swr: don't claim to allow setting layer/viewport from VS
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / binner.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file binner.cpp
24 *
25 * @brief Implementation for the macrotile binner
26 *
27 ******************************************************************************/
28
29 #include "context.h"
30 #include "frontend.h"
31 #include "conservativeRast.h"
32 #include "pa.h"
33 #include "rasterizer.h"
34 #include "rdtsc_core.h"
35 #include "tilemgr.h"
36
37 // Function Prototype
38 void BinPostSetupLines(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[3], simdscalar vRecipW[2], uint32_t primMask, simdscalari primID, simdscalari viewportIdx);
39
40 //////////////////////////////////////////////////////////////////////////
41 /// @brief Offsets added to post-viewport vertex positions based on
42 /// raster state.
43 static const simdscalar g_pixelOffsets[SWR_PIXEL_LOCATION_UL + 1] =
44 {
45 _simd_set1_ps(0.0f), // SWR_PIXEL_LOCATION_CENTER
46 _simd_set1_ps(0.5f), // SWR_PIXEL_LOCATION_UL
47 };
48
49 //////////////////////////////////////////////////////////////////////////
50 /// @brief Convert the X,Y coords of a triangle to the requested Fixed
51 /// Point precision from FP32.
52 template <typename PT = FixedPointTraits<Fixed_16_8>>
53 INLINE simdscalari fpToFixedPointVertical(const simdscalar vIn)
54 {
55 simdscalar vFixed = _simd_mul_ps(vIn, _simd_set1_ps(PT::ScaleT::value));
56 return _simd_cvtps_epi32(vFixed);
57 }
58
59 //////////////////////////////////////////////////////////////////////////
60 /// @brief Helper function to set the X,Y coords of a triangle to the
61 /// requested Fixed Point precision from FP32.
62 /// @param tri: simdvector[3] of FP triangle verts
63 /// @param vXi: fixed point X coords of tri verts
64 /// @param vYi: fixed point Y coords of tri verts
65 INLINE static void FPToFixedPoint(const simdvector * const tri, simdscalari(&vXi)[3], simdscalari(&vYi)[3])
66 {
67 vXi[0] = fpToFixedPointVertical(tri[0].x);
68 vYi[0] = fpToFixedPointVertical(tri[0].y);
69 vXi[1] = fpToFixedPointVertical(tri[1].x);
70 vYi[1] = fpToFixedPointVertical(tri[1].y);
71 vXi[2] = fpToFixedPointVertical(tri[2].x);
72 vYi[2] = fpToFixedPointVertical(tri[2].y);
73 }
74
75 //////////////////////////////////////////////////////////////////////////
76 /// @brief Calculate bounding box for current triangle
77 /// @tparam CT: ConservativeRastFETraits type
78 /// @param vX: fixed point X position for triangle verts
79 /// @param vY: fixed point Y position for triangle verts
80 /// @param bbox: fixed point bbox
81 /// *Note*: expects vX, vY to be in the correct precision for the type
82 /// of rasterization. This avoids unnecessary FP->fixed conversions.
83 template <typename CT>
84 INLINE void calcBoundingBoxIntVertical(const simdvector * const tri, simdscalari(&vX)[3], simdscalari(&vY)[3], simdBBox &bbox)
85 {
86 simdscalari vMinX = vX[0];
87 vMinX = _simd_min_epi32(vMinX, vX[1]);
88 vMinX = _simd_min_epi32(vMinX, vX[2]);
89
90 simdscalari vMaxX = vX[0];
91 vMaxX = _simd_max_epi32(vMaxX, vX[1]);
92 vMaxX = _simd_max_epi32(vMaxX, vX[2]);
93
94 simdscalari vMinY = vY[0];
95 vMinY = _simd_min_epi32(vMinY, vY[1]);
96 vMinY = _simd_min_epi32(vMinY, vY[2]);
97
98 simdscalari vMaxY = vY[0];
99 vMaxY = _simd_max_epi32(vMaxY, vY[1]);
100 vMaxY = _simd_max_epi32(vMaxY, vY[2]);
101
102 bbox.xmin = vMinX;
103 bbox.xmax = vMaxX;
104 bbox.ymin = vMinY;
105 bbox.ymax = vMaxY;
106 }
107
108 //////////////////////////////////////////////////////////////////////////
109 /// @brief FEConservativeRastT specialization of calcBoundingBoxIntVertical
110 /// Offsets BBox for conservative rast
111 template <>
112 INLINE void calcBoundingBoxIntVertical<FEConservativeRastT>(const simdvector * const tri, simdscalari(&vX)[3], simdscalari(&vY)[3], simdBBox &bbox)
113 {
114 // FE conservative rast traits
115 typedef FEConservativeRastT CT;
116
117 simdscalari vMinX = vX[0];
118 vMinX = _simd_min_epi32(vMinX, vX[1]);
119 vMinX = _simd_min_epi32(vMinX, vX[2]);
120
121 simdscalari vMaxX = vX[0];
122 vMaxX = _simd_max_epi32(vMaxX, vX[1]);
123 vMaxX = _simd_max_epi32(vMaxX, vX[2]);
124
125 simdscalari vMinY = vY[0];
126 vMinY = _simd_min_epi32(vMinY, vY[1]);
127 vMinY = _simd_min_epi32(vMinY, vY[2]);
128
129 simdscalari vMaxY = vY[0];
130 vMaxY = _simd_max_epi32(vMaxY, vY[1]);
131 vMaxY = _simd_max_epi32(vMaxY, vY[2]);
132
133 /// Bounding box needs to be expanded by 1/512 before snapping to 16.8 for conservative rasterization
134 /// expand bbox by 1/256; coverage will be correctly handled in the rasterizer.
135 bbox.xmin = _simd_sub_epi32(vMinX, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
136 bbox.xmax = _simd_add_epi32(vMaxX, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
137 bbox.ymin = _simd_sub_epi32(vMinY, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
138 bbox.ymax = _simd_add_epi32(vMaxY, _simd_set1_epi32(CT::BoundingBoxOffsetT::value));
139 }
140
141 //////////////////////////////////////////////////////////////////////////
142 /// @brief Processes attributes for the backend based on linkage mask and
143 /// linkage map. Essentially just doing an SOA->AOS conversion and pack.
144 /// @param pDC - Draw context
145 /// @param pa - Primitive Assembly state
146 /// @param linkageMask - Specifies which VS outputs are routed to PS.
