swr: [rasterizer] Discard work + misc fixes
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / backend.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file backend.cpp
24 *
25 * @brief Backend handles rasterization, pixel shading and output merger
26 * operations.
27 *
28 ******************************************************************************/
29
30 #include <smmintrin.h>
31
32 #include "rdtsc_core.h"
33 #include "backend.h"
34 #include "depthstencil.h"
35 #include "tilemgr.h"
36 #include "memory/tilingtraits.h"
37 #include "core/multisample.h"
38
39 #include <algorithm>
40
41 const __m128 vTileOffsetsX = {0.5, KNOB_TILE_X_DIM - 0.5, 0.5, KNOB_TILE_X_DIM - 0.5};
42 const __m128 vTileOffsetsY = {0.5, 0.5, KNOB_TILE_Y_DIM - 0.5, KNOB_TILE_Y_DIM - 0.5};
43
44 /// @todo move to common lib
45 #define MASKTOVEC(i3,i2,i1,i0) {-i0,-i1,-i2,-i3}
46 static const __m128 gMaskToVec[] = {
47 MASKTOVEC(0,0,0,0),
48 MASKTOVEC(0,0,0,1),
49 MASKTOVEC(0,0,1,0),
50 MASKTOVEC(0,0,1,1),
51 MASKTOVEC(0,1,0,0),
52 MASKTOVEC(0,1,0,1),
53 MASKTOVEC(0,1,1,0),
54 MASKTOVEC(0,1,1,1),
55 MASKTOVEC(1,0,0,0),
56 MASKTOVEC(1,0,0,1),
57 MASKTOVEC(1,0,1,0),
58 MASKTOVEC(1,0,1,1),
59 MASKTOVEC(1,1,0,0),
60 MASKTOVEC(1,1,0,1),
61 MASKTOVEC(1,1,1,0),
62 MASKTOVEC(1,1,1,1),
63 };
64
65 typedef void(*PFN_CLEAR_TILES)(DRAW_CONTEXT*, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t, DWORD[4]);
66 static PFN_CLEAR_TILES sClearTilesTable[NUM_SWR_FORMATS];
67
68 //////////////////////////////////////////////////////////////////////////
69 /// @brief Process compute work.
70 /// @param pDC - pointer to draw context (dispatch).
71 /// @param workerId - The unique worker ID that is assigned to this thread.
72 /// @param threadGroupId - the linear index for the thread group within the dispatch.
73 void ProcessComputeBE(DRAW_CONTEXT* pDC, uint32_t workerId, uint32_t threadGroupId)
74 {
75 RDTSC_START(BEDispatch);
76
77 SWR_CONTEXT *pContext = pDC->pContext;
78
79 const COMPUTE_DESC* pTaskData = (COMPUTE_DESC*)pDC->pDispatch->GetTasksData();
80 SWR_ASSERT(pTaskData != nullptr);
81
82 // Ensure spill fill memory has been allocated.
83 if (pDC->pSpillFill[workerId] == nullptr)
84 {
85 ///@todo Add state which indicates the spill fill size.
86 pDC->pSpillFill[workerId] = (uint8_t*)pDC->pArena->AllocAlignedSync(4096 * 1024, sizeof(float) * 8);
87 }
88
89 const API_STATE& state = GetApiState(pDC);
90
91 SWR_CS_CONTEXT csContext{ 0 };
92 csContext.tileCounter = threadGroupId;
93 csContext.dispatchDims[0] = pTaskData->threadGroupCountX;
94 csContext.dispatchDims[1] = pTaskData->threadGroupCountY;
95 csContext.dispatchDims[2] = pTaskData->threadGroupCountZ;
96 csContext.pTGSM = pContext->pScratch[workerId];
97 csContext.pSpillFillBuffer = pDC->pSpillFill[workerId];
98
99 state.pfnCsFunc(GetPrivateState(pDC), &csContext);
100
101 UPDATE_STAT(CsInvocations, state.totalThreadsInGroup);
102
103 RDTSC_STOP(BEDispatch, 1, 0);
104 }
105
106 void ProcessSyncBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
107 {
108 SYNC_DESC *pSync = (SYNC_DESC*)pUserData;
109
110 uint32_t x, y;
111 MacroTileMgr::getTileIndices(macroTile, x, y);
112 SWR_ASSERT(x == 0 && y == 0);
113
114 if (pSync->pfnCallbackFunc != nullptr)
115 {
116 pSync->pfnCallbackFunc(pSync->userData, pSync->userData2, pSync->userData3);
117 }
118 }
119
120 void ProcessQueryStatsBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
121 {
122 QUERY_DESC* pQueryDesc = (QUERY_DESC*)pUserData;
123 SWR_STATS* pStats = pQueryDesc->pStats;
124 SWR_CONTEXT *pContext = pDC->pContext;
125
126 SWR_ASSERT(pStats != nullptr);
127
128 for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
129 {
130 pStats->DepthPassCount += pContext->stats[i].DepthPassCount;
131
132 pStats->IaVertices += pContext->stats[i].IaVertices;
133 pStats->IaPrimitives += pContext->stats[i].IaPrimitives;
134 pStats->VsInvocations += pContext->stats[i].VsInvocations;
135 pStats->HsInvocations += pContext->stats[i].HsInvocations;
136 pStats->DsInvocations += pContext->stats[i].DsInvocations;
137 pStats->GsInvocations += pContext->stats[i].GsInvocations;
138 pStats->PsInvocations += pContext->stats[i].PsInvocations;
139 pStats->CInvocations += pContext->stats[i].CInvocations;
140 pStats->CsInvocations += pContext->stats[i].CsInvocations;
141 pStats->CPrimitives += pContext->stats[i].CPrimitives;
142 pStats->GsPrimitives += pContext->stats[i].GsPrimitives;
143
144 for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
145 {
146 pStats->SoWriteOffset[stream] += pContext->stats[i].SoWriteOffset[stream];
147
148 /// @note client is required to provide valid write offset before every draw, so we clear
149 /// out the contents of the write offset when storing stats
150 pContext->stats[i].SoWriteOffset[stream] = 0;
151
152 pStats->SoPrimStorageNeeded[stream] += pContext->stats[i].SoPrimStorageNeeded[stream];
153 pStats->SoNumPrimsWritten[stream] += pContext->stats[i].SoNumPrimsWritten[stream];
154 }
155 }
156 }
157
158 template<SWR_FORMAT format>
159 void ClearRasterTile(uint8_t *pTileBuffer, simdvector &value)
160 {
161 auto lambda = [&](int comp)
162 {
163 FormatTraits<format>::storeSOA(comp, pTileBuffer, value.v[comp]);
164 pTileBuffer += (KNOB_SIMD_WIDTH * FormatTraits<format>::GetBPC(comp) / 8);
165 };
166
167 const uint32_t numIter = (KNOB_TILE_Y_DIM / SIMD_TILE_Y_DIM) * (KNOB_TILE_X_DIM / SIMD_TILE_X_DIM);
168 for (uint32_t i = 0; i < numIter; ++i)
169 {
170 UnrollerL<0, FormatTraits<format>::numComps, 1>::step(lambda);
171 }
172 }
173
174 template<SWR_FORMAT format>
175 INLINE void ClearMacroTile(DRAW_CONTEXT *pDC, SWR_RENDERTARGET_ATTACHMENT rt, uint32_t macroTile, DWORD clear[4])
176 {
177 // convert clear color to hottile format
178 // clear color is in RGBA float/uint32
179 simdvector vClear;
180 for (uint32_t comp = 0; comp < FormatTraits<format>::numComps; ++comp)
181 {
182 simdscalar vComp;
183 vComp = _simd_load1_ps((const float*)&clear[comp]);
184 if (FormatTraits<format>::isNormalized(comp))
185 {
186 vComp = _simd_mul_ps(vComp, _simd_set1_ps(FormatTraits<format>::fromFloat(comp)));
187 vComp = _simd_castsi_ps(_simd_cvtps_epi32(vComp));
188 }
189 vComp = FormatTraits<format>::pack(comp, vComp);
190 vClear.v[FormatTraits<format>::swizzle(comp)] = vComp;
191 }
192
193 uint32_t tileX, tileY;
194 MacroTileMgr::getTileIndices(macroTile, tileX, tileY);
195 const API_STATE& state = GetApiState(pDC);
196
197 int top = KNOB_MACROTILE_Y_DIM_FIXED * tileY;
198 int bottom = top + KNOB_MACROTILE_Y_DIM_FIXED - 1;
199 int left = KNOB_MACROTILE_X_DIM_FIXED * tileX;
200 int right = left + KNOB_MACROTILE_X_DIM_FIXED - 1;
201
202 // intersect with scissor
203 top = std::max(top, state.scissorInFixedPoint.top);
204 left = std::max(left, state.scissorInFixedPoint.left);
205 bottom = std::min(bottom, state.scissorInFixedPoint.bottom);
206 right = std::min(right, state.scissorInFixedPoint.right);
207
208 // translate to local hottile origin
209 top -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
210 bottom -= KNOB_MACROTILE_Y_DIM_FIXED * tileY;
211 left -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
212 right -= KNOB_MACROTILE_X_DIM_FIXED * tileX;
213
214 // convert to raster tiles
215 top >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
216 bottom >>= (KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
217 left >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
218 right >>= (KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
219
220 const int numSamples = GetNumSamples(pDC->pState->state.rastState.sampleCount);
221 // compute steps between raster tile samples / raster tiles / macro tile rows
222 const uint32_t rasterTileSampleStep = KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * FormatTraits<format>::bpp / 8;
223 const uint32_t rasterTileStep = (KNOB_TILE_X_DIM * KNOB_TILE_Y_DIM * (FormatTraits<format>::bpp / 8)) * numSamples;
224 const uint32_t macroTileRowStep = (KNOB_MACROTILE_X_DIM / KNOB_TILE_X_DIM) * rasterTileStep;
225 const uint32_t pitch = (FormatTraits<format>::bpp * KNOB_MACROTILE_X_DIM / 8);
226
227 HOTTILE *pHotTile = pDC->pContext->pHotTileMgr->GetHotTile(pDC->pContext, pDC, macroTile, rt, true, numSamples);
228 uint32_t rasterTileStartOffset = (ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, left, top)) * numSamples;
229 uint8_t* pRasterTileRow = pHotTile->pBuffer + rasterTileStartOffset; //(ComputeTileOffset2D< TilingTraits<SWR_TILE_SWRZ, FormatTraits<format>::bpp > >(pitch, x, y)) * numSamples;
230
231 // loop over all raster tiles in the current hot tile
232 for (int y = top; y <= bottom; ++y)
233 {
234 uint8_t* pRasterTile = pRasterTileRow;
235 for (int x = left; x <= right; ++x)
236 {
237 for( int sampleNum = 0; sampleNum < numSamples; sampleNum++)
238 {
239 ClearRasterTile<format>(pRasterTile, vClear);
240 pRasterTile += rasterTileSampleStep;
241 }
242 }
243 pRasterTileRow += macroTileRowStep;
244 }
245
246 pHotTile->state = HOTTILE_DIRTY;
247 }
248
249
250 void ProcessClearBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pUserData)
251 {
252 if (KNOB_FAST_CLEAR)
253 {
254 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
255 SWR_CONTEXT *pContext = pDC->pContext;
256 SWR_MULTISAMPLE_COUNT sampleCount = pDC->pState->state.rastState.sampleCount;
257 uint32_t numSamples = GetNumSamples(sampleCount);
