swr/rast: code cleanup (no functional change)
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / state.h
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file state.h
24 *
25 * @brief Definitions for API state.
26 *
27 ******************************************************************************/
28 #pragma once
29
30 #include "common/formats.h"
31 #include "common/simdintrin.h"
32 #include <functional>
33 #include <algorithm>
34
35 //////////////////////////////////////////////////////////////////////////
36 /// PRIMITIVE_TOPOLOGY.
37 //////////////////////////////////////////////////////////////////////////
38 enum PRIMITIVE_TOPOLOGY
39 {
40 TOP_UNKNOWN = 0x0,
41 TOP_POINT_LIST = 0x1,
42 TOP_LINE_LIST = 0x2,
43 TOP_LINE_STRIP = 0x3,
44 TOP_TRIANGLE_LIST = 0x4,
45 TOP_TRIANGLE_STRIP = 0x5,
46 TOP_TRIANGLE_FAN = 0x6,
47 TOP_QUAD_LIST = 0x7,
48 TOP_QUAD_STRIP = 0x8,
49 TOP_LINE_LIST_ADJ = 0x9,
50 TOP_LISTSTRIP_ADJ = 0xA,
51 TOP_TRI_LIST_ADJ = 0xB,
52 TOP_TRI_STRIP_ADJ = 0xC,
53 TOP_TRI_STRIP_REVERSE = 0xD,
54 TOP_POLYGON = 0xE,
55 TOP_RECT_LIST = 0xF,
56 TOP_LINE_LOOP = 0x10,
57 TOP_POINT_LIST_BF = 0x11,
58 TOP_LINE_STRIP_CONT = 0x12,
59 TOP_LINE_STRIP_BF = 0x13,
60 TOP_LINE_STRIP_CONT_BF = 0x14,
61 TOP_TRIANGLE_FAN_NOSTIPPLE = 0x16,
62 TOP_TRIANGLE_DISC = 0x17, /// @todo What is this??
63
64 TOP_PATCHLIST_BASE = 0x1F, // Invalid topology, used to calculate num verts for a patchlist.
65 TOP_PATCHLIST_1 = 0x20, // List of 1-vertex patches
66 TOP_PATCHLIST_2 = 0x21,
67 TOP_PATCHLIST_3 = 0x22,
68 TOP_PATCHLIST_4 = 0x23,
69 TOP_PATCHLIST_5 = 0x24,
70 TOP_PATCHLIST_6 = 0x25,
71 TOP_PATCHLIST_7 = 0x26,
72 TOP_PATCHLIST_8 = 0x27,
73 TOP_PATCHLIST_9 = 0x28,
74 TOP_PATCHLIST_10 = 0x29,
75 TOP_PATCHLIST_11 = 0x2A,
76 TOP_PATCHLIST_12 = 0x2B,
77 TOP_PATCHLIST_13 = 0x2C,
78 TOP_PATCHLIST_14 = 0x2D,
79 TOP_PATCHLIST_15 = 0x2E,
80 TOP_PATCHLIST_16 = 0x2F,
81 TOP_PATCHLIST_17 = 0x30,
82 TOP_PATCHLIST_18 = 0x31,
83 TOP_PATCHLIST_19 = 0x32,
84 TOP_PATCHLIST_20 = 0x33,
85 TOP_PATCHLIST_21 = 0x34,
86 TOP_PATCHLIST_22 = 0x35,
87 TOP_PATCHLIST_23 = 0x36,
88 TOP_PATCHLIST_24 = 0x37,
89 TOP_PATCHLIST_25 = 0x38,
90 TOP_PATCHLIST_26 = 0x39,
91 TOP_PATCHLIST_27 = 0x3A,
92 TOP_PATCHLIST_28 = 0x3B,
93 TOP_PATCHLIST_29 = 0x3C,
94 TOP_PATCHLIST_30 = 0x3D,
95 TOP_PATCHLIST_31 = 0x3E,
96 TOP_PATCHLIST_32 = 0x3F, // List of 32-vertex patches
97 };
98
99 //////////////////////////////////////////////////////////////////////////
100 /// SWR_SHADER_TYPE
101 //////////////////////////////////////////////////////////////////////////
102 enum SWR_SHADER_TYPE
103 {
104 SHADER_VERTEX,
105 SHADER_GEOMETRY,
106 SHADER_DOMAIN,
107 SHADER_HULL,
108 SHADER_PIXEL,
109 SHADER_COMPUTE,
110
111 NUM_SHADER_TYPES,
112 };
113
114 //////////////////////////////////////////////////////////////////////////
115 /// SWR_RENDERTARGET_ATTACHMENT
116 /// @todo Its not clear what an "attachment" means. Its not common term.