147 /// @param pLinkageMap - maps VS attribute slot to PS slot
148 /// @param triIndex - Triangle to process attributes for
149 /// @param pBuffer - Output result
150 template<typename NumVertsT, typename IsSwizzledT, typename HasConstantInterpT, typename IsDegenerate>
151 INLINE void ProcessAttributes(
152 DRAW_CONTEXT *pDC,
153 PA_STATE&pa,
154 uint32_t triIndex,
155 uint32_t primId,
156 float *pBuffer)
157 {
158 static_assert(NumVertsT::value > 0 && NumVertsT::value <= 3, "Invalid value for NumVertsT");
159 const SWR_BACKEND_STATE& backendState = pDC->pState->state.backendState;
160 // Conservative Rasterization requires degenerate tris to have constant attribute interpolation
161 LONG constantInterpMask = IsDegenerate::value ? 0xFFFFFFFF : backendState.constantInterpolationMask;
162 const uint32_t provokingVertex = pDC->pState->state.frontendState.topologyProvokingVertex;
163 const PRIMITIVE_TOPOLOGY topo = pDC->pState->state.topology;
164
165 static const float constTable[3][4] = {
166 { 0.0f, 0.0f, 0.0f, 0.0f },
167 { 0.0f, 0.0f, 0.0f, 1.0f },
168 { 1.0f, 1.0f, 1.0f, 1.0f }
169 };
170
171 for (uint32_t i = 0; i < backendState.numAttributes; ++i)
172 {
173 uint32_t inputSlot;
174 if (IsSwizzledT::value)
175 {
176 SWR_ATTRIB_SWIZZLE attribSwizzle = backendState.swizzleMap[i];
177 inputSlot = VERTEX_ATTRIB_START_SLOT + attribSwizzle.sourceAttrib;
178
179 }
180 else
181 {
182 inputSlot = VERTEX_ATTRIB_START_SLOT + i;
183 }
184
185 __m128 attrib[3]; // triangle attribs (always 4 wide)
186 float* pAttribStart = pBuffer;
187
188 if (HasConstantInterpT::value || IsDegenerate::value)
189 {
190 if (_bittest(&constantInterpMask, i))
191 {
192 uint32_t vid;
193 uint32_t adjustedTriIndex;
194 static const uint32_t tristripProvokingVertex[] = { 0, 2, 1 };
195 static const int32_t quadProvokingTri[2][4] = { { 0, 0, 0, 1 },{ 0, -1, 0, 0 } };
196 static const uint32_t quadProvokingVertex[2][4] = { { 0, 1, 2, 2 },{ 0, 1, 1, 2 } };
197 static const int32_t qstripProvokingTri[2][4] = { { 0, 0, 0, 1 },{ -1, 0, 0, 0 } };
198 static const uint32_t qstripProvokingVertex[2][4] = { { 0, 1, 2, 1 },{ 0, 0, 2, 1 } };
199
200 switch (topo) {
201 case TOP_QUAD_LIST:
202 adjustedTriIndex = triIndex + quadProvokingTri[triIndex & 1][provokingVertex];
203 vid = quadProvokingVertex[triIndex & 1][provokingVertex];
204 break;
205 case TOP_QUAD_STRIP:
206 adjustedTriIndex = triIndex + qstripProvokingTri[triIndex & 1][provokingVertex];
207 vid = qstripProvokingVertex[triIndex & 1][provokingVertex];
208 break;
209 case TOP_TRIANGLE_STRIP:
210 adjustedTriIndex = triIndex;
211 vid = (triIndex & 1)
212 ? tristripProvokingVertex[provokingVertex]
213 : provokingVertex;
214 break;
215 default:
216 adjustedTriIndex = triIndex;
217 vid = provokingVertex;
218 break;
219 }
220
221 pa.AssembleSingle(inputSlot, adjustedTriIndex, attrib);
222
223 for (uint32_t i = 0; i < NumVertsT::value; ++i)
224 {
225 _mm_store_ps(pBuffer, attrib[vid]);
226 pBuffer += 4;
227 }
228 }
229 else
230 {
231 pa.AssembleSingle(inputSlot, triIndex, attrib);
232
233 for (uint32_t i = 0; i < NumVertsT::value; ++i)
234 {
235 _mm_store_ps(pBuffer, attrib[i]);
236 pBuffer += 4;
237 }
238 }
239 }
240 else
241 {
242 pa.AssembleSingle(inputSlot, triIndex, attrib);
243
244 for (uint32_t i = 0; i < NumVertsT::value; ++i)
245 {
246 _mm_store_ps(pBuffer, attrib[i]);
247 pBuffer += 4;
248 }
249 }
250
251 // pad out the attrib buffer to 3 verts to ensure the triangle
252 // interpolation code in the pixel shader works correctly for the
253 // 3 topologies - point, line, tri. This effectively zeros out the
254 // effect of the missing vertices in the triangle interpolation.
255 for (uint32_t v = NumVertsT::value; v < 3; ++v)
256 {
257 _mm_store_ps(pBuffer, attrib[NumVertsT::value - 1]);
258 pBuffer += 4;
259 }
260
261 // check for constant source overrides
262 if (IsSwizzledT::value)
263 {
264 uint32_t mask = backendState.swizzleMap[i].componentOverrideMask;
265 if (mask)
266 {
267 DWORD comp;
268 while (_BitScanForward(&comp, mask))
269 {
270 mask &= ~(1 << comp);
271
272 float constantValue = 0.0f;
273 switch ((SWR_CONSTANT_SOURCE)backendState.swizzleMap[i].constantSource)
274 {
275 case SWR_CONSTANT_SOURCE_CONST_0000:
276 case SWR_CONSTANT_SOURCE_CONST_0001_FLOAT:
277 case SWR_CONSTANT_SOURCE_CONST_1111_FLOAT:
278 constantValue = constTable[backendState.swizzleMap[i].constantSource][comp];
279 break;
280 case SWR_CONSTANT_SOURCE_PRIM_ID:
281 constantValue = *(float*)&primId;
282 break;
283 }
284
285 // apply constant value to all 3 vertices
286 for (uint32_t v = 0; v < 3; ++v)
287 {
288 pAttribStart[comp + v * 4] = constantValue;
289 }
290 }
291 }
292 }
293 }
294 }
295
296 //////////////////////////////////////////////////////////////////////////
297 /// @brief Gather scissor rect data based on per-prim viewport indices.
298 /// @param pScissorsInFixedPoint - array of scissor rects in 16.8 fixed point.
299 /// @param pViewportIndex - array of per-primitive vewport indexes.
300 /// @param scisXmin - output vector of per-prmitive scissor rect Xmin data.
301 /// @param scisYmin - output vector of per-prmitive scissor rect Ymin data.
302 /// @param scisXmax - output vector of per-prmitive scissor rect Xmax data.
303 /// @param scisYmax - output vector of per-prmitive scissor rect Ymax data.
304 //
305 /// @todo: Look at speeding this up -- weigh against corresponding costs in rasterizer.
306 template<size_t SimdWidth>
307 struct GatherScissors
308 {
309 static void Gather(const SWR_RECT* pScissorsInFixedPoint, const uint32_t* pViewportIndex,
310 simdscalari &scisXmin, simdscalari &scisYmin,
311 simdscalari &scisXmax, simdscalari &scisYmax)
312 {
313 SWR_ASSERT(0, "Unhandled Simd Width in Scissor Rect Gather");
314 }
315 };
316
317 template<>
318 struct GatherScissors<8>
319 {
320 static void Gather(const SWR_RECT* pScissorsInFixedPoint, const uint32_t* pViewportIndex,
321 simdscalari &scisXmin, simdscalari &scisYmin,
322 simdscalari &scisXmax, simdscalari &scisYmax)
323 {
324 scisXmin = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].xmin,
325 pScissorsInFixedPoint[pViewportIndex[1]].xmin,
326 pScissorsInFixedPoint[pViewportIndex[2]].xmin,
327 pScissorsInFixedPoint[pViewportIndex[3]].xmin,
328 pScissorsInFixedPoint[pViewportIndex[4]].xmin,
329 pScissorsInFixedPoint[pViewportIndex[5]].xmin,
330 pScissorsInFixedPoint[pViewportIndex[6]].xmin,
331 pScissorsInFixedPoint[pViewportIndex[7]].xmin);
332 scisYmin = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].ymin,
333 pScissorsInFixedPoint[pViewportIndex[1]].ymin,
334 pScissorsInFixedPoint[pViewportIndex[2]].ymin,
335 pScissorsInFixedPoint[pViewportIndex[3]].ymin,
336 pScissorsInFixedPoint[pViewportIndex[4]].ymin,
337 pScissorsInFixedPoint[pViewportIndex[5]].ymin,
338 pScissorsInFixedPoint[pViewportIndex[6]].ymin,
339 pScissorsInFixedPoint[pViewportIndex[7]].ymin);
340 scisXmax = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].xmax,
341 pScissorsInFixedPoint[pViewportIndex[1]].xmax,
342 pScissorsInFixedPoint[pViewportIndex[2]].xmax,
343 pScissorsInFixedPoint[pViewportIndex[3]].xmax,
344 pScissorsInFixedPoint[pViewportIndex[4]].xmax,
345 pScissorsInFixedPoint[pViewportIndex[5]].xmax,
346 pScissorsInFixedPoint[pViewportIndex[6]].xmax,
347 pScissorsInFixedPoint[pViewportIndex[7]].xmax);
348 scisYmax = _simd_set_epi32(pScissorsInFixedPoint[pViewportIndex[0]].ymax,
349 pScissorsInFixedPoint[pViewportIndex[1]].ymax,
350 pScissorsInFixedPoint[pViewportIndex[2]].ymax,
351 pScissorsInFixedPoint[pViewportIndex[3]].ymax,
352 pScissorsInFixedPoint[pViewportIndex[4]].ymax,
353 pScissorsInFixedPoint[pViewportIndex[5]].ymax,
354 pScissorsInFixedPoint[pViewportIndex[6]].ymax,
355 pScissorsInFixedPoint[pViewportIndex[7]].ymax);
356 }
357 };
358
359 typedef void(*PFN_PROCESS_ATTRIBUTES)(DRAW_CONTEXT*, PA_STATE&, uint32_t, uint32_t, float*);
360
361 struct ProcessAttributesChooser
362 {
363 typedef PFN_PROCESS_ATTRIBUTES FuncType;
364
365 template <typename... ArgsB>
366 static FuncType GetFunc()
367 {
368 return ProcessAttributes<ArgsB...>;
369 }
370 };
371
372 PFN_PROCESS_ATTRIBUTES GetProcessAttributesFunc(uint32_t NumVerts, bool IsSwizzled, bool HasConstantInterp, bool IsDegenerate = false)
373 {
374 return TemplateArgUnroller<ProcessAttributesChooser>::GetFunc(IntArg<1, 3>{NumVerts}, IsSwizzled, HasConstantInterp, IsDegenerate);
375 }
376
377 //////////////////////////////////////////////////////////////////////////
378 /// @brief Processes enabled user clip distances. Loads the active clip
379 /// distances from the PA, sets up barycentric equations, and
380 /// stores the results to the output buffer
381 /// @param pa - Primitive Assembly state
382 /// @param primIndex - primitive index to process
383 /// @param clipDistMask - mask of enabled clip distances
384 /// @param pUserClipBuffer - buffer to store results
385 template<uint32_t NumVerts>
386 void ProcessUserClipDist(PA_STATE& pa, uint32_t primIndex, uint8_t clipDistMask, float* pUserClipBuffer)
387 {
388 DWORD clipDist;
389 while (_BitScanForward(&clipDist, clipDistMask))
390 {
391 clipDistMask &= ~(1 << clipDist);
392 uint32_t clipSlot = clipDist >> 2;
393 uint32_t clipComp = clipDist & 0x3;
394 uint32_t clipAttribSlot = clipSlot == 0 ?