258
259 SWR_ASSERT(pClear->flags.bits != 0); // shouldn't be here without a reason.
260
261 RDTSC_START(BEClear);
262
263 if (pClear->flags.mask & SWR_CLEAR_COLOR)
264 {
265 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_COLOR0, true, numSamples);
266 // All we want to do here is to mark the hot tile as being in a "needs clear" state.
267 pHotTile->clearData[0] = *(DWORD*)&(pClear->clearRTColor[0]);
268 pHotTile->clearData[1] = *(DWORD*)&(pClear->clearRTColor[1]);
269 pHotTile->clearData[2] = *(DWORD*)&(pClear->clearRTColor[2]);
270 pHotTile->clearData[3] = *(DWORD*)&(pClear->clearRTColor[3]);
271 pHotTile->state = HOTTILE_CLEAR;
272 }
273
274 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
275 {
276 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_DEPTH, true, numSamples);
277 pHotTile->clearData[0] = *(DWORD*)&pClear->clearDepth;
278 pHotTile->state = HOTTILE_CLEAR;
279 }
280
281 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
282 {
283 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, SWR_ATTACHMENT_STENCIL, true, numSamples);
284
285 pHotTile->clearData[0] = *(DWORD*)&pClear->clearStencil;
286 pHotTile->state = HOTTILE_CLEAR;
287 }
288
289 RDTSC_STOP(BEClear, 0, 0);
290 }
291 else
292 {
293 // Legacy clear
294 CLEAR_DESC *pClear = (CLEAR_DESC*)pUserData;
295 RDTSC_START(BEClear);
296
297 if (pClear->flags.mask & SWR_CLEAR_COLOR)
298 {
299 /// @todo clear data should come in as RGBA32_FLOAT
300 DWORD clearData[4];
301 float clearFloat[4];
302 clearFloat[0] = ((uint8_t*)(&pClear->clearRTColor))[0] / 255.0f;
303 clearFloat[1] = ((uint8_t*)(&pClear->clearRTColor))[1] / 255.0f;
304 clearFloat[2] = ((uint8_t*)(&pClear->clearRTColor))[2] / 255.0f;
305 clearFloat[3] = ((uint8_t*)(&pClear->clearRTColor))[3] / 255.0f;
306 clearData[0] = *(DWORD*)&clearFloat[0];
307 clearData[1] = *(DWORD*)&clearFloat[1];
308 clearData[2] = *(DWORD*)&clearFloat[2];
309 clearData[3] = *(DWORD*)&clearFloat[3];
310
311 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_COLOR_HOT_TILE_FORMAT];
312 SWR_ASSERT(pfnClearTiles != nullptr);
313
314 pfnClearTiles(pDC, SWR_ATTACHMENT_COLOR0, macroTile, clearData);
315 }
316
317 if (pClear->flags.mask & SWR_CLEAR_DEPTH)
318 {
319 DWORD clearData[4];
320 clearData[0] = *(DWORD*)&pClear->clearDepth;
321 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_DEPTH_HOT_TILE_FORMAT];
322 SWR_ASSERT(pfnClearTiles != nullptr);
323
324 pfnClearTiles(pDC, SWR_ATTACHMENT_DEPTH, macroTile, clearData);
325 }
326
327 if (pClear->flags.mask & SWR_CLEAR_STENCIL)
328 {
329 uint32_t value = pClear->clearStencil;
330 DWORD clearData[4];
331 clearData[0] = *(DWORD*)&value;
332 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[KNOB_STENCIL_HOT_TILE_FORMAT];
333
334 pfnClearTiles(pDC, SWR_ATTACHMENT_STENCIL, macroTile, clearData);
335 }
336
337 RDTSC_STOP(BEClear, 0, 0);
338 }
339 }
340
341
342 void ProcessStoreTileBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
343 {
344 RDTSC_START(BEStoreTiles);
345 STORE_TILES_DESC *pDesc = (STORE_TILES_DESC*)pData;
346 SWR_CONTEXT *pContext = pDC->pContext;
347
348 #ifdef KNOB_ENABLE_RDTSC
349 uint32_t numTiles = 0;
350 #endif
351 SWR_FORMAT srcFormat;
352 switch (pDesc->attachment)
353 {
354 case SWR_ATTACHMENT_COLOR0:
355 case SWR_ATTACHMENT_COLOR1:
356 case SWR_ATTACHMENT_COLOR2:
357 case SWR_ATTACHMENT_COLOR3:
358 case SWR_ATTACHMENT_COLOR4:
359 case SWR_ATTACHMENT_COLOR5:
360 case SWR_ATTACHMENT_COLOR6:
361 case SWR_ATTACHMENT_COLOR7: srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
362 case SWR_ATTACHMENT_DEPTH: srcFormat = KNOB_DEPTH_HOT_TILE_FORMAT; break;
363 case SWR_ATTACHMENT_STENCIL: srcFormat = KNOB_STENCIL_HOT_TILE_FORMAT; break;
364 default: SWR_ASSERT(false, "Unknown attachment: %d", pDesc->attachment); srcFormat = KNOB_COLOR_HOT_TILE_FORMAT; break;
365 }
366
367 uint32_t x, y;
368 MacroTileMgr::getTileIndices(macroTile, x, y);
369
370 // Only need to store the hottile if it's been rendered to...
371 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTile(pContext, pDC, macroTile, pDesc->attachment, false);
372 if (pHotTile)
373 {
374 // clear if clear is pending (i.e., not rendered to), then mark as dirty for store.