117 //////////////////////////////////////////////////////////////////////////
118 enum SWR_RENDERTARGET_ATTACHMENT
119 {
120 SWR_ATTACHMENT_COLOR0,
121 SWR_ATTACHMENT_COLOR1,
122 SWR_ATTACHMENT_COLOR2,
123 SWR_ATTACHMENT_COLOR3,
124 SWR_ATTACHMENT_COLOR4,
125 SWR_ATTACHMENT_COLOR5,
126 SWR_ATTACHMENT_COLOR6,
127 SWR_ATTACHMENT_COLOR7,
128 SWR_ATTACHMENT_DEPTH,
129 SWR_ATTACHMENT_STENCIL,
130
131 SWR_NUM_ATTACHMENTS
132 };
133
134 #define SWR_NUM_RENDERTARGETS 8
135
136 #define SWR_ATTACHMENT_COLOR0_BIT 0x001
137 #define SWR_ATTACHMENT_COLOR1_BIT 0x002
138 #define SWR_ATTACHMENT_COLOR2_BIT 0x004
139 #define SWR_ATTACHMENT_COLOR3_BIT 0x008
140 #define SWR_ATTACHMENT_COLOR4_BIT 0x010
141 #define SWR_ATTACHMENT_COLOR5_BIT 0x020
142 #define SWR_ATTACHMENT_COLOR6_BIT 0x040
143 #define SWR_ATTACHMENT_COLOR7_BIT 0x080
144 #define SWR_ATTACHMENT_DEPTH_BIT 0x100
145 #define SWR_ATTACHMENT_STENCIL_BIT 0x200
146 #define SWR_ATTACHMENT_MASK_ALL 0x3ff
147 #define SWR_ATTACHMENT_MASK_COLOR 0x0ff
148
149
150 //////////////////////////////////////////////////////////////////////////
151 /// @brief SWR Inner Tessellation factor ID
152 /// See above GetTessFactorOutputPosition code for documentation
153 enum SWR_INNER_TESSFACTOR_ID
154 {
155 SWR_QUAD_U_TRI_INSIDE,
156 SWR_QUAD_V_INSIDE,
157
158 SWR_NUM_INNER_TESS_FACTORS,
159 };
160
161 //////////////////////////////////////////////////////////////////////////
162 /// @brief SWR Outer Tessellation factor ID
163 /// See above GetTessFactorOutputPosition code for documentation
164 enum SWR_OUTER_TESSFACTOR_ID
165 {
166 SWR_QUAD_U_EQ0_TRI_U_LINE_DETAIL,
167 SWR_QUAD_V_EQ0_TRI_V_LINE_DENSITY,
168 SWR_QUAD_U_EQ1_TRI_W,
169 SWR_QUAD_V_EQ1,
170
171 SWR_NUM_OUTER_TESS_FACTORS,
172 };
173
174
175 /////////////////////////////////////////////////////////////////////////
176 /// simdvertex
177 /// @brief Defines a vertex element that holds all the data for SIMD vertices.
178 /// Contains position in clip space, hardcoded to attribute 0,
179 /// space for up to 32 attributes, as well as any SGV values generated
180 /// by the pipeline
181 /////////////////////////////////////////////////////////////////////////
182 enum SWR_VTX_SLOTS
183 {
184 VERTEX_POSITION_SLOT = 0,
185 VERTEX_POSITION_END_SLOT = 0,
186 VERTEX_ATTRIB_START_SLOT = ( 1 + VERTEX_POSITION_END_SLOT),
187 VERTEX_ATTRIB_END_SLOT = (32 + VERTEX_POSITION_END_SLOT),
188 VERTEX_RTAI_SLOT = (33 + VERTEX_POSITION_END_SLOT), // GS writes RenderTargetArrayIndex here
189 VERTEX_PRIMID_SLOT = (34 + VERTEX_POSITION_END_SLOT), // GS writes PrimId here
190 VERTEX_CLIPCULL_DIST_LO_SLOT = (35 + VERTEX_POSITION_END_SLOT), // VS writes lower 4 clip/cull dist
191 VERTEX_CLIPCULL_DIST_HI_SLOT = (36 + VERTEX_POSITION_END_SLOT), // VS writes upper 4 clip/cull dist
192 VERTEX_POINT_SIZE_SLOT = (37 + VERTEX_POSITION_END_SLOT), // VS writes point size here
193 VERTEX_VIEWPORT_ARRAY_INDEX_SLOT = (38 + VERTEX_POSITION_END_SLOT),
194 SWR_VTX_NUM_SLOTS = VERTEX_VIEWPORT_ARRAY_INDEX_SLOT,
195 };
196
197 // SoAoSoA
198 struct simdvertex
199 {
200 simdvector attrib[SWR_VTX_NUM_SLOTS];
201 };
202
203 #if ENABLE_AVX512_SIMD16
204 struct simd16vertex
205 {
206 simd16vector attrib[SWR_VTX_NUM_SLOTS];
207 };
208
209 #endif
210 //////////////////////////////////////////////////////////////////////////
211 /// SWR_VS_CONTEXT
212 /// @brief Input to vertex shader
213 /////////////////////////////////////////////////////////////////////////
214 struct SWR_VS_CONTEXT
215 {
216 simdvertex* pVin; // IN: SIMD input vertex data store
217 simdvertex* pVout; // OUT: SIMD output vertex data store
218
219 uint32_t InstanceID; // IN: Instance ID, constant across all verts of the SIMD
220 simdscalari VertexID; // IN: Vertex ID
221 simdscalari mask; // IN: Active mask for shader
222 #if USE_SIMD16_FRONTEND
