swr/rast: SIMD16 FE - fix conservative rasterization
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / frontend.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file frontend.cpp
24 *
25 * @brief Implementation for Frontend which handles vertex processing,
26 * primitive assembly, clipping, binning, etc.
27 *
28 ******************************************************************************/
29
30 #include "api.h"
31 #include "frontend.h"
32 #include "backend.h"
33 #include "context.h"
34 #include "rdtsc_core.h"
35 #include "utils.h"
36 #include "threads.h"
37 #include "pa.h"
38 #include "clip.h"
39 #include "tilemgr.h"
40 #include "tessellator.h"
41 #include <limits>
42
43 //////////////////////////////////////////////////////////////////////////
44 /// @brief Helper macro to generate a bitmask
45 static INLINE uint32_t GenMask(uint32_t numBits)
46 {
47 SWR_ASSERT(numBits <= (sizeof(uint32_t) * 8), "Too many bits (%d) for %s", numBits, __FUNCTION__);
48 return ((1U << numBits) - 1);
49 }
50
51 //////////////////////////////////////////////////////////////////////////
52 /// @brief FE handler for SwrSync.
53 /// @param pContext - pointer to SWR context.
54 /// @param pDC - pointer to draw context.
55 /// @param workerId - thread's worker id. Even thread has a unique id.
56 /// @param pUserData - Pointer to user data passed back to sync callback.
57 /// @todo This should go away when we switch this to use compute threading.
58 void ProcessSync(
59 SWR_CONTEXT *pContext,
60 DRAW_CONTEXT *pDC,
61 uint32_t workerId,
62 void *pUserData)
63 {
64 BE_WORK work;
65 work.type = SYNC;
66 work.pfnWork = ProcessSyncBE;
67
68 MacroTileMgr *pTileMgr = pDC->pTileMgr;
69 pTileMgr->enqueue(0, 0, &work);
70 }
71
72 //////////////////////////////////////////////////////////////////////////
73 /// @brief FE handler for SwrDestroyContext.
74 /// @param pContext - pointer to SWR context.
75 /// @param pDC - pointer to draw context.
76 /// @param workerId - thread's worker id. Even thread has a unique id.
77 /// @param pUserData - Pointer to user data passed back to sync callback.
78 void ProcessShutdown(
79 SWR_CONTEXT *pContext,
80 DRAW_CONTEXT *pDC,
81 uint32_t workerId,
82 void *pUserData)
83 {
84 BE_WORK work;
85 work.type = SHUTDOWN;
86 work.pfnWork = ProcessShutdownBE;
87
88 MacroTileMgr *pTileMgr = pDC->pTileMgr;
89 // Enqueue at least 1 work item for each worker thread
90 // account for number of numa nodes
91 uint32_t numNumaNodes = pContext->threadPool.numaMask + 1;
92
93 for (uint32_t i = 0; i < pContext->threadPool.numThreads; ++i)
94 {
95 for (uint32_t n = 0; n < numNumaNodes; ++n)
96 {
97 pTileMgr->enqueue(i, n, &work);
98 }
99 }
100 }
101
102 //////////////////////////////////////////////////////////////////////////
103 /// @brief FE handler for SwrClearRenderTarget.
104 /// @param pContext - pointer to SWR context.
105 /// @param pDC - pointer to draw context.
106 /// @param workerId - thread's worker id. Even thread has a unique id.
107 /// @param pUserData - Pointer to user data passed back to clear callback.
108 /// @todo This should go away when we switch this to use compute threading.
109 void ProcessClear(
110 SWR_CONTEXT *pContext,
111 DRAW_CONTEXT *pDC,
112 uint32_t workerId,
113 void *pUserData)
114 {
115 CLEAR_DESC *pDesc = (CLEAR_DESC*)pUserData;
116 MacroTileMgr *pTileMgr = pDC->pTileMgr;
117
118 // queue a clear to each macro tile
119 // compute macro tile bounds for the specified rect
120 uint32_t macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
121 uint32_t macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
122 uint32_t macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
123 uint32_t macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;
124
125 BE_WORK work;
126 work.type = CLEAR;
127 work.pfnWork = ProcessClearBE;
128 work.desc.clear = *pDesc;
129
130 for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
131 {
132 for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
133 {
134 pTileMgr->enqueue(x, y, &work);
135 }
136 }
137 }
138
139 //////////////////////////////////////////////////////////////////////////
140 /// @brief FE handler for SwrStoreTiles.
141 /// @param pContext - pointer to SWR context.
142 /// @param pDC - pointer to draw context.
143 /// @param workerId - thread's worker id. Even thread has a unique id.
144 /// @param pUserData - Pointer to user data passed back to callback.
145 /// @todo This should go away when we switch this to use compute threading.
146 void ProcessStoreTiles(
147 SWR_CONTEXT *pContext,
148 DRAW_CONTEXT *pDC,
149 uint32_t workerId,
150 void *pUserData)
151 {
152 AR_BEGIN(FEProcessStoreTiles, pDC->drawId);
153 MacroTileMgr *pTileMgr = pDC->pTileMgr;
154 STORE_TILES_DESC* pDesc = (STORE_TILES_DESC*)pUserData;
155
156 // queue a store to each macro tile
157 // compute macro tile bounds for the specified rect
158 uint32_t macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
159 uint32_t macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
160 uint32_t macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
161 uint32_t macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;
162
163 // store tiles
164 BE_WORK work;
165 work.type = STORETILES;
166 work.pfnWork = ProcessStoreTilesBE;
167 work.desc.storeTiles = *pDesc;
168
169 for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
170 {
171 for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
172 {
173 pTileMgr->enqueue(x, y, &work);
174 }
175 }
176
177 AR_END(FEProcessStoreTiles, 0);
178 }
179
180 //////////////////////////////////////////////////////////////////////////
181 /// @brief FE handler for SwrInvalidateTiles.
182 /// @param pContext - pointer to SWR context.
183 /// @param pDC - pointer to draw context.
184 /// @param workerId - thread's worker id. Even thread has a unique id.
185 /// @param pUserData - Pointer to user data passed back to callback.
186 /// @todo This should go away when we switch this to use compute threading.
187 void ProcessDiscardInvalidateTiles(
188 SWR_CONTEXT *pContext,
189 DRAW_CONTEXT *pDC,
190 uint32_t workerId,
191 void *pUserData)
192 {
193 AR_BEGIN(FEProcessInvalidateTiles, pDC->drawId);
194 DISCARD_INVALIDATE_TILES_DESC *pDesc = (DISCARD_INVALIDATE_TILES_DESC*)pUserData;
195 MacroTileMgr *pTileMgr = pDC->pTileMgr;
196
197 // compute macro tile bounds for the specified rect
198 uint32_t macroTileXMin = (pDesc->rect.xmin + KNOB_MACROTILE_X_DIM - 1) / KNOB_MACROTILE_X_DIM;
199 uint32_t macroTileXMax = (pDesc->rect.xmax / KNOB_MACROTILE_X_DIM) - 1;
200 uint32_t macroTileYMin = (pDesc->rect.ymin + KNOB_MACROTILE_Y_DIM - 1) / KNOB_MACROTILE_Y_DIM;
201 uint32_t macroTileYMax = (pDesc->rect.ymax / KNOB_MACROTILE_Y_DIM) - 1;
202
203 if (pDesc->fullTilesOnly == false)
204 {
205 // include partial tiles
206 macroTileXMin = pDesc->rect.xmin / KNOB_MACROTILE_X_DIM;
207 macroTileXMax = (pDesc->rect.xmax - 1) / KNOB_MACROTILE_X_DIM;
208 macroTileYMin = pDesc->rect.ymin / KNOB_MACROTILE_Y_DIM;
209 macroTileYMax = (pDesc->rect.ymax - 1) / KNOB_MACROTILE_Y_DIM;
210 }
211
212 SWR_ASSERT(macroTileXMax <= KNOB_NUM_HOT_TILES_X);
213 SWR_ASSERT(macroTileYMax <= KNOB_NUM_HOT_TILES_Y);
214
215 macroTileXMax = std::min<int32_t>(macroTileXMax, KNOB_NUM_HOT_TILES_X);
216 macroTileYMax = std::min<int32_t>(macroTileYMax, KNOB_NUM_HOT_TILES_Y);
217
218 // load tiles
219 BE_WORK work;
220 work.type = DISCARDINVALIDATETILES;
221 work.pfnWork = ProcessDiscardInvalidateTilesBE;
222 work.desc.discardInvalidateTiles = *pDesc;
223
224 for (uint32_t x = macroTileXMin; x <= macroTileXMax; ++x)
225 {
226 for (uint32_t y = macroTileYMin; y <= macroTileYMax; ++y)
227 {
228 pTileMgr->enqueue(x, y, &work);
229 }
230 }
231
232 AR_END(FEProcessInvalidateTiles, 0);
233 }
234
235 //////////////////////////////////////////////////////////////////////////
236 /// @brief Computes the number of primitives given the number of verts.
237 /// @param mode - primitive topology for draw operation.
238 /// @param numPrims - number of vertices or indices for draw.
239 /// @todo Frontend needs to be refactored. This will go in appropriate place then.