375 if (pHotTile->state == HOTTILE_CLEAR)
376 {
377 PFN_CLEAR_TILES pfnClearTiles = sClearTilesTable[srcFormat];
378 SWR_ASSERT(pfnClearTiles != nullptr);
379
380 pfnClearTiles(pDC, pDesc->attachment, macroTile, pHotTile->clearData);
381 }
382
383 if (pHotTile->state == HOTTILE_DIRTY || pDesc->postStoreTileState == (SWR_TILE_STATE)HOTTILE_DIRTY)
384 {
385 int destX = KNOB_MACROTILE_X_DIM * x;
386 int destY = KNOB_MACROTILE_Y_DIM * y;
387
388 pContext->pfnStoreTile(GetPrivateState(pDC), srcFormat,
389 pDesc->attachment, destX, destY, pHotTile->renderTargetArrayIndex, pHotTile->pBuffer);
390 }
391
392
393 if (pHotTile->state == HOTTILE_DIRTY || pHotTile->state == HOTTILE_RESOLVED)
394 {
395 pHotTile->state = (HOTTILE_STATE)pDesc->postStoreTileState;
396 }
397 }
398 RDTSC_STOP(BEStoreTiles, numTiles, pDC->drawId);
399 }
400
401
402 void ProcessDiscardInvalidateTilesBE(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t macroTile, void *pData)
403 {
404 DISCARD_INVALIDATE_TILES_DESC *pDesc = (DISCARD_INVALIDATE_TILES_DESC *)pData;
405 SWR_CONTEXT *pContext = pDC->pContext;
406
407 const int numSamples = GetNumSamples(pDC->pState->state.rastState.sampleCount);
408
409 for (uint32_t i = 0; i < SWR_NUM_ATTACHMENTS; ++i)
410 {
411 if (pDesc->attachmentMask & (1 << i))
412 {
413 HOTTILE *pHotTile = pContext->pHotTileMgr->GetHotTileNoLoad(
414 pContext, pDC, macroTile, (SWR_RENDERTARGET_ATTACHMENT)i, pDesc->createNewTiles, numSamples);
415 if (pHotTile)
416 {
417 pHotTile->state = (HOTTILE_STATE)pDesc->newTileState;
418 }
419 }
420 }
421 }
422
423 #if KNOB_SIMD_WIDTH == 8
424 const __m256 vCenterOffsetsX = {0.5, 1.5, 0.5, 1.5, 2.5, 3.5, 2.5, 3.5};
425 const __m256 vCenterOffsetsY = {0.5, 0.5, 1.5, 1.5, 0.5, 0.5, 1.5, 1.5};
426 const __m256 vULOffsetsX = {0.0, 1.0, 0.0, 1.0, 2.0, 3.0, 2.0, 3.0};
427 const __m256 vULOffsetsY = {0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0};
428 #else
429 #error Unsupported vector width
430 #endif
431
432 INLINE
433 bool CanEarlyZ(const SWR_PS_STATE *pPSState)
434 {
435 return (pPSState->forceEarlyZ || (!pPSState->writesODepth && !pPSState->usesSourceDepth && !pPSState->usesUAV));
436 }
437
438 simdmask ComputeUserClipMask(uint8_t clipMask, float* pUserClipBuffer, simdscalar vI, simdscalar vJ)
439 {
440 simdscalar vClipMask = _simd_setzero_ps();
441 uint32_t numClipDistance = _mm_popcnt_u32(clipMask);
442
443 for (uint32_t i = 0; i < numClipDistance; ++i)
444 {
445 // pull triangle clip distance values from clip buffer
446 simdscalar vA = _simd_broadcast_ss(pUserClipBuffer++);
447 simdscalar vB = _simd_broadcast_ss(pUserClipBuffer++);
448 simdscalar vC = _simd_broadcast_ss(pUserClipBuffer++);
449
450 // interpolate
451 simdscalar vInterp = vplaneps(vA, vB, vC, vI, vJ);
452
453 // clip if interpolated clip distance is < 0 || NAN
454 simdscalar vCull = _simd_cmp_ps(_simd_setzero_ps(), vInterp, _CMP_NLE_UQ);
455
456 vClipMask = _simd_or_ps(vClipMask, vCull);
457 }
458
459 return _simd_movemask_ps(vClipMask);
460 }
461
462 template<bool perspMask>
463 INLINE void CalcPixelBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
464 {
465 if(perspMask)
466 {
467 // evaluate I,J
468 psContext.vI.center = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.center, psContext.vY.center);
469 psContext.vJ.center = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.center, psContext.vY.center);
470 psContext.vI.center = _simd_mul_ps(psContext.vI.center, coeffs.vRecipDet);
471 psContext.vJ.center = _simd_mul_ps(psContext.vJ.center, coeffs.vRecipDet);
472
473 // interpolate 1/w
474 psContext.vOneOverW.center = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.center, psContext.vJ.center);
475 }
476 }
477
478 template<bool perspMask>
479 INLINE void CalcSampleBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext)
480 {
481 if(perspMask)
482 {
483 // evaluate I,J
484 psContext.vI.sample = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.sample, psContext.vY.sample);
485 psContext.vJ.sample = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.sample, psContext.vY.sample);
486 psContext.vI.sample = _simd_mul_ps(psContext.vI.sample, coeffs.vRecipDet);
487 psContext.vJ.sample = _simd_mul_ps(psContext.vJ.sample, coeffs.vRecipDet);
488
489 // interpolate 1/w
490 psContext.vOneOverW.sample = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.sample, psContext.vJ.sample);
491 }
492 }
493
494
495 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
496 // Centroid behaves exactly as follows :
497 // (1) If all samples in the primitive are covered, the attribute is evaluated at the pixel center (even if the sample pattern does not happen to
498 // have a sample location there).
499 // (2) Else the attribute is evaluated at the first covered sample, in increasing order of sample index, where sample coverage is after ANDing the
500 // coverage with the SampleMask Rasterizer State.
501 // (3) If no samples are covered, such as on helper pixels executed off the bounds of a primitive to fill out 2x2 pixel stamps, the attribute is
502 // evaluated as follows : If the SampleMask Rasterizer state is a subset of the samples in the pixel, then the first sample covered by the
503 // SampleMask Rasterizer State is the evaluation point.Otherwise (full SampleMask), the pixel center is the evaluation point.
504 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
505 template<SWR_MULTISAMPLE_COUNT sampleCount, bool bForcedSampleCount>
506 INLINE void CalcCentroidPos(SWR_PS_CONTEXT &psContext, const uint64_t *const coverageMask, const uint32_t sampleMask,
507 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
508 {
509 uint32_t inputMask[KNOB_SIMD_WIDTH];
510
511 generateInputCoverage<sampleCount, 1, bForcedSampleCount>(coverageMask, inputMask, sampleMask);
512
513 // Case (2) - partially covered pixel
514
515 // scan for first covered sample per pixel in the 4x2 span
516 unsigned long sampleNum[KNOB_SIMD_WIDTH];
517 (inputMask[0] > 0) ? (_BitScanForward(&sampleNum[0], inputMask[0])) : (sampleNum[0] = 0);
518 (inputMask[1] > 0) ? (_BitScanForward(&sampleNum[1], inputMask[1])) : (sampleNum[1] = 0);
519 (inputMask[2] > 0) ? (_BitScanForward(&sampleNum[2], inputMask[2])) : (sampleNum[2] = 0);
520 (inputMask[3] > 0) ? (_BitScanForward(&sampleNum[3], inputMask[3])) : (sampleNum[3] = 0);
521 (inputMask[4] > 0) ? (_BitScanForward(&sampleNum[4], inputMask[4])) : (sampleNum[4] = 0);
522 (inputMask[5] > 0) ? (_BitScanForward(&sampleNum[5], inputMask[5])) : (sampleNum[5] = 0);
523 (inputMask[6] > 0) ? (_BitScanForward(&sampleNum[6], inputMask[6])) : (sampleNum[6] = 0);
524 (inputMask[7] > 0) ? (_BitScanForward(&sampleNum[7], inputMask[7])) : (sampleNum[7] = 0);
525
526 // look up and set the sample offsets from UL pixel corner for first covered sample
527 __m256 vXSample = _mm256_set_ps(MultisampleTraits<sampleCount>::X(sampleNum[7]),
528 MultisampleTraits<sampleCount>::X(sampleNum[6]),
529 MultisampleTraits<sampleCount>::X(sampleNum[5]),
530 MultisampleTraits<sampleCount>::X(sampleNum[4]),
531 MultisampleTraits<sampleCount>::X(sampleNum[3]),
532 MultisampleTraits<sampleCount>::X(sampleNum[2]),
533 MultisampleTraits<sampleCount>::X(sampleNum[1]),
534 MultisampleTraits<sampleCount>::X(sampleNum[0]));
535
536 __m256 vYSample = _mm256_set_ps(MultisampleTraits<sampleCount>::Y(sampleNum[7]),
537 MultisampleTraits<sampleCount>::Y(sampleNum[6]),
538 MultisampleTraits<sampleCount>::Y(sampleNum[5]),
539 MultisampleTraits<sampleCount>::Y(sampleNum[4]),
540 MultisampleTraits<sampleCount>::Y(sampleNum[3]),
541 MultisampleTraits<sampleCount>::Y(sampleNum[2]),
542 MultisampleTraits<sampleCount>::Y(sampleNum[1]),
543 MultisampleTraits<sampleCount>::Y(sampleNum[0]));
544 // add sample offset to UL pixel corner
545 vXSample = _simd_add_ps(vXSamplePosUL, vXSample);
546 vYSample = _simd_add_ps(vYSamplePosUL, vYSample);
547
548 // Case (1) and case (3b) - All samples covered or not covered with full SampleMask
549 static const __m256i vFullyCoveredMask = MultisampleTraits<sampleCount>::FullSampleMask();
550 __m256i vInputCoveragei = _mm256_set_epi32(inputMask[7], inputMask[6], inputMask[5], inputMask[4], inputMask[3], inputMask[2], inputMask[1], inputMask[0]);
551 __m256i vAllSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vFullyCoveredMask);
552
553 static const __m256i vZero = _simd_setzero_si();
554 const __m256i vSampleMask = _simd_and_si(_simd_set1_epi32(sampleMask), vFullyCoveredMask);
555 __m256i vNoSamplesCovered = _simd_cmpeq_epi32(vInputCoveragei, vZero);
556 __m256i vIsFullSampleMask = _simd_cmpeq_epi32(vSampleMask, vFullyCoveredMask);
557 __m256i vCase3b = _simd_and_si(vNoSamplesCovered, vIsFullSampleMask);
558
559 __m256i vEvalAtCenter = _simd_or_si(vAllSamplesCovered, vCase3b);
560
561 // set the centroid position based on results from above
562 psContext.vX.centroid = _simd_blendv_ps(vXSample, psContext.vX.center, _simd_castsi_ps(vEvalAtCenter));
563 psContext.vY.centroid = _simd_blendv_ps(vYSample, psContext.vY.center, _simd_castsi_ps(vEvalAtCenter));
