamplesCovered, vIsFullSampleMask);
555
556 __m256i vEvalAtCenter = _simd_or_si(vAllSamplesCovered, vCase3b);
557
558 // set the centroid position based on results from above
559 psContext.vX.centroid = _simd_blendv_ps(vXSample, psContext.vX.center, _simd_castsi_ps(vEvalAtCenter));
560 psContext.vY.centroid = _simd_blendv_ps(vYSample, psContext.vY.center, _simd_castsi_ps(vEvalAtCenter));
561
562 // Case (3a) No samples covered and partial sample mask
563 __m256i vSomeSampleMaskSamples = _simd_cmplt_epi32(vSampleMask, vFullyCoveredMask);
564 // sample mask should never be all 0's for this case, but handle it anyways
565 unsigned long firstCoveredSampleMaskSample = 0;
566 (sampleMask > 0) ? (_BitScanForward(&firstCoveredSampleMaskSample, sampleMask)) : (firstCoveredSampleMaskSample = 0);
567
568 __m256i vCase3a = _simd_and_si(vNoSamplesCovered, vSomeSampleMaskSamples);
569
570 vXSample = _simd_set1_ps(MultisampleTraits<sampleCount>::X(firstCoveredSampleMaskSample));
571 vYSample = _simd_set1_ps(MultisampleTraits<sampleCount>::Y(firstCoveredSampleMaskSample));
572
573 // blend in case 3a pixel locations
574 psContext.vX.centroid = _simd_blendv_ps(psContext.vX.centroid, vXSample, _simd_castsi_ps(vCase3a));
575 psContext.vY.centroid = _simd_blendv_ps(psContext.vY.centroid, vYSample, _simd_castsi_ps(vCase3a));
576 }
577
578 template<uint32_t sampleCount, uint32_t persp, uint32_t standardPattern, uint32_t forcedMultisampleCount>
579 INLINE void CalcCentroidBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext,
580 const uint64_t *const coverageMask, const uint32_t sampleMask,
581 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
582 {
583 static const bool bPersp = (bool)persp;
584 static const bool bIsStandardPattern = (bool)standardPattern;
585 static const bool bForcedMultisampleCount = (bool)forcedMultisampleCount;
586
587 // calculate centroid positions
588 if(bPersp)
589 {
590 if(bIsStandardPattern)
591 {
592 ///@ todo: don't need to generate input coverage 2x if input coverage and centroid
593 CalcCentroidPos<(SWR_MULTISAMPLE_COUNT)sampleCount, bForcedMultisampleCount>(psContext, coverageMask, sampleMask, vXSamplePosUL, vYSamplePosUL);
594 }
595 else
596 {
597 static const __m256 pixelCenter = _simd_set1_ps(0.5f);
598 psContext.vX.centroid = _simd_add_ps(vXSamplePosUL, pixelCenter);
599 psContext.vY.centroid = _simd_add_ps(vYSamplePosUL, pixelCenter);
600 }
601 // evaluate I,J
602 psContext.vI.centroid = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.centroid, psContext.vY.centroid);
603 psContext.vJ.centroid = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.centroid, psContext.vY.centroid);
604 psContext.vI.centroid = _simd_mul_ps(psContext.vI.centroid, coeffs.vRecipDet);
605 psContext.vJ.centroid = _simd_mul_ps(psContext.vJ.centroid, coeffs.vRecipDet);
606
607 // interpolate 1/w
608 psContext.vOneOverW.centroid = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.centroid, psContext.vJ.centroid);
609 }
610 }
611
612 template<uint32_t NumRT, uint32_t sampleCountT>
613 void OutputMerger(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
614 const PFN_BLEND_JIT_FUNC (&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask)
615 {
616 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
617 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
618 uint32_t rasterTileColorOffset = MultisampleTraits<sampleCount>::RasterTileColorOffset(sample);
619 simdvector blendOut;
620
621 for(uint32_t rt = 0; rt < NumRT; ++rt)
622 {
623 uint8_t *pColorSample;
624 if(sampleCount == SWR_MULTISAMPLE_1X)
625 {
626 pColorSample = pColorBase[rt];
627 }
628 else
629 {
630 pColorSample = pColorBase[rt] + rasterTileColorOffset;
631 }
632
633 const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];
634 // pfnBlendFunc may not update all channels. Initialize with PS output.
635 /// TODO: move this into the blend JIT.
