swr: [rasterizer core] Fix crash that can occur when switching contexts
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / backend.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file backend.cpp
24 *
25 * @brief Backend handles rasterization, pixel shading and output merger
26 * operations.
27 *
28 ******************************************************************************/
29
30 #include <smmintrin.h>
31
32 #include "rdtsc_core.h"
33 #include "backend.h"
34 #include "depthstencil.h"
35 #include "tilemgr.h"
36 #include "memory/tilingtraits.h"
37 #include "core/multisample.h"
38
39 #include <algorithm>
40
41 const __m128 vTileOffsetsX = {0.5, KNOB_TILE_X_DIM - 0.5, 0.5, KNOB_TILE_X_DIM - 0.5};
42 const __m128 vTileOffsetsY = {0.5, 0.5, KNOB_TILE_Y_DIM - 0.5, KNOB_TILE_Y_DIM - 0.5};
43
44 /// @todo move to common lib
45 #define MASKTOVEC(i3,i2,i1,i0) {-i0,-i1,-i2,-i3}
46 static const __m128 gMaskToVec[] = {
47 MASKTOVEC(0,0,0,0),
48 MASKTOVEC(0,0,0,1),
49 MASKTOVEC(0,0,1,0),
50 MASKTOVEC(0,0,1,1),
51 MASKTOVEC(0,1,0,0),
52 MASKTOVEC(0,1,0,1),
53 MASKTOVEC(0,1,1,0),
54 MASKTOVEC(0,1,1,1),
55 MASKTOVEC(1,0,0,0),
56 MASKTOVEC(1,0,0,1),
57 MASKTOVEC(1,0,1,0),
58 MASKTOVEC(1,0,1,1),
59 MASKTOVEC(1,1,0,0),
60 MASKTOVEC(1,1,0,1),
61 MASKTOVEC(1,1,1,0),
62 MASKTOVEC(1,1,1,1),
63 };
64
65 typedef void(*PFN_CLEAR_TILES)(DRAW_CONTEXT*, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t, DWORD[4]);
66 static PFN_CLEAR_TILES sClearTilesTable[NUM_SWR_FORMATS];
67
68 //////////////////////////////////////////////////////////////////////////
69 /// @brief Process compute work.
70 /// @param pDC - pointer to draw context (dispatch).
71 /// @param workerId - The unique worker ID that is assigned to this thread.
72 /// @param threadGroupId - the linear index for the thread group within the dispatch.
73 void ProcessComputeBE(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t threadGroupId)
74 {
75 RDTSC_START(BEDispatch);
76
77 SWR_CONTEXT *pContext = pDC->pContext;
78
79 const COMPUTE_DESC* pTaskData = (COMPUTE_DESC*)pDC->pDispatch->GetTasksData();
80 SWR_ASSERT(pTaskData != nullptr);
81
82 // Ensure spill fill memory has been allocated.
83 if (pDC->pSpillFill[workerId] == nullptr)
84 {
85 ///@todo Add state which indicates the spill fill size.
86 pDC->pSpillFill[workerId] = (uint8_t*)pDC->pArena->AllocAlignedSync(4096 * 1024, sizeof(float) * 8);
87 }
88
89 const API_STATE& state = GetApiState(pDC);
90
91 SWR_CS_CONTEXT csContext{ 0 };
92 csContext.tileCounter = threadGroupId;
93 csContext.dispatchDims[0] = pTaskData->threadGroupCountX;
94 csContext.dispatchDims[1] = pTaskData->threadGroupCountY;
95 csContext.dispatchDims[2] = pTaskData->threadGroupCountZ;
96 csContext.pTGSM = pContext->pScratch[workerId];
97 csContext.pSpillFillBuffer = pDC->pSpillFill[workerId];
98
99 state.pfnCsFunc(GetPrivateState(pDC), &csContext);
100
101 UPDATE_STAT(CsInvocations, state.totalThreadsInGroup);
102
103 RDTSC_STOP(BEDispatch, 1, 0);
104 }
105
106 void ProcessSyncBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
107 {
108 SYNC_DESC *pSync = (SYNC_DESC*)pUserData;
109
110 uint32_t x, y;
111 MacroTileMgr::getTileIndices(macroTile, x, y);
112 SWR_ASSERT(x == 0 && y == 0);
113
114 if (pSync->pfnCallbackFunc != nullptr)
115 {
116 pSync->pfnCallbackFunc(pSync->userData, pSync->userData2, pSync->userData3);
117 }
118 }
119
120 void ProcessQueryStatsBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
121 {
122 QUERY_DESC* pQueryDesc = (QUERY_DESC*)pUserData;
123 SWR_STATS* pStats = pQueryDesc->pStats;
124 SWR_CONTEXT *pContext = pDC->pContext;
125
126 SWR_ASSERT(pStats != nullptr);
127
128 for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
129 {
130 pStats->DepthPassCount += pContext->stats[i].DepthPassCount;
131
132 pStats->IaVertices += pContext->stats[i].IaVertices;
133 pStats->IaPrimitives += pContext->stats[i].IaPrimitives;
134 pStats->VsInvocations += pContext->stats[i].VsInvocations;
135 pStats->HsInvocations += pContext->stats[i].HsInvocations;
136 pStats->DsInvocations += pContext->stats[i].DsInvocations;
137 pStats->GsInvocations += pContext->stats[i].GsInvocations;
138 pStats->PsInvocations += pContext->stats[i].PsInvocations;
139 pStats->CInvocations += pContext->stats[i].CInvocations;
140 pStats->CsInvocations += pContext->stats[i].CsInvocations;
141 pStats->CPrimitives += pContext->stats[i].CPrimitives;
142 pStats->GsPrimitives += pContext->stats[i].GsPrimitives;
143
144 for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
145 {
146 pStats->SoWriteOffset[stream] += pContext->stats[i].SoWriteOffset[stream];
147
148 /// @note client is required to provide valid write offset before every draw, so we clear
149 /// out the contents of the write offset when storing stats
150 pContext->stats[i].SoWriteOffset[stream] = 0;
151
152 pStats->SoPrimStorageNeeded[stream] += pContext->stats[i].SoPrimStorageNeeded[stream];
153 pStats->SoNumPrimsWritten[stream] += pContext->stats[i].SoNumPrimsWritten[stream];
154 }
155 }
156 }
157
158 template<SWR_FORMAT format>
159 void ClearRasterTile(BYTE *pTileBuffer, simdvector &value)
160 {
161 auto lambda = [&](int comp)
162 {
163 FormatTraits<format>::storeSOA(comp, pTileBuffer, value.v[comp]);
164 pTileBuffer += (KNOB_SIMD_WIDTH * FormatTraits<format>::GetBPC(comp) / 8);
165 };
166
167 const uint32_t numIter = (KNOB_TILE_Y_DIM / SIMD_TILE_Y_DIM) * (KNOB_TILE_X_DIM / SIMD_TILE_X_DIM);
168 for (uint32_t i = 0; i < numIter; ++i)
169 {
170 UnrollerL<0, FormatTraits<format>::numComps, 1>::step(lambda);
171 }
172 }
173
174 template<SWR_FORMAT format>
175 INLINE void ClearMacroTile(DRAW_CONTEXT *pDC, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t macroTile, DWORD clear[4])
176 {
177 // convert clear color to hottile format
178 // clear color is in RGBA float/uint32
179 simdvector vClear;
180 for (uint32_t comp = 0; comp < FormatTraits<format>::numComps; ++comp)
181 {
182 simdscalar vComp;
183 vComp = _simd_load1_ps((const float*)&clear[comp]);
184 if (FormatTraits<format>::isNormalized(comp))
185 {
186 vComp = _simd_mul_ps(vComp, _simd_set1_ps(FormatTraits<format>::fromFloat(comp)));
187 vComp = _simd_castsi_ps(_simd_cvtps_epi32(vComp));
188 }
189 vComp = FormatTraits<format>::pack(comp, vComp);
190 vClear.v[FormatTraits<format>::swizzle(comp)] = vComp;
191 }
192
193 uint32_t tileX, tileY;
194 MacroTileMgr::getTileIndices(macroTile, tileX, tileY);
195 const API_STATE& state = GetApiState(pDC);
196
197 int top = KNOB_MACROTILE_Y_DIM_FIXED * tileY;
198 int bottom = top + KNOB_MACROTILE_Y_DIM_FIXED - 1;
199 int left = KNOB_MACROTILE_X_DIM_FIXED * tileX;
200 int right = left + KNOB_MACROTILE_X_DIM_FIXED - 1;
201
202 // intersect with scissor
203 top = std::max(top, state.scissorInFixedPoint.top);