240 uint32_t GetNumPrims(
241 PRIMITIVE_TOPOLOGY mode,
242 uint32_t numPrims)
243 {
244 switch (mode)
245 {
246 case TOP_POINT_LIST: return numPrims;
247 case TOP_TRIANGLE_LIST: return numPrims / 3;
248 case TOP_TRIANGLE_STRIP: return numPrims < 3 ? 0 : numPrims - 2;
249 case TOP_TRIANGLE_FAN: return numPrims < 3 ? 0 : numPrims - 2;
250 case TOP_TRIANGLE_DISC: return numPrims < 2 ? 0 : numPrims - 1;
251 case TOP_QUAD_LIST: return numPrims / 4;
252 case TOP_QUAD_STRIP: return numPrims < 4 ? 0 : (numPrims - 2) / 2;
253 case TOP_LINE_STRIP: return numPrims < 2 ? 0 : numPrims - 1;
254 case TOP_LINE_LIST: return numPrims / 2;
255 case TOP_LINE_LOOP: return numPrims;
256 case TOP_RECT_LIST: return numPrims / 3;
257 case TOP_LINE_LIST_ADJ: return numPrims / 4;
258 case TOP_LISTSTRIP_ADJ: return numPrims < 3 ? 0 : numPrims - 3;
259 case TOP_TRI_LIST_ADJ: return numPrims / 6;
260 case TOP_TRI_STRIP_ADJ: return numPrims < 4 ? 0 : (numPrims / 2) - 2;
261
262 case TOP_PATCHLIST_1:
263 case TOP_PATCHLIST_2:
264 case TOP_PATCHLIST_3:
265 case TOP_PATCHLIST_4:
266 case TOP_PATCHLIST_5:
267 case TOP_PATCHLIST_6:
268 case TOP_PATCHLIST_7:
269 case TOP_PATCHLIST_8:
270 case TOP_PATCHLIST_9:
271 case TOP_PATCHLIST_10:
272 case TOP_PATCHLIST_11:
273 case TOP_PATCHLIST_12:
274 case TOP_PATCHLIST_13:
275 case TOP_PATCHLIST_14:
276 case TOP_PATCHLIST_15:
277 case TOP_PATCHLIST_16:
278 case TOP_PATCHLIST_17:
279 case TOP_PATCHLIST_18:
280 case TOP_PATCHLIST_19:
281 case TOP_PATCHLIST_20:
282 case TOP_PATCHLIST_21:
283 case TOP_PATCHLIST_22:
284 case TOP_PATCHLIST_23:
285 case TOP_PATCHLIST_24:
286 case TOP_PATCHLIST_25:
287 case TOP_PATCHLIST_26:
288 case TOP_PATCHLIST_27:
289 case TOP_PATCHLIST_28:
290 case TOP_PATCHLIST_29:
291 case TOP_PATCHLIST_30:
292 case TOP_PATCHLIST_31:
293 case TOP_PATCHLIST_32:
294 return numPrims / (mode - TOP_PATCHLIST_BASE);
295
296 case TOP_POLYGON:
297 case TOP_POINT_LIST_BF:
298 case TOP_LINE_STRIP_CONT:
299 case TOP_LINE_STRIP_BF:
300 case TOP_LINE_STRIP_CONT_BF:
301 case TOP_TRIANGLE_FAN_NOSTIPPLE:
302 case TOP_TRI_STRIP_REVERSE:
303 case TOP_PATCHLIST_BASE:
304 case TOP_UNKNOWN:
305 SWR_INVALID("Unsupported topology: %d", mode);
306 return 0;
307 }
308
309 return 0;
310 }
311
312 //////////////////////////////////////////////////////////////////////////
313 /// @brief Computes the number of verts given the number of primitives.
314 /// @param mode - primitive topology for draw operation.
315 /// @param numPrims - number of primitives for draw.
316 uint32_t GetNumVerts(
317 PRIMITIVE_TOPOLOGY mode,
318 uint32_t numPrims)
319 {
320 switch (mode)
321 {
322 case TOP_POINT_LIST: return numPrims;
323 case TOP_TRIANGLE_LIST: return numPrims * 3;
324 case TOP_TRIANGLE_STRIP: return numPrims ? numPrims + 2 : 0;
325 case TOP_TRIANGLE_FAN: return numPrims ? numPrims + 2 : 0;
326 case TOP_TRIANGLE_DISC: return numPrims ? numPrims + 1 : 0;
327 case TOP_QUAD_LIST: return numPrims * 4;
328 case TOP_QUAD_STRIP: return numPrims ? numPrims * 2 + 2 : 0;
329 case TOP_LINE_STRIP: return numPrims ? numPrims + 1 : 0;
330 case TOP_LINE_LIST: return numPrims * 2;
331 case TOP_LINE_LOOP: return numPrims;
332 case TOP_RECT_LIST: return numPrims * 3;
333 case TOP_LINE_LIST_ADJ: return numPrims * 4;
334 case TOP_LISTSTRIP_ADJ: return numPrims ? numPrims + 3 : 0;
335 case TOP_TRI_LIST_ADJ: return numPrims * 6;
336 case TOP_TRI_STRIP_ADJ: return numPrims ? (numPrims + 2) * 2 : 0;
337
338 case TOP_PATCHLIST_1:
339 case TOP_PATCHLIST_2:
340 case TOP_PATCHLIST_3:
341 case TOP_PATCHLIST_4:
342 case TOP_PATCHLIST_5:
343 case TOP_PATCHLIST_6:
344 case TOP_PATCHLIST_7:
345 case TOP_PATCHLIST_8:
346 case TOP_PATCHLIST_9:
347 case TOP_PATCHLIST_10:
348 case TOP_PATCHLIST_11:
349 case TOP_PATCHLIST_12:
350 case TOP_PATCHLIST_13:
351 case TOP_PATCHLIST_14:
352 case TOP_PATCHLIST_15:
353 case TOP_PATCHLIST_16:
354 case TOP_PATCHLIST_17:
355 case TOP_PATCHLIST_18:
356 case TOP_PATCHLIST_19:
357 case TOP_PATCHLIST_20:
358 case TOP_PATCHLIST_21:
359 case TOP_PATCHLIST_22:
360 case TOP_PATCHLIST_23:
361 case TOP_PATCHLIST_24:
362 case TOP_PATCHLIST_25:
363 case TOP_PATCHLIST_26:
364 case TOP_PATCHLIST_27:
365 case TOP_PATCHLIST_28:
366 case TOP_PATCHLIST_29:
367 case TOP_PATCHLIST_30:
368 case TOP_PATCHLIST_31:
369 case TOP_PATCHLIST_32:
370 return numPrims * (mode - TOP_PATCHLIST_BASE);
371
372 case TOP_POLYGON:
373 case TOP_POINT_LIST_BF:
374 case TOP_LINE_STRIP_CONT:
375 case TOP_LINE_STRIP_BF:
376 case TOP_LINE_STRIP_CONT_BF:
377 case TOP_TRIANGLE_FAN_NOSTIPPLE:
378 case TOP_TRI_STRIP_REVERSE:
379 case TOP_PATCHLIST_BASE:
380 case TOP_UNKNOWN:
381 SWR_INVALID("Unsupported topology: %d", mode);
382 return 0;
383 }
384
385 return 0;
386 }
387
388 //////////////////////////////////////////////////////////////////////////
389 /// @brief Return number of verts per primitive.
390 /// @param topology - topology
391 /// @param includeAdjVerts - include adjacent verts in primitive vertices
392 INLINE uint32_t NumVertsPerPrim(PRIMITIVE_TOPOLOGY topology, bool includeAdjVerts)
393 {
394 uint32_t numVerts = 0;
395 switch (topology)
396 {
397 case TOP_POINT_LIST:
398 case TOP_POINT_LIST_BF:
399 numVerts = 1;
400 break;
401 case TOP_LINE_LIST:
402 case TOP_LINE_STRIP:
403 case TOP_LINE_LIST_ADJ:
404 case TOP_LINE_LOOP:
405 case TOP_LINE_STRIP_CONT:
406 case TOP_LINE_STRIP_BF:
407 case TOP_LISTSTRIP_ADJ:
408 numVerts = 2;
409 break;
410 case TOP_TRIANGLE_LIST:
411 case TOP_TRIANGLE_STRIP:
412 case TOP_TRIANGLE_FAN:
413 case TOP_TRI_LIST_ADJ:
414 case TOP_TRI_STRIP_ADJ:
415 case TOP_TRI_STRIP_REVERSE:
416 case TOP_RECT_LIST:
417 numVerts = 3;
418 break;
419 case TOP_QUAD_LIST:
420 case TOP_QUAD_STRIP:
421 numVerts = 4;
422 break;
423 case TOP_PATCHLIST_1:
424 case TOP_PATCHLIST_2:
425 case TOP_PATCHLIST_3:
426 case TOP_PATCHLIST_4:
427 case TOP_PATCHLIST_5:
428 case TOP_PATCHLIST_6:
429 case TOP_PATCHLIST_7:
430 case TOP_PATCHLIST_8:
431 case TOP_PATCHLIST_9:
432 case TOP_PATCHLIST_10:
433 case TOP_PATCHLIST_11:
434 case TOP_PATCHLIST_12:
435 case TOP_PATCHLIST_13:
436 case TOP_PATCHLIST_14:
437 case TOP_PATCHLIST_15:
438 case TOP_PATCHLIST_16:
439 case TOP_PATCHLIST_17:
440 case TOP_PATCHLIST_18:
441 case TOP_PATCHLIST_19:
442 case TOP_PATCHLIST_20:
443 case TOP_PATCHLIST_21:
444 case TOP_PATCHLIST_22:
445 case TOP_PATCHLIST_23:
446 case TOP_PATCHLIST_24:
447 case TOP_PATCHLIST_25:
448 case TOP_PATCHLIST_26:
449 case TOP_PATCHLIST_27:
450 case TOP_PATCHLIST_28:
451 case TOP_PATCHLIST_29:
452 case TOP_PATCHLIST_30:
453 case TOP_PATCHLIST_31:
454 case TOP_PATCHLIST_32:
455 numVerts = topology - TOP_PATCHLIST_BASE;
456 break;
457 default:
458 SWR_INVALID("Unsupported topology: %d", topology);
459 break;
460 }
461
462 if (includeAdjVerts)
463 {
464 switch (topology)
465 {
466 case TOP_LISTSTRIP_ADJ:
467 case TOP_LINE_LIST_ADJ: numVerts = 4; break;
468 case TOP_TRI_STRIP_ADJ:
469 case TOP_TRI_LIST_ADJ: numVerts = 6; break;
470 default: break;
471 }
472 }
473
474 return numVerts;
475 }
476
477 //////////////////////////////////////////////////////////////////////////
478 /// @brief Generate mask from remaining work.
479 /// @param numWorkItems - Number of items being worked on by a SIMD.
480 static INLINE simdscalari GenerateMask(uint32_t numItemsRemaining)
481 {
482 uint32_t numActive = (numItemsRemaining >= KNOB_SIMD_WIDTH) ? KNOB_SIMD_WIDTH : numItemsRemaining;
483 uint32_t mask = (numActive > 0) ? ((1 << numActive) - 1) : 0;
484 return _simd_castps_si(vMask(mask));
485 }
486
487 //////////////////////////////////////////////////////////////////////////
488 /// @brief StreamOut - Streams vertex data out to SO buffers.
489 /// Generally, we are only streaming out a SIMDs worth of triangles.
490 /// @param pDC - pointer to draw context.
491 /// @param workerId - thread's worker id. Even thread has a unique id.
492 /// @param numPrims - Number of prims to streamout (e.g. points, lines, tris)
493 static void StreamOut(
494 DRAW_CONTEXT* pDC,
495 PA_STATE& pa,
496 uint32_t workerId,
497 uint32_t* pPrimData,
498 #if USE_SIMD16_FRONTEND
499 uint32_t numPrims_simd8,
500 #endif
501 uint32_t streamIndex)
502 {
503 SWR_CONTEXT *pContext = pDC->pContext;
504
505 AR_BEGIN(FEStreamout, pDC->drawId);
506
507 const API_STATE& state = GetApiState(pDC);
508 const SWR_STREAMOUT_STATE &soState = state.soState;
509
510 uint32_t soVertsPerPrim = NumVertsPerPrim(pa.binTopology, false);
511
512 // The pPrimData buffer is sparse in that we allocate memory for all 32 attributes for each vertex.