636 blendOut = psContext.shaded[rt];
637
638 // Blend outputs and update coverage mask for alpha test
639 if(pfnBlendFunc[rt] != nullptr)
640 {
641 pfnBlendFunc[rt](
642 pBlendState,
643 psContext.shaded[rt],
644 psContext.shaded[1],
645 sample,
646 pColorSample,
647 blendOut,
648 &psContext.oMask,
649 (simdscalari*)&coverageMask);
650 }
651
652 // final write mask
653 simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));
654
655 ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
656 static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");
657
658 const uint32_t simd = KNOB_SIMD_WIDTH * sizeof(float);
659
660 // store with color mask
661 if(!pRTBlend->writeDisableRed)
662 {
663 _simd_maskstore_ps((float*)pColorSample, outputMask, blendOut.x);
664 }
665 if(!pRTBlend->writeDisableGreen)
666 {
667 _simd_maskstore_ps((float*)(pColorSample + simd), outputMask, blendOut.y);
668 }
669 if(!pRTBlend->writeDisableBlue)
670 {
671 _simd_maskstore_ps((float*)(pColorSample + simd * 2), outputMask, blendOut.z);
672 }
673 if(!pRTBlend->writeDisableAlpha)
674 {
675 _simd_maskstore_ps((float*)(pColorSample + simd * 3), outputMask, blendOut.w);
676 }
677 }
678 }
679
680 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
681 void BackendSingleSample(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
682 {
683 RDTSC_START(BESetup);
684 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
685 static const bool bInputCoverage = (bool)inputCoverage;
686 static const bool bCentroidPos = (bool)centroidPos;
687
688 SWR_CONTEXT *pContext = pDC->pContext;
689 const API_STATE& state = GetApiState(pDC);
690 const SWR_RASTSTATE& rastState = state.rastState;
691 const SWR_PS_STATE *pPSState = &state.psState;
692 const SWR_BLEND_STATE *pBlendState = &state.blendState;
693 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
694 uint64_t coverageMask = work.coverageMask[0];
695
696 // broadcast scalars
697 BarycentricCoeffs coeffs;
698 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
699 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
700 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
701
702 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
703 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
704 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
705
706 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
707 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
708 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
709
710 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
711
712 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
713 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
714 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
715
716 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
717 uint32_t NumRT = state.psState.numRenderTargets;
718 for(uint32_t rt = 0; rt < NumRT; ++rt)
719 {
720 pColorBase[rt] = renderBuffers.pColor[rt];
721 }
722 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
723 RDTSC_STOP(BESetup, 0, 0);
724
725 SWR_PS_CONTEXT psContext;
726 psContext.pAttribs = work.pAttribs;
727 psContext.pPerspAttribs = work.pPerspAttribs;
728 psContext.frontFace = work.triFlags.frontFacing;
729 psContext.primID = work.triFlags.primID;
730
731 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
732 psContext.I = work.I;
733 psContext.J = work.J;
734 psContext.recipDet = work.recipDet;
735 psContext.pRecipW = work.pRecipW;
736 psContext.pSamplePosX = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosX;
737 psContext.pSamplePosY = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosY;
738
739 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
740 {
741 // UL pixel corner
742 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
743 // pixel center
744 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
745
746 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
747 {
748 if(bInputCoverage)
749 {
750 generateInputCoverage<SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
751 }
752
753 if(coverageMask & MASK)
754 {
755 RDTSC_START(BEBarycentric);
756 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
757 // pixel center
758 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
759
760 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
761
762 if(bCentroidPos)
763 {
764 // for 1x case, centroid is pixel center
765 psContext.vX.centroid = psContext.vX.center;
766 psContext.vY.centroid = psContext.vY.center;
767 psContext.vI.centroid = psContext.vI.center;
768 psContext.vJ.centroid = psContext.vJ.center;
769 psContext.vOneOverW.centroid = psContext.vOneOverW.center;
770 }
771
772 // interpolate z
773 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
774 RDTSC_STOP(BEBarycentric, 0, 0);
775
776 simdmask clipCoverageMask = coverageMask & MASK;
777
778 // interpolate user clip distance if available
779 if(rastState.clipDistanceMask)
780 {
781 clipCoverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
782 psContext.vI.center, psContext.vJ.center);
783 }
784
785 simdscalar vCoverageMask = vMask(clipCoverageMask);
786 simdscalar depthPassMask = vCoverageMask;
787 simdscalar stencilPassMask = vCoverageMask;
788
789 // Early-Z?
790 if(CanEarlyZ(pPSState))
791 {
792 RDTSC_START(BEEarlyDepthTest);
793 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
794 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
795 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
796
797 // early-exit if no pixels passed depth or earlyZ is forced on
798 if(pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
799 {
800 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
801 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
802
803 if (!_simd_movemask_ps(depthPassMask))
804 {
805 goto Endtile;
806 }
807 }
808 }
809
810 psContext.sampleIndex = 0;
811 psContext.activeMask = _simd_castps_si(vCoverageMask);
812
813 // execute pixel shader
814 RDTSC_START(BEPixelShader);
815 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
816 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
817 RDTSC_STOP(BEPixelShader, 0, 0);
818
819 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
820
821 // late-Z
822 if(!CanEarlyZ(pPSState))
823 {
824 RDTSC_START(BELateDepthTest);