204 left = std::max(left, state.scissorInFixedPoint.left);
205 bottom = std::min(bottom, state.scissorInFixedPoint.bottom);
206 right = std::min(right, state.scissorInFixedPoint.right);
207
208 // translate to local hottile origin
209 top -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
210 bottom -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
211 left -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
212 right -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
213
214 // convert to raster tiles
215 top >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
216 bottom >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
217 left >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
218 right >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
219
220 const int numSamples = GetNumSamples(pDC->pState->state.rastState.sampleCount);
221 // compute steps between raster tile samples / raster tiles / macro tile rows
222 const uint32_t rasterTileSampleStep = KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<format>::bpp / 8;
223 const uint32_t rasterTileStep = (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * (FormatTraits<format>::bpp / 8)) * numSamples;
224 const uint32_t macroTileRowStep = (KNOB_MACROTILE_X_DIM / KNOB_TILE_X_DIM) * rasterTileStep;
225 const uint32_t pitch = (FormatTraits<format>::bpp * KNOB_MACROTILE_X_DIM / 8);
226
227 HOTTILE *pHotTile = pDC->pContext->pHotTileMgr->GetHotTile(pDC->pContext, pDC, macroTile, rt, true, numSamples);
228 uint32_t rasterTileStartOffset = (ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, left, top)) * numSamples;
229 uint8_t* pRasterTileRow = pHotTile->pBuffer + rasterTileStartOffset; //(ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, x, y)) * numSamples;
230
231 // loop over all raster tiles in the current hot tile
232 for (int y = top; y <= bottom; ++y)
233 {
234 uint8_t* pRasterTile = pRasterTileRow;
235 for (int x = left; x <= right; ++x)
236 {
237 for( int sampleNum = 0; sampleNum < numSamples; sampleNum++)
238 {
239 ClearRasterTile<format>(pRasterTile, vClear);
240 pRasterTile += rasterTileSampleStep;
241 }
242 }
243 pRasterTileRow += macroTileRowStep;
244 }
245
246 pHotTile->state = HOTTILE_DIRTY;
247 }
248
249
250 void ProcessClearBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
251 {
252 if (KNOB_FAST_CLEAR)
253 {
254 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
255 SWR_CONTEXT *pContext = pDC->pContext;
256 SWR_MULTISAMPLE_COUNT sampleCount = pDC->pState->state.rastState.sampleCount;
257 uint32_t numSamples = GetNumSamples(sampleCount);
258
259 SWR_ASSERT(pClear->flags.bits != 0); // shouldn't be here without a reason.
260
261 RDTSC_START(BEClear);
262
263 if (pClear->flags.mask & SWR_CLEAR_COLOR)
264 {
265 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_COLOR0, true, numSamples);
266 // All we want to do here is to mark the hot tile as being in a "needs clear" state.
267 pHotTile->clearData[0] = *(DWORD*)&(pClear->clearRTColor[0]);
268 pHotTile->clearData[1] = *(DWORD*)&(pClear->clearRTColor[1]);
269 pHotTile->clearData[2] = *(DWORD*)&(pClear->clearRTColor[2]);
270 pHotTile->clearData[3] = *(DWORD*)&(pClear->clearRTColor[3]);
271 pHotTile->state = HOTTILE_CLEAR;
272 }
273
274 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
275 {
276 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_DEPTH, true, numSamples);
277 pHotTile->clearData[0] = *(DWORD*)&pClear->clearDepth;
278 pHotTile->state = HOTTILE_CLEAR;
279 }
280
281 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
282 {
283 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_STENCIL, true, numSamples);
284
285 pHotTile->clearData[0] = *(DWORD*)&pClear->clearStencil;
286 pHotTile->state = HOTTILE_CLEAR;
287 }
288
289 RDTSC_STOP(BEClear, 0, 0);
290 }
291 else
292 {
293 // Legacy clear
294 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
295 RDTSC_START(BEClear);
296
297 if (pClear->flags.mask & SWR_CLEAR_COLOR)
298 {
299 /// @todo clear data should come in as RGBA32_FLOAT
300 DWORD clearData[4];
301 float clearFloat[4];
302 clearFloat[0] = ((BYTE*)(&pClear->clearRTColor))[0] / 255.0f;
303 clearFloat[1] = ((BYTE*)(&pClear->clearRTColor))[1] / 255.0f;
304 clearFloat[2] = ((BYTE*)(&pClear->clearRTColor))[2] / 255.0f;
305 clearFloat[3] = ((BYTE*)(&pClear->clearRTColor))[3] / 255.0f;
306 clearData[0] = *(DWORD*)&clearFloat[0];
307 clearData[1] = *(DWORD*)&clearFloat[1];
308 clearData[2] = *(DWORD*)&clearFloat[2];
309 clearData[3] = *(DWORD*)&clearFloat[3];
310
311 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_COLOR_HOT_TILE_FORMAT];
312 SWR_ASSERT(pfnClearTiles != nullptr);
313
314 pfnClearTiles(pDC, SWR_ATTACHMENT_COLOR0, macroTile, clearData);
315 }
316
317 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
318 {
319 DWORD clearData[4];
320 clearData[0] = *(DWORD*)&pClear->clearDepth;
321 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_DEPTH_HOT_TILE_FORMAT];
322 SWR_ASSERT(pfnClearTiles != nullptr);
323
324 pfnClearTiles(pDC, SWR_ATTACHMENT_DEPTH, macroTile, clearData);
325 }
326
327 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
328 {
329 uint32_t value = pClear->clearStencil;
330 DWORD clearData[4];
331 clearData[0] = *(DWORD*)&value;
332 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_STENCIL_HOT_TILE_FORMAT];
333
334 pfnClearTiles(pDC, SWR_ATTACHMENT_STENCIL, macroTile, clearData);
335 }
336
337 RDTSC_STOP(BEClear, 0, 0);
338 }
339 }
340
341
342 void ProcessStoreTileBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
343 {
344 RDTSC_START(BEStoreTiles);
345 STORE_TILES_DESC *pDesc = (STORE_TILES_DESC*)pData;
346 SWR_CONTEXT *pContext = pDC->pContext;
347
348 #ifdef KNOB_ENABLE_RDTSC
349 uint32_t numTiles = 0;
350 #endif
351 SWR_FORMAT srcFormat;
352 switch (pDesc->attachment)
353 {
354 case SWR_ATTACHMENT_COLOR0:
355 case SWR_ATTACHMENT_COLOR1:
356 case SWR_ATTACHMENT_COLOR2:
357 case SWR_ATTACHMENT_COLOR3:
358 case SWR_ATTACHMENT_COLOR4:
359 case SWR_ATTACHMENT_COLOR5:
360 case SWR_ATTACHMENT_COLOR6:
361 case SWR_ATTACHMENT_COLOR7: srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
362 case SWR_ATTACHMENT_DEPTH: srcFormat = KNOB_DEPTH_HOT_TILE_FORMAT; break;
363 case SWR_ATTACHMENT_STENCIL: srcFormat = KNOB_STENCIL_HOT_TILE_FORMAT; break;
364 default: SWR_ASSERT(false, "Unknown attachment: %d", pDesc->attachment); srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
365 }
366
367 uint32_t x, y;
368 MacroTileMgr::getTileIndices(macroTile, x, y);
369
370 // Only need to store the hottile if it's been rendered to...
371 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, pDesc->attachment, false);
372 if (pHotTile)
373 {
374 // clear if clear is pending (i.e., not rendered to), then mark as dirty for store.