564
565 // Case (3a) No samples covered and partial sample mask
566 __m256i vSomeSampleMaskSamples = _simd_cmplt_epi32(vSampleMask, vFullyCoveredMask);
567 // sample mask should never be all 0's for this case, but handle it anyways
568 unsigned long firstCoveredSampleMaskSample = 0;
569 (sampleMask > 0) ? (_BitScanForward(&firstCoveredSampleMaskSample, sampleMask)) : (firstCoveredSampleMaskSample = 0);
570
571 __m256i vCase3a = _simd_and_si(vNoSamplesCovered, vSomeSampleMaskSamples);
572
573 vXSample = _simd_set1_ps(MultisampleTraits<sampleCount>::X(firstCoveredSampleMaskSample));
574 vYSample = _simd_set1_ps(MultisampleTraits<sampleCount>::Y(firstCoveredSampleMaskSample));
575
576 // blend in case 3a pixel locations
577 psContext.vX.centroid = _simd_blendv_ps(psContext.vX.centroid, vXSample, _simd_castsi_ps(vCase3a));
578 psContext.vY.centroid = _simd_blendv_ps(psContext.vY.centroid, vYSample, _simd_castsi_ps(vCase3a));
579 }
580
581 template<uint32_t sampleCount, uint32_t persp, uint32_t standardPattern, uint32_t forcedMultisampleCount>
582 INLINE void CalcCentroidBarycentrics(const BarycentricCoeffs& coeffs, SWR_PS_CONTEXT &psContext,
583 const uint64_t *const coverageMask, const uint32_t sampleMask,
584 const simdscalar vXSamplePosUL, const simdscalar vYSamplePosUL)
585 {
586 static const bool bPersp = (bool)persp;
587 static const bool bIsStandardPattern = (bool)standardPattern;
588 static const bool bForcedMultisampleCount = (bool)forcedMultisampleCount;
589
590 // calculate centroid positions
591 if(bPersp)
592 {
593 if(bIsStandardPattern)
594 {
595 ///@ todo: don't need to generate input coverage 2x if input coverage and centroid
596 CalcCentroidPos<(SWR_MULTISAMPLE_COUNT)sampleCount, bForcedMultisampleCount>(psContext, coverageMask, sampleMask, vXSamplePosUL, vYSamplePosUL);
597 }
598 else
599 {
600 static const __m256 pixelCenter = _simd_set1_ps(0.5f);
601 psContext.vX.centroid = _simd_add_ps(vXSamplePosUL, pixelCenter);
602 psContext.vY.centroid = _simd_add_ps(vYSamplePosUL, pixelCenter);
603 }
604 // evaluate I,J
605 psContext.vI.centroid = vplaneps(coeffs.vIa, coeffs.vIb, coeffs.vIc, psContext.vX.centroid, psContext.vY.centroid);
606 psContext.vJ.centroid = vplaneps(coeffs.vJa, coeffs.vJb, coeffs.vJc, psContext.vX.centroid, psContext.vY.centroid);
607 psContext.vI.centroid = _simd_mul_ps(psContext.vI.centroid, coeffs.vRecipDet);
608 psContext.vJ.centroid = _simd_mul_ps(psContext.vJ.centroid, coeffs.vRecipDet);
609
610 // interpolate 1/w
611 psContext.vOneOverW.centroid = vplaneps(coeffs.vAOneOverW, coeffs.vBOneOverW, coeffs.vCOneOverW, psContext.vI.centroid, psContext.vJ.centroid);
612 }
613 }
614
615 template<uint32_t NumRT, uint32_t sampleCountT>
616 void OutputMerger(SWR_PS_CONTEXT &psContext, uint8_t* (&pColorBase)[SWR_NUM_RENDERTARGETS], uint32_t sample, const SWR_BLEND_STATE *pBlendState,
617 const PFN_BLEND_JIT_FUNC (&pfnBlendFunc)[SWR_NUM_RENDERTARGETS], simdscalar &coverageMask, simdscalar depthPassMask)
618 {
619 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
620 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
621 uint32_t rasterTileColorOffset = MultisampleTraits<sampleCount>::RasterTileColorOffset(sample);
622 simdvector blendOut;
623
624 for(uint32_t rt = 0; rt < NumRT; ++rt)
625 {
626 uint8_t *pColorSample;
627 if(sampleCount == SWR_MULTISAMPLE_1X)
628 {
629 pColorSample = pColorBase[rt];
630 }
631 else
632 {
633 pColorSample = pColorBase[rt] + rasterTileColorOffset;
634 }
635
636 const SWR_RENDER_TARGET_BLEND_STATE *pRTBlend = &pBlendState->renderTarget[rt];
637 // pfnBlendFunc may not update all channels. Initialize with PS output.
638 /// TODO: move this into the blend JIT.
639 blendOut = psContext.shaded[rt];
640
641 // Blend outputs and update coverage mask for alpha test
642 if(pfnBlendFunc[rt] != nullptr)
643 {
644 pfnBlendFunc[rt](
645 pBlendState,
646 psContext.shaded[rt],
647 psContext.shaded[1],
648 sample,
649 pColorSample,
650 blendOut,
651 &psContext.oMask,
652 (simdscalari*)&coverageMask);
653 }
654
655 // final write mask
656 simdscalari outputMask = _simd_castps_si(_simd_and_ps(coverageMask, depthPassMask));
657
658 ///@todo can only use maskstore fast path if bpc is 32. Assuming hot tile is RGBA32_FLOAT.
659 static_assert(KNOB_COLOR_HOT_TILE_FORMAT == R32G32B32A32_FLOAT, "Unsupported hot tile format");
660
661 const uint32_t simd = KNOB_SIMD_WIDTH * sizeof(float);
662
663 // store with color mask
664 if(!pRTBlend->writeDisableRed)
665 {
666 _simd_maskstore_ps((float*)pColorSample, outputMask, blendOut.x);
667 }
668 if(!pRTBlend->writeDisableGreen)
669 {
670 _simd_maskstore_ps((float*)(pColorSample + simd), outputMask, blendOut.y);
671 }
672 if(!pRTBlend->writeDisableBlue)
673 {
674 _simd_maskstore_ps((float*)(pColorSample + simd * 2), outputMask, blendOut.z);
675 }
676 if(!pRTBlend->writeDisableAlpha)
677 {
678 _simd_maskstore_ps((float*)(pColorSample + simd * 3), outputMask, blendOut.w);
679 }
680 }
681 }
682
683 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
684 void BackendSingleSample(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
685 {
686 RDTSC_START(BESetup);
687 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
688 static const bool bInputCoverage = (bool)inputCoverage;
689 static const bool bCentroidPos = (bool)centroidPos;
690
691 SWR_CONTEXT *pContext = pDC->pContext;
692 const API_STATE& state = GetApiState(pDC);
693 const SWR_RASTSTATE& rastState = state.rastState;
694 const SWR_PS_STATE *pPSState = &state.psState;
695 const SWR_BLEND_STATE *pBlendState = &state.blendState;
696 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
697 uint64_t coverageMask = work.coverageMask[0];
698
699 // broadcast scalars
700 BarycentricCoeffs coeffs;
701 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
702 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
703 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
704
705 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
706 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
707 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
708
709 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
710 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
711 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
712
713 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
714
715 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
716 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
717 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
718
719 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
720 uint32_t NumRT = state.psState.numRenderTargets;
721 for(uint32_t rt = 0; rt < NumRT; ++rt)
722 {
723 pColorBase[rt] = renderBuffers.pColor[rt];
724 }
725 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
726 RDTSC_STOP(BESetup, 0, 0);
727
728 SWR_PS_CONTEXT psContext;
729 psContext.pAttribs = work.pAttribs;
730 psContext.pPerspAttribs = work.pPerspAttribs;
731 psContext.frontFace = work.triFlags.frontFacing;
732 psContext.primID = work.triFlags.primID;
733
734 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
735 psContext.I = work.I;
736 psContext.J = work.J;
737 psContext.recipDet = work.recipDet;
738 psContext.pRecipW = work.pRecipW;
739 psContext.pSamplePosX = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosX;
740 psContext.pSamplePosY = (const float*)&MultisampleTraits<SWR_MULTISAMPLE_1X>::samplePosY;
741
742 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
743 {
744 // UL pixel corner
745 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
746 // pixel center
747 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
748
749 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
750 {
751 if(bInputCoverage)
752 {
753 generateInputCoverage<SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
754 }
755
756 if(coverageMask & MASK)
757 {
758 RDTSC_START(BEBarycentric);
759 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
760 // pixel center
761 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
762
763 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
764
765 if(bCentroidPos)
766 {
767 // for 1x case, centroid is pixel center
768 psContext.vX.centroid = psContext.vX.center;
769 psContext.vY.centroid = psContext.vY.center;
770 psContext.vI.centroid = psContext.vI.center;
771 psContext.vJ.centroid = psContext.vJ.center;
772 psContext.vOneOverW.centroid = psContext.vOneOverW.center;
773 }
774
775 // interpolate z
776 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
777 RDTSC_STOP(BEBarycentric, 0, 0);
778
779 simdmask clipCoverageMask = coverageMask & MASK;
780
781 // interpolate user clip distance if available
782 if(rastState.clipDistanceMask)
783 {
784 clipCoverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
785 psContext.vI.center, psContext.vJ.center);
786 }
787
788 simdscalar vCoverageMask = vMask(clipCoverageMask);
789 simdscalar depthPassMask = vCoverageMask;
790 simdscalar stencilPassMask = vCoverageMask;
791
792 // Early-Z?