825 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
826 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
827 RDTSC_STOP(BELateDepthTest, 0, 0);
828
829 if(!_simd_movemask_ps(depthPassMask))
830 {
831 // need to call depth/stencil write for stencil write
832 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
833 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
834 goto Endtile;
835 }
836 }
837
838 uint32_t statMask = _simd_movemask_ps(depthPassMask);
839 uint32_t statCount = _mm_popcnt_u32(statMask);
840 UPDATE_STAT(DepthPassCount, statCount);
841
842 // output merger
843 RDTSC_START(BEOutputMerger);
844 backendFuncs.pfnOutputMerger(psContext, pColorBase, 0, pBlendState, state.pfnBlendFunc,
845 vCoverageMask, depthPassMask);
846
847 // do final depth write after all pixel kills
848 if (!pPSState->forceEarlyZ)
849 {
850 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
851 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
852 }
853 RDTSC_STOP(BEOutputMerger, 0, 0);
854 }
855
856 Endtile:
857 RDTSC_START(BEEndTile);
858 coverageMask >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
859 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
860 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
861
862 for(uint32_t rt = 0; rt < NumRT; ++rt)
863 {
864 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
865 }
866 RDTSC_STOP(BEEndTile, 0, 0);
867 }
868 }
869 }
870
871 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
872 void BackendSampleRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
873 {
874 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
875 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
876 static const bool bInputCoverage = (bool)inputCoverage;
877 static const bool bCentroidPos = (bool)centroidPos;
878
879 RDTSC_START(BESetup);
880
881 SWR_CONTEXT *pContext = pDC->pContext;
882 const API_STATE& state = GetApiState(pDC);
883 const SWR_RASTSTATE& rastState = state.rastState;
884 const SWR_PS_STATE *pPSState = &state.psState;
885 const SWR_BLEND_STATE *pBlendState = &state.blendState;
886 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
887
888 // broadcast scalars
889 BarycentricCoeffs coeffs;
890 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
891 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
892 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
893
894 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
895 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
896 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
897
898 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
899 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
900 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
901
902 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
903
904 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
905 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
906 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
907
908 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
909 uint32_t NumRT = state.psState.numRenderTargets;
910 for(uint32_t rt = 0; rt < NumRT; ++rt)
911 {
912 pColorBase[rt] = renderBuffers.pColor[rt];
913 }
914 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
915 RDTSC_STOP(BESetup, 0, 0);
916
917 SWR_PS_CONTEXT psContext;
918 psContext.pAttribs = work.pAttribs;
919 psContext.pPerspAttribs = work.pPerspAttribs;
920 psContext.pRecipW = work.pRecipW;
921 psContext.frontFace = work.triFlags.frontFacing;
922 psContext.primID = work.triFlags.primID;
923
924 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
925 psContext.I = work.I;
926 psContext.J = work.J;
927 psContext.recipDet = work.recipDet;
928 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
929 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
930 const uint32_t numSamples = MultisampleTraits<sampleCount>::numSamples;
931
932 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
933 {
934 // UL pixel corner
935 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
936 // pixel center
937 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
938
939 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
940 {
941 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
942 // pixel center
943 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
944
945 RDTSC_START(BEBarycentric);
946 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
947 RDTSC_STOP(BEBarycentric, 0, 0);
948
949 if(bInputCoverage)
950 {
951 generateInputCoverage<sampleCount, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
952 }
953
954 if(bCentroidPos)
955 {
956 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
957 RDTSC_START(BEBarycentric);
958 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
959 RDTSC_STOP(BEBarycentric, 0, 0);
960 }
961
962 for(uint32_t sample = 0; sample < numSamples; sample++)
963 {
964 if (work.coverageMask[sample] & MASK)
965 {
966 RDTSC_START(BEBarycentric);
967
968 // calculate per sample positions
969 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
970 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
971
972 simdmask coverageMask = work.coverageMask[sample] & MASK;
973 simdscalar vCoverageMask = vMask(coverageMask);
974
975 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
976
977 // interpolate z
978 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
979
980 RDTSC_STOP(BEBarycentric, 0, 0);
981
982 // interpolate user clip distance if available
983 if (rastState.clipDistanceMask)
984 {
985 coverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
986 psContext.vI.sample, psContext.vJ.sample);
987 }
988
989 simdscalar depthPassMask = vCoverageMask;
990 simdscalar stencilPassMask = vCoverageMask;
991
992 // offset depth/stencil buffers current sample
993 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
994 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
995
996 // Early-Z?
997 if (CanEarlyZ(pPSState))
998 {
999 RDTSC_START(BEEarlyDepthTest);
1000 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1001 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1002 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1003
1004 // early-exit if no samples passed depth or earlyZ is forced on.