513 uint32_t primDataDwordVertexStride = (SWR_VTX_NUM_SLOTS * sizeof(float) * 4) / sizeof(uint32_t);
514
515 SWR_STREAMOUT_CONTEXT soContext = { 0 };
516
517 // Setup buffer state pointers.
518 for (uint32_t i = 0; i < 4; ++i)
519 {
520 soContext.pBuffer[i] = &state.soBuffer[i];
521 }
522
523 #if USE_SIMD16_FRONTEND
524 uint32_t numPrims = numPrims_simd8;
525 #else
526 uint32_t numPrims = pa.NumPrims();
527 #endif
528
529 for (uint32_t primIndex = 0; primIndex < numPrims; ++primIndex)
530 {
531 DWORD slot = 0;
532 uint32_t soMask = soState.streamMasks[streamIndex];
533
534 // Write all entries into primitive data buffer for SOS.
535 while (_BitScanForward(&slot, soMask))
536 {
537 __m128 attrib[MAX_NUM_VERTS_PER_PRIM]; // prim attribs (always 4 wide)
538 uint32_t paSlot = slot + VERTEX_ATTRIB_START_SLOT;
539 pa.AssembleSingle(paSlot, primIndex, attrib);
540
541 // Attribute offset is relative offset from start of vertex.
542 // Note that attributes start at slot 1 in the PA buffer. We need to write this
543 // to prim data starting at slot 0. Which is why we do (slot - 1).
544 // Also note: GL works slightly differently, and needs slot 0
545 uint32_t primDataAttribOffset = slot * sizeof(float) * 4 / sizeof(uint32_t);
546
547 // Store each vertex's attrib at appropriate locations in pPrimData buffer.
548 for (uint32_t v = 0; v < soVertsPerPrim; ++v)
549 {
550 uint32_t* pPrimDataAttrib = pPrimData + primDataAttribOffset + (v * primDataDwordVertexStride);
551
552 _mm_store_ps((float*)pPrimDataAttrib, attrib[v]);
553 }
554
555 soMask &= ~(1 << slot);
556 }
557
558 // Update pPrimData pointer
559 soContext.pPrimData = pPrimData;
560
561 // Call SOS
562 SWR_ASSERT(state.pfnSoFunc[streamIndex] != nullptr, "Trying to execute uninitialized streamout jit function.");
563 state.pfnSoFunc[streamIndex](soContext);
564 }
565
566 // Update SO write offset. The driver provides memory for the update.
567 for (uint32_t i = 0; i < 4; ++i)
568 {
569 if (state.soBuffer[i].pWriteOffset)
570 {
571 *state.soBuffer[i].pWriteOffset = soContext.pBuffer[i]->streamOffset * sizeof(uint32_t);
572 }
573
574 if (state.soBuffer[i].soWriteEnable)
575 {
576 pDC->dynState.SoWriteOffset[i] = soContext.pBuffer[i]->streamOffset * sizeof(uint32_t);
577 pDC->dynState.SoWriteOffsetDirty[i] = true;
578 }
579 }
580
581 UPDATE_STAT_FE(SoPrimStorageNeeded[streamIndex], soContext.numPrimStorageNeeded);
582 UPDATE_STAT_FE(SoNumPrimsWritten[streamIndex], soContext.numPrimsWritten);
583
584 AR_END(FEStreamout, 1);
585 }
586
587 #if USE_SIMD16_FRONTEND
588 //////////////////////////////////////////////////////////////////////////
589 /// Is value an even number (a multiple of two)
590 ///
591 template <typename T>
592 INLINE static bool IsEven(T value)
593 {
594 return (value & 1) == 0;
595 }
596
597 //////////////////////////////////////////////////////////////////////////
598 /// Round up value to an even number (a multiple of two)
599 ///
600 template <typename T>
601 INLINE static T RoundUpEven(T value)
602 {
603 return (value + 1) & ~1;
604 }
605
606 //////////////////////////////////////////////////////////////////////////
607 /// Round down value to an even number (a multiple of two)
608 ///
609 template <typename T>
610 INLINE static T RoundDownEven(T value)
611 {
612 return value & ~1;
613 }
614
615 //////////////////////////////////////////////////////////////////////////
616 /// Pack pairs of simdvertexes into simd16vertexes, assume non-overlapping
617 ///
618 /// vertexCount is in terms of the source simdvertexes and must be even
619 ///
620 /// attribCount will limit the vector copies to those attribs specified
621 ///
622 /// note: the stride between vertexes is determinded by SWR_VTX_NUM_SLOTS
623 ///
624 void PackPairsOfSimdVertexIntoSimd16Vertex(simd16vertex *vertex_simd16, const simdvertex *vertex, uint32_t vertexCount, uint32_t attribCount)
625 {
626 SWR_ASSERT(vertex);
627 SWR_ASSERT(vertex_simd16);
628 SWR_ASSERT(attribCount <= SWR_VTX_NUM_SLOTS);
629
630 simd16vertex temp;
631
632 for (uint32_t i = 0; i < vertexCount; i += 2)
633 {
634 for (uint32_t j = 0; j < attribCount; j += 1)
635 {
636 for (uint32_t k = 0; k < 4; k += 1)
637 {
638 temp.attrib[j][k] = _simd16_insert_ps(_simd16_setzero_ps(), vertex[i].attrib[j][k], 0);
639
640 if ((i + 1) < vertexCount)
641 {
642 temp.attrib[j][k] = _simd16_insert_ps(temp.attrib[j][k], vertex[i + 1].attrib[j][k], 1);
643 }
644 }
645 }
646
647 for (uint32_t j = 0; j < attribCount; j += 1)
648 {
649 vertex_simd16[i >> 1].attrib[j] = temp.attrib[j];
650 }
651 }
652 }
653
654 #endif
655 //////////////////////////////////////////////////////////////////////////
656 /// @brief Computes number of invocations. The current index represents
657 /// the start of the SIMD. The max index represents how much work
658 /// items are remaining. If there is less then a SIMD's xmin of work
659 /// then return the remaining amount of work.
660 /// @param curIndex - The start index for the SIMD.
661 /// @param maxIndex - The last index for all work items.
662 static INLINE uint32_t GetNumInvocations(
663 uint32_t curIndex,
664 uint32_t maxIndex)
665 {
666 uint32_t remainder = (maxIndex - curIndex);
667 #if USE_SIMD16_FRONTEND
668 return (remainder >= KNOB_SIMD16_WIDTH) ? KNOB_SIMD16_WIDTH : remainder;
669 #else
670 return (remainder >= KNOB_SIMD_WIDTH) ? KNOB_SIMD_WIDTH : remainder;
671 #endif
672 }
673
674 //////////////////////////////////////////////////////////////////////////
675 /// @brief Converts a streamId buffer to a cut buffer for the given stream id.
676 /// The geometry shader will loop over each active streamout buffer, assembling
677 /// primitives for the downstream stages. When multistream output is enabled,
678 /// the generated stream ID buffer from the GS needs to be converted to a cut
679 /// buffer for the primitive assembler.
680 /// @param stream - stream id to generate the cut buffer for
681 /// @param pStreamIdBase - pointer to the stream ID buffer
682 /// @param numEmittedVerts - Number of total verts emitted by the GS
683 /// @param pCutBuffer - output buffer to write cuts to
684 void ProcessStreamIdBuffer(uint32_t stream, uint8_t* pStreamIdBase, uint32_t numEmittedVerts, uint8_t *pCutBuffer)
685 {
686 SWR_ASSERT(stream < MAX_SO_STREAMS);
687
688 uint32_t numInputBytes = (numEmittedVerts * 2 + 7) / 8;
689 uint32_t numOutputBytes = std::max(numInputBytes / 2, 1U);
690
691 for (uint32_t b = 0; b < numOutputBytes; ++b)
692 {
693 uint8_t curInputByte = pStreamIdBase[2*b];
694 uint8_t outByte = 0;
695 for (uint32_t i = 0; i < 4; ++i)
696 {
697 if ((curInputByte & 0x3) != stream)
698 {
699 outByte |= (1 << i);
700 }
701 curInputByte >>= 2;
702 }
703
704 curInputByte = pStreamIdBase[2 * b + 1];
705 for (uint32_t i = 0; i < 4; ++i)
706 {
707 if ((curInputByte & 0x3) != stream)
708 {
709 outByte |= (1 << (i + 4));
710 }
711 curInputByte >>= 2;
712 }
713
714 *pCutBuffer++ = outByte;
715 }
716 }
717
718 THREAD SWR_GS_CONTEXT tlsGsContext;
719
720 template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
721 struct GsBufferInfo
722 {
723 GsBufferInfo(const SWR_GS_STATE &gsState)
724 {
725 const uint32_t vertexCount = gsState.maxNumVerts;
726 const uint32_t vertexStride = sizeof(SIMDVERTEX);
727 const uint32_t numSimdBatches = (vertexCount + SIMD_WIDTH - 1) / SIMD_WIDTH;
728
729 vertexPrimitiveStride = vertexStride * numSimdBatches;
730 vertexInstanceStride = vertexPrimitiveStride * SIMD_WIDTH;
731
732 if (gsState.isSingleStream)
733 {
734 cutPrimitiveStride = (vertexCount + 7) / 8;
735 cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
736
737 streamCutPrimitiveStride = 0;
738 streamCutInstanceStride = 0;
739 }
740 else
741 {
742 cutPrimitiveStride = AlignUp(vertexCount * 2 / 8, 4);
743 cutInstanceStride = cutPrimitiveStride * SIMD_WIDTH;
744
745 streamCutPrimitiveStride = (vertexCount + 7) / 8;
746 streamCutInstanceStride = streamCutPrimitiveStride * SIMD_WIDTH;
747 }
748 }
749
750 uint32_t vertexPrimitiveStride;
751 uint32_t vertexInstanceStride;
752
753 uint32_t cutPrimitiveStride;
754 uint32_t cutInstanceStride;
755
756 uint32_t streamCutPrimitiveStride;
757 uint32_t streamCutInstanceStride;
758 };
759
760 //////////////////////////////////////////////////////////////////////////
761 /// @brief Implements GS stage.
762 /// @param pDC - pointer to draw context.
763 /// @param workerId - thread's worker id. Even thread has a unique id.
764 /// @param pa - The primitive assembly object.