223 uint32_t AlternateOffset; // IN: amount to offset for interleaving even/odd simd8 in simd16vertex output
224 #endif
225 };
226
227 /////////////////////////////////////////////////////////////////////////
228 /// ScalarCPoint
229 /// @brief defines a control point element as passed from the output
230 /// of the hull shader to the input of the domain shader
231 /////////////////////////////////////////////////////////////////////////
232 struct ScalarAttrib
233 {
234 float x;
235 float y;
236 float z;
237 float w;
238 };
239
240 struct ScalarCPoint
241 {
242 ScalarAttrib attrib[SWR_VTX_NUM_SLOTS];
243 };
244
245 //////////////////////////////////////////////////////////////////////////
246 /// SWR_TESSELLATION_FACTORS
247 /// @brief Tessellation factors structure (non-vector)
248 /////////////////////////////////////////////////////////////////////////
249 struct SWR_TESSELLATION_FACTORS
250 {
251 float OuterTessFactors[SWR_NUM_OUTER_TESS_FACTORS];
252 float InnerTessFactors[SWR_NUM_INNER_TESS_FACTORS];
253 };
254
255 #define MAX_NUM_VERTS_PER_PRIM 32 // support up to 32 control point patches
256 struct ScalarPatch
257 {
258 SWR_TESSELLATION_FACTORS tessFactors;
259 ScalarCPoint cp[MAX_NUM_VERTS_PER_PRIM];
260 ScalarCPoint patchData;
261 };
262
263 //////////////////////////////////////////////////////////////////////////
264 /// SWR_HS_CONTEXT
265 /// @brief Input to hull shader
266 /////////////////////////////////////////////////////////////////////////
267 struct SWR_HS_CONTEXT
268 {
269 simdvertex vert[MAX_NUM_VERTS_PER_PRIM]; // IN: (SIMD) input primitive data
270 simdscalari PrimitiveID; // IN: (SIMD) primitive ID generated from the draw call
271 simdscalari mask; // IN: Active mask for shader
272 ScalarPatch* pCPout; // OUT: Output control point patch
273 // SIMD-sized-array of SCALAR patches
274 };
275
276 //////////////////////////////////////////////////////////////////////////
277 /// SWR_DS_CONTEXT
278 /// @brief Input to domain shader
279 /////////////////////////////////////////////////////////////////////////
280 struct SWR_DS_CONTEXT
281 {
282 uint32_t PrimitiveID; // IN: (SCALAR) PrimitiveID for the patch associated with the DS invocation
283 uint32_t vectorOffset; // IN: (SCALAR) vector index offset into SIMD data.
284 uint32_t vectorStride; // IN: (SCALAR) stride (in vectors) of output data per attribute-component
285 ScalarPatch* pCpIn; // IN: (SCALAR) Control patch
286 simdscalar* pDomainU; // IN: (SIMD) Domain Point U coords
287 simdscalar* pDomainV; // IN: (SIMD) Domain Point V coords
288 simdscalari mask; // IN: Active mask for shader
289 simdscalar* pOutputData; // OUT: (SIMD) Vertex Attributes (2D array of vectors, one row per attribute-component)
290 };
291
292 //////////////////////////////////////////////////////////////////////////
293 /// SWR_GS_CONTEXT
294 /// @brief Input to geometry shader.
295 /////////////////////////////////////////////////////////////////////////
296 struct SWR_GS_CONTEXT
297 {
298 simdvertex vert[MAX_NUM_VERTS_PER_PRIM]; // IN: input primitive data for SIMD prims
299 simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
300 uint32_t InstanceID; // IN: input instance ID
301 simdscalari mask; // IN: Active mask for shader
302 uint8_t* pStream; // OUT: output stream (contains vertices for all output streams)
303 uint8_t* pCutOrStreamIdBuffer; // OUT: cut or stream id buffer
304 simdscalari vertexCount; // OUT: num vertices emitted per SIMD lane
305 };
306
307 struct PixelPositions
308 {
309 simdscalar UL;
310 simdscalar center;
311 simdscalar sample;
312 simdscalar centroid;
313 };
314
315 #define SWR_MAX_NUM_MULTISAMPLES 16
316
317 //////////////////////////////////////////////////////////////////////////
318 /// SWR_PS_CONTEXT
319 /// @brief Input to pixel shader.