375 if (pHotTile->state == HOTTILE_CLEAR)
376 {
377 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[srcFormat];
378 SWR_ASSERT(pfnClearTiles != nullptr);
379
380 pfnClearTiles(pDC, pDesc->attachment, macroTile, pHotTile->clearData);
381 }
382
383 if (pHotTile->state == HOTTILE_DIRTY || pDesc->postStoreTileState == (SWR_TILE_STATE)HOTTILE_DIRTY)
384 {
385 int destX = KNOB_MACROTILE_X_DIM * x;
386 int destY = KNOB_MACROTILE_Y_DIM * y;
387
388 pContext->pfnStoreTile(GetPrivateState(pDC), srcFormat,
389 pDesc->attachment, destX, destY, pHotTile->renderTargetArrayIndex, pHotTile->pBuffer);
390 }
391
392
393 if (pHotTile->state == HOTTILE_DIRTY || pHotTile->state == HOTTILE_RESOLVED)
394 {
395 pHotTile->state = (HOTTILE_STATE)pDesc->postStoreTileState;
396 }
397 }
398 RDTSC_STOP(BEStoreTiles, numTiles, pDC->drawId);
399 }
400
401
402 void ProcessInvalidateTilesBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
403 {
404 INVALIDATE_TILES_DESC *pDesc = (INVALIDATE_TILES_DESC*)pData;
405 SWR_CONTEXT *pContext = pDC->pContext;
406
407 for (uint32_t i = 0; i < SWR_NUM_ATTACHMENTS; ++i)
408 {
409 if (pDesc->attachmentMask & (1 << i))
410 {
411 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTileNoLoad(pContext, pDC, macroTile, (SWR_RENDERTARGET_ATTACHMENT)i);
412 if (pHotTile)
413 {
414 SWR_ASSERT(pHotTile->state == HOTTILE_INVALID || pHotTile->state == HOTTILE_RESOLVED);
415 pHotTile->state = HOTTILE_INVALID;
416 }
417 }
418 }
419 }
420
421 #if KNOB_SIMD_WIDTH == 8
422 const __m256 vCenterOffsetsX = {0.5, 1.5, 0.5, 1.5, 2.5, 3.5, 2.5, 3.5};
423 const __m256 vCenterOffsetsY = {0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 1.5, 1.5};
424 const __m256 vULOffsetsX = {0.0, 1.0, 0.0, 1.0, 2.0, 3.0, 2.0, 3.0};
425 const __m256 vULOffsetsY = {0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0};
426 #else
427 #error Unsupported vector width
428 #endif
429
430 INLINE
431 bool CanEarlyZ(const SWR_PS_STATE *pPSState)
432 {
433 return (pPSState->forceEarlyZ || (!pPSState->writesODepth && !pPSState->usesSourceDepth && !pPSState->usesUAV));
434 }
435
436 simdmask ComputeUserClipMask(uint8_t clipMask, float* pUserClipBuffer, simdscalar vI, simdscalar vJ)
437 {
438 simdscalar vClipMask = _simd_setzero_ps();
439 uint32_t numClipDistance = _mm_popcnt_u32(clipMask);
440
441 for (uint32_t i = 0; i < numClipDistance; ++i)
442 {
443 // pull triangle clip distance values from clip buffer
444 simdscalar vA = _simd_broadcast_ss(pUserClipBuffer++);
445 simdscalar vB = _simd_broadcast_ss(pUserClipBuffer++);
446 simdscalar vC = _simd_broadcast_ss(pUserClipBuffer++);
447
448 // interpolate
449 simdscalar vInterp = vplaneps(vA, vB, vC, vI, vJ);
450
451 // clip if interpolated clip distance is < 0 || NAN
452 simdscalar vCull = _simd_cmp_ps(_simd_setzero_ps(), vInterp, _CMP_NLE_UQ);
453
454 vClipMask = _simd_or_ps(vClipMask, vCull);
455 }
456
457 return _simd_movemask_ps(vClipMask);
458 }
459
460 template<bool perspMask>
461 INLINE void CalcPixelBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
462 {
463 if(perspMask)
464 {
465 // evaluate I,J
466 psContext.vI.center = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.center, psContext.vY.center);
467 psContext.vJ.center = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.center, psContext.vY.center);
468 psContext.vI.center = _simd_mul_ps(psContext.vI.center, coeffs.vRecipDet);
469 psContext.vJ.center = _simd_mul_ps(psContext.vJ.center, coeffs.vRecipDet);
470
471 // interpolate 1/w
472 psContext.vOneOverW.center = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.center, psContext.vJ.center);
473 }
474 }
475
476 template<bool perspMask>
477 INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
478 {
479 if(perspMask)
480 {
481 // evaluate I,J
482 psContext.vI.sample = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.sample, psContext.vY.sample);
483 psContext.vJ.sample = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.sample, psContext.vY.sample);
484 psContext.vI.sample = _simd_mul_ps(psContext.vI.sample, coeffs.vRecipDet);
485 psContext.vJ.sample = _simd_mul_ps(psContext.vJ.sample, coeffs.vRecipDet);
486
487 // interpolate 1/w
488 psContext.vOneOverW.sample = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.sample, psContext.vJ.sample);
489 }
490 }
491
492
493 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
494 // Centroid behaves exactly as follows :
495 // (1) If all samples in the primitive are covered, the attribute is evaluated at the pixel center (even if the sample pattern does not happen to
496 // have a sample location there).
497 // (2) Else the attribute is evaluated at the first covered sample, in increasing order of sample index, where sample coverage is after ANDing the
498 // coverage with the SampleMask Rasterizer State.
499 // (3) If no samples are covered, such as on helper pixels executed off the bounds of a primitive to fill out 2x2 pixel stamps, the attribute is
500 // evaluated as follows : If the SampleMask Rasterizer state is a subset of the samples in the pixel, then the first sample covered by the
501 // SampleMask Rasterizer State is the evaluation point.Otherwise (full SampleMask), the pixel center is the evaluation point.
502 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
503 template<SWR_MULTISAMPLE_COUNT sampleCount, bool bForcedSampleCount>
504 INLINE void CalcCentroidPos(SWR_PS_CONTEXT &psContext, const uint64_t *const coverageMask, const uint32_t sampleMask,
505 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
506 {
507 uint32_t inputMask[KNOB_SIMD_WIDTH];
508
509 generateInputCoverage<sampleCount, 1, bForcedSampleCount>(coverageMask, inputMask, sampleMask);
510
511 // Case (2) - partially covered pixel
512
513 // scan for first covered sample per pixel in the 4x2 span
514 unsigned long sampleNum[KNOB_SIMD_WIDTH];
515 (inputMask[0] > 0) ? (_BitScanForward(&sampleNum[0], inputMask[0])) : (sampleNum[0] = 0);
516 (inputMask[1] > 0) ? (_BitScanForward(&sampleNum[1], inputMask[1])) : (sampleNum[1] = 0);
517 (inputMask[2] > 0) ? (_BitScanForward(&sampleNum[2], inputMask[2])) : (sampleNum[2] = 0);
518 (inputMask[3] > 0) ? (_BitScanForward(&sampleNum[3], inputMask[3])) : (sampleNum[3] = 0);
519 (inputMask[4] > 0) ? (_BitScanForward(&sampleNum[4], inputMask[4])) : (sampleNum[4] = 0);
520 (inputMask[5] > 0) ? (_BitScanForward(&sampleNum[5], inputMask[5])) : (sampleNum[5] = 0);
521 (inputMask[6] > 0) ? (_BitScanForward(&sampleNum[6], inputMask[6])) : (sampleNum[6] = 0);
522 (inputMask[7] > 0) ? (_BitScanForward(&sampleNum[7], inputMask[7])) : (sampleNum[7] = 0);
523
524 // look up and set the sample offsets from UL pixel corner for first covered sample
525 __m256 vXSample = _mm256_set_ps(MultisampleTraits<sampleCount>::X(sampleNum[7]),
526 MultisampleTraits<sampleCount>::X(sampleNum[6]),
527 MultisampleTraits<sampleCount>::X(sampleNum[5]),
528 MultisampleTraits<sampleCount>::X(sampleNum[4]),
529 MultisampleTraits<sampleCount>::X(sampleNum[3]),
530 MultisampleTraits<sampleCount>::X(sampleNum[2]),
531 MultisampleTraits<sampleCount>::X(sampleNum[1]),
532 MultisampleTraits<sampleCount>::X(sampleNum[0]));
533
534 __m256 vYSample = _mm256_set_ps(MultisampleTraits<sampleCount>::Y(sampleNum[7]),
535 MultisampleTraits<sampleCount>::Y(sampleNum[6]),
536 MultisampleTraits<sampleCount>::Y(sampleNum[5]),
537 MultisampleTraits<sampleCount>::Y(sampleNum[4]),
538 MultisampleTraits<sampleCount>::Y(sampleNum[3]),
539 MultisampleTraits<sampleCount>::Y(sampleNum[2]),
540 MultisampleTraits<sampleCount>::Y(sampleNum[1]),
541 MultisampleTraits<sampleCount>::Y(sampleNum[0]));
542 // add sample offset to UL pixel corner
543 vXSample = _simd_add_ps(vXSamplePosUL, vXSample);
544 vYSample = _simd_add_ps(vYSamplePosUL, vYSample);
545
546 // Case (1) and case (3b) - All samples covered or not covered with full SampleMask
547 static const __m256i vFullyCoveredMask = MultisampleTraits<sampleCount>::FullSampleMask();
548 __m256i vInputCoveragei = _mm256_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]);
549 __m256i vAllSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vFullyCoveredMask);
550
551 static const __m256i vZero = _simd_setzero_si();
552 const __m256i vSampleMask = _simd_and_si(_simd_set1_epi32(sampleMask), vFullyCoveredMask);
553 __m256i vNoSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vZero);
554 __m256i vIsFullSampleMask = _simd_cmpeq_epi32(vSampleMask, vFullyCoveredMask);
555 __m256i vCase3b = _simd_and_si(vNoSamplesCovered, vIsFullSampleMask);
556
557 __m256i vEvalAtCenter = _simd_or_si(vAllSamplesCovered, vCase3b);
558
559 // set the centroid position based on results from above
560 psContext.vX.centroid = _simd_blendv_ps(vXSample, psContext.vX.center, _simd_castsi_ps(vEvalAtCenter));