765 /// @param pGsOut - output stream for GS
766 template <
767 typename HasStreamOutT,
768 typename HasRastT>
769 static void GeometryShaderStage(
770 DRAW_CONTEXT *pDC,
771 uint32_t workerId,
772 PA_STATE& pa,
773 void* pGsOut,
774 void* pCutBuffer,
775 void* pStreamCutBuffer,
776 uint32_t* pSoPrimData,
777 #if USE_SIMD16_FRONTEND
778 uint32_t numPrims_simd8,
779 #endif
780 simdscalari primID)
781 {
782 SWR_CONTEXT *pContext = pDC->pContext;
783
784 AR_BEGIN(FEGeometryShader, pDC->drawId);
785
786 const API_STATE& state = GetApiState(pDC);
787 const SWR_GS_STATE* pState = &state.gsState;
788
789 SWR_ASSERT(pGsOut != nullptr, "GS output buffer should be initialized");
790 SWR_ASSERT(pCutBuffer != nullptr, "GS output cut buffer should be initialized");
791
792 tlsGsContext.pStream = (uint8_t*)pGsOut;
793 tlsGsContext.pCutOrStreamIdBuffer = (uint8_t*)pCutBuffer;
794 tlsGsContext.PrimitiveID = primID;
795
796 uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, true);
797 simdvector attrib[MAX_ATTRIBUTES];
798
799 // assemble all attributes for the input primitive
800 for (uint32_t slot = 0; slot < pState->numInputAttribs; ++slot)
801 {
802 uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + slot;
803 pa.Assemble(attribSlot, attrib);
804
805 for (uint32_t i = 0; i < numVertsPerPrim; ++i)
806 {
807 tlsGsContext.vert[i].attrib[attribSlot] = attrib[i];
808 }
809 }
810
811 // assemble position
812 pa.Assemble(VERTEX_POSITION_SLOT, attrib);
813 for (uint32_t i = 0; i < numVertsPerPrim; ++i)
814 {
815 tlsGsContext.vert[i].attrib[VERTEX_POSITION_SLOT] = attrib[i];
816 }
817
818 #if USE_SIMD16_FRONTEND
819 const GsBufferInfo<simd16vertex, KNOB_SIMD16_WIDTH> bufferInfo(state.gsState);
820 #else
821 const GsBufferInfo<simdvertex, KNOB_SIMD_WIDTH> bufferInfo(state.gsState);
822 #endif
823
824 // record valid prims from the frontend to avoid over binning the newly generated
825 // prims from the GS
826 #if USE_SIMD16_FRONTEND
827 uint32_t numInputPrims = numPrims_simd8;
828 #else
829 uint32_t numInputPrims = pa.NumPrims();
830 #endif
831
832 for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
833 {
834 tlsGsContext.InstanceID = instance;
835 tlsGsContext.mask = GenerateMask(numInputPrims);
836
837 // execute the geometry shader
838 state.pfnGsFunc(GetPrivateState(pDC), &tlsGsContext);
839
840 tlsGsContext.pStream += bufferInfo.vertexInstanceStride;
841 tlsGsContext.pCutOrStreamIdBuffer += bufferInfo.cutInstanceStride;
842 }
843
844 // set up new binner and state for the GS output topology
845 #if USE_SIMD16_FRONTEND
846 PFN_PROCESS_PRIMS_SIMD16 pfnClipFunc = nullptr;
847 if (HasRastT::value)
848 {
849 switch (pState->outputTopology)
850 {
851 case TOP_TRIANGLE_STRIP: pfnClipFunc = ClipTriangles_simd16; break;
852 case TOP_LINE_STRIP: pfnClipFunc = ClipLines_simd16; break;
853 case TOP_POINT_LIST: pfnClipFunc = ClipPoints_simd16; break;
854 default: SWR_INVALID("Unexpected GS output topology: %d", pState->outputTopology);
855 }
856 }
857
858 #else
859 PFN_PROCESS_PRIMS pfnClipFunc = nullptr;
860 if (HasRastT::value)
861 {
862 switch (pState->outputTopology)
863 {
864 case TOP_TRIANGLE_STRIP: pfnClipFunc = ClipTriangles; break;
865 case TOP_LINE_STRIP: pfnClipFunc = ClipLines; break;
866 case TOP_POINT_LIST: pfnClipFunc = ClipPoints; break;
867 default: SWR_INVALID("Unexpected GS output topology: %d", pState->outputTopology);
868 }
869 }
870
871 #endif
872 // foreach input prim:
873 // - setup a new PA based on the emitted verts for that prim
874 // - loop over the new verts, calling PA to assemble each prim
875 uint32_t* pVertexCount = (uint32_t*)&tlsGsContext.vertexCount;
876 uint32_t* pPrimitiveId = (uint32_t*)&primID;
877
878 uint32_t totalPrimsGenerated = 0;
879 for (uint32_t inputPrim = 0; inputPrim < numInputPrims; ++inputPrim)
880 {
881 uint8_t* pInstanceBase = (uint8_t*)pGsOut + inputPrim * bufferInfo.vertexPrimitiveStride;
882 uint8_t* pCutBufferBase = (uint8_t*)pCutBuffer + inputPrim * bufferInfo.cutPrimitiveStride;
883
884 for (uint32_t instance = 0; instance < pState->instanceCount; ++instance)
885 {
886 uint32_t numEmittedVerts = pVertexCount[inputPrim];
887 if (numEmittedVerts == 0)
888 {
889 continue;
890 }
891
892 uint8_t* pBase = pInstanceBase + instance * bufferInfo.vertexInstanceStride;
893 uint8_t* pCutBase = pCutBufferBase + instance * bufferInfo.cutInstanceStride;
894
895 uint32_t numAttribs = state.feNumAttributes;
896
897 for (uint32_t stream = 0; stream < MAX_SO_STREAMS; ++stream)
898 {
899 bool processCutVerts = false;
900
901 uint8_t* pCutBuffer = pCutBase;
902
903 // assign default stream ID, only relevant when GS is outputting a single stream
904 uint32_t streamID = 0;
905 if (pState->isSingleStream)
906 {
907 processCutVerts = true;
908 streamID = pState->singleStreamID;
909 if (streamID != stream) continue;
910 }
911 else
912 {
913 // early exit if this stream is not enabled for streamout
914 if (HasStreamOutT::value && !state.soState.streamEnable[stream])
915 {
916 continue;
917 }
918
919 // multi-stream output, need to translate StreamID buffer to a cut buffer
920 ProcessStreamIdBuffer(stream, pCutBase, numEmittedVerts, (uint8_t*)pStreamCutBuffer);
921 pCutBuffer = (uint8_t*)pStreamCutBuffer;
922 processCutVerts = false;
923 }
924
925 #if USE_SIMD16_FRONTEND
926 PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, reinterpret_cast<simd16mask *>(pCutBuffer), numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
927
928 #else
929 PA_STATE_CUT gsPa(pDC, pBase, numEmittedVerts, pCutBuffer, numEmittedVerts, numAttribs, pState->outputTopology, processCutVerts);
930
931 #endif
932 while (gsPa.GetNextStreamOutput())
933 {
934 do
935 {
936 #if USE_SIMD16_FRONTEND
937 simd16vector attrib_simd16[3];
938
939 bool assemble = gsPa.Assemble_simd16(VERTEX_POSITION_SLOT, attrib_simd16);
940
941 #else
942 bool assemble = gsPa.Assemble(VERTEX_POSITION_SLOT, attrib);
943
944 #endif
945 if (assemble)
946 {
947 totalPrimsGenerated += gsPa.NumPrims();
948
949 if (HasStreamOutT::value)
950 {
951 #if USE_SIMD16_FRONTEND
952 const uint32_t numPrims = gsPa.NumPrims();
953 const uint32_t numPrims_lo = std::min<uint32_t>(numPrims, KNOB_SIMD_WIDTH);
954 const uint32_t numPrims_hi = std::max<uint32_t>(numPrims, KNOB_SIMD_WIDTH) - KNOB_SIMD_WIDTH;
955
956 gsPa.useAlternateOffset = false;
957 StreamOut(pDC, gsPa, workerId, pSoPrimData, numPrims_lo, stream);
958
959 if (numPrims_hi)
960 {
961 gsPa.useAlternateOffset = true;
962 StreamOut(pDC, gsPa, workerId, pSoPrimData, numPrims_hi, stream);
963 }
964 #else
965 StreamOut(pDC, gsPa, workerId, pSoPrimData, stream);
966 #endif
967 }
968
969 if (HasRastT::value && state.soState.streamToRasterizer == stream)
970 {
971 #if USE_SIMD16_FRONTEND
972 simd16scalari vPrimId;
973 // pull primitiveID from the GS output if available
974 if (state.gsState.emitsPrimitiveID)
975 {
976 simd16vector primIdAttrib[3];
977 gsPa.Assemble_simd16(VERTEX_PRIMID_SLOT, primIdAttrib);
978 vPrimId = _simd16_castps_si(primIdAttrib[state.frontendState.topologyProvokingVertex].x);
979 }
980 else
981 {
982 vPrimId = _simd16_set1_epi32(pPrimitiveId[inputPrim]);
983 }
984
985 // use viewport array index if GS declares it as an output attribute. Otherwise use index 0.
986 simd16scalari vViewPortIdx;
987 if (state.gsState.emitsViewportArrayIndex)
988 {
989 simd16vector vpiAttrib[3];
990 gsPa.Assemble_simd16(VERTEX_VIEWPORT_ARRAY_INDEX_SLOT, vpiAttrib);
991
992 // OOB indices => forced to zero.
993 simd16scalari vNumViewports = _simd16_set1_epi32(KNOB_NUM_VIEWPORTS_SCISSORS);
994 simd16scalari vClearMask = _simd16_cmplt_epi32(_simd16_castps_si(vpiAttrib[0].x), vNumViewports);
995 vpiAttrib[0].x = _simd16_and_ps(_simd16_castsi_ps(vClearMask), vpiAttrib[0].x);
996
997 vViewPortIdx = _simd16_castps_si(vpiAttrib[0].x);
998 }
999 else
1000 {
1001 vViewPortIdx = _simd16_set1_epi32(0);
1002 }
1003
1004 gsPa.useAlternateOffset = false;
1005 pfnClipFunc(pDC, gsPa, workerId, attrib_simd16, GenMask(gsPa.NumPrims()), vPrimId, vViewPortIdx);
1006 #else
1007 simdscalari vPrimId;
1008 // pull primitiveID from the GS output if available
1009 if (state.gsState.emitsPrimitiveID)
1010 {
1011 simdvector primIdAttrib[3];
1012 gsPa.Assemble(VERTEX_PRIMID_SLOT, primIdAttrib);
1013 vPrimId = _simd_castps_si(primIdAttrib[state.frontendState.topologyProvokingVertex].x);
1014 }
1015 else
1016 {
1017 vPrimId = _simd_set1_epi32(pPrimitiveId[inputPrim]);
1018 }
1019
1020 // use viewport array index if GS declares it as an output attribute. Otherwise use index 0.