320 /////////////////////////////////////////////////////////////////////////
321 struct SWR_PS_CONTEXT
322 {
323 PixelPositions vX; // IN: x location(s) of pixels
324 PixelPositions vY; // IN: x location(s) of pixels
325 simdscalar vZ; // INOUT: z location of pixels
326 simdscalari activeMask; // OUT: mask for kill
327 simdscalar inputMask; // IN: input coverage mask for all samples
328 simdscalari oMask; // OUT: mask for output coverage
329
330 PixelPositions vI; // barycentric coords evaluated at pixel center, sample position, centroid
331 PixelPositions vJ;
332 PixelPositions vOneOverW; // IN: 1/w
333
334 const float* pAttribs; // IN: pointer to attribute barycentric coefficients
335 const float* pPerspAttribs; // IN: pointer to attribute/w barycentric coefficients
336 const float* pRecipW; // IN: pointer to 1/w coord for each vertex
337 const float *I; // IN: Barycentric A, B, and C coefs used to compute I
338 const float *J; // IN: Barycentric A, B, and C coefs used to compute J
339 float recipDet; // IN: 1/Det, used when barycentric interpolating attributes
340 const float* pSamplePosX; // IN: array of sample positions
341 const float* pSamplePosY; // IN: array of sample positions
342 simdvector shaded[SWR_NUM_RENDERTARGETS];
343 // OUT: result color per rendertarget
344
345 uint32_t frontFace; // IN: front- 1, back- 0
346 uint32_t primID; // IN: primitive ID
347 uint32_t sampleIndex; // IN: sampleIndex
348 uint32_t renderTargetArrayIndex; // IN: render target array index from GS
349 uint32_t rasterizerSampleCount; // IN: sample count used by the rasterizer
350
351 uint8_t* pColorBuffer[SWR_NUM_RENDERTARGETS]; // IN: Pointers to render target hottiles
352 };
353
354 //////////////////////////////////////////////////////////////////////////
355 /// SWR_CS_CONTEXT
356 /// @brief Input to compute shader.
357 /////////////////////////////////////////////////////////////////////////
358 struct SWR_CS_CONTEXT
359 {
360 // The ThreadGroupId is the current thread group index relative
361 // to all thread groups in the Dispatch call. The ThreadId, ThreadIdInGroup,
362 // and ThreadIdInGroupFlattened can be derived from ThreadGroupId in the shader.
363
364 // Compute shader accepts the following system values.
365 // o ThreadId - Current thread id relative to all other threads in dispatch.
366 // o ThreadGroupId - Current thread group id relative to all other groups in dispatch.
367 // o ThreadIdInGroup - Current thread relative to all threads in the current thread group.
368 // o ThreadIdInGroupFlattened - Flattened linear id derived from ThreadIdInGroup.
369 //
370 // All of these system values can be computed in the shader. They will be
371 // derived from the current tile counter. The tile counter is an atomic counter that
372 // resides in the draw context and is initialized to the product of the dispatch dims.
373 //
374 // tileCounter = dispatchDims.x * dispatchDims.y * dispatchDims.z
375 //
376 // Each CPU worker thread will atomically decrement this counter and passes the current
377 // count into the shader. When the count reaches 0 then all thread groups in the
378 // dispatch call have been completed.
379
380 uint32_t tileCounter; // The tile counter value for this thread group.
381
382 // Dispatch dimensions used by shader to compute system values from the tile counter.
383 uint32_t dispatchDims[3];
384
385 uint8_t* pTGSM; // Thread Group Shared Memory pointer.
386
387 uint8_t* pSpillFillBuffer; // Spill/fill buffer for barrier support
388
389 uint8_t* pScratchSpace; // Pointer to scratch space buffer used by the shader, shader is responsible
390 // for subdividing scratch space per instance/simd
391
392 uint32_t scratchSpacePerSimd; // Scratch space per work item x SIMD_WIDTH
393 };
394
395 // enums
396 enum SWR_TILE_MODE
397 {
398 SWR_TILE_NONE = 0x0, // Linear mode (no tiling)
399 SWR_TILE_MODE_WMAJOR, // W major tiling
400 SWR_TILE_MODE_XMAJOR, // X major tiling
401 SWR_TILE_MODE_YMAJOR, // Y major tiling
402 SWR_TILE_SWRZ, // SWR-Z tiling
403
404 SWR_TILE_MODE_COUNT
405 };
406
407 enum SWR_SURFACE_TYPE
408 {
409 SURFACE_1D = 0,
410 SURFACE_2D = 1,
411 SURFACE_3D = 2,
412 SURFACE_CUBE = 3,
413 SURFACE_BUFFER = 4,
414 SURFACE_STRUCTURED_BUFFER = 5,