1005 if (pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
1006 {
1007 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1008 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1009
1010 if (!_simd_movemask_ps(depthPassMask))
1011 {
1012 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1013 continue;
1014 }
1015 }
1016 }
1017
1018 psContext.sampleIndex = sample;
1019 psContext.activeMask = _simd_castps_si(vCoverageMask);
1020
1021 // execute pixel shader
1022 RDTSC_START(BEPixelShader);
1023 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
1024 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1025 RDTSC_STOP(BEPixelShader, 0, 0);
1026
1027 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
1028
1029 //// late-Z
1030 if (!CanEarlyZ(pPSState))
1031 {
1032 RDTSC_START(BELateDepthTest);
1033 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1034 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1035 RDTSC_STOP(BELateDepthTest, 0, 0);
1036
1037 if (!_simd_movemask_ps(depthPassMask))
1038 {
1039 // need to call depth/stencil write for stencil write
1040 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1041 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1042
1043 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1044 continue;
1045 }
1046 }
1047
1048 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1049 uint32_t statCount = _mm_popcnt_u32(statMask);
1050 UPDATE_STAT(DepthPassCount, statCount);
1051
1052 // output merger
1053 RDTSC_START(BEOutputMerger);
1054 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1055 vCoverageMask, depthPassMask);
1056
1057 // do final depth write after all pixel kills
1058 if (!pPSState->forceEarlyZ)
1059 {
1060 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1061 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1062 }
1063 RDTSC_STOP(BEOutputMerger, 0, 0);
1064 }
1065 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1066 }
1067 RDTSC_START(BEEndTile);
1068 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1069 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1070
1071 for (uint32_t rt = 0; rt < NumRT; ++rt)
1072 {
1073 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1074 }
1075 RDTSC_STOP(BEEndTile, 0, 0);
1076 }
1077 }
1078 }
1079
1080 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
1081 void BackendPixelRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1082 {
1083 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
1084 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1085 static const bool bIsStandardPattern = (bool)samplePattern;
1086 static const bool bInputCoverage = (bool)inputCoverage;
1087 static const bool bCentroidPos = (bool)centroidPos;
1088 static const bool bForcedSampleCount = (bool)forcedSampleCount;
1089
1090 RDTSC_START(BESetup);
1091
1092 SWR_CONTEXT *pContext = pDC->pContext;
1093 const API_STATE& state = GetApiState(pDC);
1094 const SWR_RASTSTATE& rastState = state.rastState;
1095 const SWR_PS_STATE *pPSState = &state.psState;
1096 const SWR_BLEND_STATE *pBlendState = &state.blendState;
1097 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1098
1099 // broadcast scalars
1100 BarycentricCoeffs coeffs;
1101 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1102 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1103 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1104
1105 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1106 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1107 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1108
1109 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1110 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1111 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1112
1113 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1114
1115 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
1116 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
1117 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
1118
1119 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
1120 uint32_t NumRT = state.psState.numRenderTargets;
1121 for(uint32_t rt = 0; rt < NumRT; ++rt)
1122 {
1123 pColorBase[rt] = renderBuffers.pColor[rt];
1124 }
1125 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1126 RDTSC_STOP(BESetup, 0, 0);
1127
1128 SWR_PS_CONTEXT psContext;
1129 psContext.pAttribs = work.pAttribs;
1130 psContext.pPerspAttribs = work.pPerspAttribs;
1131 psContext.frontFace = work.triFlags.frontFacing;
1132 psContext.primID = work.triFlags.primID;
1133 psContext.pRecipW = work.pRecipW;
1134 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
1135 psContext.I = work.I;
1136 psContext.J = work.J;
1137 psContext.recipDet = work.recipDet;
1138 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
1139 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
1140 psContext.sampleIndex = 0;
1141
1142 uint32_t numCoverageSamples;
1143 if(bIsStandardPattern)
1144 {
1145 numCoverageSamples = MultisampleTraits<sampleCount>::numSamples;
1146 }
1147 else
1148 {
1149 numCoverageSamples = 1;
1150 }
1151
1152 uint32_t numOMSamples;
1153 // RT has to be single sample if we're in forcedMSAA mode
1154 if(bForcedSampleCount && (sampleCount > SWR_MULTISAMPLE_1X))
1155 {
1156 numOMSamples = 1;
1157 }
1158 // unless we're forced to single sample, in which case we run the OM at the sample count of the RT
1159 else if(bForcedSampleCount && (sampleCount == SWR_MULTISAMPLE_1X))
1160 {
1161 numOMSamples = GetNumSamples(pBlendState->sampleCount);
1162 }
1163 // else we're in normal MSAA mode and rasterizer and OM are running at the same sample count
1164 else
1165 {
1166 numOMSamples = MultisampleTraits<sampleCount>::numSamples;
1167 }
1168
1169 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1170 {
1171 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1172 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
1173 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1174 {
1175 simdscalar vZ[MultisampleTraits<sampleCount>::numSamples]{ 0 };
1176 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1177 // set pixel center positions
1178 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
1179
1180 if (bInputCoverage)
1181 {
1182 generateInputCoverage<sampleCount, bIsStandardPattern, bForcedSampleCount>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
1183 }
1184
1185 if(bCentroidPos)
1186 {
1187 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
1188 RDTSC_START(BEBarycentric);
1189 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
1190 RDTSC_STOP(BEBarycentric, 0, 0);
1191 }
1192
1193 // if oDepth written to, or there is a potential to discard any samples, we need to
1194 // run the PS early, then interp or broadcast Z and test
1195 if(pPSState->writesODepth || pPSState->killsPixel)
1196 {
1197 RDTSC_START(BEBarycentric);
1198 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1199
1200 // interpolate z
1201 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1202 RDTSC_STOP(BEBarycentric, 0, 0);
1203
1204 // execute pixel shader
1205 RDTSC_START(BEPixelShader);
1206 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1207 RDTSC_STOP(BEPixelShader, 0, 0);
1208 }
1209 else
1210 {
1211 psContext.activeMask = _simd_set1_epi32(-1);
1212 }
1213
1214 // need to declare enough space for all samples
1215 simdscalar vCoverageMask[MultisampleTraits<sampleCount>::numSamples];
1216 simdscalar depthPassMask[MultisampleTraits<sampleCount>::numSamples];
1217 simdscalar stencilPassMask[MultisampleTraits<sampleCount>::numSamples];
1218 simdscalar anyDepthSamplePassed = _simd_setzero_ps();
1219 simdscalar anyStencilSamplePassed = _simd_setzero_ps();
1220 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1221 {
1222 vCoverageMask[sample] = vMask(work.coverageMask[sample] & MASK);
1223
1224 // pull mask back out for any discards and and with coverage
1225 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], _simd_castsi_ps(psContext.activeMask));
1226
1227 if (!_simd_movemask_ps(vCoverageMask[sample]))
1228 {
1229 vCoverageMask[sample] = depthPassMask[sample] = stencilPassMask[sample] = _simd_setzero_ps();
1230 continue;
1231 }
1232
1233 if(bForcedSampleCount)
1234 {
1235 // candidate pixels (that passed coverage) will cause shader invocation if any bits in the samplemask are set
1236 const simdscalar vSampleMask = _simd_castsi_ps(_simd_cmpgt_epi32(_simd_set1_epi32(pBlendState->sampleMask), _simd_setzero_si()));
1237 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, _simd_and_ps(vCoverageMask[sample], vSampleMask));
1238 continue;
1239 }
1240
1241 depthPassMask[sample] = vCoverageMask[sample];
1242
1243 // if oDepth isn't written to, we need to interpolate Z for each sample
1244 // if clip distances are enabled, we need to interpolate for each sample
1245 if(!pPSState->writesODepth || rastState.clipDistanceMask)
1246 {
1247 RDTSC_START(BEBarycentric);
1248 if(bIsStandardPattern)
1249 {
1250 // calculate per sample positions
1251 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
1252 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
1253 }
1254 else
1255 {
1256 psContext.vX.sample = psContext.vX.center;
1257 psContext.vY.sample = psContext.vY.center;
1258 }
1259
1260 // calc I & J per sample
1261 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1262
1263 // interpolate z
1264 if (!pPSState->writesODepth)
1265 {
1266 vZ[sample] = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1267 }
1268
1269 ///@todo: perspective correct vs non-perspective correct clipping?