561 psContext.vY.centroid = _simd_blendv_ps(vYSample, psContext.vY.center, _simd_castsi_ps(vEvalAtCenter));
562
563 // Case (3a) No samples covered and partial sample mask
564 __m256i vSomeSampleMaskSamples = _simd_cmplt_epi32(vSampleMask, vFullyCoveredMask);
565 // sample mask should never be all 0's for this case, but handle it anyways
566 unsigned long firstCoveredSampleMaskSample = 0;
567 (sampleMask > 0) ? (_BitScanForward(&firstCoveredSampleMaskSample, sampleMask)) : (firstCoveredSampleMaskSample = 0);
568
569 __m256i vCase3a = _simd_and_si(vNoSamplesCovered, vSomeSampleMaskSamples);
570
571 vXSample = _simd_set1_ps(MultisampleTraits<sampleCount>::X(firstCoveredSampleMaskSample));
572 vYSample = _simd_set1_ps(MultisampleTraits<sampleCount>::Y(firstCoveredSampleMaskSample));
573
574 // blend in case 3a pixel locations
575 psContext.vX.centroid = _simd_blendv_ps(psContext.vX.centroid, vXSample, _simd_castsi_ps(vCase3a));
576 psContext.vY.centroid = _simd_blendv_ps(psContext.vY.centroid, vYSample, _simd_castsi_ps(vCase3a));
577 }
578
579 template<uint32_t sampleCount, uint32_t persp, uint32_t standardPattern, uint32_t forcedMultisampleCount>
580 INLINE void CalcCentroidBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext,
581 const uint64_t *const coverageMask, const uint32_t sampleMask,
582 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
583 {
584 static const bool bPersp = (bool)persp;
585 static const bool bIsStandardPattern = (bool)standardPattern;
586 static const bool bForcedMultisampleCount = (bool)forcedMultisampleCount;
587
588 // calculate centroid positions
589 if(bPersp)
590 {
591 if(bIsStandardPattern)
592 {
593 ///@ todo: don't need to generate input coverage 2x if input coverage and centroid
594 CalcCentroidPos<(SWR_MULTISAMPLE_COUNT)sampleCount, bForcedMultisampleCount>(psContext, coverageMask, sampleMask, vXSamplePosUL, vYSamplePosUL);
595 }
596 else
597 {
598 static const __m256 pixelCenter = _simd_set1_ps(0.5f);
599 psContext.vX.centroid = _simd_add_ps(vXSamplePosUL, pixelCenter);
600 psContext.vY.centroid = _simd_add_ps(vYSamplePosUL, pixelCenter);
601 }
602 // evaluate I,J
603 psContext.vI.centroid = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.centroid, psContext.vY.centroid);
604 psContext.vJ.centroid = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.centroid, psContext.vY.centroid);
605 psContext.vI.centroid = _simd_mul_ps(psContext.vI.centroid, coeffs.vRecipDet);
606 psContext.vJ.centroid = _simd_mul_ps(psContext.vJ.centroid, coeffs.vRecipDet);
607
608 // interpolate 1/w
609 psContext.vOneOverW.centroid = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.centroid, psContext.vJ.centroid);
610 }
611 }
612
613 template<uint32_t NumRT, uint32_t sampleCountT>
614 void OutputMerger(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
615 const PFN_BLEND_JIT_FUNC (&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask)
616 {
617 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
618 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
619 uint32_t rasterTileColorOffset = MultisampleTraits<sampleCount>::RasterTileColorOffset(sample);
620 simdvector blendOut;
621
622 for(uint32_t rt = 0; rt < NumRT; ++rt)
623 {
624 uint8_t *pColorSample;
625 if(sampleCount == SWR_MULTISAMPLE_1X)
626 {
627 pColorSample = pColorBase[rt];
628 }
629 else
630 {
631 pColorSample = pColorBase[rt] + rasterTileColorOffset;
632 }
633
634 const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];
635 // pfnBlendFunc may not update all channels. Initialize with PS output.
636 /// TODO: move this into the blend JIT.
637 blendOut = psContext.shaded[rt];
638
639 // Blend outputs and update coverage mask for alpha test
640 if(pfnBlendFunc[rt] != nullptr)
641 {
642 pfnBlendFunc[rt](
643 pBlendState,
644 psContext.shaded[rt],
645 psContext.shaded[1],
646 sample,
647 pColorSample,
648 blendOut,
649 &psContext.oMask,
650 (simdscalari*)&coverageMask);
651 }
652
653 // final write mask
654 simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));
655
656 ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
657 static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");
658
659 const uint32_t simd = KNOB_SIMD_WIDTH * sizeof(float);
660
661 // store with color mask
662 if(!pRTBlend->writeDisableRed)
663 {
664 _simd_maskstore_ps((float*)pColorSample, outputMask, blendOut.x);
665 }
666 if(!pRTBlend->writeDisableGreen)
667 {
668 _simd_maskstore_ps((float*)(pColorSample + simd), outputMask, blendOut.y);
669 }
670 if(!pRTBlend->writeDisableBlue)
671 {
672 _simd_maskstore_ps((float*)(pColorSample + simd * 2), outputMask, blendOut.z);
673 }
674 if(!pRTBlend->writeDisableAlpha)
675 {
676 _simd_maskstore_ps((float*)(pColorSample + simd * 3), outputMask, blendOut.w);
677 }
678 }
679 }
680
681 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
682 void BackendSingleSample(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
683 {
684 RDTSC_START(BESetup);
685 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
686 static const bool bInputCoverage = (bool)inputCoverage;
687 static const bool bCentroidPos = (bool)centroidPos;
688
689 SWR_CONTEXT *pContext = pDC->pContext;
690 const API_STATE& state = GetApiState(pDC);
691 const SWR_RASTSTATE& rastState = state.rastState;
692 const SWR_PS_STATE *pPSState = &state.psState;
693 const SWR_BLEND_STATE *pBlendState = &state.blendState;
694 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
695 uint64_t coverageMask = work.coverageMask[0];
696
697 // broadcast scalars
698 BarycentricCoeffs coeffs;
699 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
700 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
701 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
702
703 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
704 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
705 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
706
707 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
708 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
709 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
710
711 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
712
713 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
714 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
715 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
716
717 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
718 uint32_t NumRT = state.psState.numRenderTargets;
719 for(uint32_t rt = 0; rt < NumRT; ++rt)
720 {
721 pColorBase[rt] = renderBuffers.pColor[rt];
722 }
723 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
724 RDTSC_STOP(BESetup, 0, 0);
725
726 SWR_PS_CONTEXT psContext;
727 psContext.pAttribs = work.pAttribs;
728 psContext.pPerspAttribs = work.pPerspAttribs;
729 psContext.frontFace = work.triFlags.frontFacing;
730 psContext.primID = work.triFlags.primID;
731
732 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
733 psContext.I = work.I;
734 psContext.J = work.J;
735 psContext.recipDet = work.recipDet;
736 psContext.pRecipW = work.pRecipW;
737 psContext.pSamplePosX = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosX;
738 psContext.pSamplePosY = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosY;
739
740 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
741 {
742 // UL pixel corner
743 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
744 // pixel center
745 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
746
747 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
748 {
749 if(bInputCoverage)
750 {
751 generateInputCoverage<SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
752 }
753
754 if(coverageMask & MASK)
755 {
756 RDTSC_START(BEBarycentric);
757 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
758 // pixel center
759 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
760
761 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
762
763 if(bCentroidPos)
764 {
765 // for 1x case, centroid is pixel center
766 psContext.vX.centroid = psContext.vX.center;
767 psContext.vY.centroid = psContext.vY.center;
768 psContext.vI.centroid = psContext.vI.center;
769 psContext.vJ.centroid = psContext.vJ.center;
770 psContext.vOneOverW.centroid = psContext.vOneOverW.center;
771 }
772
773 // interpolate z
774 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
775 RDTSC_STOP(BEBarycentric, 0, 0);
776
777 simdmask clipCoverageMask = coverageMask & MASK;
778
779 // interpolate user clip distance if available
780 if(rastState.clipDistanceMask)
781 {
782 clipCoverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
783 psContext.vI.center, psContext.vJ.center);
784 }
785
786 simdscalar vCoverageMask = vMask(clipCoverageMask);
787 simdscalar depthPassMask = vCoverageMask;
788 simdscalar stencilPassMask = vCoverageMask;
789
790 // Early-Z?