415 SURFACE_NULL = 7
416 };
417
418 enum SWR_ZFUNCTION
419 {
420 ZFUNC_ALWAYS,
421 ZFUNC_NEVER,
422 ZFUNC_LT,
423 ZFUNC_EQ,
424 ZFUNC_LE,
425 ZFUNC_GT,
426 ZFUNC_NE,
427 ZFUNC_GE,
428 NUM_ZFUNC
429 };
430
431 enum SWR_STENCILOP
432 {
433 STENCILOP_KEEP,
434 STENCILOP_ZERO,
435 STENCILOP_REPLACE,
436 STENCILOP_INCRSAT,
437 STENCILOP_DECRSAT,
438 STENCILOP_INCR,
439 STENCILOP_DECR,
440 STENCILOP_INVERT
441 };
442
443 enum SWR_BLEND_FACTOR
444 {
445 BLENDFACTOR_ONE,
446 BLENDFACTOR_SRC_COLOR,
447 BLENDFACTOR_SRC_ALPHA,
448 BLENDFACTOR_DST_ALPHA,
449 BLENDFACTOR_DST_COLOR,
450 BLENDFACTOR_SRC_ALPHA_SATURATE,
451 BLENDFACTOR_CONST_COLOR,
452 BLENDFACTOR_CONST_ALPHA,
453 BLENDFACTOR_SRC1_COLOR,
454 BLENDFACTOR_SRC1_ALPHA,
455 BLENDFACTOR_ZERO,
456 BLENDFACTOR_INV_SRC_COLOR,
457 BLENDFACTOR_INV_SRC_ALPHA,
458 BLENDFACTOR_INV_DST_ALPHA,
459 BLENDFACTOR_INV_DST_COLOR,
460 BLENDFACTOR_INV_CONST_COLOR,
461 BLENDFACTOR_INV_CONST_ALPHA,
462 BLENDFACTOR_INV_SRC1_COLOR,
463 BLENDFACTOR_INV_SRC1_ALPHA
464 };
465
466 enum SWR_BLEND_OP
467 {
468 BLENDOP_ADD,
469 BLENDOP_SUBTRACT,
470 BLENDOP_REVSUBTRACT,
471 BLENDOP_MIN,
472 BLENDOP_MAX,
473 };
474
475 enum SWR_LOGIC_OP
476 {
477 LOGICOP_CLEAR,
478 LOGICOP_NOR,
479 LOGICOP_AND_INVERTED,
480 LOGICOP_COPY_INVERTED,
481 LOGICOP_AND_REVERSE,
482 LOGICOP_INVERT,
483 LOGICOP_XOR,
484 LOGICOP_NAND,
485 LOGICOP_AND,
486 LOGICOP_EQUIV,
487 LOGICOP_NOOP,
488 LOGICOP_OR_INVERTED,
489 LOGICOP_COPY,
490 LOGICOP_OR_REVERSE,
491 LOGICOP_OR,
492 LOGICOP_SET,
493 };
494
495 //////////////////////////////////////////////////////////////////////////
496 /// SWR_AUX_MODE
497 /// @brief Specifies how the auxiliary buffer is used by the driver.
498 //////////////////////////////////////////////////////////////////////////
499 enum SWR_AUX_MODE
500 {
501 AUX_MODE_NONE,
502 AUX_MODE_COLOR,
503 AUX_MODE_UAV,
504 AUX_MODE_DEPTH,
505 };
506
507 //////////////////////////////////////////////////////////////////////////
508 /// SWR_SURFACE_STATE
509 //////////////////////////////////////////////////////////////////////////
510 struct SWR_SURFACE_STATE
511 {
512 uint8_t *pBaseAddress;
513 SWR_SURFACE_TYPE type; // @llvm_enum
514 SWR_FORMAT format; // @llvm_enum
515 uint32_t width;
516 uint32_t height;
517 uint32_t depth;
518 uint32_t numSamples;
519 uint32_t samplePattern;
520 uint32_t pitch;
521 uint32_t qpitch;
522 uint32_t minLod; // for sampled surfaces, the most detailed LOD that can be accessed by sampler
523 uint32_t maxLod; // for sampled surfaces, the max LOD that can be accessed
524 float resourceMinLod; // for sampled surfaces, the most detailed fractional mip that can be accessed by sampler
525 uint32_t lod; // for render targets, the lod being rendered to
526 uint32_t arrayIndex; // for render targets, the array index being rendered to for arrayed surfaces
527 SWR_TILE_MODE tileMode; // @llvm_enum
528 uint32_t halign;
529 uint32_t valign;
530 uint32_t xOffset;
531 uint32_t yOffset;
532
533 uint32_t lodOffsets[2][15]; // lod offsets for sampled surfaces
534
535 uint8_t *pAuxBaseAddress; // Used for compression, append/consume counter, etc.
536 SWR_AUX_MODE auxMode; // @llvm_enum
537
538
539 bool bInterleavedSamples; // are MSAA samples stored interleaved or planar
540 };
541
542 // vertex fetch state
543 // WARNING- any changes to this struct need to be reflected
544 // in the fetch shader jit
545 struct SWR_VERTEX_BUFFER_STATE
546 {
547 uint32_t index;
548 uint32_t pitch;
549 const uint8_t *pData;
550 uint32_t size;
551 uint32_t numaNode;
552 uint32_t minVertex; // min vertex (for bounds checking)
553 uint32_t maxVertex; // size / pitch. precalculated value used by fetch shader for OOB checks
554 uint32_t partialInboundsSize; // size % pitch. precalculated value used by fetch shader for partially OOB vertices
555 };
556
557 struct SWR_INDEX_BUFFER_STATE
558 {
559 // Format type for indices (e.g. UINT16, UINT32, etc.)
560 SWR_FORMAT format; // @llvm_enum
561 const void *pIndices;
562 uint32_t size;
563 };
564
565
566 //////////////////////////////////////////////////////////////////////////
567 /// SWR_FETCH_CONTEXT
568 /// @brief Input to fetch shader.
569 /// @note WARNING - Changes to this struct need to be reflected in the
570 /// fetch shader jit.