395 VERTEX_CLIPCULL_DIST_LO_SLOT : VERTEX_CLIPCULL_DIST_HI_SLOT;
396
397 __m128 primClipDist[3];
398 pa.AssembleSingle(clipAttribSlot, primIndex, primClipDist);
399
400 float vertClipDist[NumVerts];
401 for (uint32_t e = 0; e < NumVerts; ++e)
402 {
403 OSALIGNSIMD(float) aVertClipDist[4];
404 _mm_store_ps(aVertClipDist, primClipDist[e]);
405 vertClipDist[e] = aVertClipDist[clipComp];
406 };
407
408 // setup plane equations for barycentric interpolation in the backend
409 float baryCoeff[NumVerts];
410 for (uint32_t e = 0; e < NumVerts - 1; ++e)
411 {
412 baryCoeff[e] = vertClipDist[e] - vertClipDist[NumVerts - 1];
413 }
414 baryCoeff[NumVerts - 1] = vertClipDist[NumVerts - 1];
415
416 for (uint32_t e = 0; e < NumVerts; ++e)
417 {
418 *(pUserClipBuffer++) = baryCoeff[e];
419 }
420 }
421 }
422
423 //////////////////////////////////////////////////////////////////////////
424 /// @brief Bin triangle primitives to macro tiles. Performs setup, clipping
425 /// culling, viewport transform, etc.
426 /// @param pDC - pointer to draw context.
427 /// @param pa - The primitive assembly object.
428 /// @param workerId - thread's worker id. Even thread has a unique id.
429 /// @param tri - Contains triangle position data for SIMDs worth of triangles.
430 /// @param primID - Primitive ID for each triangle.
431 /// @param viewportIdx - viewport array index for each triangle.
432 /// @tparam CT - ConservativeRastFETraits
433 template <typename CT>
434 void BinTriangles(
435 DRAW_CONTEXT *pDC,
436 PA_STATE& pa,
437 uint32_t workerId,
438 simdvector tri[3],
439 uint32_t triMask,
440 simdscalari primID,
441 simdscalari viewportIdx)
442 {
443 SWR_CONTEXT *pContext = pDC->pContext;
444
445 AR_BEGIN(FEBinTriangles, pDC->drawId);
446
447 const API_STATE& state = GetApiState(pDC);
448 const SWR_RASTSTATE& rastState = state.rastState;
449 const SWR_FRONTEND_STATE& feState = state.frontendState;
450 const SWR_GS_STATE& gsState = state.gsState;
451 MacroTileMgr *pTileMgr = pDC->pTileMgr;
452
453 simdscalar vRecipW0 = _simd_set1_ps(1.0f);
454 simdscalar vRecipW1 = _simd_set1_ps(1.0f);
455 simdscalar vRecipW2 = _simd_set1_ps(1.0f);
456
457 if (feState.vpTransformDisable)
458 {
459 // RHW is passed in directly when VP transform is disabled
460 vRecipW0 = tri[0].v[3];
461 vRecipW1 = tri[1].v[3];
462 vRecipW2 = tri[2].v[3];
463 }
464 else
465 {
466 // Perspective divide
467 vRecipW0 = _simd_div_ps(_simd_set1_ps(1.0f), tri[0].w);
468 vRecipW1 = _simd_div_ps(_simd_set1_ps(1.0f), tri[1].w);
469 vRecipW2 = _simd_div_ps(_simd_set1_ps(1.0f), tri[2].w);
470
471 tri[0].v[0] = _simd_mul_ps(tri[0].v[0], vRecipW0);
472 tri[1].v[0] = _simd_mul_ps(tri[1].v[0], vRecipW1);
473 tri[2].v[0] = _simd_mul_ps(tri[2].v[0], vRecipW2);
474
475 tri[0].v[1] = _simd_mul_ps(tri[0].v[1], vRecipW0);
476 tri[1].v[1] = _simd_mul_ps(tri[1].v[1], vRecipW1);
477 tri[2].v[1] = _simd_mul_ps(tri[2].v[1], vRecipW2);
478
479 tri[0].v[2] = _simd_mul_ps(tri[0].v[2], vRecipW0);
480 tri[1].v[2] = _simd_mul_ps(tri[1].v[2], vRecipW1);
481 tri[2].v[2] = _simd_mul_ps(tri[2].v[2], vRecipW2);
482
483 // Viewport transform to screen space coords
484 if (state.gsState.emitsViewportArrayIndex)
485 {
486 viewportTransform<3>(tri, state.vpMatrices, viewportIdx);
487 }
488 else
489 {
490 viewportTransform<3>(tri, state.vpMatrices);
491 }
492 }
493
494 // Adjust for pixel center location
495 simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
496 tri[0].x = _simd_add_ps(tri[0].x, offset);
497 tri[0].y = _simd_add_ps(tri[0].y, offset);
498
499 tri[1].x = _simd_add_ps(tri[1].x, offset);
500 tri[1].y = _simd_add_ps(tri[1].y, offset);
501
502 tri[2].x = _simd_add_ps(tri[2].x, offset);
503 tri[2].y = _simd_add_ps(tri[2].y, offset);
504
505 simdscalari vXi[3], vYi[3];
506 // Set vXi, vYi to required fixed point precision
507 FPToFixedPoint(tri, vXi, vYi);
508
509 // triangle setup
510 simdscalari vAi[3], vBi[3];
511 triangleSetupABIntVertical(vXi, vYi, vAi, vBi);
512
513 // determinant
514 simdscalari vDet[2];
515 calcDeterminantIntVertical(vAi, vBi, vDet);
516
517 // cull zero area
518 int maskLo = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpeq_epi64(vDet[0], _simd_setzero_si())));
519 int maskHi = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpeq_epi64(vDet[1], _simd_setzero_si())));
520
521 int cullZeroAreaMask = maskLo | (maskHi << (KNOB_SIMD_WIDTH / 2));
522
523 uint32_t origTriMask = triMask;
524 // don't cull degenerate triangles if we're conservatively rasterizing
525 if (rastState.fillMode == SWR_FILLMODE_SOLID && !CT::IsConservativeT::value)
526 {
527 triMask &= ~cullZeroAreaMask;
528 }
529
530 // determine front winding tris
531 // CW +det
532 // CCW det < 0;
533 // 0 area triangles are marked as backfacing regardless of winding order,
534 // which is required behavior for conservative rast and wireframe rendering
535 uint32_t frontWindingTris;
536 if (rastState.frontWinding == SWR_FRONTWINDING_CW)
537 {
538 maskLo = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(vDet[0], _simd_setzero_si())));
539 maskHi = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(vDet[1], _simd_setzero_si())));
540 }
541 else
542 {
543 maskLo = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(_simd_setzero_si(), vDet[0])));
544 maskHi = _simd_movemask_pd(_simd_castsi_pd(_simd_cmpgt_epi64(_simd_setzero_si(), vDet[1])));
545 }
546 frontWindingTris = maskLo | (maskHi << (KNOB_SIMD_WIDTH / 2));
547
548 // cull
549 uint32_t cullTris;
550 switch ((SWR_CULLMODE)rastState.cullMode)
551 {
552 case SWR_CULLMODE_BOTH: cullTris = 0xffffffff; break;
553 case SWR_CULLMODE_NONE: cullTris = 0x0; break;
554 case SWR_CULLMODE_FRONT: cullTris = frontWindingTris; break;
555 // 0 area triangles are marked as backfacing, which is required behavior for conservative rast
556 case SWR_CULLMODE_BACK: cullTris = ~frontWindingTris; break;
557 default: SWR_ASSERT(false, "Invalid cull mode: %d", rastState.cullMode); cullTris = 0x0; break;
558 }
559
560 triMask &= ~cullTris;
561
562 if (origTriMask ^ triMask)
563 {
564 RDTSC_EVENT(FECullZeroAreaAndBackface, _mm_popcnt_u32(origTriMask ^ triMask), 0);
565 }
566
567 // Simple non-conformant wireframe mode, useful for debugging
568 if (rastState.fillMode == SWR_FILLMODE_WIREFRAME)
569 {
570 // construct 3 SIMD lines out of the triangle and call the line binner for each SIMD
571 simdvector line[2];
572 simdscalar recipW[2];
573 line[0] = tri[0];
574 line[1] = tri[1];
575 recipW[0] = vRecipW0;
576 recipW[1] = vRecipW1;
577 BinPostSetupLines(pDC, pa, workerId, line, recipW, triMask, primID, viewportIdx);
578
579 line[0] = tri[1];
580 line[1] = tri[2];
581 recipW[0] = vRecipW1;
582 recipW[1] = vRecipW2;
583 BinPostSetupLines(pDC, pa, workerId, line, recipW, triMask, primID, viewportIdx);
584
585 line[0] = tri[2];
586 line[1] = tri[0];
587 recipW[0] = vRecipW2;
588 recipW[1] = vRecipW0;
589 BinPostSetupLines(pDC, pa, workerId, line, recipW, triMask, primID, viewportIdx);
590
591 AR_END(FEBinTriangles, 1);
592 return;
593 }
594
595 /// Note: these variable initializations must stay above any 'goto endBenTriangles'
596 // compute per tri backface
597 uint32_t frontFaceMask = frontWindingTris;
598 uint32_t *pPrimID = (uint32_t *)&primID;
599 const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;
600 DWORD triIndex = 0;
601 // for center sample pattern, all samples are at pixel center; calculate coverage
602 // once at center and broadcast the results in the backend
603 const SWR_MULTISAMPLE_COUNT sampleCount = (rastState.samplePattern == SWR_MSAA_STANDARD_PATTERN) ? rastState.sampleCount : SWR_MULTISAMPLE_1X;
604 uint32_t edgeEnable;
605 PFN_WORK_FUNC pfnWork;
606 if (CT::IsConservativeT::value)
607 {
608 // determine which edges of the degenerate tri, if any, are valid to rasterize.