791 if(CanEarlyZ(pPSState))
792 {
793 RDTSC_START(BEEarlyDepthTest);
794 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
795 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
796 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
797
798 // early-exit if no pixels passed depth or earlyZ is forced on
799 if(pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
800 {
801 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
802 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
803
804 if (!_simd_movemask_ps(depthPassMask))
805 {
806 goto Endtile;
807 }
808 }
809 }
810
811 psContext.sampleIndex = 0;
812 psContext.activeMask = _simd_castps_si(vCoverageMask);
813
814 // execute pixel shader
815 RDTSC_START(BEPixelShader);
816 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
817 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
818 RDTSC_STOP(BEPixelShader, 0, 0);
819
820 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
821
822 // late-Z
823 if(!CanEarlyZ(pPSState))
824 {
825 RDTSC_START(BELateDepthTest);
826 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
827 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
828 RDTSC_STOP(BELateDepthTest, 0, 0);
829
830 if(!_simd_movemask_ps(depthPassMask))
831 {
832 // need to call depth/stencil write for stencil write
833 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
834 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
835 goto Endtile;
836 }
837 }
838
839 uint32_t statMask = _simd_movemask_ps(depthPassMask);
840 uint32_t statCount = _mm_popcnt_u32(statMask);
841 UPDATE_STAT(DepthPassCount, statCount);
842
843 // output merger
844 RDTSC_START(BEOutputMerger);
845 backendFuncs.pfnOutputMerger(psContext, pColorBase, 0, pBlendState, state.pfnBlendFunc,
846 vCoverageMask, depthPassMask);
847
848 // do final depth write after all pixel kills
849 if (!pPSState->forceEarlyZ)
850 {
851 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
852 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
853 }
854 RDTSC_STOP(BEOutputMerger, 0, 0);
855 }
856
857 Endtile:
858 RDTSC_START(BEEndTile);
859 coverageMask >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
860 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
861 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
862
863 for(uint32_t rt = 0; rt < NumRT; ++rt)
864 {
865 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
866 }
867 RDTSC_STOP(BEEndTile, 0, 0);
868 }
869 }
870 }
871
872 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
873 void BackendSampleRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
874 {
875 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
876 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
877 static const bool bInputCoverage = (bool)inputCoverage;
878 static const bool bCentroidPos = (bool)centroidPos;
879
880 RDTSC_START(BESetup);
881
882 SWR_CONTEXT *pContext = pDC->pContext;
883 const API_STATE& state = GetApiState(pDC);
884 const SWR_RASTSTATE& rastState = state.rastState;
885 const SWR_PS_STATE *pPSState = &state.psState;
886 const SWR_BLEND_STATE *pBlendState = &state.blendState;
887 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
888
889 // broadcast scalars
890 BarycentricCoeffs coeffs;
891 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
892 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
893 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
894
895 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
896 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
897 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
898
899 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
900 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
901 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
902
903 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
904
905 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
906 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
907 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
908
909 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
910 uint32_t NumRT = state.psState.numRenderTargets;
911 for(uint32_t rt = 0; rt < NumRT; ++rt)
912 {
913 pColorBase[rt] = renderBuffers.pColor[rt];
914 }
915 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
916 RDTSC_STOP(BESetup, 0, 0);
917
918 SWR_PS_CONTEXT psContext;
919 psContext.pAttribs = work.pAttribs;
920 psContext.pPerspAttribs = work.pPerspAttribs;
921 psContext.pRecipW = work.pRecipW;
922 psContext.frontFace = work.triFlags.frontFacing;
923 psContext.primID = work.triFlags.primID;
924
925 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
926 psContext.I = work.I;
927 psContext.J = work.J;
928 psContext.recipDet = work.recipDet;
929 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
930 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
931 const uint32_t numSamples = MultisampleTraits<sampleCount>::numSamples;
932
933 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
934 {
935 // UL pixel corner
936 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
937 // pixel center
938 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
939
940 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
941 {
942 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
943 // pixel center
944 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
945
946 RDTSC_START(BEBarycentric);
947 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
948 RDTSC_STOP(BEBarycentric, 0, 0);
949
950 if(bInputCoverage)
951 {
952 generateInputCoverage<sampleCount, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
953 }
954
955 if(bCentroidPos)
956 {
957 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
958 RDTSC_START(BEBarycentric);
959 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
960 RDTSC_STOP(BEBarycentric, 0, 0);
961 }
962
963 for(uint32_t sample = 0; sample < numSamples; sample++)
964 {
965 if (work.coverageMask[sample] & MASK)
966 {
967 RDTSC_START(BEBarycentric);
968
969 // calculate per sample positions
970 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
971 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
972
973 simdmask coverageMask = work.coverageMask[sample] & MASK;
974 simdscalar vCoverageMask = vMask(coverageMask);
975
976 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
977
978 // interpolate z
979 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
980
981 RDTSC_STOP(BEBarycentric, 0, 0);
982
983 // interpolate user clip distance if available
984 if (rastState.clipDistanceMask)
985 {
986 coverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
987 psContext.vI.sample, psContext.vJ.sample);
988 }
989
990 simdscalar depthPassMask = vCoverageMask;
991 simdscalar stencilPassMask = vCoverageMask;
992
993 // offset depth/stencil buffers current sample
994 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
995 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
996
997 // Early-Z?
998 if (CanEarlyZ(pPSState))
999 {
1000 RDTSC_START(BEEarlyDepthTest);
1001 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1002 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1003 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1004
1005 // early-exit if no samples passed depth or earlyZ is forced on.