571 /////////////////////////////////////////////////////////////////////////
572 struct SWR_FETCH_CONTEXT
573 {
574 const SWR_VERTEX_BUFFER_STATE* pStreams; // IN: array of bound vertex buffers
575 const int32_t* pIndices; // IN: pointer to index buffer for indexed draws
576 const int32_t* pLastIndex; // IN: pointer to end of index buffer, used for bounds checking
577 uint32_t CurInstance; // IN: current instance
578 uint32_t BaseVertex; // IN: base vertex
579 uint32_t StartVertex; // IN: start vertex
580 uint32_t StartInstance; // IN: start instance
581 simdscalari VertexID; // OUT: vector of vertex IDs
582 simdscalari CutMask; // OUT: vector mask of indices which have the cut index value
583 };
584
585 //////////////////////////////////////////////////////////////////////////
586 /// SWR_STATS
587 ///
588 /// @brief All statistics generated by SWR go here. These are public
589 /// to driver.
590 /////////////////////////////////////////////////////////////////////////
591 OSALIGNLINE(struct) SWR_STATS
592 {
593 // Occlusion Query
594 uint64_t DepthPassCount; // Number of passing depth tests. Not exact.
595
596 // Pipeline Stats
597 uint64_t PsInvocations; // Number of Pixel Shader invocations
598 uint64_t CsInvocations; // Number of Compute Shader invocations
599
600 };
601
602 //////////////////////////////////////////////////////////////////////////
603 /// SWR_STATS
604 ///
605 /// @brief All statistics generated by FE.
606 /////////////////////////////////////////////////////////////////////////
607 OSALIGNLINE(struct) SWR_STATS_FE
608 {
609 uint64_t IaVertices; // Number of Fetch Shader vertices
610 uint64_t IaPrimitives; // Number of PA primitives.
611 uint64_t VsInvocations; // Number of Vertex Shader invocations
612 uint64_t HsInvocations; // Number of Hull Shader invocations
613 uint64_t DsInvocations; // Number of Domain Shader invocations
614 uint64_t GsInvocations; // Number of Geometry Shader invocations
615 uint64_t GsPrimitives; // Number of prims GS outputs.
616 uint64_t CInvocations; // Number of clipper invocations
617 uint64_t CPrimitives; // Number of clipper primitives.
618
619 // Streamout Stats
620 uint64_t SoPrimStorageNeeded[4];
621 uint64_t SoNumPrimsWritten[4];
622 };
623
624 //////////////////////////////////////////////////////////////////////////
625 /// STREAMOUT_BUFFERS
626 /////////////////////////////////////////////////////////////////////////
627
628 #define MAX_SO_STREAMS 4
629 #define MAX_SO_BUFFERS 4
630 #define MAX_ATTRIBUTES 32
631
632 struct SWR_STREAMOUT_BUFFER
633 {
634 bool enable;
635 bool soWriteEnable;
636
637 // Pointers to streamout buffers.
638 uint32_t* pBuffer;
639
640 // Size of buffer in dwords.
641 uint32_t bufferSize;
642
643 // Vertex pitch of buffer in dwords.
644 uint32_t pitch;
645
646 // Offset into buffer in dwords. SOS will increment this offset.
647 uint32_t streamOffset;
648
649 // Offset to the SO write offset. If not null then we update offset here.
650 uint32_t* pWriteOffset;
651
652 };
653
654 //////////////////////////////////////////////////////////////////////////
655 /// STREAMOUT_STATE
656 /////////////////////////////////////////////////////////////////////////
657 struct SWR_STREAMOUT_STATE
658 {
659 // This disables stream output.
660 bool soEnable;
661
662 // which streams are enabled for streamout
663 bool streamEnable[MAX_SO_STREAMS];
664
665 // If set then do not send any streams to the rasterizer.
666 bool rasterizerDisable;
667
668 // Specifies which stream to send to the rasterizer.
669 uint32_t streamToRasterizer;
670
671 // The stream masks specify which attributes are sent to which streams.
672 // These masks help the FE to setup the pPrimData buffer that is passed
673 // the Stream Output Shader (SOS) function.
674 uint32_t streamMasks[MAX_SO_STREAMS];
675
676 // Number of attributes, including position, per vertex that are streamed out.
677 // This should match number of bits in stream mask.
678 uint32_t streamNumEntries[MAX_SO_STREAMS];
679 };
680
681 //////////////////////////////////////////////////////////////////////////
682 /// STREAMOUT_CONTEXT - Passed to SOS
683 /////////////////////////////////////////////////////////////////////////
684 struct SWR_STREAMOUT_CONTEXT
685 {
686 uint32_t* pPrimData;
687 SWR_STREAMOUT_BUFFER* pBuffer[MAX_SO_STREAMS];
688
689 // Num prims written for this stream
690 uint32_t numPrimsWritten;
691
692 // Num prims that should have been written if there were no overflow.