1270 // interpolate clip distances
1271 if (rastState.clipDistanceMask)
1272 {
1273 uint8_t clipMask = ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
1274 psContext.vI.sample, psContext.vJ.sample);
1275 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(~clipMask));
1276 }
1277 RDTSC_STOP(BEBarycentric, 0, 0);
1278 }
1279 // else 'broadcast' and test psContext.vZ written from the PS each sample
1280 else
1281 {
1282 vZ[sample] = psContext.vZ;
1283 }
1284
1285 // offset depth/stencil buffers current sample
1286 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1287 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1288
1289 // ZTest for this sample
1290 RDTSC_START(BEEarlyDepthTest);
1291 stencilPassMask[sample] = vCoverageMask[sample];
1292 depthPassMask[sample] = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1293 vZ[sample], pDepthSample, vCoverageMask[sample], pStencilSample, &stencilPassMask[sample]);
1294 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1295
1296 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, depthPassMask[sample]);
1297 anyStencilSamplePassed = _simd_or_ps(anyStencilSamplePassed, stencilPassMask[sample]);
1298 uint32_t statMask = _simd_movemask_ps(depthPassMask[sample]);
1299 uint32_t statCount = _mm_popcnt_u32(statMask);
1300 UPDATE_STAT(DepthPassCount, statCount);
1301 }
1302
1303 // if we didn't have to execute the PS early, and at least 1 sample passed the depth test, run the PS
1304 if(!pPSState->writesODepth && !pPSState->killsPixel && _simd_movemask_ps(anyDepthSamplePassed))
1305 {
1306 RDTSC_START(BEBarycentric);
1307 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1308 // interpolate z
1309 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1310 RDTSC_STOP(BEBarycentric, 0, 0);
1311
1312 // execute pixel shader
1313 RDTSC_START(BEPixelShader);
1314 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1315 RDTSC_STOP(BEPixelShader, 0, 0);
1316 }
1317 ///@todo: make sure this works for kill pixel
1318 else if(!_simd_movemask_ps(anyStencilSamplePassed))
1319 {
1320 goto Endtile;
1321 }
1322
1323 // loop over all samples, broadcasting the results of the PS to all passing pixels
1324 for(uint32_t sample = 0; sample < numOMSamples; sample++)
1325 {
1326 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1327 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1328
1329 // output merger
1330 RDTSC_START(BEOutputMerger);
1331
1332 // skip if none of the pixels for this sample passed
1333 simdscalar coverageMaskSample;
1334 simdscalar depthMaskSample;
1335 simdscalar stencilMaskSample;
1336 simdscalar vInterpolatedZ;
1337
1338 // forcedSampleCount outputs to any pixels with covered samples not masked off by SampleMask
1339 // depth test is disabled, so just set the z val to 0.