1006 if (pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
1007 {
1008 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1009 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1010
1011 if (!_simd_movemask_ps(depthPassMask))
1012 {
1013 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1014 continue;
1015 }
1016 }
1017 }
1018
1019 psContext.sampleIndex = sample;
1020 psContext.activeMask = _simd_castps_si(vCoverageMask);
1021
1022 // execute pixel shader
1023 RDTSC_START(BEPixelShader);
1024 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
1025 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1026 RDTSC_STOP(BEPixelShader, 0, 0);
1027
1028 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
1029
1030 //// late-Z
1031 if (!CanEarlyZ(pPSState))
1032 {
1033 RDTSC_START(BELateDepthTest);
1034 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1035 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1036 RDTSC_STOP(BELateDepthTest, 0, 0);
1037
1038 if (!_simd_movemask_ps(depthPassMask))
1039 {
1040 // need to call depth/stencil write for stencil write
1041 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1042 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1043
1044 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1045 continue;
1046 }
1047 }
1048
1049 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1050 uint32_t statCount = _mm_popcnt_u32(statMask);
1051 UPDATE_STAT(DepthPassCount, statCount);
1052
1053 // output merger
1054 RDTSC_START(BEOutputMerger);
1055 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1056 vCoverageMask, depthPassMask);
1057
1058 // do final depth write after all pixel kills
1059 if (!pPSState->forceEarlyZ)
1060 {
1061 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1062 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1063 }
1064 RDTSC_STOP(BEOutputMerger, 0, 0);
1065 }
1066 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1067 }
1068 RDTSC_START(BEEndTile);
1069 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1070 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1071
1072 for (uint32_t rt = 0; rt < NumRT; ++rt)
1073 {
1074 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1075 }
1076 RDTSC_STOP(BEEndTile, 0, 0);
1077 }
1078 }
1079 }
1080
1081 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
1082 void BackendPixelRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1083 {
1084 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
1085 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1086 static const bool bIsStandardPattern = (bool)samplePattern;
1087 static const bool bInputCoverage = (bool)inputCoverage;
1088 static const bool bCentroidPos = (bool)centroidPos;
1089 static const bool bForcedSampleCount = (bool)forcedSampleCount;
1090
1091 RDTSC_START(BESetup);
1092
1093 SWR_CONTEXT *pContext = pDC->pContext;
1094 const API_STATE& state = GetApiState(pDC);
1095 const SWR_RASTSTATE& rastState = state.rastState;
1096 const SWR_PS_STATE *pPSState = &state.psState;
1097 const SWR_BLEND_STATE *pBlendState = &state.blendState;
1098 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1099
1100 // broadcast scalars
1101 BarycentricCoeffs coeffs;
1102 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1103 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1104 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1105
1106 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1107 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1108 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1109
1110 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1111 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1112 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1113
1114 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1115
1116 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
1117 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
1118 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
1119
1120 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
1121 uint32_t NumRT = state.psState.numRenderTargets;
1122 for(uint32_t rt = 0; rt < NumRT; ++rt)
1123 {
1124 pColorBase[rt] = renderBuffers.pColor[rt];
1125 }
1126 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1127 RDTSC_STOP(BESetup, 0, 0);
1128
1129 SWR_PS_CONTEXT psContext;
1130 psContext.pAttribs = work.pAttribs;
1131 psContext.pPerspAttribs = work.pPerspAttribs;
1132 psContext.frontFace = work.triFlags.frontFacing;
1133 psContext.primID = work.triFlags.primID;
1134 psContext.pRecipW = work.pRecipW;
1135 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
1136 psContext.I = work.I;
1137 psContext.J = work.J;
1138 psContext.recipDet = work.recipDet;
1139 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
1140 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
1141 psContext.sampleIndex = 0;
1142
1143 uint32_t numCoverageSamples;
1144 if(bIsStandardPattern)
1145 {
1146 numCoverageSamples = MultisampleTraits<sampleCount>::numSamples;
1147 }
1148 else
1149 {
1150 numCoverageSamples = 1;
1151 }
1152
1153 uint32_t numOMSamples;
1154 // RT has to be single sample if we're in forcedMSAA mode
1155 if(bForcedSampleCount && (sampleCount > SWR_MULTISAMPLE_1X))
1156 {
1157 numOMSamples = 1;
1158 }
1159 // unless we're forced to single sample, in which case we run the OM at the sample count of the RT
1160 else if(bForcedSampleCount && (sampleCount == SWR_MULTISAMPLE_1X))
1161 {
1162 numOMSamples = GetNumSamples(pBlendState->sampleCount);
1163 }
1164 // else we're in normal MSAA mode and rasterizer and OM are running at the same sample count
1165 else
1166 {
1167 numOMSamples = MultisampleTraits<sampleCount>::numSamples;
1168 }
1169
1170 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1171 {
1172 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1173 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
1174 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1175 {
1176 simdscalar vZ[MultisampleTraits<sampleCount>::numSamples]{ 0 };
1177 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1178 // set pixel center positions
1179 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
1180
1181 if (bInputCoverage)
1182 {
1183 generateInputCoverage<sampleCount, bIsStandardPattern, bForcedSampleCount>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
1184 }
1185
1186 if(bCentroidPos)
1187 {
1188 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
1189 RDTSC_START(BEBarycentric);
1190 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
1191 RDTSC_STOP(BEBarycentric, 0, 0);
1192 }
1193
1194 // if oDepth written to, or there is a potential to discard any samples, we need to
1195 // run the PS early, then interp or broadcast Z and test
1196 if(pPSState->writesODepth || pPSState->killsPixel)
1197 {
1198 RDTSC_START(BEBarycentric);
1199 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1200
1201 // interpolate z
1202 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1203 RDTSC_STOP(BEBarycentric, 0, 0);
1204
1205 // execute pixel shader
1206 RDTSC_START(BEPixelShader);
1207 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1208 RDTSC_STOP(BEPixelShader, 0, 0);
1209 }
1210 else
1211 {
1212 psContext.activeMask = _simd_set1_epi32(-1);
1213 }
1214
1215 // need to declare enough space for all samples
1216 simdscalar vCoverageMask[MultisampleTraits<sampleCount>::numSamples];
1217 simdscalar depthPassMask[MultisampleTraits<sampleCount>::numSamples];
1218 simdscalar stencilPassMask[MultisampleTraits<sampleCount>::numSamples];
1219 simdscalar anyDepthSamplePassed = _simd_setzero_ps();
1220 simdscalar anyStencilSamplePassed = _simd_setzero_ps();
1221 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1222 {
1223 vCoverageMask[sample] = vMask(work.coverageMask[sample] & MASK);
1224
1225 // pull mask back out for any discards and and with coverage
1226 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], _simd_castsi_ps(psContext.activeMask));
1227
1228 if (!_simd_movemask_ps(vCoverageMask[sample]))
1229 {
1230 vCoverageMask[sample] = depthPassMask[sample] = stencilPassMask[sample] = _simd_setzero_ps();
1231 continue;
1232 }
1233
1234 if(bForcedSampleCount)
1235 {
1236 // candidate pixels (that passed coverage) will cause shader invocation if any bits in the samplemask are set
1237 const simdscalar vSampleMask = _simd_castsi_ps(_simd_cmpgt_epi32(_simd_set1_epi32(pBlendState->sampleMask), _simd_setzero_si()));
1238 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, _simd_and_ps(vCoverageMask[sample], vSampleMask));
1239 continue;
1240 }
1241
1242 depthPassMask[sample] = vCoverageMask[sample];
1243
1244 // if oDepth isn't written to, we need to interpolate Z for each sample
1245 // if clip distances are enabled, we need to interpolate for each sample
1246 if(!pPSState->writesODepth || rastState.clipDistanceMask)
1247 {
1248 RDTSC_START(BEBarycentric);
1249 if(bIsStandardPattern)
1250 {
1251 // calculate per sample positions
1252 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
1253 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
1254 }
1255 else
1256 {
1257 psContext.vX.sample = psContext.vX.center;
1258 psContext.vY.sample = psContext.vY.center;
1259 }
1260
1261 // calc I & J per sample
1262 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1263
1264 // interpolate z
1265 if (!pPSState->writesODepth)
1266 {
1267 vZ[sample] = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1268 }
1269
1270 ///@todo: perspective correct vs non-perspective correct clipping?
1271 // interpolate clip distances
1272 if (rastState.clipDistanceMask)
1273 {
1274 uint8_t clipMask = ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
1275 psContext.vI.sample, psContext.vJ.sample);
1276 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(~clipMask));
1277 }
1278 RDTSC_STOP(BEBarycentric, 0, 0);
1279 }
1280 // else 'broadcast' and test psContext.vZ written from the PS each sample
1281 else
1282 {
1283 vZ[sample] = psContext.vZ;
1284 }
1285
1286 // offset depth/stencil buffers current sample
1287 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1288 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1289
1290 // ZTest for this sample
1291 RDTSC_START(BEEarlyDepthTest);
1292 stencilPassMask[sample] = vCoverageMask[sample];
1293 depthPassMask[sample] = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1294 vZ[sample], pDepthSample, vCoverageMask[sample], pStencilSample, &stencilPassMask[sample]);
1295 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1296
1297 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, depthPassMask[sample]);
1298 anyStencilSamplePassed = _simd_or_ps(anyStencilSamplePassed, stencilPassMask[sample]);
1299 uint32_t statMask = _simd_movemask_ps(depthPassMask[sample]);
1300 uint32_t statCount = _mm_popcnt_u32(statMask);
1301 UPDATE_STAT(DepthPassCount, statCount);
1302 }
1303
1304 // if we didn't have to execute the PS early, and at least 1 sample passed the depth test, run the PS
1305 if(!pPSState->writesODepth && !pPSState->killsPixel && _simd_movemask_ps(anyDepthSamplePassed))
1306 {
1307 RDTSC_START(BEBarycentric);
1308 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1309 // interpolate z
1310 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1311 RDTSC_STOP(BEBarycentric, 0, 0);
1312
1313 // execute pixel shader
1314 RDTSC_START(BEPixelShader);
1315 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1316 RDTSC_STOP(BEPixelShader, 0, 0);
1317 }
1318 ///@todo: make sure this works for kill pixel
1319 else if(!_simd_movemask_ps(anyStencilSamplePassed))
1320 {
1321 goto Endtile;
1322 }
1323
1324 // loop over all samples, broadcasting the results of the PS to all passing pixels
1325 for(uint32_t sample = 0; sample < numOMSamples; sample++)
1326 {
1327 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1328 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1329
1330 // output merger
1331 RDTSC_START(BEOutputMerger);
1332
1333 // skip if none of the pixels for this sample passed
1334 simdscalar coverageMaskSample;
1335 simdscalar depthMaskSample;
1336 simdscalar stencilMaskSample;
1337 simdscalar vInterpolatedZ;
1338
1339 // forcedSampleCount outputs to any pixels with covered samples not masked off by SampleMask
1340 // depth test is disabled, so just set the z val to 0.