693 uint32_t numPrimStorageNeeded;
694 };
695
696 //////////////////////////////////////////////////////////////////////////
697 /// SWR_GS_STATE - Geometry shader state
698 /////////////////////////////////////////////////////////////////////////
699 struct SWR_GS_STATE
700 {
701 bool gsEnable;
702
703 // number of input attributes per vertex. used by the frontend to
704 // optimize assembling primitives for GS
705 uint32_t numInputAttribs;
706
707 // output topology - can be point, tristrip, or linestrip
708 PRIMITIVE_TOPOLOGY outputTopology; // @llvm_enum
709
710 // maximum number of verts that can be emitted by a single instance of the GS
711 uint32_t maxNumVerts;
712
713 // instance count
714 uint32_t instanceCount;
715
716 // geometry shader emits renderTargetArrayIndex
717 bool emitsRenderTargetArrayIndex;
718
719 // geometry shader emits PrimitiveID
720 bool emitsPrimitiveID;
721
722 // geometry shader emits ViewportArrayIndex
723 bool emitsViewportArrayIndex;
724
725 // if true, geometry shader emits a single stream, with separate cut buffer.
726 // if false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
727 // to map vertices to streams
728 bool isSingleStream;
729
730 // when single stream is enabled, singleStreamID dictates which stream is being output.
731 // field ignored if isSingleStream is false
732 uint32_t singleStreamID;
733 };
734
735
736 //////////////////////////////////////////////////////////////////////////
737 /// SWR_TS_OUTPUT_TOPOLOGY - Defines data output by the tessellator / DS
738 /////////////////////////////////////////////////////////////////////////
739 enum SWR_TS_OUTPUT_TOPOLOGY
740 {
741 SWR_TS_OUTPUT_POINT,
742 SWR_TS_OUTPUT_LINE,
743 SWR_TS_OUTPUT_TRI_CW,
744 SWR_TS_OUTPUT_TRI_CCW,
745
746 SWR_TS_OUTPUT_TOPOLOGY_COUNT
747 };
748
749 //////////////////////////////////////////////////////////////////////////
750 /// SWR_TS_PARTITIONING - Defines tessellation algorithm
751 /////////////////////////////////////////////////////////////////////////
752 enum SWR_TS_PARTITIONING
753 {
754 SWR_TS_INTEGER,
755 SWR_TS_ODD_FRACTIONAL,
756 SWR_TS_EVEN_FRACTIONAL,
757
758 SWR_TS_PARTITIONING_COUNT
759 };
760
761 //////////////////////////////////////////////////////////////////////////
762 /// SWR_TS_DOMAIN - Defines Tessellation Domain
763 /////////////////////////////////////////////////////////////////////////
764 enum SWR_TS_DOMAIN
765 {
766 SWR_TS_QUAD,
767 SWR_TS_TRI,
768 SWR_TS_ISOLINE,
769
770 SWR_TS_DOMAIN_COUNT
771 };
772
773 //////////////////////////////////////////////////////////////////////////
774 /// SWR_TS_STATE - Tessellation state
775 /////////////////////////////////////////////////////////////////////////
776 struct SWR_TS_STATE
777 {
778 bool tsEnable;
779 SWR_TS_OUTPUT_TOPOLOGY tsOutputTopology; // @llvm_enum
780 SWR_TS_PARTITIONING partitioning; // @llvm_enum
781 SWR_TS_DOMAIN domain; // @llvm_enum
782
783 PRIMITIVE_TOPOLOGY postDSTopology; // @llvm_enum
784
785 uint32_t numHsInputAttribs;
786 uint32_t numHsOutputAttribs;
787 uint32_t numDsOutputAttribs;
788 };
789
790 // output merger state
791 struct SWR_RENDER_TARGET_BLEND_STATE
792 {
793 uint8_t writeDisableRed : 1;
794 uint8_t writeDisableGreen : 1;
795 uint8_t writeDisableBlue : 1;
796 uint8_t writeDisableAlpha : 1;
797 };
798 static_assert(sizeof(SWR_RENDER_TARGET_BLEND_STATE) == 1, "Invalid SWR_RENDER_TARGET_BLEND_STATE size");
799
800 enum SWR_MULTISAMPLE_COUNT
801 {
802 SWR_MULTISAMPLE_1X = 0,
803 SWR_MULTISAMPLE_2X,
804 SWR_MULTISAMPLE_4X,
805 SWR_MULTISAMPLE_8X,
806 SWR_MULTISAMPLE_16X,
807 SWR_MULTISAMPLE_TYPE_COUNT
808 };
809
810 struct SWR_BLEND_STATE
811 {
812 // constant blend factor color in RGBA float
813 float constantColor[4];
814
815 // alpha test reference value in unorm8 or float32
816 uint32_t alphaTestReference;
817 uint32_t sampleMask;
818 // all RT's have the same sample count
819 ///@todo move this to Output Merger state when we refactor
820 SWR_MULTISAMPLE_COUNT sampleCount; // @llvm_enum
821