1021 simdscalari vViewPortIdx;
1022 if (state.gsState.emitsViewportArrayIndex)
1023 {
1024 simdvector vpiAttrib[3];
1025 gsPa.Assemble(VERTEX_VIEWPORT_ARRAY_INDEX_SLOT, vpiAttrib);
1026
1027 // OOB indices => forced to zero.
1028 simdscalari vNumViewports = _simd_set1_epi32(KNOB_NUM_VIEWPORTS_SCISSORS);
1029 simdscalari vClearMask = _simd_cmplt_epi32(_simd_castps_si(vpiAttrib[0].x), vNumViewports);
1030 vpiAttrib[0].x = _simd_and_ps(_simd_castsi_ps(vClearMask), vpiAttrib[0].x);
1031
1032 vViewPortIdx = _simd_castps_si(vpiAttrib[0].x);
1033 }
1034 else
1035 {
1036 vViewPortIdx = _simd_set1_epi32(0);
1037 }
1038
1039 pfnClipFunc(pDC, gsPa, workerId, attrib, GenMask(gsPa.NumPrims()), vPrimId, vViewPortIdx);
1040 #endif
1041 }
1042 }
1043 } while (gsPa.NextPrim());
1044 }
1045 }
1046 }
1047 }
1048
1049 // update GS pipeline stats
1050 UPDATE_STAT_FE(GsInvocations, numInputPrims * pState->instanceCount);
1051 UPDATE_STAT_FE(GsPrimitives, totalPrimsGenerated);
1052 AR_EVENT(GSPrimInfo(numInputPrims, totalPrimsGenerated, numVertsPerPrim*numInputPrims));
1053 AR_END(FEGeometryShader, 1);
1054 }
1055
1056 //////////////////////////////////////////////////////////////////////////
1057 /// @brief Allocate GS buffers
1058 /// @param pDC - pointer to draw context.
1059 /// @param state - API state
1060 /// @param ppGsOut - pointer to GS output buffer allocation
1061 /// @param ppCutBuffer - pointer to GS output cut buffer allocation
1062 template<typename SIMDVERTEX, uint32_t SIMD_WIDTH>
1063 static INLINE void AllocateGsBuffers(DRAW_CONTEXT* pDC, const API_STATE& state, void** ppGsOut, void** ppCutBuffer,
1064 void **ppStreamCutBuffer)
1065 {
1066 auto pArena = pDC->pArena;
1067 SWR_ASSERT(pArena != nullptr);
1068 SWR_ASSERT(state.gsState.gsEnable);
1069
1070 // allocate arena space to hold GS output verts
1071 // @todo pack attribs
1072 // @todo support multiple streams
1073
1074 const GsBufferInfo<SIMDVERTEX, SIMD_WIDTH> bufferInfo(state.gsState);
1075
1076 const uint32_t vertexBufferSize = state.gsState.instanceCount * bufferInfo.vertexInstanceStride;
1077
1078 *ppGsOut = pArena->AllocAligned(vertexBufferSize, SIMD_WIDTH * sizeof(float));
1079
1080 // allocate arena space to hold cut or streamid buffer, which is essentially a bitfield sized to the
1081 // maximum vertex output as defined by the GS state, per SIMD lane, per GS instance
1082
1083 // allocate space for temporary per-stream cut buffer if multi-stream is enabled
1084 if (state.gsState.isSingleStream)
1085 {
1086 const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
1087
1088 *ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
1089 *ppStreamCutBuffer = nullptr;
1090 }
1091 else
1092 {
1093 const uint32_t cutBufferSize = state.gsState.instanceCount * bufferInfo.cutInstanceStride;
1094 const uint32_t streamCutBufferSize = state.gsState.instanceCount * bufferInfo.streamCutInstanceStride;
1095
1096 *ppCutBuffer = pArena->AllocAligned(cutBufferSize, SIMD_WIDTH * sizeof(float));
1097 *ppStreamCutBuffer = pArena->AllocAligned(streamCutBufferSize, SIMD_WIDTH * sizeof(float));
1098 }
1099 }
1100
1101 //////////////////////////////////////////////////////////////////////////
1102 /// @brief Contains all data generated by the HS and passed to the
1103 /// tessellator and DS.
1104 struct TessellationThreadLocalData
1105 {
1106 SWR_HS_CONTEXT hsContext;
1107 ScalarPatch patchData[KNOB_SIMD_WIDTH];
1108 void* pTxCtx;
1109 size_t tsCtxSize;
1110
1111 simdscalar* pDSOutput;
1112 size_t numDSOutputVectors;
1113 };
1114
1115 THREAD TessellationThreadLocalData* gt_pTessellationThreadData = nullptr;
1116
1117 //////////////////////////////////////////////////////////////////////////
1118 /// @brief Allocate tessellation data for this worker thread.
1119 INLINE
1120 static void AllocateTessellationData(SWR_CONTEXT* pContext)
1121 {
1122 /// @TODO - Don't use thread local storage. Use Worker local storage instead.
1123 if (gt_pTessellationThreadData == nullptr)
1124 {
1125 gt_pTessellationThreadData = (TessellationThreadLocalData*)
1126 AlignedMalloc(sizeof(TessellationThreadLocalData), 64);
1127 memset(gt_pTessellationThreadData, 0, sizeof(*gt_pTessellationThreadData));
1128 }
1129 }
1130
1131 //////////////////////////////////////////////////////////////////////////
1132 /// @brief Implements Tessellation Stages.
1133 /// @param pDC - pointer to draw context.
1134 /// @param workerId - thread's worker id. Even thread has a unique id.
1135 /// @param pa - The primitive assembly object.
1136 /// @param pGsOut - output stream for GS
1137 template <
1138 typename HasGeometryShaderT,
1139 typename HasStreamOutT,
1140 typename HasRastT>
1141 static void TessellationStages(
1142 DRAW_CONTEXT *pDC,
1143 uint32_t workerId,
1144 PA_STATE& pa,
1145 void* pGsOut,
1146 void* pCutBuffer,
1147 void* pCutStreamBuffer,
1148 uint32_t* pSoPrimData,
1149 #if USE_SIMD16_FRONTEND
1150 uint32_t numPrims_simd8,
1151 #endif
1152 simdscalari primID)
1153 {
1154 SWR_CONTEXT *pContext = pDC->pContext;
1155 const API_STATE& state = GetApiState(pDC);
1156 const SWR_TS_STATE& tsState = state.tsState;
1157
1158 SWR_ASSERT(gt_pTessellationThreadData);
1159
1160 HANDLE tsCtx = TSInitCtx(
1161 tsState.domain,
1162 tsState.partitioning,
1163 tsState.tsOutputTopology,
1164 gt_pTessellationThreadData->pTxCtx,
1165 gt_pTessellationThreadData->tsCtxSize);
1166 if (tsCtx == nullptr)
1167 {
1168 gt_pTessellationThreadData->pTxCtx = AlignedMalloc(gt_pTessellationThreadData->tsCtxSize, 64);
1169 tsCtx = TSInitCtx(
1170 tsState.domain,
1171 tsState.partitioning,
1172 tsState.tsOutputTopology,
1173 gt_pTessellationThreadData->pTxCtx,
1174 gt_pTessellationThreadData->tsCtxSize);
1175 }
1176 SWR_ASSERT(tsCtx);
1177
1178 #if USE_SIMD16_FRONTEND
1179 PFN_PROCESS_PRIMS_SIMD16 pfnClipFunc = nullptr;
1180 if (HasRastT::value)
1181 {
1182 switch (tsState.postDSTopology)
1183 {
1184 case TOP_TRIANGLE_LIST: pfnClipFunc = ClipTriangles_simd16; break;
1185 case TOP_LINE_LIST: pfnClipFunc = ClipLines_simd16; break;
1186 case TOP_POINT_LIST: pfnClipFunc = ClipPoints_simd16; break;
1187 default: SWR_INVALID("Unexpected DS output topology: %d", tsState.postDSTopology);
1188 }
1189 }
1190
1191 #else
1192 PFN_PROCESS_PRIMS pfnClipFunc = nullptr;
1193 if (HasRastT::value)
1194 {
1195 switch (tsState.postDSTopology)
1196 {
1197 case TOP_TRIANGLE_LIST: pfnClipFunc = ClipTriangles; break;
1198 case TOP_LINE_LIST: pfnClipFunc = ClipLines; break;
1199 case TOP_POINT_LIST: pfnClipFunc = ClipPoints; break;
1200 default: SWR_INVALID("Unexpected DS output topology: %d", tsState.postDSTopology);
1201 }
1202 }
1203
1204 #endif
1205 SWR_HS_CONTEXT& hsContext = gt_pTessellationThreadData->hsContext;
1206 hsContext.pCPout = gt_pTessellationThreadData->patchData;
1207 hsContext.PrimitiveID = primID;
1208
1209 uint32_t numVertsPerPrim = NumVertsPerPrim(pa.binTopology, false);
1210 // Max storage for one attribute for an entire simdprimitive
1211 simdvector simdattrib[MAX_NUM_VERTS_PER_PRIM];
1212
1213 // assemble all attributes for the input primitives
1214 for (uint32_t slot = 0; slot < tsState.numHsInputAttribs; ++slot)
1215 {
1216 uint32_t attribSlot = VERTEX_ATTRIB_START_SLOT + slot;
1217 pa.Assemble(attribSlot, simdattrib);
1218
1219 for (uint32_t i = 0; i < numVertsPerPrim; ++i)
1220 {
1221 hsContext.vert[i].attrib[attribSlot] = simdattrib[i];
1222 }
1223 }
1224
1225 #if defined(_DEBUG)
1226 memset(hsContext.pCPout, 0x90, sizeof(ScalarPatch) * KNOB_SIMD_WIDTH);
1227 #endif
1228
1229 #if USE_SIMD16_FRONTEND
1230 uint32_t numPrims = numPrims_simd8;
1231 #else
1232 uint32_t numPrims = pa.NumPrims();
1233 #endif
1234 hsContext.mask = GenerateMask(numPrims);
1235
1236 // Run the HS
1237 AR_BEGIN(FEHullShader, pDC->drawId);
1238 state.pfnHsFunc(GetPrivateState(pDC), &hsContext);
1239 AR_END(FEHullShader, 0);
1240
1241 UPDATE_STAT_FE(HsInvocations, numPrims);
1242
1243 const uint32_t* pPrimId = (const uint32_t*)&primID;
1244
1245 for (uint32_t p = 0; p < numPrims; ++p)
1246 {
1247 // Run Tessellator
1248 SWR_TS_TESSELLATED_DATA tsData = { 0 };
1249 AR_BEGIN(FETessellation, pDC->drawId);