793 if(CanEarlyZ(pPSState))
794 {
795 RDTSC_START(BEEarlyDepthTest);
796 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
797 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
798 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
799
800 // early-exit if no pixels passed depth or earlyZ is forced on
801 if(pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
802 {
803 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
804 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
805
806 if (!_simd_movemask_ps(depthPassMask))
807 {
808 goto Endtile;
809 }
810 }
811 }
812
813 psContext.sampleIndex = 0;
814 psContext.activeMask = _simd_castps_si(vCoverageMask);
815
816 // execute pixel shader
817 RDTSC_START(BEPixelShader);
818 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
819 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
820 RDTSC_STOP(BEPixelShader, 0, 0);
821
822 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
823
824 // late-Z
825 if(!CanEarlyZ(pPSState))
826 {
827 RDTSC_START(BELateDepthTest);
828 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
829 psContext.vZ, pDepthBase, vCoverageMask, pStencilBase, &stencilPassMask);
830 RDTSC_STOP(BELateDepthTest, 0, 0);
831
832 if(!_simd_movemask_ps(depthPassMask))
833 {
834 // need to call depth/stencil write for stencil write
835 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
836 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
837 goto Endtile;
838 }
839 }
840
841 uint32_t statMask = _simd_movemask_ps(depthPassMask);
842 uint32_t statCount = _mm_popcnt_u32(statMask);
843 UPDATE_STAT(DepthPassCount, statCount);
844
845 // output merger
846 RDTSC_START(BEOutputMerger);
847 backendFuncs.pfnOutputMerger(psContext, pColorBase, 0, pBlendState, state.pfnBlendFunc,
848 vCoverageMask, depthPassMask);
849
850 // do final depth write after all pixel kills
851 if (!pPSState->forceEarlyZ)
852 {
853 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
854 pDepthBase, depthPassMask, vCoverageMask, pStencilBase, stencilPassMask);
855 }
856 RDTSC_STOP(BEOutputMerger, 0, 0);
857 }
858
859 Endtile:
860 RDTSC_START(BEEndTile);
861 coverageMask >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
862 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
863 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
864
865 for(uint32_t rt = 0; rt < NumRT; ++rt)
866 {
867 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
868 }
869 RDTSC_STOP(BEEndTile, 0, 0);
870 }
871 }
872 }
873
874 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
875 void BackendSampleRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
876 {
877 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
878 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
879 static const bool bInputCoverage = (bool)inputCoverage;
880 static const bool bCentroidPos = (bool)centroidPos;
881
882 RDTSC_START(BESetup);
883
884 SWR_CONTEXT *pContext = pDC->pContext;
885 const API_STATE& state = GetApiState(pDC);
886 const SWR_RASTSTATE& rastState = state.rastState;
887 const SWR_PS_STATE *pPSState = &state.psState;
888 const SWR_BLEND_STATE *pBlendState = &state.blendState;
889 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
890
891 // broadcast scalars
892 BarycentricCoeffs coeffs;
893 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
894 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
895 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
896
897 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
898 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
899 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
900
901 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
902 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
903 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
904
905 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
906
907 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
908 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
909 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
910
911 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
912 uint32_t NumRT = state.psState.numRenderTargets;
913 for(uint32_t rt = 0; rt < NumRT; ++rt)
914 {
915 pColorBase[rt] = renderBuffers.pColor[rt];
916 }
917 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
918 RDTSC_STOP(BESetup, 0, 0);
919
920 SWR_PS_CONTEXT psContext;
921 psContext.pAttribs = work.pAttribs;
922 psContext.pPerspAttribs = work.pPerspAttribs;
923 psContext.pRecipW = work.pRecipW;
924 psContext.frontFace = work.triFlags.frontFacing;
925 psContext.primID = work.triFlags.primID;
926
927 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
928 psContext.I = work.I;
929 psContext.J = work.J;
930 psContext.recipDet = work.recipDet;
931 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
932 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
933 const uint32_t numSamples = MultisampleTraits<sampleCount>::numSamples;
934
935 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
936 {
937 // UL pixel corner
938 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
939 // pixel center
940 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
941
942 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
943 {
944 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
945 // pixel center
946 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
947
948 RDTSC_START(BEBarycentric);
949 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
950 RDTSC_STOP(BEBarycentric, 0, 0);
951
952 if(bInputCoverage)
953 {
954 generateInputCoverage<sampleCount, SWR_MSAA_STANDARD_PATTERN, false>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
955 }
956
957 if(bCentroidPos)
958 {
959 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
960 RDTSC_START(BEBarycentric);
961 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
962 RDTSC_STOP(BEBarycentric, 0, 0);
963 }
964
965 for(uint32_t sample = 0; sample < numSamples; sample++)
966 {
967 if (work.coverageMask[sample] & MASK)
968 {
969 RDTSC_START(BEBarycentric);
970
971 // calculate per sample positions
972 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
973 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
974
975 simdmask coverageMask = work.coverageMask[sample] & MASK;
976 simdscalar vCoverageMask = vMask(coverageMask);
977
978 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
979
980 // interpolate z
981 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
982
983 RDTSC_STOP(BEBarycentric, 0, 0);
984
985 // interpolate user clip distance if available
986 if (rastState.clipDistanceMask)
987 {
988 coverageMask &= ~ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
989 psContext.vI.sample, psContext.vJ.sample);
990 }
991
992 simdscalar depthPassMask = vCoverageMask;
993 simdscalar stencilPassMask = vCoverageMask;
994
995 // offset depth/stencil buffers current sample
996 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
997 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
998
999 // Early-Z?
1000 if (CanEarlyZ(pPSState))
1001 {
1002 RDTSC_START(BEEarlyDepthTest);
1003 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1004 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1005 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1006
1007 // early-exit if no samples passed depth or earlyZ is forced on.
1008 if (pPSState->forceEarlyZ || !_simd_movemask_ps(depthPassMask))
1009 {
1010 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1011 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1012
1013 if (!_simd_movemask_ps(depthPassMask))
1014 {
1015 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1016 continue;
1017 }
1018 }
1019 }
1020
1021 psContext.sampleIndex = sample;
1022 psContext.activeMask = _simd_castps_si(vCoverageMask);
1023
1024 // execute pixel shader
1025 RDTSC_START(BEPixelShader);
1026 UPDATE_STAT(PsInvocations, _mm_popcnt_u32(_simd_movemask_ps(vCoverageMask)));
1027 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1028 RDTSC_STOP(BEPixelShader, 0, 0);
1029
1030 vCoverageMask = _simd_castsi_ps(psContext.activeMask);
1031
1032 //// late-Z
1033 if (!CanEarlyZ(pPSState))
1034 {
1035 RDTSC_START(BELateDepthTest);
1036 depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1037 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1038 RDTSC_STOP(BELateDepthTest, 0, 0);
1039
1040 if (!_simd_movemask_ps(depthPassMask))
1041 {
1042 // need to call depth/stencil write for stencil write
1043 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1044 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1045
1046 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1047 continue;
1048 }
1049 }
1050
1051 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1052 uint32_t statCount = _mm_popcnt_u32(statMask);
1053 UPDATE_STAT(DepthPassCount, statCount);
1054
1055 // output merger
1056 RDTSC_START(BEOutputMerger);
1057 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1058 vCoverageMask, depthPassMask);
1059
1060 // do final depth write after all pixel kills
1061 if (!pPSState->forceEarlyZ)
1062 {
1063 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1064 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1065 }
1066 RDTSC_STOP(BEOutputMerger, 0, 0);
1067 }
1068 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1069 }
1070 RDTSC_START(BEEndTile);
1071 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1072 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1073
1074 for (uint32_t rt = 0; rt < NumRT; ++rt)
1075 {
1076 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1077 }
1078 RDTSC_STOP(BEEndTile, 0, 0);
1079 }
1080 }
1081 }
1082
1083 template<uint32_t sampleCountT, uint32_t samplePattern, uint32_t inputCoverage, uint32_t centroidPos, uint32_t forcedSampleCount>
1084 void BackendPixelRate(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1085 {
1086 // type safety guaranteed from template instantiation in BEChooser<>::GetFunc
1087 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1088 static const bool bIsStandardPattern = (bool)samplePattern;
1089 static const bool bInputCoverage = (bool)inputCoverage;