1340 if(bForcedSampleCount)
1341 {
1342 coverageMaskSample = depthMaskSample = anyDepthSamplePassed;
1343 vInterpolatedZ = _simd_setzero_ps();
1344 }
1345 else if(bIsStandardPattern)
1346 {
1347 if(!_simd_movemask_ps(depthPassMask[sample]))
1348 {
1349 depthPassMask[sample] = _simd_setzero_ps();
1350 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[sample], pDepthSample, depthPassMask[sample],
1351 vCoverageMask[sample], pStencilSample, stencilPassMask[sample]);
1352 continue;
1353 }
1354 coverageMaskSample = vCoverageMask[sample];
1355 depthMaskSample = depthPassMask[sample];
1356 stencilMaskSample = stencilPassMask[sample];
1357 vInterpolatedZ = vZ[sample];
1358 }
1359 else
1360 {
1361 // center pattern only needs to use a single depth test as all samples are at the same position
1362 if(!_simd_movemask_ps(depthPassMask[0]))
1363 {
1364 depthPassMask[0] = _simd_setzero_ps();
1365 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[0], pDepthSample, depthPassMask[0],
1366 vCoverageMask[0], pStencilSample, stencilPassMask[0]);
1367 continue;
1368 }
1369 coverageMaskSample = (vCoverageMask[0]);
1370 depthMaskSample = depthPassMask[0];
1371 stencilMaskSample = stencilPassMask[0];
1372 vInterpolatedZ = vZ[0];
1373 }
1374
1375 // output merger
1376 RDTSC_START(BEOutputMerger);
1377 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1378 coverageMaskSample, depthMaskSample);
1379
1380 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vInterpolatedZ, pDepthSample, depthMaskSample,
1381 coverageMaskSample, pStencilSample, stencilMaskSample);
1382 RDTSC_STOP(BEOutputMerger, 0, 0);
1383 }
1384
1385 Endtile:
1386 RDTSC_START(BEEndTile);
1387 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1388 {
1389 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1390 }
1391
1392 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1393 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1394
1395 for(uint32_t rt = 0; rt < NumRT; ++rt)
1396 {
1397 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1398 }
1399 RDTSC_STOP(BEEndTile, 0, 0);
1400 }
1401 }
1402 }
1403 // optimized backend flow with NULL PS
1404 template<uint32_t sampleCountT>
1405 void BackendNullPS(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1406 {
1407 RDTSC_START(BESetup);
1408
1409 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1410 SWR_CONTEXT *pContext = pDC->pContext;
1411 const API_STATE& state = GetApiState(pDC);
1412 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1413
1414 // broadcast scalars
1415 BarycentricCoeffs coeffs;
1416 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1417 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1418 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1419
1420 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1421 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1422 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1423
1424 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1425 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1426 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1427
1428 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1429
1430 BYTE *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1431
1432 RDTSC_STOP(BESetup, 0, 0);
1433
1434 SWR_PS_CONTEXT psContext;
1435 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1436 {
1437 // UL pixel corner
1438 simdscalar vYSamplePosUL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1439
1440 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1441 {
1442 // UL pixel corners
1443 simdscalar vXSamplePosUL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1444
1445 // iterate over active samples
1446 unsigned long sample = 0;
1447 uint32_t sampleMask = state.blendState.sampleMask;
1448 while (_BitScanForward(&sample, sampleMask))
1449 {
1450 sampleMask &= ~(1 << sample);
1451 if (work.coverageMask[sample] & MASK)
1452 {
1453 RDTSC_START(BEBarycentric);
1454 // calculate per sample positions
1455 psContext.vX.sample = _simd_add_ps(vXSamplePosUL, MultisampleTraits<sampleCount>::vX(sample));
1456 psContext.vY.sample = _simd_add_ps(vYSamplePosUL, MultisampleTraits<sampleCount>::vY(sample));
1457
1458 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1459
1460 // interpolate z
1461 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1462
1463 RDTSC_STOP(BEBarycentric, 0, 0);
1464
1465 simdscalar vCoverageMask = vMask(work.coverageMask[sample] & MASK);
1466 simdscalar stencilPassMask = vCoverageMask;
1467
1468 // offset depth/stencil buffers current sample
1469 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1470 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1471
1472 RDTSC_START(BEEarlyDepthTest);
1473 simdscalar depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1474 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1475 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1476 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1477 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1478
1479 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1480 uint32_t statCount = _mm_popcnt_u32(statMask);
1481 UPDATE_STAT(DepthPassCount, statCount);
1482 }
1483 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1484 }
1485 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1486 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1487 }
1488 }
1489 }
1490
1491 void InitClearTilesTable()
1492 {
1493 memset(sClearTilesTable, 0, sizeof(sClearTilesTable));
1494
1495 sClearTilesTable[R8G8B8A8_UNORM] = ClearMacroTile<R8G8B8A8_UNORM>;
1496 sClearTilesTable[B8G8R8A8_UNORM] = ClearMacroTile<B8G8R8A8_UNORM>;
1497 sClearTilesTable[R32_FLOAT] = ClearMacroTile<R32_FLOAT>;
1498 sClearTilesTable[R32G32B32A32_FLOAT] = ClearMacroTile<R32G32B32A32_FLOAT>;
1499 sClearTilesTable[R8_UINT] = ClearMacroTile<R8_UINT>;
1500 }
1501
1502 PFN_BACKEND_FUNC gBackendNullPs[SWR_MULTISAMPLE_TYPE_MAX];
1503 PFN_BACKEND_FUNC gBackendSingleSample[2][2] = {};
1504 PFN_BACKEND_FUNC gBackendPixelRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_MSAA_SAMPLE_PATTERN_MAX][SWR_INPUT_COVERAGE_MAX][2][2] = {};
1505 PFN_BACKEND_FUNC gBackendSampleRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_INPUT_COVERAGE_MAX][2] = {};
1506 PFN_OUTPUT_MERGER gBackendOutputMergerTable[SWR_NUM_RENDERTARGETS+1][SWR_MULTISAMPLE_TYPE_MAX] = {};
1507 PFN_CALC_PIXEL_BARYCENTRICS gPixelBarycentricTable[2] = {};
1508 PFN_CALC_SAMPLE_BARYCENTRICS gSampleBarycentricTable[2] = {};
1509 PFN_CALC_CENTROID_BARYCENTRICS gCentroidBarycentricTable[SWR_MULTISAMPLE_TYPE_MAX][2][2][2] = {};
1510
1511 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1512 // arguments to static template arguments.