1250 TSTessellate(tsCtx, hsContext.pCPout[p].tessFactors, tsData);
1251 AR_EVENT(TessPrimCount(1));
1252 AR_END(FETessellation, 0);
1253
1254 if (tsData.NumPrimitives == 0)
1255 {
1256 continue;
1257 }
1258 SWR_ASSERT(tsData.NumDomainPoints);
1259
1260 // Allocate DS Output memory
1261 uint32_t requiredDSVectorInvocations = AlignUp(tsData.NumDomainPoints, KNOB_SIMD_WIDTH) / KNOB_SIMD_WIDTH;
1262 size_t requiredDSOutputVectors = requiredDSVectorInvocations * tsState.numDsOutputAttribs;
1263 #if USE_SIMD16_FRONTEND
1264 size_t requiredAllocSize = sizeof(simdvector) * RoundUpEven(requiredDSVectorInvocations) * tsState.numDsOutputAttribs; // simd8 -> simd16, padding
1265 #else
1266 size_t requiredAllocSize = sizeof(simdvector) * requiredDSOutputVectors;
1267 #endif
1268 if (requiredDSOutputVectors > gt_pTessellationThreadData->numDSOutputVectors)
1269 {
1270 AlignedFree(gt_pTessellationThreadData->pDSOutput);
1271 gt_pTessellationThreadData->pDSOutput = (simdscalar*)AlignedMalloc(requiredAllocSize, 64);
1272 #if USE_SIMD16_FRONTEND
1273 gt_pTessellationThreadData->numDSOutputVectors = RoundUpEven(requiredDSVectorInvocations) * tsState.numDsOutputAttribs; // simd8 -> simd16, padding
1274 #else
1275 gt_pTessellationThreadData->numDSOutputVectors = requiredDSOutputVectors;
1276 #endif
1277 }
1278 SWR_ASSERT(gt_pTessellationThreadData->pDSOutput);
1279 SWR_ASSERT(gt_pTessellationThreadData->numDSOutputVectors >= requiredDSOutputVectors);
1280
1281 #if defined(_DEBUG)
1282 memset(gt_pTessellationThreadData->pDSOutput, 0x90, requiredAllocSize);
1283 #endif
1284
1285 // Run Domain Shader
1286 SWR_DS_CONTEXT dsContext;
1287 dsContext.PrimitiveID = pPrimId[p];
1288 dsContext.pCpIn = &hsContext.pCPout[p];
1289 dsContext.pDomainU = (simdscalar*)tsData.pDomainPointsU;
1290 dsContext.pDomainV = (simdscalar*)tsData.pDomainPointsV;
1291 dsContext.pOutputData = gt_pTessellationThreadData->pDSOutput;
1292 #if USE_SIMD16_FRONTEND
1293 dsContext.vectorStride = RoundUpEven(requiredDSVectorInvocations); // simd8 -> simd16
1294 #else
1295 dsContext.vectorStride = requiredDSVectorInvocations;
1296 #endif
1297
1298 uint32_t dsInvocations = 0;
1299
1300 for (dsContext.vectorOffset = 0; dsContext.vectorOffset < requiredDSVectorInvocations; ++dsContext.vectorOffset)
1301 {
1302 dsContext.mask = GenerateMask(tsData.NumDomainPoints - dsInvocations);
1303
1304 AR_BEGIN(FEDomainShader, pDC->drawId);
1305 state.pfnDsFunc(GetPrivateState(pDC), &dsContext);
1306 AR_END(FEDomainShader, 0);
1307
1308 dsInvocations += KNOB_SIMD_WIDTH;
1309 }
1310 UPDATE_STAT_FE(DsInvocations, tsData.NumDomainPoints);
1311
1312 #if USE_SIMD16_FRONTEND
1313 SWR_ASSERT(IsEven(dsContext.vectorStride)); // simd8 -> simd16
1314
1315 #endif
1316 PA_TESS tessPa(
1317 pDC,
1318 #if USE_SIMD16_FRONTEND
1319 reinterpret_cast<const simd16scalar *>(dsContext.pOutputData), // simd8 -> simd16
1320 dsContext.vectorStride / 2, // simd8 -> simd16
1321 #else
1322 dsContext.pOutputData,
1323 dsContext.vectorStride,
1324 #endif
1325 tsState.numDsOutputAttribs,
1326 tsData.ppIndices,
1327 tsData.NumPrimitives,
1328 tsState.postDSTopology);
1329
1330 while (tessPa.HasWork())
1331 {
1332 #if USE_SIMD16_FRONTEND
1333 const uint32_t numPrims = tessPa.NumPrims();
1334 const uint32_t numPrims_lo = std::min<uint32_t>(numPrims, KNOB_SIMD_WIDTH);
1335 const uint32_t numPrims_hi = std::max<uint32_t>(numPrims, KNOB_SIMD_WIDTH) - KNOB_SIMD_WIDTH;
1336
1337 const simd16scalari primID = _simd16_set1_epi32(dsContext.PrimitiveID);
1338 const simdscalari primID_lo = _simd16_extract_si(primID, 0);
1339 const simdscalari primID_hi = _simd16_extract_si(primID, 1);
1340
1341 #endif
1342 if (HasGeometryShaderT::value)
1343 {
1344 #if USE_SIMD16_FRONTEND
1345 tessPa.useAlternateOffset = false;
1346 GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_lo, primID_lo);
1347
1348 if (numPrims_hi)
1349 {
1350 tessPa.useAlternateOffset = true;
1351 GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData, numPrims_hi, primID_hi);
1352 }
1353 #else
1354 GeometryShaderStage<HasStreamOutT, HasRastT>(
1355 pDC, workerId, tessPa, pGsOut, pCutBuffer, pCutStreamBuffer, pSoPrimData,
1356 _simd_set1_epi32(dsContext.PrimitiveID));
1357 #endif
1358 }
1359 else
1360 {
1361 if (HasStreamOutT::value)
1362 {
1363 #if USE_SIMD16_FRONTEND
1364 tessPa.useAlternateOffset = false;
1365 StreamOut(pDC, tessPa, workerId, pSoPrimData, numPrims_lo, 0);
1366
1367 if (numPrims_hi)
1368 {
1369 tessPa.useAlternateOffset = true;
1370 StreamOut(pDC, tessPa, workerId, pSoPrimData, numPrims_hi, 0);
1371 }
1372 #else
1373 StreamOut(pDC, tessPa, workerId, pSoPrimData, 0);
1374 #endif
1375 }
1376
1377 if (HasRastT::value)
1378 {
1379 #if USE_SIMD16_FRONTEND
1380 simd16vector prim_simd16[3]; // Only deal with triangles, lines, or points
1381 #else
1382 simdvector prim[3]; // Only deal with triangles, lines, or points
1383 #endif
1384 AR_BEGIN(FEPAAssemble, pDC->drawId);
1385 bool assemble =
1386 #if USE_SIMD16_FRONTEND
1387 tessPa.Assemble_simd16(VERTEX_POSITION_SLOT, prim_simd16);
1388 #else
1389 tessPa.Assemble(VERTEX_POSITION_SLOT, prim);
1390 #endif
1391 AR_END(FEPAAssemble, 1);
1392 SWR_ASSERT(assemble);
1393
1394 SWR_ASSERT(pfnClipFunc);
1395 #if USE_SIMD16_FRONTEND
1396 tessPa.useAlternateOffset = false;
1397 pfnClipFunc(pDC, tessPa, workerId, prim_simd16, GenMask(numPrims), primID, _simd16_set1_epi32(0));
1398 #else
1399 pfnClipFunc(pDC, tessPa, workerId, prim,
1400 GenMask(tessPa.NumPrims()), _simd_set1_epi32(dsContext.PrimitiveID), _simd_set1_epi32(0));
1401 #endif
1402 }
1403 }
1404
1405 tessPa.NextPrim();
1406
1407 } // while (tessPa.HasWork())
1408 } // for (uint32_t p = 0; p < numPrims; ++p)
1409
1410 #if USE_SIMD16_FRONTEND
1411 if (gt_pTessellationThreadData->pDSOutput != nullptr)
1412 {
1413 AlignedFree(gt_pTessellationThreadData->pDSOutput);
1414 gt_pTessellationThreadData->pDSOutput = nullptr;
1415 }
1416 gt_pTessellationThreadData->numDSOutputVectors = 0;
1417
1418 #endif
1419 TSDestroyCtx(tsCtx);
1420 }
1421
1422 THREAD PA_STATE::SIMDVERTEX *pVertexStore = nullptr;
1423 THREAD uint32_t gVertexStoreSize = 0;
1424
1425 //////////////////////////////////////////////////////////////////////////
1426 /// @brief FE handler for SwrDraw.
1427 /// @tparam IsIndexedT - Is indexed drawing enabled
1428 /// @tparam HasTessellationT - Is tessellation enabled
1429 /// @tparam HasGeometryShaderT::value - Is the geometry shader stage enabled
1430 /// @tparam HasStreamOutT - Is stream-out enabled
1431 /// @tparam HasRastT - Is rasterization enabled
1432 /// @param pContext - pointer to SWR context.
1433 /// @param pDC - pointer to draw context.
1434 /// @param workerId - thread's worker id.
1435 /// @param pUserData - Pointer to DRAW_WORK
1436 template <
1437 typename IsIndexedT,
1438 typename IsCutIndexEnabledT,
1439 typename HasTessellationT,
1440 typename HasGeometryShaderT,
1441 typename HasStreamOutT,
1442 typename HasRastT>
1443 void ProcessDraw(
1444 SWR_CONTEXT *pContext,
1445 DRAW_CONTEXT *pDC,
1446 uint32_t workerId,
1447 void *pUserData)
1448 {
1449
1450 #if KNOB_ENABLE_TOSS_POINTS
1451 if (KNOB_TOSS_QUEUE_FE)
1452 {
1453 return;
1454 }
1455 #endif
1456
1457 AR_BEGIN(FEProcessDraw, pDC->drawId);
1458
1459 DRAW_WORK& work = *(DRAW_WORK*)pUserData;
1460 const API_STATE& state = GetApiState(pDC);
1461
1462 uint32_t indexSize = 0;
1463 uint32_t endVertex = work.numVerts;
1464
1465 const int32_t* pLastRequestedIndex = nullptr;
1466 if (IsIndexedT::value)
1467 {
1468 switch (work.type)
1469 {
1470 case R32_UINT:
1471 indexSize = sizeof(uint32_t);
1472 pLastRequestedIndex = &(work.pIB[endVertex]);
1473 break;
1474 case R16_UINT:
1475 indexSize = sizeof(uint16_t);
1476 // nasty address offset to last index
1477 pLastRequestedIndex = (int32_t*)(&(((uint16_t*)work.pIB)[endVertex]));
1478 break;
1479 case R8_UINT:
1480 indexSize = sizeof(uint8_t);
1481 // nasty address offset to last index
1482 pLastRequestedIndex = (int32_t*)(&(((uint8_t*)work.pIB)[endVertex]));
1483 break;
1484 default:
1485 SWR_INVALID("Invalid work.type: %d", work.type);
1486 }
1487 }
1488 else
1489 {
1490 // No cuts, prune partial primitives.