1090 static const bool bCentroidPos = (bool)centroidPos;
1091 static const bool bForcedSampleCount = (bool)forcedSampleCount;
1092
1093 RDTSC_START(BESetup);
1094
1095 SWR_CONTEXT *pContext = pDC->pContext;
1096 const API_STATE& state = GetApiState(pDC);
1097 const SWR_RASTSTATE& rastState = state.rastState;
1098 const SWR_PS_STATE *pPSState = &state.psState;
1099 const SWR_BLEND_STATE *pBlendState = &state.blendState;
1100 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1101
1102 // broadcast scalars
1103 BarycentricCoeffs coeffs;
1104 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1105 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1106 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1107
1108 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1109 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1110 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1111
1112 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1113 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1114 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1115
1116 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1117
1118 coeffs.vAOneOverW = _simd_broadcast_ss(&work.OneOverW[0]);
1119 coeffs.vBOneOverW = _simd_broadcast_ss(&work.OneOverW[1]);
1120 coeffs.vCOneOverW = _simd_broadcast_ss(&work.OneOverW[2]);
1121
1122 uint8_t *pColorBase[SWR_NUM_RENDERTARGETS];
1123 uint32_t NumRT = state.psState.numRenderTargets;
1124 for(uint32_t rt = 0; rt < NumRT; ++rt)
1125 {
1126 pColorBase[rt] = renderBuffers.pColor[rt];
1127 }
1128 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1129 RDTSC_STOP(BESetup, 0, 0);
1130
1131 SWR_PS_CONTEXT psContext;
1132 psContext.pAttribs = work.pAttribs;
1133 psContext.pPerspAttribs = work.pPerspAttribs;
1134 psContext.frontFace = work.triFlags.frontFacing;
1135 psContext.primID = work.triFlags.primID;
1136 psContext.pRecipW = work.pRecipW;
1137 // save Ia/Ib/Ic and Ja/Jb/Jc if we need to reevaluate i/j/k in the shader because of pull attribs
1138 psContext.I = work.I;
1139 psContext.J = work.J;
1140 psContext.recipDet = work.recipDet;
1141 psContext.pSamplePosX = (const float*)&MultisampleTraits<sampleCount>::samplePosX;
1142 psContext.pSamplePosY = (const float*)&MultisampleTraits<sampleCount>::samplePosY;
1143 psContext.sampleIndex = 0;
1144
1145 uint32_t numCoverageSamples;
1146 if(bIsStandardPattern)
1147 {
1148 numCoverageSamples = MultisampleTraits<sampleCount>::numSamples;
1149 }
1150 else
1151 {
1152 numCoverageSamples = 1;
1153 }
1154
1155 uint32_t numOMSamples;
1156 // RT has to be single sample if we're in forcedMSAA mode
1157 if(bForcedSampleCount && (sampleCount > SWR_MULTISAMPLE_1X))
1158 {
1159 numOMSamples = 1;
1160 }
1161 // unless we're forced to single sample, in which case we run the OM at the sample count of the RT
1162 else if(bForcedSampleCount && (sampleCount == SWR_MULTISAMPLE_1X))
1163 {
1164 numOMSamples = GetNumSamples(pBlendState->sampleCount);
1165 }
1166 // else we're in normal MSAA mode and rasterizer and OM are running at the same sample count
1167 else
1168 {
1169 numOMSamples = MultisampleTraits<sampleCount>::numSamples;
1170 }
1171
1172 for(uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1173 {
1174 psContext.vY.UL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1175 psContext.vY.center = _simd_add_ps(vCenterOffsetsY, _simd_set1_ps((float)yy));
1176 for(uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1177 {
1178 simdscalar vZ[MultisampleTraits<sampleCount>::numSamples]{ 0 };
1179 psContext.vX.UL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1180 // set pixel center positions
1181 psContext.vX.center = _simd_add_ps(vCenterOffsetsX, _simd_set1_ps((float)xx));
1182
1183 if (bInputCoverage)
1184 {
1185 generateInputCoverage<sampleCount, bIsStandardPattern, bForcedSampleCount>(&work.coverageMask[0], psContext.inputMask, pBlendState->sampleMask);
1186 }
1187
1188 if(bCentroidPos)
1189 {
1190 ///@ todo: don't need to genererate input coverage 2x if input coverage and centroid
1191 RDTSC_START(BEBarycentric);
1192 backendFuncs.pfnCalcCentroidBarycentrics(coeffs, psContext, &work.coverageMask[0], pBlendState->sampleMask, psContext.vX.UL, psContext.vY.UL);
1193 RDTSC_STOP(BEBarycentric, 0, 0);
1194 }
1195
1196 // if oDepth written to, or there is a potential to discard any samples, we need to
1197 // run the PS early, then interp or broadcast Z and test
1198 if(pPSState->writesODepth || pPSState->killsPixel)
1199 {
1200 RDTSC_START(BEBarycentric);
1201 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1202
1203 // interpolate z
1204 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1205 RDTSC_STOP(BEBarycentric, 0, 0);
1206
1207 // execute pixel shader
1208 RDTSC_START(BEPixelShader);
1209 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1210 RDTSC_STOP(BEPixelShader, 0, 0);
1211 }
1212 else
1213 {
1214 psContext.activeMask = _simd_set1_epi32(-1);
1215 }
1216
1217 // need to declare enough space for all samples
1218 simdscalar vCoverageMask[MultisampleTraits<sampleCount>::numSamples];
1219 simdscalar depthPassMask[MultisampleTraits<sampleCount>::numSamples];
1220 simdscalar stencilPassMask[MultisampleTraits<sampleCount>::numSamples];
1221 simdscalar anyDepthSamplePassed = _simd_setzero_ps();
1222 simdscalar anyStencilSamplePassed = _simd_setzero_ps();
1223 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1224 {
1225 vCoverageMask[sample] = vMask(work.coverageMask[sample] & MASK);
1226
1227 // pull mask back out for any discards and and with coverage
1228 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], _simd_castsi_ps(psContext.activeMask));
1229
1230 if (!_simd_movemask_ps(vCoverageMask[sample]))
1231 {
1232 vCoverageMask[sample] = depthPassMask[sample] = stencilPassMask[sample] = _simd_setzero_ps();
1233 continue;
1234 }
1235
1236 if(bForcedSampleCount)
1237 {
1238 // candidate pixels (that passed coverage) will cause shader invocation if any bits in the samplemask are set
1239 const simdscalar vSampleMask = _simd_castsi_ps(_simd_cmpgt_epi32(_simd_set1_epi32(pBlendState->sampleMask), _simd_setzero_si()));
1240 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, _simd_and_ps(vCoverageMask[sample], vSampleMask));
1241 continue;
1242 }
1243
1244 depthPassMask[sample] = vCoverageMask[sample];
1245
1246 // if oDepth isn't written to, we need to interpolate Z for each sample
1247 // if clip distances are enabled, we need to interpolate for each sample
1248 if(!pPSState->writesODepth || rastState.clipDistanceMask)
1249 {
1250 RDTSC_START(BEBarycentric);
1251 if(bIsStandardPattern)
1252 {
1253 // calculate per sample positions
1254 psContext.vX.sample = _simd_add_ps(psContext.vX.UL, MultisampleTraits<sampleCount>::vX(sample));
1255 psContext.vY.sample = _simd_add_ps(psContext.vY.UL, MultisampleTraits<sampleCount>::vY(sample));
1256 }
1257 else
1258 {
1259 psContext.vX.sample = psContext.vX.center;
1260 psContext.vY.sample = psContext.vY.center;
1261 }
1262
1263 // calc I & J per sample
1264 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1265
1266 // interpolate z
1267 if (!pPSState->writesODepth)
1268 {
1269 vZ[sample] = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1270 }
1271
1272 ///@todo: perspective correct vs non-perspective correct clipping?
1273 // interpolate clip distances
1274 if (rastState.clipDistanceMask)
1275 {
1276 uint8_t clipMask = ComputeUserClipMask(rastState.clipDistanceMask, work.pUserClipBuffer,
1277 psContext.vI.sample, psContext.vJ.sample);
1278 vCoverageMask[sample] = _simd_and_ps(vCoverageMask[sample], vMask(~clipMask));
1279 }
1280 RDTSC_STOP(BEBarycentric, 0, 0);
1281 }
1282 // else 'broadcast' and test psContext.vZ written from the PS each sample
1283 else
1284 {
1285 vZ[sample] = psContext.vZ;
1286 }
1287
1288 // offset depth/stencil buffers current sample
1289 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1290 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1291
1292 // ZTest for this sample
1293 RDTSC_START(BEEarlyDepthTest);
1294 stencilPassMask[sample] = vCoverageMask[sample];
1295 depthPassMask[sample] = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1296 vZ[sample], pDepthSample, vCoverageMask[sample], pStencilSample, &stencilPassMask[sample]);
1297 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1298
1299 anyDepthSamplePassed = _simd_or_ps(anyDepthSamplePassed, depthPassMask[sample]);
1300 anyStencilSamplePassed = _simd_or_ps(anyStencilSamplePassed, stencilPassMask[sample]);
1301 uint32_t statMask = _simd_movemask_ps(depthPassMask[sample]);
1302 uint32_t statCount = _mm_popcnt_u32(statMask);
1303 UPDATE_STAT(DepthPassCount, statCount);
1304 }
1305
1306 // if we didn't have to execute the PS early, and at least 1 sample passed the depth test, run the PS
1307 if(!pPSState->writesODepth && !pPSState->killsPixel && _simd_movemask_ps(anyDepthSamplePassed))
1308 {
1309 RDTSC_START(BEBarycentric);
1310 backendFuncs.pfnCalcPixelBarycentrics(coeffs, psContext);
1311 // interpolate z
1312 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.center, psContext.vJ.center);
1313 RDTSC_STOP(BEBarycentric, 0, 0);
1314
1315 // execute pixel shader
1316 RDTSC_START(BEPixelShader);
1317 state.psState.pfnPixelShader(GetPrivateState(pDC), &psContext);
1318 RDTSC_STOP(BEPixelShader, 0, 0);
1319 }
1320 ///@todo: make sure this works for kill pixel
1321 else if(!_simd_movemask_ps(anyStencilSamplePassed))
1322 {
1323 goto Endtile;
1324 }
1325
1326 // loop over all samples, broadcasting the results of the PS to all passing pixels
1327 for(uint32_t sample = 0; sample < numOMSamples; sample++)
1328 {
1329 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1330 uint8_t * pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1331
1332 // output merger
1333 RDTSC_START(BEOutputMerger);
1334
1335 // skip if none of the pixels for this sample passed
1336 simdscalar coverageMaskSample;
1337 simdscalar depthMaskSample;
1338 simdscalar stencilMaskSample;
1339 simdscalar vInterpolatedZ;
1340
1341 // forcedSampleCount outputs to any pixels with covered samples not masked off by SampleMask
1342 // depth test is disabled, so just set the z val to 0.