609 // used to call the appropriate templated rasterizer function
610 if (cullZeroAreaMask > 0)
611 {
612 // e0 = v1-v0
613 simdscalari x0x1Mask = _simd_cmpeq_epi32(vXi[0], vXi[1]);
614 simdscalari y0y1Mask = _simd_cmpeq_epi32(vYi[0], vYi[1]);
615 uint32_t e0Mask = _simd_movemask_ps(_simd_castsi_ps(_simd_and_si(x0x1Mask, y0y1Mask)));
616
617 // e1 = v2-v1
618 simdscalari x1x2Mask = _simd_cmpeq_epi32(vXi[1], vXi[2]);
619 simdscalari y1y2Mask = _simd_cmpeq_epi32(vYi[1], vYi[2]);
620 uint32_t e1Mask = _simd_movemask_ps(_simd_castsi_ps(_simd_and_si(x1x2Mask, y1y2Mask)));
621
622 // e2 = v0-v2
623 // if v0 == v1 & v1 == v2, v0 == v2
624 uint32_t e2Mask = e0Mask & e1Mask;
625 SWR_ASSERT(KNOB_SIMD_WIDTH == 8, "Need to update degenerate mask code for avx512");
626
627 // edge order: e0 = v0v1, e1 = v1v2, e2 = v0v2
628 // 32 bit binary: 0000 0000 0010 0100 1001 0010 0100 1001
629 e0Mask = pdep_u32(e0Mask, 0x00249249);
630 // 32 bit binary: 0000 0000 0100 1001 0010 0100 1001 0010
631 e1Mask = pdep_u32(e1Mask, 0x00492492);
632 // 32 bit binary: 0000 0000 1001 0010 0100 1001 0010 0100
633 e2Mask = pdep_u32(e2Mask, 0x00924924);
634
635 edgeEnable = (0x00FFFFFF & (~(e0Mask | e1Mask | e2Mask)));
636 }
637 else
638 {
639 edgeEnable = 0x00FFFFFF;
640 }
641 }
642 else
643 {
644 // degenerate triangles won't be sent to rasterizer; just enable all edges
645 pfnWork = GetRasterizerFunc(sampleCount, (rastState.conservativeRast > 0),
646 (SWR_INPUT_COVERAGE)pDC->pState->state.psState.inputCoverage, ALL_EDGES_VALID,
647 (state.scissorsTileAligned == false));
648 }
649
650 if (!triMask)
651 {
652 goto endBinTriangles;
653 }
654
655 // Calc bounding box of triangles
656 simdBBox bbox;
657 calcBoundingBoxIntVertical<CT>(tri, vXi, vYi, bbox);
658
659 // determine if triangle falls between pixel centers and discard
660 // only discard for non-MSAA case and when conservative rast is disabled
661 // (xmin + 127) & ~255
662 // (xmax + 128) & ~255
663 if (rastState.sampleCount == SWR_MULTISAMPLE_1X && (!CT::IsConservativeT::value))
664 {
665 origTriMask = triMask;
666
667 int cullCenterMask;
668 {
669 simdscalari xmin = _simd_add_epi32(bbox.xmin, _simd_set1_epi32(127));
670 xmin = _simd_and_si(xmin, _simd_set1_epi32(~255));
671 simdscalari xmax = _simd_add_epi32(bbox.xmax, _simd_set1_epi32(128));
672 xmax = _simd_and_si(xmax, _simd_set1_epi32(~255));
673
674 simdscalari vMaskH = _simd_cmpeq_epi32(xmin, xmax);
675
676 simdscalari ymin = _simd_add_epi32(bbox.ymin, _simd_set1_epi32(127));
677 ymin = _simd_and_si(ymin, _simd_set1_epi32(~255));
678 simdscalari ymax = _simd_add_epi32(bbox.ymax, _simd_set1_epi32(128));
679 ymax = _simd_and_si(ymax, _simd_set1_epi32(~255));
680
681 simdscalari vMaskV = _simd_cmpeq_epi32(ymin, ymax);
682 vMaskV = _simd_or_si(vMaskH, vMaskV);
683 cullCenterMask = _simd_movemask_ps(_simd_castsi_ps(vMaskV));
684 }
685
686 triMask &= ~cullCenterMask;
687
688 if (origTriMask ^ triMask)
689 {
690 RDTSC_EVENT(FECullBetweenCenters, _mm_popcnt_u32(origTriMask ^ triMask), 0);
691 }
692 }
693
694 // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
695 // Gather the AOS effective scissor rects based on the per-prim VP index.
696 /// @todo: Look at speeding this up -- weigh against corresponding costs in rasterizer.
697 simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
698 if (state.gsState.emitsViewportArrayIndex)
699 {
700 GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
701 scisXmin, scisYmin, scisXmax, scisYmax);
702 }
703 else // broadcast fast path for non-VPAI case.
704 {
705 scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
706 scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
707 scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
708 scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
709 }
710
711 bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
712 bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
713 bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
714 bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);
715
716 if (CT::IsConservativeT::value)
717 {
718 // in the case where a degenerate triangle is on a scissor edge, we need to make sure the primitive bbox has
719 // some area. Bump the xmax/ymax edges out
720 simdscalari topEqualsBottom = _simd_cmpeq_epi32(bbox.ymin, bbox.ymax);
721 bbox.ymax = _simd_blendv_epi32(bbox.ymax, _simd_add_epi32(bbox.ymax, _simd_set1_epi32(1)), topEqualsBottom);
722 simdscalari leftEqualsRight = _simd_cmpeq_epi32(bbox.xmin, bbox.xmax);
723 bbox.xmax = _simd_blendv_epi32(bbox.xmax, _simd_add_epi32(bbox.xmax, _simd_set1_epi32(1)), leftEqualsRight);
724 }
725
726 // Cull tris completely outside scissor
727 {
728 simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
729 simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
730 simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
731 uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
732 triMask = triMask & ~maskOutsideScissor;
733 }
734
735 if (!triMask)
736 {
737 goto endBinTriangles;
738 }
739
740 // Convert triangle bbox to macrotile units.