1491 endVertex = GetNumVerts(state.topology, GetNumPrims(state.topology, work.numVerts));
1492 }
1493
1494 #if defined(KNOB_ENABLE_RDTSC) || defined(KNOB_ENABLE_AR)
1495 uint32_t numPrims = GetNumPrims(state.topology, work.numVerts);
1496 #endif
1497
1498 void* pGsOut = nullptr;
1499 void* pCutBuffer = nullptr;
1500 void* pStreamCutBuffer = nullptr;
1501 if (HasGeometryShaderT::value)
1502 {
1503 #if USE_SIMD16_FRONTEND
1504 AllocateGsBuffers<simd16vertex, KNOB_SIMD16_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
1505 #else
1506 AllocateGsBuffers<simdvertex, KNOB_SIMD_WIDTH>(pDC, state, &pGsOut, &pCutBuffer, &pStreamCutBuffer);
1507 #endif
1508 }
1509
1510 if (HasTessellationT::value)
1511 {
1512 SWR_ASSERT(state.tsState.tsEnable == true);
1513 SWR_ASSERT(state.pfnHsFunc != nullptr);
1514 SWR_ASSERT(state.pfnDsFunc != nullptr);
1515
1516 AllocateTessellationData(pContext);
1517 }
1518 else
1519 {
1520 SWR_ASSERT(state.tsState.tsEnable == false);
1521 SWR_ASSERT(state.pfnHsFunc == nullptr);
1522 SWR_ASSERT(state.pfnDsFunc == nullptr);
1523 }
1524
1525 // allocate space for streamout input prim data
1526 uint32_t* pSoPrimData = nullptr;
1527 if (HasStreamOutT::value)
1528 {
1529 pSoPrimData = (uint32_t*)pDC->pArena->AllocAligned(4096, 16);
1530 }
1531
1532 const uint32_t vertexCount = NumVertsPerPrim(state.topology, state.gsState.gsEnable);
1533
1534 SWR_ASSERT(vertexCount <= MAX_NUM_VERTS_PER_PRIM);
1535
1536 // grow the vertex store for the PA as necessary
1537 if (gVertexStoreSize < vertexCount)
1538 {
1539 if (pVertexStore != nullptr)
1540 {
1541 AlignedFree(pVertexStore);
1542 }
1543
1544 while (gVertexStoreSize < vertexCount)
1545 {
1546 #if USE_SIMD16_FRONTEND
1547 gVertexStoreSize += 4; // grow in chunks of 4 simd16vertex
1548 #else
1549 gVertexStoreSize += 8; // grow in chunks of 8 simdvertex
1550 #endif
1551 }
1552
1553 SWR_ASSERT(gVertexStoreSize <= MAX_NUM_VERTS_PER_PRIM);
1554
1555 pVertexStore = reinterpret_cast<PA_STATE::SIMDVERTEX *>(AlignedMalloc(gVertexStoreSize * sizeof(pVertexStore[0]), 64));
1556
1557 SWR_ASSERT(pVertexStore != nullptr);
1558 }
1559
1560 // choose primitive assembler
1561 PA_FACTORY<IsIndexedT, IsCutIndexEnabledT> paFactory(pDC, state.topology, work.numVerts, pVertexStore, gVertexStoreSize);
1562 PA_STATE& pa = paFactory.GetPA();
1563
1564 #if USE_SIMD16_FRONTEND
1565 simdvertex vin_lo;
1566 simdvertex vin_hi;
1567 SWR_VS_CONTEXT vsContext_lo;
1568 SWR_VS_CONTEXT vsContext_hi;
1569
1570 vsContext_lo.pVin = &vin_lo;
1571 vsContext_hi.pVin = &vin_hi;
1572 vsContext_lo.AlternateOffset = 0;
1573 vsContext_hi.AlternateOffset = 1;
1574
1575 SWR_FETCH_CONTEXT fetchInfo_lo = { 0 };
1576
1577 fetchInfo_lo.pStreams = &state.vertexBuffers[0];
1578 fetchInfo_lo.StartInstance = work.startInstance;
1579 fetchInfo_lo.StartVertex = 0;
1580
1581 if (IsIndexedT::value)
1582 {
1583 fetchInfo_lo.BaseVertex = work.baseVertex;
1584
1585 // if the entire index buffer isn't being consumed, set the last index
1586 // so that fetches < a SIMD wide will be masked off
1587 fetchInfo_lo.pLastIndex = (const int32_t*)(((uint8_t*)state.indexBuffer.pIndices) + state.indexBuffer.size);
1588 if (pLastRequestedIndex < fetchInfo_lo.pLastIndex)
1589 {
1590 fetchInfo_lo.pLastIndex = pLastRequestedIndex;
1591 }
1592 }
1593 else
1594 {
1595 fetchInfo_lo.StartVertex = work.startVertex;
1596 }
1597
1598 SWR_FETCH_CONTEXT fetchInfo_hi = fetchInfo_lo;
1599
1600 const simd16scalari vScale = _simd16_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
1601
1602 for (uint32_t instanceNum = 0; instanceNum < work.numInstances; instanceNum++)
1603 {
1604 uint32_t i = 0;
1605
1606 simd16scalari vIndex;
1607
1608 if (IsIndexedT::value)
1609 {
1610 fetchInfo_lo.pIndices = work.pIB;
1611 fetchInfo_hi.pIndices = (int32_t *)((uint8_t *)fetchInfo_lo.pIndices + KNOB_SIMD_WIDTH * indexSize); // 1/2 of KNOB_SIMD16_WIDTH
1612 }
1613 else
1614 {
1615 vIndex = _simd16_add_epi32(_simd16_set1_epi32(work.startVertexID), vScale);
1616
1617 fetchInfo_lo.pIndices = (const int32_t *)&vIndex;
1618 fetchInfo_hi.pIndices = (const int32_t *)&vIndex + KNOB_SIMD_WIDTH; // 1/2 of KNOB_SIMD16_WIDTH
1619 }
1620
1621 fetchInfo_lo.CurInstance = instanceNum;
1622 fetchInfo_hi.CurInstance = instanceNum;
1623
1624 vsContext_lo.InstanceID = instanceNum;
1625 vsContext_hi.InstanceID = instanceNum;
1626
1627 while (pa.HasWork())
1628 {
1629 // GetNextVsOutput currently has the side effect of updating some PA state machine state.
1630 // So we need to keep this outside of (i < endVertex) check.
1631
1632 simdmask *pvCutIndices_lo = nullptr;
1633 simdmask *pvCutIndices_hi = nullptr;
1634
1635 if (IsIndexedT::value)
1636 {
1637 // simd16mask <=> simdmask[2]
1638
1639 pvCutIndices_lo = &reinterpret_cast<simdmask *>(&pa.GetNextVsIndices())[0];
1640 pvCutIndices_hi = &reinterpret_cast<simdmask *>(&pa.GetNextVsIndices())[1];
1641 }
1642
1643 simd16vertex &vout = pa.GetNextVsOutput();
1644
1645 vsContext_lo.pVout = reinterpret_cast<simdvertex *>(&vout);
1646 vsContext_hi.pVout = reinterpret_cast<simdvertex *>(&vout);
1647
1648 if (i < endVertex)
1649 {
1650 // 1. Execute FS/VS for a single SIMD.
1651 AR_BEGIN(FEFetchShader, pDC->drawId);
1652 state.pfnFetchFunc(fetchInfo_lo, vin_lo);
1653
1654 if ((i + KNOB_SIMD_WIDTH) < endVertex) // 1/2 of KNOB_SIMD16_WIDTH
1655 {
1656 state.pfnFetchFunc(fetchInfo_hi, vin_hi);
1657 }
1658 AR_END(FEFetchShader, 0);
1659
1660 // forward fetch generated vertex IDs to the vertex shader
1661 vsContext_lo.VertexID = fetchInfo_lo.VertexID;
1662 vsContext_hi.VertexID = fetchInfo_hi.VertexID;
1663
1664 // Setup active mask for vertex shader.
1665 vsContext_lo.mask = GenerateMask(endVertex - i);
1666 vsContext_hi.mask = GenerateMask(endVertex - (i + KNOB_SIMD_WIDTH));
1667
1668 // forward cut mask to the PA
1669 if (IsIndexedT::value)
1670 {
1671 *pvCutIndices_lo = _simd_movemask_ps(_simd_castsi_ps(fetchInfo_lo.CutMask));
1672 *pvCutIndices_hi = _simd_movemask_ps(_simd_castsi_ps(fetchInfo_hi.CutMask));
1673 }
1674
1675 UPDATE_STAT_FE(IaVertices, GetNumInvocations(i, endVertex));
1676
1677 #if KNOB_ENABLE_TOSS_POINTS
1678 if (!KNOB_TOSS_FETCH)
1679 #endif
1680 {
1681 AR_BEGIN(FEVertexShader, pDC->drawId);
1682 state.pfnVertexFunc(GetPrivateState(pDC), &vsContext_lo);
1683
1684 if ((i + KNOB_SIMD_WIDTH) < endVertex) // 1/2 of KNOB_SIMD16_WIDTH
1685 {
1686 state.pfnVertexFunc(GetPrivateState(pDC), &vsContext_hi);
1687 }
1688 AR_END(FEVertexShader, 0);
1689
1690 UPDATE_STAT_FE(VsInvocations, GetNumInvocations(i, endVertex));
1691 }
1692 }
1693
1694 // 2. Assemble primitives given the last two SIMD.