1343 if(bForcedSampleCount)
1344 {
1345 coverageMaskSample = depthMaskSample = anyDepthSamplePassed;
1346 vInterpolatedZ = _simd_setzero_ps();
1347 }
1348 else if(bIsStandardPattern)
1349 {
1350 if(!_simd_movemask_ps(depthPassMask[sample]))
1351 {
1352 depthPassMask[sample] = _simd_setzero_ps();
1353 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[sample], pDepthSample, depthPassMask[sample],
1354 vCoverageMask[sample], pStencilSample, stencilPassMask[sample]);
1355 continue;
1356 }
1357 coverageMaskSample = vCoverageMask[sample];
1358 depthMaskSample = depthPassMask[sample];
1359 stencilMaskSample = stencilPassMask[sample];
1360 vInterpolatedZ = vZ[sample];
1361 }
1362 else
1363 {
1364 // center pattern only needs to use a single depth test as all samples are at the same position
1365 if(!_simd_movemask_ps(depthPassMask[0]))
1366 {
1367 depthPassMask[0] = _simd_setzero_ps();
1368 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vZ[0], pDepthSample, depthPassMask[0],
1369 vCoverageMask[0], pStencilSample, stencilPassMask[0]);
1370 continue;
1371 }
1372 coverageMaskSample = (vCoverageMask[0]);
1373 depthMaskSample = depthPassMask[0];
1374 stencilMaskSample = stencilPassMask[0];
1375 vInterpolatedZ = vZ[0];
1376 }
1377
1378 // output merger
1379 RDTSC_START(BEOutputMerger);
1380 backendFuncs.pfnOutputMerger(psContext, pColorBase, sample, pBlendState, state.pfnBlendFunc,
1381 coverageMaskSample, depthMaskSample);
1382
1383 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, vInterpolatedZ, pDepthSample, depthMaskSample,
1384 coverageMaskSample, pStencilSample, stencilMaskSample);
1385 RDTSC_STOP(BEOutputMerger, 0, 0);
1386 }
1387
1388 Endtile:
1389 RDTSC_START(BEEndTile);
1390 for(uint32_t sample = 0; sample < numCoverageSamples; sample++)
1391 {
1392 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1393 }
1394
1395 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1396 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1397
1398 for(uint32_t rt = 0; rt < NumRT; ++rt)
1399 {
1400 pColorBase[rt] += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_COLOR_HOT_TILE_FORMAT>::bpp) / 8;
1401 }
1402 RDTSC_STOP(BEEndTile, 0, 0);
1403 }
1404 }
1405 }
1406 // optimized backend flow with NULL PS
1407 template<uint32_t sampleCountT>
1408 void BackendNullPS(DRAW_CONTEXT *pDC, uint32_t workerId, uint32_t x, uint32_t y, SWR_TRIANGLE_DESC &work, RenderOutputBuffers &renderBuffers)
1409 {
1410 RDTSC_START(BESetup);
1411
1412 static const SWR_MULTISAMPLE_COUNT sampleCount = (SWR_MULTISAMPLE_COUNT)sampleCountT;
1413 SWR_CONTEXT *pContext = pDC->pContext;
1414 const API_STATE& state = GetApiState(pDC);
1415 const BACKEND_FUNCS& backendFuncs = pDC->pState->backendFuncs;
1416
1417 // broadcast scalars
1418 BarycentricCoeffs coeffs;
1419 coeffs.vIa = _simd_broadcast_ss(&work.I[0]);
1420 coeffs.vIb = _simd_broadcast_ss(&work.I[1]);
1421 coeffs.vIc = _simd_broadcast_ss(&work.I[2]);
1422
1423 coeffs.vJa = _simd_broadcast_ss(&work.J[0]);
1424 coeffs.vJb = _simd_broadcast_ss(&work.J[1]);
1425 coeffs.vJc = _simd_broadcast_ss(&work.J[2]);
1426
1427 coeffs.vZa = _simd_broadcast_ss(&work.Z[0]);
1428 coeffs.vZb = _simd_broadcast_ss(&work.Z[1]);
1429 coeffs.vZc = _simd_broadcast_ss(&work.Z[2]);
1430
1431 coeffs.vRecipDet = _simd_broadcast_ss(&work.recipDet);
1432
1433 uint8_t *pDepthBase = renderBuffers.pDepth, *pStencilBase = renderBuffers.pStencil;
1434
1435 RDTSC_STOP(BESetup, 0, 0);
1436
1437 SWR_PS_CONTEXT psContext;
1438 for (uint32_t yy = y; yy < y + KNOB_TILE_Y_DIM; yy += SIMD_TILE_Y_DIM)
1439 {
1440 // UL pixel corner
1441 simdscalar vYSamplePosUL = _simd_add_ps(vULOffsetsY, _simd_set1_ps((float)yy));
1442
1443 for (uint32_t xx = x; xx < x + KNOB_TILE_X_DIM; xx += SIMD_TILE_X_DIM)
1444 {
1445 // UL pixel corners
1446 simdscalar vXSamplePosUL = _simd_add_ps(vULOffsetsX, _simd_set1_ps((float)xx));
1447
1448 // iterate over active samples
1449 unsigned long sample = 0;
1450 uint32_t sampleMask = state.blendState.sampleMask;
1451 while (_BitScanForward(&sample, sampleMask))
1452 {
1453 sampleMask &= ~(1 << sample);
1454 if (work.coverageMask[sample] & MASK)
1455 {
1456 RDTSC_START(BEBarycentric);
1457 // calculate per sample positions
1458 psContext.vX.sample = _simd_add_ps(vXSamplePosUL, MultisampleTraits<sampleCount>::vX(sample));
1459 psContext.vY.sample = _simd_add_ps(vYSamplePosUL, MultisampleTraits<sampleCount>::vY(sample));
1460
1461 backendFuncs.pfnCalcSampleBarycentrics(coeffs, psContext);
1462
1463 // interpolate z
1464 psContext.vZ = vplaneps(coeffs.vZa, coeffs.vZb, coeffs.vZc, psContext.vI.sample, psContext.vJ.sample);
1465
1466 RDTSC_STOP(BEBarycentric, 0, 0);
1467
1468 simdscalar vCoverageMask = vMask(work.coverageMask[sample] & MASK);
1469 simdscalar stencilPassMask = vCoverageMask;
1470
1471 // offset depth/stencil buffers current sample
1472 uint8_t *pDepthSample = pDepthBase + MultisampleTraits<sampleCount>::RasterTileDepthOffset(sample);
1473 uint8_t *pStencilSample = pStencilBase + MultisampleTraits<sampleCount>::RasterTileStencilOffset(sample);
1474
1475 RDTSC_START(BEEarlyDepthTest);
1476 simdscalar depthPassMask = DepthStencilTest(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing,
1477 psContext.vZ, pDepthSample, vCoverageMask, pStencilSample, &stencilPassMask);
1478 DepthStencilWrite(&state.vp[0], &state.depthStencilState, work.triFlags.frontFacing, psContext.vZ,
1479 pDepthSample, depthPassMask, vCoverageMask, pStencilSample, stencilPassMask);
1480 RDTSC_STOP(BEEarlyDepthTest, 0, 0);
1481
1482 uint32_t statMask = _simd_movemask_ps(depthPassMask);
1483 uint32_t statCount = _mm_popcnt_u32(statMask);
1484 UPDATE_STAT(DepthPassCount, statCount);
1485 }
1486 work.coverageMask[sample] >>= (SIMD_TILE_Y_DIM * SIMD_TILE_X_DIM);
1487 }
1488 pDepthBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_DEPTH_HOT_TILE_FORMAT>::bpp) / 8;
1489 pStencilBase += (KNOB_SIMD_WIDTH * FormatTraits<KNOB_STENCIL_HOT_TILE_FORMAT>::bpp) / 8;
1490 }
1491 }
1492 }
1493
1494 void InitClearTilesTable()
1495 {
1496 memset(sClearTilesTable, 0, sizeof(sClearTilesTable));
1497
1498 sClearTilesTable[R8G8B8A8_UNORM] = ClearMacroTile<R8G8B8A8_UNORM>;
1499 sClearTilesTable[B8G8R8A8_UNORM] = ClearMacroTile<B8G8R8A8_UNORM>;
1500 sClearTilesTable[R32_FLOAT] = ClearMacroTile<R32_FLOAT>;
1501 sClearTilesTable[R32G32B32A32_FLOAT] = ClearMacroTile<R32G32B32A32_FLOAT>;
1502 sClearTilesTable[R8_UINT] = ClearMacroTile<R8_UINT>;
1503 }
1504
1505 PFN_BACKEND_FUNC gBackendNullPs[SWR_MULTISAMPLE_TYPE_MAX];
1506 PFN_BACKEND_FUNC gBackendSingleSample[2][2] = {};
1507 PFN_BACKEND_FUNC gBackendPixelRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_MSAA_SAMPLE_PATTERN_MAX][SWR_INPUT_COVERAGE_MAX][2][2] = {};
1508 PFN_BACKEND_FUNC gBackendSampleRateTable[SWR_MULTISAMPLE_TYPE_MAX][SWR_INPUT_COVERAGE_MAX][2] = {};
1509 PFN_OUTPUT_MERGER gBackendOutputMergerTable[SWR_NUM_RENDERTARGETS+1][SWR_MULTISAMPLE_TYPE_MAX] = {};
1510 PFN_CALC_PIXEL_BARYCENTRICS gPixelBarycentricTable[2] = {};
1511 PFN_CALC_SAMPLE_BARYCENTRICS gSampleBarycentricTable[2] = {};
1512 PFN_CALC_CENTROID_BARYCENTRICS gCentroidBarycentricTable[SWR_MULTISAMPLE_TYPE_MAX][2][2][2] = {};
1513
1514 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1515 // arguments to static template arguments.
1516 template <uint32_t... ArgsT>
1517 struct OMChooser
1518 {
1519 // Last Arg Terminator
1520 static PFN_OUTPUT_MERGER GetFunc(SWR_MULTISAMPLE_COUNT tArg)
1521 {
1522 switch(tArg)
1523 {
1524 case SWR_MULTISAMPLE_1X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_1X>; break;
1525 case SWR_MULTISAMPLE_2X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_2X>; break;
1526 case SWR_MULTISAMPLE_4X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_4X>; break;
1527 case SWR_MULTISAMPLE_8X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_8X>; break;
1528 case SWR_MULTISAMPLE_16X: return OutputMerger<ArgsT..., SWR_MULTISAMPLE_16X>; break;
1529 default:
1530 SWR_ASSERT(0 && "Invalid sample count\n");
1531 return nullptr;
1532 break;
1533 }
1534 }
1535
1536 // Recursively parse args
1537 template <typename... TArgsT>
1538 static PFN_OUTPUT_MERGER GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1539 {
1540 switch(tArg)
1541 {
1542 case 0: return OMChooser<ArgsT..., 0>::GetFunc(remainingArgs...); break;
1543 case 1: return OMChooser<ArgsT..., 1>::GetFunc(remainingArgs...); break;
1544 case 2: return OMChooser<ArgsT..., 2>::GetFunc(remainingArgs...); break;
1545 case 3: return OMChooser<ArgsT..., 3>::GetFunc(remainingArgs...); break;
1546 case 4: return OMChooser<ArgsT..., 4>::GetFunc(remainingArgs...); break;
1547 case 5: return OMChooser<ArgsT..., 5>::GetFunc(remainingArgs...); break;
1548 case 6: return OMChooser<ArgsT..., 6>::GetFunc(remainingArgs...); break;
1549 case 7: return OMChooser<ArgsT..., 7>::GetFunc(remainingArgs...); break;
1550 case 8: return OMChooser<ArgsT..., 8>::GetFunc(remainingArgs...); break;
1551 default:
1552 SWR_ASSERT(0 && "Invalid RT index\n");
1553 return nullptr;
1554 break;
1555 }
1556 }
1557 };
1558
1559 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1560 // arguments to static template arguments.