741 bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
742 bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
743 bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
744 bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
745
746 OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
747 _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
748 _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
749 _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
750 _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);
751
752 // transpose verts needed for backend
753 /// @todo modify BE to take non-transformed verts
754 __m128 vHorizX[8], vHorizY[8], vHorizZ[8], vHorizW[8];
755 vTranspose3x8(vHorizX, tri[0].x, tri[1].x, tri[2].x);
756 vTranspose3x8(vHorizY, tri[0].y, tri[1].y, tri[2].y);
757 vTranspose3x8(vHorizZ, tri[0].z, tri[1].z, tri[2].z);
758 vTranspose3x8(vHorizW, vRecipW0, vRecipW1, vRecipW2);
759
760 // store render target array index
761 OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
762 if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
763 {
764 simdvector vRtai[3];
765 pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
766 simdscalari vRtaii;
767 vRtaii = _simd_castps_si(vRtai[0].x);
768 _simd_store_si((simdscalari*)aRTAI, vRtaii);
769 }
770 else
771 {
772 _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
773 }
774
775 endBinTriangles:
776
777 // scan remaining valid triangles and bin each separately
778 while (_BitScanForward(&triIndex, triMask))
779 {
780 uint32_t linkageCount = state.backendState.numAttributes;
781 uint32_t numScalarAttribs = linkageCount * 4;
782
783 BE_WORK work;
784 work.type = DRAW;
785
786 bool isDegenerate;
787 if (CT::IsConservativeT::value)
788 {
789 // only rasterize valid edges if we have a degenerate primitive
790 int32_t triEdgeEnable = (edgeEnable >> (triIndex * 3)) & ALL_EDGES_VALID;
791 work.pfnWork = GetRasterizerFunc(sampleCount, (rastState.conservativeRast > 0),
792 (SWR_INPUT_COVERAGE)pDC->pState->state.psState.inputCoverage, triEdgeEnable,
793 (state.scissorsTileAligned == false));
794
795 // Degenerate triangles are required to be constant interpolated
796 isDegenerate = (triEdgeEnable != ALL_EDGES_VALID) ? true : false;
797 }
798 else
799 {
800 isDegenerate = false;
801 work.pfnWork = pfnWork;
802 }
803
804 // Select attribute processor
805 PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(3,
806 state.backendState.swizzleEnable, state.backendState.constantInterpolationMask, isDegenerate);
807
808 TRIANGLE_WORK_DESC &desc = work.desc.tri;
809
810 desc.triFlags.frontFacing = state.forceFront ? 1 : ((frontFaceMask >> triIndex) & 1);
811 desc.triFlags.primID = pPrimID[triIndex];
812 desc.triFlags.renderTargetArrayIndex = aRTAI[triIndex];
813 desc.triFlags.viewportIndex = pViewportIndex[triIndex];
814
815 auto pArena = pDC->pArena;
816 SWR_ASSERT(pArena != nullptr);
817
818 // store active attribs
819 float *pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
820 desc.pAttribs = pAttribs;
821 desc.numAttribs = linkageCount;
822 pfnProcessAttribs(pDC, pa, triIndex, pPrimID[triIndex], desc.pAttribs);
823
824 // store triangle vertex data
825 desc.pTriBuffer = (float*)pArena->AllocAligned(4 * 4 * sizeof(float), 16);
826
827 _mm_store_ps(&desc.pTriBuffer[0], vHorizX[triIndex]);
828 _mm_store_ps(&desc.pTriBuffer[4], vHorizY[triIndex]);
829 _mm_store_ps(&desc.pTriBuffer[8], vHorizZ[triIndex]);
830 _mm_store_ps(&desc.pTriBuffer[12], vHorizW[triIndex]);
831
832 // store user clip distances
833 if (rastState.clipDistanceMask)
834 {
835 uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
836 desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 3 * sizeof(float));
837 ProcessUserClipDist<3>(pa, triIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
838 }
839
840 for (uint32_t y = aMTTop[triIndex]; y <= aMTBottom[triIndex]; ++y)
841 {
842 for (uint32_t x = aMTLeft[triIndex]; x <= aMTRight[triIndex]; ++x)
843 {
844 #if KNOB_ENABLE_TOSS_POINTS
845 if (!KNOB_TOSS_SETUP_TRIS)
846 #endif
847 {
848 pTileMgr->enqueue(x, y, &work);
849 }
850 }
851 }
852 triMask &= ~(1 << triIndex);
853 }
854
855 AR_END(FEBinTriangles, 1);
856 }
857
858 struct FEBinTrianglesChooser
859 {
860 typedef PFN_PROCESS_PRIMS FuncType;
861
862 template <typename... ArgsB>
863 static FuncType GetFunc()
864 {
865 return BinTriangles<ConservativeRastFETraits<ArgsB...>>;
866 }
867 };
868
869 // Selector for correct templated BinTrinagles function
870 PFN_PROCESS_PRIMS GetBinTrianglesFunc(bool IsConservative)
871 {
872 return TemplateArgUnroller<FEBinTrianglesChooser>::GetFunc(IsConservative);
873 }
874
875
876 //////////////////////////////////////////////////////////////////////////
877 /// @brief Bin SIMD points to the backend. Only supports point size of 1
878 /// @param pDC - pointer to draw context.
879 /// @param pa - The primitive assembly object.
880 /// @param workerId - thread's worker id. Even thread has a unique id.
881 /// @param tri - Contains point position data for SIMDs worth of points.
882 /// @param primID - Primitive ID for each point.
883 void BinPoints(
884 DRAW_CONTEXT *pDC,
885 PA_STATE& pa,
886 uint32_t workerId,
887 simdvector prim[3],
888 uint32_t primMask,
889 simdscalari primID,
890 simdscalari viewportIdx)
891 {
892 SWR_CONTEXT *pContext = pDC->pContext;
893
894 AR_BEGIN(FEBinPoints, pDC->drawId);
895
896 simdvector& primVerts = prim[0];
897
898 const API_STATE& state = GetApiState(pDC);
899 const SWR_FRONTEND_STATE& feState = state.frontendState;
900 const SWR_GS_STATE& gsState = state.gsState;
901 const SWR_RASTSTATE& rastState = state.rastState;
902 const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;
903
904 // Select attribute processor
905 PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(1,
906 state.backendState.swizzleEnable, state.backendState.constantInterpolationMask);
907
908 if (!feState.vpTransformDisable)
909 {
910 // perspective divide
911 simdscalar vRecipW0 = _simd_div_ps(_simd_set1_ps(1.0f), primVerts.w);
912 primVerts.x = _simd_mul_ps(primVerts.x, vRecipW0);
913 primVerts.y = _simd_mul_ps(primVerts.y, vRecipW0);
914 primVerts.z = _simd_mul_ps(primVerts.z, vRecipW0);
915
916 // viewport transform to screen coords
917 if (state.gsState.emitsViewportArrayIndex)
918 {
919 viewportTransform<1>(&primVerts, state.vpMatrices, viewportIdx);
920 }
921 else
922 {
923 viewportTransform<1>(&primVerts, state.vpMatrices);
924 }
925 }
926
927 // adjust for pixel center location
928 simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
929 primVerts.x = _simd_add_ps(primVerts.x, offset);
930 primVerts.y = _simd_add_ps(primVerts.y, offset);
931
932 // convert to fixed point
933 simdscalari vXi, vYi;
934 vXi = fpToFixedPointVertical(primVerts.x);
935 vYi = fpToFixedPointVertical(primVerts.y);
936
937 if (CanUseSimplePoints(pDC))
938 {
939 // adjust for ymin-xmin rule
940 vXi = _simd_sub_epi32(vXi, _simd_set1_epi32(1));
941 vYi = _simd_sub_epi32(vYi, _simd_set1_epi32(1));
942
943 // cull points off the ymin-xmin edge of the viewport
944 primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vXi));
945 primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vYi));
946
947 // compute macro tile coordinates
948 simdscalari macroX = _simd_srai_epi32(vXi, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
949 simdscalari macroY = _simd_srai_epi32(vYi, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
950
951 OSALIGNSIMD(uint32_t) aMacroX[KNOB_SIMD_WIDTH], aMacroY[KNOB_SIMD_WIDTH];
952 _simd_store_si((simdscalari*)aMacroX, macroX);
953 _simd_store_si((simdscalari*)aMacroY, macroY);
954
955 // compute raster tile coordinates
956 simdscalari rasterX = _simd_srai_epi32(vXi, KNOB_TILE_X_DIM_SHIFT + FIXED_POINT_SHIFT);
957 simdscalari rasterY = _simd_srai_epi32(vYi, KNOB_TILE_Y_DIM_SHIFT + FIXED_POINT_SHIFT);
958
959 // compute raster tile relative x,y for coverage mask
960 simdscalari tileAlignedX = _simd_slli_epi32(rasterX, KNOB_TILE_X_DIM_SHIFT);
961 simdscalari tileAlignedY = _simd_slli_epi32(rasterY, KNOB_TILE_Y_DIM_SHIFT);
962
963 simdscalari tileRelativeX = _simd_sub_epi32(_simd_srai_epi32(vXi, FIXED_POINT_SHIFT), tileAlignedX);
964 simdscalari tileRelativeY = _simd_sub_epi32(_simd_srai_epi32(vYi, FIXED_POINT_SHIFT), tileAlignedY);
965
966 OSALIGNSIMD(uint32_t) aTileRelativeX[KNOB_SIMD_WIDTH];
967 OSALIGNSIMD(uint32_t) aTileRelativeY[KNOB_SIMD_WIDTH];
968 _simd_store_si((simdscalari*)aTileRelativeX, tileRelativeX);
969 _simd_store_si((simdscalari*)aTileRelativeY, tileRelativeY);
970
971 OSALIGNSIMD(uint32_t) aTileAlignedX[KNOB_SIMD_WIDTH];
972 OSALIGNSIMD(uint32_t) aTileAlignedY[KNOB_SIMD_WIDTH];