1695 do
1696 {
1697 simd16vector prim_simd16[MAX_NUM_VERTS_PER_PRIM];
1698
1699 RDTSC_START(FEPAAssemble);
1700 bool assemble = pa.Assemble_simd16(VERTEX_POSITION_SLOT, prim_simd16);
1701 RDTSC_STOP(FEPAAssemble, 1, 0);
1702
1703 #if KNOB_ENABLE_TOSS_POINTS
1704 if (!KNOB_TOSS_FETCH)
1705 #endif
1706 {
1707 #if KNOB_ENABLE_TOSS_POINTS
1708 if (!KNOB_TOSS_VS)
1709 #endif
1710 {
1711 if (assemble)
1712 {
1713 UPDATE_STAT_FE(IaPrimitives, pa.NumPrims());
1714
1715 const uint32_t numPrims = pa.NumPrims();
1716 const uint32_t numPrims_lo = std::min<uint32_t>(numPrims, KNOB_SIMD_WIDTH);
1717 const uint32_t numPrims_hi = std::max<uint32_t>(numPrims, KNOB_SIMD_WIDTH) - KNOB_SIMD_WIDTH;
1718
1719 const simd16scalari primID = pa.GetPrimID(work.startPrimID);
1720 const simdscalari primID_lo = _simd16_extract_si(primID, 0);
1721 const simdscalari primID_hi = _simd16_extract_si(primID, 1);
1722
1723 if (HasTessellationT::value)
1724 {
1725 pa.useAlternateOffset = false;
1726 TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
1727
1728 if (numPrims_hi)
1729 {
1730 pa.useAlternateOffset = true;
1731 TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
1732 }
1733 }
1734 else if (HasGeometryShaderT::value)
1735 {
1736 pa.useAlternateOffset = false;
1737 GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_lo, primID_lo);
1738
1739 if (numPrims_hi)
1740 {
1741 pa.useAlternateOffset = true;
1742 GeometryShaderStage<HasStreamOutT, HasRastT>(pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, numPrims_hi, primID_hi);
1743 }
1744 }
1745 else
1746 {
1747 // If streamout is enabled then stream vertices out to memory.
1748 if (HasStreamOutT::value)
1749 {
1750 #if 1
1751 pa.useAlternateOffset = false;
1752 StreamOut(pDC, pa, workerId, pSoPrimData, numPrims_lo, 0);
1753
1754 if (numPrims_hi)
1755 {
1756 pa.useAlternateOffset = true;
1757 StreamOut(pDC, pa, workerId, pSoPrimData, numPrims_hi, 0);
1758 }
1759 #else
1760 pa.useAlternateOffset = false;
1761 StreamOut(pDC, pa, workerId, pSoPrimData, 0);
1762 #endif
1763 }
1764
1765 if (HasRastT::value)
1766 {
1767 SWR_ASSERT(pDC->pState->pfnProcessPrims_simd16);
1768
1769 pa.useAlternateOffset = false;
1770 pDC->pState->pfnProcessPrims_simd16(pDC, pa, workerId, prim_simd16, GenMask(numPrims), primID, _simd16_setzero_si());
1771 }
1772 }
1773 }
1774 }
1775 }
1776 } while (pa.NextPrim());
1777
1778 if (IsIndexedT::value)
1779 {
1780 fetchInfo_lo.pIndices = (int32_t *)((uint8_t*)fetchInfo_lo.pIndices + KNOB_SIMD16_WIDTH * indexSize);
1781 fetchInfo_hi.pIndices = (int32_t *)((uint8_t*)fetchInfo_hi.pIndices + KNOB_SIMD16_WIDTH * indexSize);
1782 }
1783 else
1784 {
1785 vIndex = _simd16_add_epi32(vIndex, _simd16_set1_epi32(KNOB_SIMD16_WIDTH));
1786 }
1787
1788 i += KNOB_SIMD16_WIDTH;
1789 }
1790
1791 pa.Reset();
1792 }
1793
1794 #else
1795 simdvertex vin;
1796 SWR_VS_CONTEXT vsContext;
1797
1798 vsContext.pVin = &vin;
1799
1800 SWR_FETCH_CONTEXT fetchInfo = { 0 };
1801
1802 fetchInfo.pStreams = &state.vertexBuffers[0];
1803 fetchInfo.StartInstance = work.startInstance;
1804 fetchInfo.StartVertex = 0;
1805
1806 if (IsIndexedT::value)
1807 {
1808 fetchInfo.BaseVertex = work.baseVertex;
1809
1810 // if the entire index buffer isn't being consumed, set the last index
1811 // so that fetches < a SIMD wide will be masked off
1812 fetchInfo.pLastIndex = (const int32_t*)(((uint8_t*)state.indexBuffer.pIndices) + state.indexBuffer.size);
1813 if (pLastRequestedIndex < fetchInfo.pLastIndex)
1814 {
1815 fetchInfo.pLastIndex = pLastRequestedIndex;
1816 }
1817 }
1818 else
1819 {
1820 fetchInfo.StartVertex = work.startVertex;
1821 }
1822
1823 const simdscalari vScale = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
1824
1825 /// @todo: temporarily move instance loop in the FE to ensure SO ordering
1826 for (uint32_t instanceNum = 0; instanceNum < work.numInstances; instanceNum++)
1827 {
1828 simdscalari vIndex;
1829 uint32_t i = 0;
1830
1831 if (IsIndexedT::value)
1832 {
1833 fetchInfo.pIndices = work.pIB;
1834 }
1835 else
1836 {
1837 vIndex = _simd_add_epi32(_simd_set1_epi32(work.startVertexID), vScale);
1838 fetchInfo.pIndices = (const int32_t*)&vIndex;
1839 }
1840
1841 fetchInfo.CurInstance = instanceNum;
1842 vsContext.InstanceID = instanceNum;
1843
1844 while (pa.HasWork())
1845 {
1846 // GetNextVsOutput currently has the side effect of updating some PA state machine state.
1847 // So we need to keep this outside of (i < endVertex) check.
1848 simdmask* pvCutIndices = nullptr;
1849 if (IsIndexedT::value)
1850 {
1851 pvCutIndices = &pa.GetNextVsIndices();
1852 }
1853
1854 simdvertex& vout = pa.GetNextVsOutput();
1855 vsContext.pVout = &vout;
1856
1857 if (i < endVertex)
1858 {
1859
1860 // 1. Execute FS/VS for a single SIMD.
1861 AR_BEGIN(FEFetchShader, pDC->drawId);
1862 state.pfnFetchFunc(fetchInfo, vin);
1863 AR_END(FEFetchShader, 0);
1864
1865 // forward fetch generated vertex IDs to the vertex shader
1866 vsContext.VertexID = fetchInfo.VertexID;
1867
1868 // Setup active mask for vertex shader.
1869 vsContext.mask = GenerateMask(endVertex - i);
1870
1871 // forward cut mask to the PA
1872 if (IsIndexedT::value)
1873 {
1874 *pvCutIndices = _simd_movemask_ps(_simd_castsi_ps(fetchInfo.CutMask));
1875 }
1876
1877 UPDATE_STAT_FE(IaVertices, GetNumInvocations(i, endVertex));
1878
1879 #if KNOB_ENABLE_TOSS_POINTS
1880 if (!KNOB_TOSS_FETCH)
1881 #endif
1882 {
1883 AR_BEGIN(FEVertexShader, pDC->drawId);
1884 state.pfnVertexFunc(GetPrivateState(pDC), &vsContext);
1885 AR_END(FEVertexShader, 0);
1886
1887 UPDATE_STAT_FE(VsInvocations, GetNumInvocations(i, endVertex));
1888 }
1889 }
1890
1891 // 2. Assemble primitives given the last two SIMD.
1892 do
1893 {
1894 simdvector prim[MAX_NUM_VERTS_PER_PRIM];
1895 // PaAssemble returns false if there is not enough verts to assemble.
1896 AR_BEGIN(FEPAAssemble, pDC->drawId);
1897 bool assemble = pa.Assemble(VERTEX_POSITION_SLOT, prim);
1898 AR_END(FEPAAssemble, 1);
1899
1900 #if KNOB_ENABLE_TOSS_POINTS
1901 if (!KNOB_TOSS_FETCH)
1902 #endif
1903 {
1904 #if KNOB_ENABLE_TOSS_POINTS
1905 if (!KNOB_TOSS_VS)
1906 #endif
1907 {
1908 if (assemble)
1909 {
1910 UPDATE_STAT_FE(IaPrimitives, pa.NumPrims());
1911
1912 if (HasTessellationT::value)
1913 {
1914 TessellationStages<HasGeometryShaderT, HasStreamOutT, HasRastT>(
1915 pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
1916 }
1917 else if (HasGeometryShaderT::value)
1918 {
1919 GeometryShaderStage<HasStreamOutT, HasRastT>(
1920 pDC, workerId, pa, pGsOut, pCutBuffer, pStreamCutBuffer, pSoPrimData, pa.GetPrimID(work.startPrimID));
1921 }
1922 else
1923 {
1924 // If streamout is enabled then stream vertices out to memory.
1925 if (HasStreamOutT::value)
1926 {
1927 StreamOut(pDC, pa, workerId, pSoPrimData, 0);
1928 }
1929
1930 if (HasRastT::value)
1931 {
1932 SWR_ASSERT(pDC->pState->pfnProcessPrims);
1933
1934 pDC->pState->pfnProcessPrims(pDC, pa, workerId, prim,
1935 GenMask(pa.NumPrims()), pa.GetPrimID(work.startPrimID), _simd_set1_epi32(0));
1936 }
1937 }
1938 }
1939 }
1940 }
1941 } while (pa.NextPrim());
1942
1943 if (IsIndexedT::value)
1944 {
1945 fetchInfo.pIndices = (int*)((uint8_t*)fetchInfo.pIndices + KNOB_SIMD_WIDTH * indexSize);
1946 }
1947 else
1948 {
1949 vIndex = _simd_add_epi32(vIndex, _simd_set1_epi32(KNOB_SIMD_WIDTH));
1950 }
1951
1952 i += KNOB_SIMD_WIDTH;
1953 }
1954 pa.Reset();
1955 }
1956
1957 #endif
1958
1959 AR_END(FEProcessDraw, numPrims * work.numInstances);
1960 }
1961
1962 struct FEDrawChooser
1963 {
1964 typedef PFN_FE_WORK_FUNC FuncType;
1965
1966 template <typename... ArgsB>
1967 static FuncType GetFunc()
1968 {
1969 return ProcessDraw<ArgsB...>;
1970 }
1971 };
1972
1973
1974 // Selector for correct templated Draw front-end function
1975 PFN_FE_WORK_FUNC GetProcessDrawFunc(
1976 bool IsIndexed,
1977 bool IsCutIndexEnabled,
1978 bool HasTessellation,
1979 bool HasGeometryShader,
1980 bool HasStreamOut,
1981 bool HasRasterization)
1982 {
1983 return TemplateArgUnroller<FEDrawChooser>::GetFunc(IsIndexed, IsCutIndexEnabled, HasTessellation, HasGeometryShader, HasStreamOut, HasRasterization);
1984 }