1561 template <uint32_t... ArgsT>
1562 struct BECentroidBarycentricChooser
1563 {
1564
1565 // Last Arg Terminator
1566 template <typename... TArgsT>
1567 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg)
1568 {
1569 if(tArg > 0)
1570 {
1571 return CalcCentroidBarycentrics<ArgsT..., 1>;
1572 }
1573
1574 return CalcCentroidBarycentrics<ArgsT..., 0>;
1575 }
1576
1577 // Recursively parse args
1578 template <typename... TArgsT>
1579 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1580 {
1581 switch(tArg)
1582 {
1583 case SWR_MULTISAMPLE_1X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1584 case SWR_MULTISAMPLE_2X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1585 case SWR_MULTISAMPLE_4X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1586 case SWR_MULTISAMPLE_8X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1587 case SWR_MULTISAMPLE_16X: return BECentroidBarycentricChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1588 default:
1589 SWR_ASSERT(0 && "Invalid sample count\n");
1590 return nullptr;
1591 break;
1592 }
1593 }
1594
1595 // Recursively parse args
1596 template <typename... TArgsT>
1597 static PFN_CALC_CENTROID_BARYCENTRICS GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1598 {
1599 if(tArg > 0)
1600 {
1601 return BECentroidBarycentricChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1602 }
1603
1604 return BECentroidBarycentricChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1605 }
1606 };
1607
1608 // Recursive template used to auto-nest conditionals. Converts dynamic enum function
1609 // arguments to static template arguments.
1610 template <uint32_t... ArgsT>
1611 struct BEChooser
1612 {
1613 // Last Arg Terminator
1614 static PFN_BACKEND_FUNC GetFunc(SWR_BACKEND_FUNCS tArg)
1615 {
1616 switch(tArg)
1617 {
1618 case SWR_BACKEND_SINGLE_SAMPLE: return BackendSingleSample<ArgsT...>; break;
1619 case SWR_BACKEND_MSAA_PIXEL_RATE: return BackendPixelRate<ArgsT...>; break;
1620 case SWR_BACKEND_MSAA_SAMPLE_RATE: return BackendSampleRate<ArgsT...>; break;
1621 default:
1622 SWR_ASSERT(0 && "Invalid backend func\n");
1623 return nullptr;
1624 break;
1625 }
1626 }
1627
1628
1629 // Recursively parse args
1630 template <typename... TArgsT>
1631 static PFN_BACKEND_FUNC GetFunc(SWR_MULTISAMPLE_COUNT tArg, TArgsT... remainingArgs)
1632 {
1633 switch(tArg)
1634 {
1635 case SWR_MULTISAMPLE_1X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_1X>::GetFunc(remainingArgs...); break;
1636 case SWR_MULTISAMPLE_2X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_2X>::GetFunc(remainingArgs...); break;
1637 case SWR_MULTISAMPLE_4X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_4X>::GetFunc(remainingArgs...); break;
1638 case SWR_MULTISAMPLE_8X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_8X>::GetFunc(remainingArgs...); break;
1639 case SWR_MULTISAMPLE_16X: return BEChooser<ArgsT..., SWR_MULTISAMPLE_16X>::GetFunc(remainingArgs...); break;
1640 default:
1641 SWR_ASSERT(0 && "Invalid sample count\n");
1642 return nullptr;
1643 break;
1644 }
1645 }
1646
1647 // Recursively parse args
1648 template <typename... TArgsT>
1649 static PFN_BACKEND_FUNC GetFunc(uint32_t tArg, TArgsT... remainingArgs)
1650 {
1651 if(tArg > 0)
1652 {
1653 return BEChooser<ArgsT..., 1>::GetFunc(remainingArgs...);
1654 }
1655
1656 return BEChooser<ArgsT..., 0>::GetFunc(remainingArgs...);
1657 }
1658 };
1659
1660 template <uint32_t numRenderTargets, SWR_MULTISAMPLE_COUNT numSampleRates>
1661 void InitBackendOMFuncTable(PFN_OUTPUT_MERGER (&table)[numRenderTargets][numSampleRates])
1662 {
1663 for(uint32_t rtNum = SWR_ATTACHMENT_COLOR0; rtNum < numRenderTargets; rtNum++)
1664 {
1665 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1666 {
1667 table[rtNum][sampleCount] =
1668 OMChooser<>::GetFunc((SWR_RENDERTARGET_ATTACHMENT)rtNum, (SWR_MULTISAMPLE_COUNT)sampleCount);
1669 }
1670 }
1671 }
1672
1673 template <SWR_MULTISAMPLE_COUNT numSampleRates>
1674 void InitBackendBarycentricsTables(PFN_CALC_PIXEL_BARYCENTRICS (&pixelTable)[2],
1675 PFN_CALC_SAMPLE_BARYCENTRICS (&sampleTable)[2],
1676 PFN_CALC_CENTROID_BARYCENTRICS (&centroidTable)[numSampleRates][2][2][2])
1677 {
1678 pixelTable[0] = CalcPixelBarycentrics<0>;
1679 pixelTable[1] = CalcPixelBarycentrics<1>;
1680
1681 sampleTable[0] = CalcSampleBarycentrics<0>;
1682 sampleTable[1] = CalcSampleBarycentrics<1>;
1683
1684 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1685 {
1686 for(uint32_t baryMask = 0; baryMask < 2; baryMask++)
1687 {
1688 for(uint32_t patternNum = 0; patternNum < 2; patternNum++)
1689 {
1690 for(uint32_t forcedSampleEnable = 0; forcedSampleEnable < 2; forcedSampleEnable++)
1691 {
1692 centroidTable[sampleCount][baryMask][patternNum][forcedSampleEnable]=
1693 BECentroidBarycentricChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, baryMask, patternNum, forcedSampleEnable);
1694 }
1695 }
1696 }
1697 }
1698 }
1699
1700 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[2][2])
1701 {
1702 gBackendSingleSample[0][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1703 gBackendSingleSample[0][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NONE, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1704 gBackendSingleSample[1][0] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1705 gBackendSingleSample[1][1] = BEChooser<>::GetFunc(SWR_MULTISAMPLE_1X, SWR_MSAA_STANDARD_PATTERN, SWR_INPUT_COVERAGE_NORMAL, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_SINGLE_SAMPLE);
1706 }
1707
1708 template <SWR_MULTISAMPLE_COUNT numSampleRates, SWR_MSAA_SAMPLE_PATTERN numSamplePatterns, SWR_INPUT_COVERAGE numCoverageModes>
1709 void InitBackendPixelFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numSamplePatterns][numCoverageModes][2][2])
1710 {
1711 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1712 {
1713 for(uint32_t samplePattern = SWR_MSAA_CENTER_PATTERN; samplePattern < numSamplePatterns; samplePattern++)
1714 {
1715 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1716 {
1717 for(uint32_t isCentroid = 0; isCentroid < 2; isCentroid++)
1718 {
1719 table[sampleCount][samplePattern][inputCoverage][isCentroid][0] =
1720 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1721 table[sampleCount][samplePattern][inputCoverage][isCentroid][1] =
1722 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, samplePattern, inputCoverage, isCentroid, 1, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_PIXEL_RATE);
1723 }
1724 }
1725 }
1726 }
1727 }
1728
1729 template <uint32_t numSampleRates, uint32_t numCoverageModes>
1730 void InitBackendSampleFuncTable(PFN_BACKEND_FUNC (&table)[numSampleRates][numCoverageModes][2])
1731 {
1732 for(uint32_t sampleCount = SWR_MULTISAMPLE_1X; sampleCount < numSampleRates; sampleCount++)
1733 {
1734 for(uint32_t inputCoverage = SWR_INPUT_COVERAGE_NONE; inputCoverage < numCoverageModes; inputCoverage++)
1735 {
1736 table[sampleCount][inputCoverage][0] =
1737 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 0, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1738 table[sampleCount][inputCoverage][1] =
1739 BEChooser<>::GetFunc((SWR_MULTISAMPLE_COUNT)sampleCount, SWR_MSAA_STANDARD_PATTERN, inputCoverage, 1, 0, (SWR_BACKEND_FUNCS)SWR_BACKEND_MSAA_SAMPLE_RATE);
1740 }
1741 }
1742 }
1743
1744 void InitBackendFuncTables()
1745 {
1746 InitBackendSampleFuncTable(gBackendSingleSample);
1747 InitBackendPixelFuncTable<(SWR_MULTISAMPLE_COUNT)SWR_MULTISAMPLE_TYPE_MAX, SWR_MSAA_SAMPLE_PATTERN_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendPixelRateTable);
1748 InitBackendSampleFuncTable<SWR_MULTISAMPLE_TYPE_MAX, SWR_INPUT_COVERAGE_MAX>(gBackendSampleRateTable);
1749 InitBackendOMFuncTable<SWR_NUM_RENDERTARGETS+1, SWR_MULTISAMPLE_TYPE_MAX>(gBackendOutputMergerTable);
1750 InitBackendBarycentricsTables<(SWR_MULTISAMPLE_COUNT)(SWR_MULTISAMPLE_TYPE_MAX)>(gPixelBarycentricTable, gSampleBarycentricTable, gCentroidBarycentricTable);
1751
1752 gBackendNullPs[SWR_MULTISAMPLE_1X] = &BackendNullPS < SWR_MULTISAMPLE_1X > ;
1753 gBackendNullPs[SWR_MULTISAMPLE_2X] = &BackendNullPS < SWR_MULTISAMPLE_2X > ;
1754 gBackendNullPs[SWR_MULTISAMPLE_4X] = &BackendNullPS < SWR_MULTISAMPLE_4X > ;
1755 gBackendNullPs[SWR_MULTISAMPLE_8X] = &BackendNullPS < SWR_MULTISAMPLE_8X > ;
1756 gBackendNullPs[SWR_MULTISAMPLE_16X] = &BackendNullPS < SWR_MULTISAMPLE_16X > ;
1757 }