973 _simd_store_si((simdscalari*)aTileAlignedX, tileAlignedX);
974 _simd_store_si((simdscalari*)aTileAlignedY, tileAlignedY);
975
976 OSALIGNSIMD(float) aZ[KNOB_SIMD_WIDTH];
977 _simd_store_ps((float*)aZ, primVerts.z);
978
979 // store render target array index
980 OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
981 if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
982 {
983 simdvector vRtai;
984 pa.Assemble(VERTEX_RTAI_SLOT, &vRtai);
985 simdscalari vRtaii = _simd_castps_si(vRtai.x);
986 _simd_store_si((simdscalari*)aRTAI, vRtaii);
987 }
988 else
989 {
990 _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
991 }
992
993 uint32_t *pPrimID = (uint32_t *)&primID;
994 DWORD primIndex = 0;
995
996 const SWR_BACKEND_STATE& backendState = pDC->pState->state.backendState;
997
998 // scan remaining valid triangles and bin each separately
999 while (_BitScanForward(&primIndex, primMask))
1000 {
1001 uint32_t linkageCount = backendState.numAttributes;
1002 uint32_t numScalarAttribs = linkageCount * 4;
1003
1004 BE_WORK work;
1005 work.type = DRAW;
1006
1007 TRIANGLE_WORK_DESC &desc = work.desc.tri;
1008
1009 // points are always front facing
1010 desc.triFlags.frontFacing = 1;
1011 desc.triFlags.primID = pPrimID[primIndex];
1012 desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
1013 desc.triFlags.viewportIndex = pViewportIndex[primIndex];
1014
1015 work.pfnWork = RasterizeSimplePoint;
1016
1017 auto pArena = pDC->pArena;
1018 SWR_ASSERT(pArena != nullptr);
1019
1020 // store attributes
1021 float *pAttribs = (float*)pArena->AllocAligned(3 * numScalarAttribs * sizeof(float), 16);
1022 desc.pAttribs = pAttribs;
1023 desc.numAttribs = linkageCount;
1024
1025 pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], pAttribs);
1026
1027 // store raster tile aligned x, y, perspective correct z
1028 float *pTriBuffer = (float*)pArena->AllocAligned(4 * sizeof(float), 16);
1029 desc.pTriBuffer = pTriBuffer;
1030 *(uint32_t*)pTriBuffer++ = aTileAlignedX[primIndex];
1031 *(uint32_t*)pTriBuffer++ = aTileAlignedY[primIndex];
1032 *pTriBuffer = aZ[primIndex];
1033
1034 uint32_t tX = aTileRelativeX[primIndex];
1035 uint32_t tY = aTileRelativeY[primIndex];
1036
1037 // pack the relative x,y into the coverageMask, the rasterizer will
1038 // generate the true coverage mask from it
1039 work.desc.tri.triFlags.coverageMask = tX | (tY << 4);
1040
1041 // bin it
1042 MacroTileMgr *pTileMgr = pDC->pTileMgr;
1043 #if KNOB_ENABLE_TOSS_POINTS
1044 if (!KNOB_TOSS_SETUP_TRIS)
1045 #endif
1046 {
1047 pTileMgr->enqueue(aMacroX[primIndex], aMacroY[primIndex], &work);
1048 }
1049 primMask &= ~(1 << primIndex);
1050 }
1051 }
1052 else
1053 {
1054 // non simple points need to be potentially binned to multiple macro tiles
1055 simdscalar vPointSize;
1056 if (rastState.pointParam)
1057 {
1058 simdvector size[3];
1059 pa.Assemble(VERTEX_POINT_SIZE_SLOT, size);
1060 vPointSize = size[0].x;
1061 }
1062 else
1063 {
1064 vPointSize = _simd_set1_ps(rastState.pointSize);
1065 }
1066
1067 // bloat point to bbox
1068 simdBBox bbox;
1069 bbox.xmin = bbox.xmax = vXi;
1070 bbox.ymin = bbox.ymax = vYi;
1071
1072 simdscalar vHalfWidth = _simd_mul_ps(vPointSize, _simd_set1_ps(0.5f));
1073 simdscalari vHalfWidthi = fpToFixedPointVertical(vHalfWidth);
1074 bbox.xmin = _simd_sub_epi32(bbox.xmin, vHalfWidthi);
1075 bbox.xmax = _simd_add_epi32(bbox.xmax, vHalfWidthi);
1076 bbox.ymin = _simd_sub_epi32(bbox.ymin, vHalfWidthi);
1077 bbox.ymax = _simd_add_epi32(bbox.ymax, vHalfWidthi);
1078
1079 // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
1080 // Gather the AOS effective scissor rects based on the per-prim VP index.
1081 /// @todo: Look at speeding this up -- weigh against corresponding costs in rasterizer.
1082 simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
1083 if (state.gsState.emitsViewportArrayIndex)
1084 {
1085 GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
1086 scisXmin, scisYmin, scisXmax, scisYmax);
1087 }
1088 else // broadcast fast path for non-VPAI case.
1089 {
1090 scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
1091 scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
1092 scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
1093 scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
1094 }
1095
1096 bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
1097 bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
1098 bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
1099 bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);
1100
1101 // Cull bloated points completely outside scissor
1102 simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
1103 simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
1104 simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
1105 uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
1106 primMask = primMask & ~maskOutsideScissor;
1107
1108 // Convert bbox to macrotile units.
1109 bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
1110 bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
1111 bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
1112 bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
1113
1114 OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
1115 _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
1116 _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
1117 _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
1118 _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);
1119
1120 // store render target array index
1121 OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
1122 if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
1123 {
1124 simdvector vRtai[2];
1125 pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
1126 simdscalari vRtaii = _simd_castps_si(vRtai[0].x);
1127 _simd_store_si((simdscalari*)aRTAI, vRtaii);
1128 }
1129 else
1130 {
1131 _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
1132 }
1133
1134 OSALIGNSIMD(float) aPointSize[KNOB_SIMD_WIDTH];
1135 _simd_store_ps((float*)aPointSize, vPointSize);
1136
1137 uint32_t *pPrimID = (uint32_t *)&primID;
1138
1139 OSALIGNSIMD(float) aPrimVertsX[KNOB_SIMD_WIDTH];
1140 OSALIGNSIMD(float) aPrimVertsY[KNOB_SIMD_WIDTH];
1141 OSALIGNSIMD(float) aPrimVertsZ[KNOB_SIMD_WIDTH];
1142
1143 _simd_store_ps((float*)aPrimVertsX, primVerts.x);
1144 _simd_store_ps((float*)aPrimVertsY, primVerts.y);
1145 _simd_store_ps((float*)aPrimVertsZ, primVerts.z);
1146
1147 // scan remaining valid prims and bin each separately
1148 const SWR_BACKEND_STATE& backendState = state.backendState;
1149 DWORD primIndex;
1150 while (_BitScanForward(&primIndex, primMask))
1151 {
1152 uint32_t linkageCount = backendState.numAttributes;
1153 uint32_t numScalarAttribs = linkageCount * 4;
1154
1155 BE_WORK work;
1156 work.type = DRAW;
1157
1158 TRIANGLE_WORK_DESC &desc = work.desc.tri;
1159
1160 desc.triFlags.frontFacing = 1;
1161 desc.triFlags.primID = pPrimID[primIndex];
1162 desc.triFlags.pointSize = aPointSize[primIndex];
1163 desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
1164 desc.triFlags.viewportIndex = pViewportIndex[primIndex];
1165
1166 work.pfnWork = RasterizeTriPoint;
1167
1168 auto pArena = pDC->pArena;
1169 SWR_ASSERT(pArena != nullptr);
1170
1171 // store active attribs
1172 desc.pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
1173 desc.numAttribs = linkageCount;
1174 pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], desc.pAttribs);
1175
1176 // store point vertex data
1177 float *pTriBuffer = (float*)pArena->AllocAligned(4 * sizeof(float), 16);
1178 desc.pTriBuffer = pTriBuffer;
1179 *pTriBuffer++ = aPrimVertsX[primIndex];
1180 *pTriBuffer++ = aPrimVertsY[primIndex];
1181 *pTriBuffer = aPrimVertsZ[primIndex];
1182
1183 // store user clip distances
1184 if (rastState.clipDistanceMask)
1185 {
1186 uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
1187 desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 2 * sizeof(float));
1188 ProcessUserClipDist<2>(pa, primIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
1189 }
1190
1191 MacroTileMgr *pTileMgr = pDC->pTileMgr;
1192 for (uint32_t y = aMTTop[primIndex]; y <= aMTBottom[primIndex]; ++y)
1193 {
1194 for (uint32_t x = aMTLeft[primIndex]; x <= aMTRight[primIndex]; ++x)
1195 {
1196 #if KNOB_ENABLE_TOSS_POINTS
1197 if (!KNOB_TOSS_SETUP_TRIS)
1198 #endif
1199 {
1200 pTileMgr->enqueue(x, y, &work);
1201 }
1202 }
1203 }
1204
1205 primMask &= ~(1 << primIndex);
1206 }
1207 }
1208
1209 AR_END(FEBinPoints, 1);
1210 }
1211
1212 //////////////////////////////////////////////////////////////////////////
1213 /// @brief Bin SIMD lines to the backend.