1341 if(bForcedSampleCount)
1342 {
1343 coverageMaskSample = depthMaskSample = anyDepthSamplePassed;
1344 vInterpolatedZ = _simd_setzero_ps();
1345 }
1346 else if(bIsStandardPattern)
1347 {
1348 if(!_simd_movemask_ps(depthPassMask[sample]))
1349 {
1350 depthPassMask[sample] = _simd_setzero_ps();
1351 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[sample], pDepthSample, depthPassMask[sample],
1352 vCoverageMask[sample], pStencilSample, stencilPassMask[sample]);
1353 continue;
1354 }
1355 coverageMaskSample = vCoverageMask[sample];
1356 depthMaskSample = depthPassMask[sample];
1357 stencilMaskSample = stencilPassMask[sample];
1358 vInterpolatedZ = vZ[sample];
1359 }
1360 else
1361 {
1362 // center pattern only needs to use a single depth test as all samples are at the same position
1363 if(!_simd_movemask_ps(depthPassMask[0]))
1364 {
1365 depthPassMask[0] = _simd_setzero_ps();
1366 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[0], pDepthSample, depthPassMask[0],
1367 vCoverageMask[0], pStencilSample, stencilPassMask[0]);
1368 continue;
1369 }
1370 coverageMaskSample = (vCoverageMask[0]);
1371 depthMaskSample = depthPassMask[0];
1372 stencilMaskSample = stencilPassMask[0];
1373 vInterpolatedZ = vZ[0];
1374 }
1375
1376 // output merger
1377 RDTSC_START(BEOutputMerger);
1378 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1379 coverageMaskSample, depthMaskSample);
1380
1381 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vInterpolatedZ, pDepthSample, depthMaskSample,
1382 coverageMaskSample, pStencilSample, stencilMaskSample);
1383 RDTSC_STOP(BEOutputMerger, 0, 0);
1384 }
1385
1386 Endtile:
1387 RDTSC_START(BEEndTile);
1388 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1389 {
1390 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1391 }
1392
1393 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1394 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1395
1396 for(uint32_t rt = 0; rt < NumRT; ++rt)
1397 {
1398 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1399 }
1400 RDTSC_STOP(BEEndTile, 0, 0);
1401 }
1402 }
1403 }
1404 // optimized backend flow with NULL PS
1405 template<uint32_t sampleCountT>
1406 void BackendNullPS(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1407 {
1408 RDTSC_START(BESetup);
1409
1410 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1411 SWR_CONTEXT *pContext = pDC->pContext;
1412 const API_STATE& state = GetApiState(pDC);
1413 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1414
1415 // broadcast scalars
1416 BarycentricCoeffs coeffs;
1417 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1418 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1419 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1420
1421 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1422 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1423 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1424
1425 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1426 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1427 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1428
1429 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1430
1431 BYTE *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1432
1433 RDTSC_STOP(BESetup, 0, 0);
1434
1435 SWR_PS_CONTEXT psContext;
1436 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1437 {
1438 // UL pixel corner
1439 simdscalar vYSamplePosUL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1440
1441 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1442 {
1443 // UL pixel corners
1444 simdscalar vXSamplePosUL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1445
1446 // iterate over active samples
1447 unsigned long sample = 0;
1448 uint32_t sampleMask = state.blendState.sampleMask;
1449 while (_BitScanForward(&sample, sampleMask))
1450 {
1451 sampleMask &= ~(1 << sample);
1452 if (work.coverageMask[sample] & MASK)
1453 {
1454 RDTSC_START(BEBarycentric);
1455 // calculate per sample positions
1456 psContext.vX.sample = _simd_add_ps(vXSamplePosUL, MultisampleTraits<sampleCount>::vX(sample));
1457 psContext.vY.sample = _simd_add_ps(vYSamplePosUL, MultisampleTraits<sampleCount>::vY(sample));
1458
1459 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1460
1461 // interpolate z
1462 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1463
1464 RDTSC_STOP(BEBarycentric, 0, 0);
1465
1466 simdscalar vCoverageMask = vMask(work.coverageMask[sample] & MASK);
1467 simdscalar stencilPassMask = vCoverageMask;
1468
1469 // offset depth/stencil buffers current sample
1470 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1471 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1472
1473 RDTSC_START(BEEarlyDepthTest);
1474 simdscalar depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1475 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1476 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1477 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1478 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1479
1480 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1481 uint32_t statCount = _mm_popcnt_u32(statMask);
1482 UPDATE_STAT(DepthPassCount, statCount);
1483 }
1484 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1485 }
1486 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1487 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1488 }
1489 }
1490 }
1491
1492 void InitClearTilesTable()
1493 {
1494 memset(sClearTilesTable, 0, sizeof(sClearTilesTable));
1495
1496 sClearTilesTable[R8G8B8A8_UNORM] = ClearMacroTile<R8G8B8A8_UNORM>;
1497 sClearTilesTable[B8G8R8A8_UNORM] = ClearMacroTile<B8G8R8A8_UNORM>;
1498 sClearTilesTable[R32_FLOAT] = ClearMacroTile<R32_FLOAT>;
1499 sClearTilesTable[R32G32B32A32_FLOAT] = ClearMacroTile<R32G32B32A32_FLOAT>;
1500 sClearTilesTable[R8_UINT] = ClearMacroTile<R8_UINT>;
1501 }
1502
1503 PFN_BACKEND_FUNC gBackendNullPs[SWR_MULTISAMPLE_TYPE_MAX];
1504 PFN_BACKEND_FUNC gBackendSingleSample[2][2] = {};
1505 PFN_BACKEND_FUNC gBackendPixelRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_MSAA_SAMPLE_PATTERN_MAX][SWR_INPUT_COVERAGE_MAX][2][2] = {};
1506 PFN_BACKEND_FUNC gBackendSampleRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_INPUT_COVERAGE_MAX][2] = {};
1507 PFN_OUTPUT_MERGER gBackendOutputMergerTable[SWR_NUM_RENDERTARGETS+1][SWR_MULTISAMPLE_TYPE_MAX] = {};
1508 PFN_CALC_PIXEL_BARYCENTRICS gPixelBarycentricTable[2] = {};
1509 PFN_CALC_SAMPLE_BARYCENTRICS gSampleBarycentricTable[2] = {};
1510 PFN_CALC_CENTROID_BARYCENTRICS gCentroidBarycentricTable[SWR_MULTISAMPLE_TYPE_MAX][2][2][2] = {};
1511
1512 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1513 // arguments to static template arguments.
1514 template <uint32_t... ArgsT>
1515 struct OMChooser
1516 {
1517 // Last Arg Terminator
1518 static PFN_OUTPUT_MERGER GetFunc(SWR_MULTISAMPLE_COUNT tArg)
1519 {
1520 switch(tArg)
1521 {
1522 case SWR_MULTISAMPLE_1X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_1X>; break;
1523 case SWR_MULTISAMPLE_2X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_2X>; break;
1524 case SWR_MULTISAMPLE_4X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_4X>; break;
1525 case SWR_MULTISAMPLE_8X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_8X>; break;
1526 case SWR_MULTISAMPLE_16X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_16X>; break;
1527 default:
1528 SWR_ASSERT(0 && "Invalid sample count\n");
1529 return nullptr;
1530 break;
1531 }
1532 }
1533
1534 // Recursively parse args
1535 template <typename... TArgsT>
1536 static PFN_OUTPUT_MERGER GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1537 {
1538 switch(tArg)
1539 {
1540 case 0: return OMChooser<ArgsT..., 0>::GetFunc(remainingArgs...); break;
1541 case 1: return OMChooser<ArgsT..., 1>::GetFunc(remainingArgs...); break;
1542 case 2: return OMChooser<ArgsT..., 2>::GetFunc(remainingArgs...); break;
1543 case 3: return OMChooser<ArgsT..., 3>::GetFunc(remainingArgs...); break;
1544 case 4: return OMChooser<ArgsT..., 4>::GetFunc(remainingArgs...); break;
1545 case 5: return OMChooser<ArgsT..., 5>::GetFunc(remainingArgs...); break;
1546 case 6: return OMChooser<ArgsT..., 6>::GetFunc(remainingArgs...); break;
1547 case 7: return OMChooser<ArgsT..., 7>::GetFunc(remainingArgs...); break;
1548 case 8: return OMChooser<ArgsT..., 8>::GetFunc(remainingArgs...); break;
1549 default:
1550 SWR_ASSERT(0 && "Invalid RT index\n");
1551 return nullptr;
1552 break;
1553 }
1554 }
1555 };
1556
1557 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1558 // arguments to static template arguments.