1513 template <uint32_t... ArgsT>
1514 struct OMChooser
1515 {
1516 // Last Arg Terminator
1517 static PFN_OUTPUT_MERGER GetFunc(SWR_MULTISAMPLE_COUNT tArg)
1518 {
1519 switch(tArg)
1520 {
1521 case SWR_MULTISAMPLE_1X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_1X>; break;
1522 case SWR_MULTISAMPLE_2X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_2X>; break;
1523 case SWR_MULTISAMPLE_4X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_4X>; break;
1524 case SWR_MULTISAMPLE_8X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_8X>; break;
1525 case SWR_MULTISAMPLE_16X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_16X>; break;
1526 default:
1527 SWR_ASSERT(0 && "Invalid sample count\n");
1528 return nullptr;
1529 break;
1530 }
1531 }
1532
1533 // Recursively parse args
1534 template <typename... TArgsT>
1535 static PFN_OUTPUT_MERGER GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1536 {
1537 switch(tArg)
1538 {
1539 case 0: return OMChooser<ArgsT..., 0>::GetFunc(remainingArgs...); break;
1540 case 1: return OMChooser<ArgsT..., 1>::GetFunc(remainingArgs...); break;
1541 case 2: return OMChooser<ArgsT..., 2>::GetFunc(remainingArgs...); break;
1542 case 3: return OMChooser<ArgsT..., 3>::GetFunc(remainingArgs...); break;
1543 case 4: return OMChooser<ArgsT..., 4>::GetFunc(remainingArgs...); break;
1544 case 5: return OMChooser<ArgsT..., 5>::GetFunc(remainingArgs...); break;
1545 case 6: return OMChooser<ArgsT..., 6>::GetFunc(remainingArgs...); break;
1546 case 7: return OMChooser<ArgsT..., 7>::GetFunc(remainingArgs...); break;
1547 case 8: return OMChooser<ArgsT..., 8>::GetFunc(remainingArgs...); break;
1548 default:
1549 SWR_ASSERT(0 && "Invalid RT index\n");
1550 return nullptr;
1551 break;
1552 }
1553 }
1554 };
1555
1556 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1557 // arguments to static template arguments.
1558 template <uint32_t... ArgsT>
1559 struct BECentroidBarycentricChooser
1560 {
1561
1562 // Last Arg Terminator
1563 template <typename... TArgsT>
1564 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg)
1565 {
1566 if(tArg > 0)
1567 {
1568 return CalcCentroidBarycentrics<ArgsT..., 1>;
1569 }
1570
1571 return CalcCentroidBarycentrics<ArgsT..., 0>;
1572 }
1573
1574 // Recursively parse args
1575 template <typename... TArgsT>
1576 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1577 {
1578 switch(tArg)
1579 {
1580 case SWR_MULTISAMPLE_1X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1581 case SWR_MULTISAMPLE_2X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1582 case SWR_MULTISAMPLE_4X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1583 case SWR_MULTISAMPLE_8X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1584 case SWR_MULTISAMPLE_16X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1585 default:
1586 SWR_ASSERT(0 && "Invalid sample count\n");
1587 return nullptr;
1588 break;
1589 }
1590 }
1591
1592 // Recursively parse args
1593 template <typename... TArgsT>
1594 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1595 {
1596 if(tArg > 0)
1597 {
1598 return BECentroidBarycentricChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1599 }
1600
1601 return BECentroidBarycentricChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1602 }
1603 };
1604
1605 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1606 // arguments to static template arguments.