1214 /// @param pDC - pointer to draw context.
1215 /// @param pa - The primitive assembly object.
1216 /// @param workerId - thread's worker id. Even thread has a unique id.
1217 /// @param tri - Contains line position data for SIMDs worth of points.
1218 /// @param primID - Primitive ID for each line.
1219 /// @param viewportIdx - Viewport Array Index for each line.
1220 void BinPostSetupLines(
1221 DRAW_CONTEXT *pDC,
1222 PA_STATE& pa,
1223 uint32_t workerId,
1224 simdvector prim[],
1225 simdscalar recipW[],
1226 uint32_t primMask,
1227 simdscalari primID,
1228 simdscalari viewportIdx)
1229 {
1230 SWR_CONTEXT *pContext = pDC->pContext;
1231
1232 AR_BEGIN(FEBinLines, pDC->drawId);
1233
1234 const API_STATE& state = GetApiState(pDC);
1235 const SWR_RASTSTATE& rastState = state.rastState;
1236 const SWR_FRONTEND_STATE& feState = state.frontendState;
1237 const SWR_GS_STATE& gsState = state.gsState;
1238
1239 // Select attribute processor
1240 PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(2,
1241 state.backendState.swizzleEnable, state.backendState.constantInterpolationMask);
1242
1243 simdscalar& vRecipW0 = recipW[0];
1244 simdscalar& vRecipW1 = recipW[1];
1245
1246 // convert to fixed point
1247 simdscalari vXi[2], vYi[2];
1248 vXi[0] = fpToFixedPointVertical(prim[0].x);
1249 vYi[0] = fpToFixedPointVertical(prim[0].y);
1250 vXi[1] = fpToFixedPointVertical(prim[1].x);
1251 vYi[1] = fpToFixedPointVertical(prim[1].y);
1252
1253 // compute x-major vs y-major mask
1254 simdscalari xLength = _simd_abs_epi32(_simd_sub_epi32(vXi[0], vXi[1]));
1255 simdscalari yLength = _simd_abs_epi32(_simd_sub_epi32(vYi[0], vYi[1]));
1256 simdscalar vYmajorMask = _simd_castsi_ps(_simd_cmpgt_epi32(yLength, xLength));
1257 uint32_t yMajorMask = _simd_movemask_ps(vYmajorMask);
1258
1259 // cull zero-length lines
1260 simdscalari vZeroLengthMask = _simd_cmpeq_epi32(xLength, _simd_setzero_si());
1261 vZeroLengthMask = _simd_and_si(vZeroLengthMask, _simd_cmpeq_epi32(yLength, _simd_setzero_si()));
1262
1263 primMask &= ~_simd_movemask_ps(_simd_castsi_ps(vZeroLengthMask));
1264
1265 uint32_t *pPrimID = (uint32_t *)&primID;
1266 const uint32_t *pViewportIndex = (uint32_t *)&viewportIdx;
1267
1268 simdscalar vUnused = _simd_setzero_ps();
1269
1270 // Calc bounding box of lines
1271 simdBBox bbox;
1272 bbox.xmin = _simd_min_epi32(vXi[0], vXi[1]);
1273 bbox.xmax = _simd_max_epi32(vXi[0], vXi[1]);
1274 bbox.ymin = _simd_min_epi32(vYi[0], vYi[1]);
1275 bbox.ymax = _simd_max_epi32(vYi[0], vYi[1]);
1276
1277 // bloat bbox by line width along minor axis
1278 simdscalar vHalfWidth = _simd_set1_ps(rastState.lineWidth / 2.0f);
1279 simdscalari vHalfWidthi = fpToFixedPointVertical(vHalfWidth);
1280 simdBBox bloatBox;
1281 bloatBox.xmin = _simd_sub_epi32(bbox.xmin, vHalfWidthi);
1282 bloatBox.xmax = _simd_add_epi32(bbox.xmax, vHalfWidthi);
1283 bloatBox.ymin = _simd_sub_epi32(bbox.ymin, vHalfWidthi);
1284 bloatBox.ymax = _simd_add_epi32(bbox.ymax, vHalfWidthi);
1285
1286 bbox.xmin = _simd_blendv_epi32(bbox.xmin, bloatBox.xmin, vYmajorMask);
1287 bbox.xmax = _simd_blendv_epi32(bbox.xmax, bloatBox.xmax, vYmajorMask);
1288 bbox.ymin = _simd_blendv_epi32(bloatBox.ymin, bbox.ymin, vYmajorMask);
1289 bbox.ymax = _simd_blendv_epi32(bloatBox.ymax, bbox.ymax, vYmajorMask);
1290
1291 // Intersect with scissor/viewport. Subtract 1 ULP in x.8 fixed point since xmax/ymax edge is exclusive.
1292 simdscalari scisXmin, scisYmin, scisXmax, scisYmax;
1293 if (state.gsState.emitsViewportArrayIndex)
1294 {
1295 GatherScissors<KNOB_SIMD_WIDTH>::Gather(&state.scissorsInFixedPoint[0], pViewportIndex,
1296 scisXmin, scisYmin, scisXmax, scisYmax);
1297 }
1298 else // broadcast fast path for non-VPAI case.
1299 {
1300 scisXmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmin);
1301 scisYmin = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymin);
1302 scisXmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].xmax);
1303 scisYmax = _simd_set1_epi32(state.scissorsInFixedPoint[0].ymax);
1304 }
1305
1306 bbox.xmin = _simd_max_epi32(bbox.xmin, scisXmin);
1307 bbox.ymin = _simd_max_epi32(bbox.ymin, scisYmin);
1308 bbox.xmax = _simd_min_epi32(_simd_sub_epi32(bbox.xmax, _simd_set1_epi32(1)), scisXmax);
1309 bbox.ymax = _simd_min_epi32(_simd_sub_epi32(bbox.ymax, _simd_set1_epi32(1)), scisYmax);
1310
1311 // Cull prims completely outside scissor
1312 {
1313 simdscalari maskOutsideScissorX = _simd_cmpgt_epi32(bbox.xmin, bbox.xmax);
1314 simdscalari maskOutsideScissorY = _simd_cmpgt_epi32(bbox.ymin, bbox.ymax);
1315 simdscalari maskOutsideScissorXY = _simd_or_si(maskOutsideScissorX, maskOutsideScissorY);
1316 uint32_t maskOutsideScissor = _simd_movemask_ps(_simd_castsi_ps(maskOutsideScissorXY));
1317 primMask = primMask & ~maskOutsideScissor;
1318 }
1319
1320 if (!primMask)
1321 {
1322 goto endBinLines;
1323 }
1324
1325 // Convert triangle bbox to macrotile units.