1559 template <uint32_t... ArgsT>
1560 struct BECentroidBarycentricChooser
1561 {
1562
1563 // Last Arg Terminator
1564 template <typename... TArgsT>
1565 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg)
1566 {
1567 if(tArg > 0)
1568 {
1569 return CalcCentroidBarycentrics<ArgsT..., 1>;
1570 }
1571
1572 return CalcCentroidBarycentrics<ArgsT..., 0>;
1573 }
1574
1575 // Recursively parse args
1576 template <typename... TArgsT>
1577 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1578 {
1579 switch(tArg)
1580 {
1581 case SWR_MULTISAMPLE_1X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1582 case SWR_MULTISAMPLE_2X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1583 case SWR_MULTISAMPLE_4X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1584 case SWR_MULTISAMPLE_8X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1585 case SWR_MULTISAMPLE_16X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1586 default:
1587 SWR_ASSERT(0 && "Invalid sample count\n");
1588 return nullptr;
1589 break;
1590 }
1591 }
1592
1593 // Recursively parse args
1594 template <typename... TArgsT>
1595 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1596 {
1597 if(tArg > 0)
1598 {
1599 return BECentroidBarycentricChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1600 }
1601
1602 return BECentroidBarycentricChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1603 }
1604 };
1605
1606 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1607 // arguments to static template arguments.
1608 template <uint32_t... ArgsT>
1609 struct BEChooser
1610 {
1611 // Last Arg Terminator
1612 static PFN_BACKEND_FUNC GetFunc(SWR_BACKEND_FUNCS tArg)
1613 {
1614 switch(tArg)
1615 {
1616 case SWR_BACKEND_SINGLE_SAMPLE: return BackendSingleSample<ArgsT...>; break;
1617 case SWR_BACKEND_MSAA_PIXEL_RATE: return BackendPixelRate<ArgsT...>; break;
1618 case SWR_BACKEND_MSAA_SAMPLE_RATE: return BackendSampleRate<ArgsT...>; break;
1619 default:
1620 SWR_ASSERT(0 && "Invalid backend func\n");
1621 return nullptr;
1622 break;
1623 }
1624 }
1625
1626
1627 // Recursively parse args
1628 template <typename... TArgsT>
1629 static PFN_BACKEND_FUNC GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1630 {
1631 switch(tArg)
1632 {
1633 case SWR_MULTISAMPLE_1X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1634 case SWR_MULTISAMPLE_2X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1635 case SWR_MULTISAMPLE_4X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1636 case SWR_MULTISAMPLE_8X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1637 case SWR_MULTISAMPLE_16X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1638 default:
1639 SWR_ASSERT(0 && "Invalid sample count\n");
1640 return nullptr;
1641 break;
1642 }
1643 }
1644
1645 // Recursively parse args
1646 template <typename... TArgsT>
1647 static PFN_BACKEND_FUNC GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1648 {
1649 if(tArg > 0)
1650 {
1651 return BEChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1652 }
1653
1654 return BEChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1655 }
1656 };
1657
1658 template <uint32_t numRenderTargets, SWR_MULTISAMPLE_COUNT numSampleRates>
1659 void InitBackendOMFuncTable(PFN_OUTPUT_MERGER (&table)[numRenderTargets][numSampleRates])
1660 {
1661 for(uint32_t rtNum = SWR_ATTACHMENT_COLOR0; rtNum < numRenderTargets; rtNum++)
1662 {
1663 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1664 {
1665 table[rtNum][sampleCount] =
1666 OMChooser<>::GetFunc((SWR_RENDERTARGET_ATTACHMENT)rtNum, (SWR_MULTISAMPLE_COUNT)sampleCount);
1667 }
1668 }
1669 }
1670
1671 template <SWR_MULTISAMPLE_COUNT numSampleRates>
1672 void InitBackendBarycentricsTables(PFN_CALC_PIXEL_BARYCENTRICS (&pixelTable)[2],
1673 PFN_CALC_SAMPLE_BARYCENTRICS (&sampleTable)[2],
1674 PFN_CALC_CENTROID_BARYCENTRICS (&centroidTable)[numSampleRates][2][2][2])
1675 {
1676 pixelTable[0] = CalcPixelBarycentrics<0>;
1677 pixelTable[1] = CalcPixelBarycentrics<1>;
1678
1679 sampleTable[0] = CalcSampleBarycentrics<0>;
1680 sampleTable[1] = CalcSampleBarycentrics<1>;
1681
1682 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1683 {
1684 for(uint32_t baryMask = 0; baryMask < 2; baryMask++)
1685 {
1686 for(uint32_t patternNum = 0; patternNum < 2; patternNum++)
1687 {
1688 for(uint32_t forcedSampleEnable = 0; forcedSampleEnable < 2; forcedSampleEnable++)
1689 {
1690 centroidTable[sampleCount][baryMask][patternNum][forcedSampleEnable]=
1691 BECentroidBarycentricChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, baryMask, patternNum, forcedSampleEnable);
1692 }
1693 }
1694 }
1695 }
1696 }
1697
1698 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[2][2])
1699 {
1700 gBackendSingleSample[0][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1701 gBackendSingleSample[0][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1702 gBackendSingleSample[1][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1703 gBackendSingleSample[1][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1704 }
1705
1706 template <SWR_MULTISAMPLE_COUNT numSampleRates, SWR_MSAA_SAMPLE_PATTERN numSamplePatterns, SWR_INPUT_COVERAGE numCoverageModes>
1707 void InitBackendPixelFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numSamplePatterns][numCoverageModes][2][2])
1708 {
1709 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1710 {
1711 for(uint32_t samplePattern = SWR_MSAA_CENTER_PATTERN; samplePattern < numSamplePatterns; samplePattern++)
1712 {
1713 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1714 {
1715 for(uint32_t isCentroid = 0; isCentroid < 2; isCentroid++)
1716 {
1717 table[sampleCount][samplePattern][inputCoverage][isCentroid][0] =
1718 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1719 table[sampleCount][samplePattern][inputCoverage][isCentroid][1] =
1720 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 1, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1721 }
1722 }
1723 }
1724 }
1725 }
1726
1727 template <uint32_t numSampleRates, uint32_t numCoverageModes>
1728 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numCoverageModes][2])
1729 {
1730 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1731 {
1732 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1733 {
1734 table[sampleCount][inputCoverage][0] =
1735 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1736 table[sampleCount][inputCoverage][1] =
1737 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1738 }
1739 }
1740 }
1741
1742 void InitBackendFuncTables()
1743 {
1744 InitBackendSampleFuncTable(gBackendSingleSample);
1745 InitBackendPixelFuncTable<(SWR_MULTISAMPLE_COUNT)SWR_MULTISAMPLE_TYPE_MAX, SWR_MSAA_SAMPLE_PATTERN_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendPixelRateTable);
1746 InitBackendSampleFuncTable<SWR_MULTISAMPLE_TYPE_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendSampleRateTable);
1747 InitBackendOMFuncTable<SWR_NUM_RENDERTARGETS+1, SWR_MULTISAMPLE_TYPE_MAX>(gBackendOutputMergerTable);
1748 InitBackendBarycentricsTables<(SWR_MULTISAMPLE_COUNT)(SWR_MULTISAMPLE_TYPE_MAX)>(gPixelBarycentricTable, gSampleBarycentricTable, gCentroidBarycentricTable);
1749
1750 gBackendNullPs[SWR_MULTISAMPLE_1X] = &BackendNullPS < SWR_MULTISAMPLE_1X > ;
1751 gBackendNullPs[SWR_MULTISAMPLE_2X] = &BackendNullPS < SWR_MULTISAMPLE_2X > ;
1752 gBackendNullPs[SWR_MULTISAMPLE_4X] = &BackendNullPS < SWR_MULTISAMPLE_4X > ;
1753 gBackendNullPs[SWR_MULTISAMPLE_8X] = &BackendNullPS < SWR_MULTISAMPLE_8X > ;
1754 gBackendNullPs[SWR_MULTISAMPLE_16X] = &BackendNullPS < SWR_MULTISAMPLE_16X > ;
1755 }