1607 template <uint32_t... ArgsT>
1608 struct BEChooser
1609 {
1610 // Last Arg Terminator
1611 static PFN_BACKEND_FUNC GetFunc(SWR_BACKEND_FUNCS tArg)
1612 {
1613 switch(tArg)
1614 {
1615 case SWR_BACKEND_SINGLE_SAMPLE: return BackendSingleSample<ArgsT...>; break;
1616 case SWR_BACKEND_MSAA_PIXEL_RATE: return BackendPixelRate<ArgsT...>; break;
1617 case SWR_BACKEND_MSAA_SAMPLE_RATE: return BackendSampleRate<ArgsT...>; break;
1618 default:
1619 SWR_ASSERT(0 && "Invalid backend func\n");
1620 return nullptr;
1621 break;
1622 }
1623 }
1624
1625
1626 // Recursively parse args
1627 template <typename... TArgsT>
1628 static PFN_BACKEND_FUNC GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1629 {
1630 switch(tArg)
1631 {
1632 case SWR_MULTISAMPLE_1X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1633 case SWR_MULTISAMPLE_2X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1634 case SWR_MULTISAMPLE_4X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1635 case SWR_MULTISAMPLE_8X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1636 case SWR_MULTISAMPLE_16X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1637 default:
1638 SWR_ASSERT(0 && "Invalid sample count\n");
1639 return nullptr;
1640 break;
1641 }
1642 }
1643
1644 // Recursively parse args
1645 template <typename... TArgsT>
1646 static PFN_BACKEND_FUNC GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1647 {
1648 if(tArg > 0)
1649 {
1650 return BEChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1651 }
1652
1653 return BEChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1654 }
1655 };
1656
1657 template <uint32_t numRenderTargets, SWR_MULTISAMPLE_COUNT numSampleRates>
1658 void InitBackendOMFuncTable(PFN_OUTPUT_MERGER (&table)[numRenderTargets][numSampleRates])
1659 {
1660 for(uint32_t rtNum = SWR_ATTACHMENT_COLOR0; rtNum < numRenderTargets; rtNum++)
1661 {
1662 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1663 {
1664 table[rtNum][sampleCount] =
1665 OMChooser<>::GetFunc((SWR_RENDERTARGET_ATTACHMENT)rtNum, (SWR_MULTISAMPLE_COUNT)sampleCount);
1666 }
1667 }
1668 }
1669
1670 template <SWR_MULTISAMPLE_COUNT numSampleRates>
1671 void InitBackendBarycentricsTables(PFN_CALC_PIXEL_BARYCENTRICS (&pixelTable)[2],
1672 PFN_CALC_SAMPLE_BARYCENTRICS (&sampleTable)[2],
1673 PFN_CALC_CENTROID_BARYCENTRICS (&centroidTable)[numSampleRates][2][2][2])
1674 {
1675 pixelTable[0] = CalcPixelBarycentrics<0>;
1676 pixelTable[1] = CalcPixelBarycentrics<1>;
1677
1678 sampleTable[0] = CalcSampleBarycentrics<0>;
1679 sampleTable[1] = CalcSampleBarycentrics<1>;
1680
1681 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1682 {
1683 for(uint32_t baryMask = 0; baryMask < 2; baryMask++)
1684 {
1685 for(uint32_t patternNum = 0; patternNum < 2; patternNum++)
1686 {
1687 for(uint32_t forcedSampleEnable = 0; forcedSampleEnable < 2; forcedSampleEnable++)
1688 {
1689 centroidTable[sampleCount][baryMask][patternNum][forcedSampleEnable]=
1690 BECentroidBarycentricChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, baryMask, patternNum, forcedSampleEnable);
1691 }
1692 }
1693 }
1694 }
1695 }
1696
1697 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[2][2])
1698 {
1699 gBackendSingleSample[0][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1700 gBackendSingleSample[0][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1701 gBackendSingleSample[1][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1702 gBackendSingleSample[1][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1703 }
1704
1705 template <SWR_MULTISAMPLE_COUNT numSampleRates, SWR_MSAA_SAMPLE_PATTERN numSamplePatterns, SWR_INPUT_COVERAGE numCoverageModes>
1706 void InitBackendPixelFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numSamplePatterns][numCoverageModes][2][2])
1707 {
1708 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1709 {
1710 for(uint32_t samplePattern = SWR_MSAA_CENTER_PATTERN; samplePattern < numSamplePatterns; samplePattern++)
1711 {
1712 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1713 {
1714 for(uint32_t isCentroid = 0; isCentroid < 2; isCentroid++)
1715 {
1716 table[sampleCount][samplePattern][inputCoverage][isCentroid][0] =
1717 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1718 table[sampleCount][samplePattern][inputCoverage][isCentroid][1] =
1719 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 1, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1720 }
1721 }
1722 }
1723 }
1724 }
1725
1726 template <uint32_t numSampleRates, uint32_t numCoverageModes>
1727 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numCoverageModes][2])
1728 {
1729 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1730 {
1731 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1732 {
1733 table[sampleCount][inputCoverage][0] =
1734 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1735 table[sampleCount][inputCoverage][1] =
1736 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1737 }
1738 }
1739 }
1740
1741 void InitBackendFuncTables()
1742 {
1743 InitBackendSampleFuncTable(gBackendSingleSample);
1744 InitBackendPixelFuncTable<(SWR_MULTISAMPLE_COUNT)SWR_MULTISAMPLE_TYPE_MAX, SWR_MSAA_SAMPLE_PATTERN_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendPixelRateTable);
1745 InitBackendSampleFuncTable<SWR_MULTISAMPLE_TYPE_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendSampleRateTable);
1746 InitBackendOMFuncTable<SWR_NUM_RENDERTARGETS+1, SWR_MULTISAMPLE_TYPE_MAX>(gBackendOutputMergerTable);
1747 InitBackendBarycentricsTables<(SWR_MULTISAMPLE_COUNT)(SWR_MULTISAMPLE_TYPE_MAX)>(gPixelBarycentricTable, gSampleBarycentricTable, gCentroidBarycentricTable);
1748
1749 gBackendNullPs[SWR_MULTISAMPLE_1X] = &BackendNullPS < SWR_MULTISAMPLE_1X > ;
1750 gBackendNullPs[SWR_MULTISAMPLE_2X] = &BackendNullPS < SWR_MULTISAMPLE_2X > ;
1751 gBackendNullPs[SWR_MULTISAMPLE_4X] = &BackendNullPS < SWR_MULTISAMPLE_4X > ;
1752 gBackendNullPs[SWR_MULTISAMPLE_8X] = &BackendNullPS < SWR_MULTISAMPLE_8X > ;
1753 gBackendNullPs[SWR_MULTISAMPLE_16X] = &BackendNullPS < SWR_MULTISAMPLE_16X > ;
1754 }