1326 bbox.xmin = _simd_srai_epi32(bbox.xmin, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
1327 bbox.ymin = _simd_srai_epi32(bbox.ymin, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
1328 bbox.xmax = _simd_srai_epi32(bbox.xmax, KNOB_MACROTILE_X_DIM_FIXED_SHIFT);
1329 bbox.ymax = _simd_srai_epi32(bbox.ymax, KNOB_MACROTILE_Y_DIM_FIXED_SHIFT);
1330
1331 OSALIGNSIMD(uint32_t) aMTLeft[KNOB_SIMD_WIDTH], aMTRight[KNOB_SIMD_WIDTH], aMTTop[KNOB_SIMD_WIDTH], aMTBottom[KNOB_SIMD_WIDTH];
1332 _simd_store_si((simdscalari*)aMTLeft, bbox.xmin);
1333 _simd_store_si((simdscalari*)aMTRight, bbox.xmax);
1334 _simd_store_si((simdscalari*)aMTTop, bbox.ymin);
1335 _simd_store_si((simdscalari*)aMTBottom, bbox.ymax);
1336
1337 // transpose verts needed for backend
1338 /// @todo modify BE to take non-transformed verts
1339 __m128 vHorizX[8], vHorizY[8], vHorizZ[8], vHorizW[8];
1340 vTranspose3x8(vHorizX, prim[0].x, prim[1].x, vUnused);
1341 vTranspose3x8(vHorizY, prim[0].y, prim[1].y, vUnused);
1342 vTranspose3x8(vHorizZ, prim[0].z, prim[1].z, vUnused);
1343 vTranspose3x8(vHorizW, vRecipW0, vRecipW1, vUnused);
1344
1345 // store render target array index
1346 OSALIGNSIMD(uint32_t) aRTAI[KNOB_SIMD_WIDTH];
1347 if (gsState.gsEnable && gsState.emitsRenderTargetArrayIndex)
1348 {
1349 simdvector vRtai[2];
1350 pa.Assemble(VERTEX_RTAI_SLOT, vRtai);
1351 simdscalari vRtaii = _simd_castps_si(vRtai[0].x);
1352 _simd_store_si((simdscalari*)aRTAI, vRtaii);
1353 }
1354 else
1355 {
1356 _simd_store_si((simdscalari*)aRTAI, _simd_setzero_si());
1357 }
1358
1359 // scan remaining valid prims and bin each separately
1360 DWORD primIndex;
1361 while (_BitScanForward(&primIndex, primMask))
1362 {
1363 uint32_t linkageCount = state.backendState.numAttributes;
1364 uint32_t numScalarAttribs = linkageCount * 4;
1365
1366 BE_WORK work;
1367 work.type = DRAW;
1368
1369 TRIANGLE_WORK_DESC &desc = work.desc.tri;
1370
1371 desc.triFlags.frontFacing = 1;
1372 desc.triFlags.primID = pPrimID[primIndex];
1373 desc.triFlags.yMajor = (yMajorMask >> primIndex) & 1;
1374 desc.triFlags.renderTargetArrayIndex = aRTAI[primIndex];
1375 desc.triFlags.viewportIndex = pViewportIndex[primIndex];
1376
1377 work.pfnWork = RasterizeLine;
1378
1379 auto pArena = pDC->pArena;
1380 SWR_ASSERT(pArena != nullptr);
1381
1382 // store active attribs
1383 desc.pAttribs = (float*)pArena->AllocAligned(numScalarAttribs * 3 * sizeof(float), 16);
1384 desc.numAttribs = linkageCount;
1385 pfnProcessAttribs(pDC, pa, primIndex, pPrimID[primIndex], desc.pAttribs);
1386
1387 // store line vertex data
1388 desc.pTriBuffer = (float*)pArena->AllocAligned(4 * 4 * sizeof(float), 16);
1389 _mm_store_ps(&desc.pTriBuffer[0], vHorizX[primIndex]);
1390 _mm_store_ps(&desc.pTriBuffer[4], vHorizY[primIndex]);
1391 _mm_store_ps(&desc.pTriBuffer[8], vHorizZ[primIndex]);
1392 _mm_store_ps(&desc.pTriBuffer[12], vHorizW[primIndex]);
1393
1394 // store user clip distances
1395 if (rastState.clipDistanceMask)
1396 {
1397 uint32_t numClipDist = _mm_popcnt_u32(rastState.clipDistanceMask);
1398 desc.pUserClipBuffer = (float*)pArena->Alloc(numClipDist * 2 * sizeof(float));
1399 ProcessUserClipDist<2>(pa, primIndex, rastState.clipDistanceMask, desc.pUserClipBuffer);
1400 }
1401
1402 MacroTileMgr *pTileMgr = pDC->pTileMgr;
1403 for (uint32_t y = aMTTop[primIndex]; y <= aMTBottom[primIndex]; ++y)
1404 {
1405 for (uint32_t x = aMTLeft[primIndex]; x <= aMTRight[primIndex]; ++x)
1406 {
1407 #if KNOB_ENABLE_TOSS_POINTS
1408 if (!KNOB_TOSS_SETUP_TRIS)
1409 #endif
1410 {
1411 pTileMgr->enqueue(x, y, &work);
1412 }
1413 }
1414 }
1415
1416 primMask &= ~(1 << primIndex);
1417 }
1418
1419 endBinLines:
1420
1421 AR_END(FEBinLines, 1);
1422 }
1423
1424 //////////////////////////////////////////////////////////////////////////
1425 /// @brief Bin SIMD lines to the backend.
1426 /// @param pDC - pointer to draw context.
1427 /// @param pa - The primitive assembly object.
1428 /// @param workerId - thread's worker id. Even thread has a unique id.
1429 /// @param tri - Contains line position data for SIMDs worth of points.
1430 /// @param primID - Primitive ID for each line.
1431 /// @param viewportIdx - Viewport Array Index for each line.
1432 void BinLines(
1433 DRAW_CONTEXT *pDC,
1434 PA_STATE& pa,
1435 uint32_t workerId,
1436 simdvector prim[],
1437 uint32_t primMask,
1438 simdscalari primID,
1439 simdscalari viewportIdx)
1440 {
1441 SWR_CONTEXT *pContext = pDC->pContext;
1442
1443 const API_STATE& state = GetApiState(pDC);
1444 const SWR_RASTSTATE& rastState = state.rastState;
1445 const SWR_FRONTEND_STATE& feState = state.frontendState;
1446 const SWR_GS_STATE& gsState = state.gsState;
1447
1448 // Select attribute processor
1449 PFN_PROCESS_ATTRIBUTES pfnProcessAttribs = GetProcessAttributesFunc(2,
1450 state.backendState.swizzleEnable, state.backendState.constantInterpolationMask);
1451
1452 simdscalar vRecipW[2] = { _simd_set1_ps(1.0f), _simd_set1_ps(1.0f) };
1453
1454 if (!feState.vpTransformDisable)
1455 {
1456 // perspective divide
1457 vRecipW[0] = _simd_div_ps(_simd_set1_ps(1.0f), prim[0].w);
1458 vRecipW[1] = _simd_div_ps(_simd_set1_ps(1.0f), prim[1].w);
1459
1460 prim[0].v[0] = _simd_mul_ps(prim[0].v[0], vRecipW[0]);
1461 prim[1].v[0] = _simd_mul_ps(prim[1].v[0], vRecipW[1]);
1462
1463 prim[0].v[1] = _simd_mul_ps(prim[0].v[1], vRecipW[0]);
1464 prim[1].v[1] = _simd_mul_ps(prim[1].v[1], vRecipW[1]);
1465
1466 prim[0].v[2] = _simd_mul_ps(prim[0].v[2], vRecipW[0]);
1467 prim[1].v[2] = _simd_mul_ps(prim[1].v[2], vRecipW[1]);
1468
1469 // viewport transform to screen coords
1470 if (state.gsState.emitsViewportArrayIndex)
1471 {
1472 viewportTransform<2>(prim, state.vpMatrices, viewportIdx);
1473 }
1474 else
1475 {
1476 viewportTransform<2>(prim, state.vpMatrices);
1477 }
1478 }
1479
1480 // adjust for pixel center location
1481 simdscalar offset = g_pixelOffsets[rastState.pixelLocation];
1482 prim[0].x = _simd_add_ps(prim[0].x, offset);
1483 prim[0].y = _simd_add_ps(prim[0].y, offset);
1484
1485 prim[1].x = _simd_add_ps(prim[1].x, offset);
1486 prim[1].y = _simd_add_ps(prim[1].y, offset);
1487
1488 BinPostSetupLines(
1489 pDC,
1490 pa,
1491 workerId,
1492 prim,
1493 vRecipW,
1494 primMask,
1495 primID,
1496 viewportIdx);
1497 }