822 SWR_RENDER_TARGET_BLEND_STATE renderTarget[SWR_NUM_RENDERTARGETS];
823 };
824 static_assert(sizeof(SWR_BLEND_STATE) == 36, "Invalid SWR_BLEND_STATE size");
825
826 //////////////////////////////////////////////////////////////////////////
827 /// FUNCTION POINTERS FOR SHADERS
828
829 typedef void(__cdecl *PFN_FETCH_FUNC)(SWR_FETCH_CONTEXT& fetchInfo, simdvertex& out);
830 typedef void(__cdecl *PFN_VERTEX_FUNC)(HANDLE hPrivateData, SWR_VS_CONTEXT* pVsContext);
831 typedef void(__cdecl *PFN_HS_FUNC)(HANDLE hPrivateData, SWR_HS_CONTEXT* pHsContext);
832 typedef void(__cdecl *PFN_DS_FUNC)(HANDLE hPrivateData, SWR_DS_CONTEXT* pDsContext);
833 typedef void(__cdecl *PFN_GS_FUNC)(HANDLE hPrivateData, SWR_GS_CONTEXT* pGsContext);
834 typedef void(__cdecl *PFN_CS_FUNC)(HANDLE hPrivateData, SWR_CS_CONTEXT* pCsContext);
835 typedef void(__cdecl *PFN_SO_FUNC)(SWR_STREAMOUT_CONTEXT& soContext);
836 typedef void(__cdecl *PFN_PIXEL_KERNEL)(HANDLE hPrivateData, SWR_PS_CONTEXT *pContext);
837 typedef void(__cdecl *PFN_CPIXEL_KERNEL)(HANDLE hPrivateData, SWR_PS_CONTEXT *pContext);
838 typedef void(__cdecl *PFN_BLEND_JIT_FUNC)(const SWR_BLEND_STATE*,
839 simdvector& vSrc, simdvector& vSrc1, simdscalar& vSrc0Alpha, uint32_t sample,
840 uint8_t* pDst, simdvector& vResult, simdscalari* vOMask, simdscalari* vCoverageMask);
841 typedef simdscalar(*PFN_QUANTIZE_DEPTH)(simdscalar);
842
843
844
845 //////////////////////////////////////////////////////////////////////////
846 /// FRONTEND_STATE
847 /////////////////////////////////////////////////////////////////////////
848 struct SWR_FRONTEND_STATE
849 {
850 // skip clip test, perspective divide, and viewport transform
851 // intended for verts in screen space
852 bool vpTransformDisable;
853 bool bEnableCutIndex;
854 union
855 {
856 struct
857 {
858 uint32_t triFan : 2;
859 uint32_t lineStripList : 1;
860 uint32_t triStripList : 2;
861 };
862 uint32_t bits;
863 } provokingVertex;
864 uint32_t topologyProvokingVertex; // provoking vertex for the draw topology
865 };
866
867 //////////////////////////////////////////////////////////////////////////
868 /// VIEWPORT_MATRIX
869 /////////////////////////////////////////////////////////////////////////
870 struct SWR_VIEWPORT_MATRIX
871 {
872 float m00;
873 float m11;
874 float m22;
875 float m30;
876 float m31;
877 float m32;
878 };
879
880 //////////////////////////////////////////////////////////////////////////
881 /// VIEWPORT_MATRIXES
882 /////////////////////////////////////////////////////////////////////////
883 struct SWR_VIEWPORT_MATRICES
884 {
885 float m00[KNOB_NUM_VIEWPORTS_SCISSORS];
886 float m11[KNOB_NUM_VIEWPORTS_SCISSORS];
887 float m22[KNOB_NUM_VIEWPORTS_SCISSORS];
888 float m30[KNOB_NUM_VIEWPORTS_SCISSORS];
889 float m31[KNOB_NUM_VIEWPORTS_SCISSORS];
890 float m32[KNOB_NUM_VIEWPORTS_SCISSORS];
891 };
892
893 //////////////////////////////////////////////////////////////////////////
894 /// SWR_VIEWPORT
895 /////////////////////////////////////////////////////////////////////////
896 struct SWR_VIEWPORT
897 {
898 float x;
899 float y;
900 float width;
901 float height;
902 float minZ;
903 float maxZ;
904 };
905
906 //////////////////////////////////////////////////////////////////////////
907 /// SWR_CULLMODE
908 //////////////////////////////////////////////////////////////////////////
909 enum SWR_CULLMODE
910 {
911 SWR_CULLMODE_BOTH,
912 SWR_CULLMODE_NONE,
913 SWR_CULLMODE_FRONT,
914 SWR_CULLMODE_BACK
915 };
916
917 enum SWR_FILLMODE
918 {
919 SWR_FILLMODE_POINT,
920 SWR_FILLMODE_WIREFRAME,
921 SWR_FILLMODE_SOLID
922 };
923
924 enum SWR_FRONTWINDING
925 {
926 SWR_FRONTWINDING_CW,
927 SWR_FRONTWINDING_CCW
928 };
929
930
931 enum SWR_PIXEL_LOCATION
932 {
933 SWR_PIXEL_LOCATION_CENTER,
934 SWR_PIXEL_LOCATION_UL,
935 };
936
937 // fixed point screen space sample locations within a pixel
938 struct SWR_MULTISAMPLE_POS
939 {
940 public:
941 INLINE void SetXi(uint32_t sampleNum, uint32_t val) { _xi[sampleNum] = val; }; // @llvm_func
942 INLINE void SetYi(uint32_t sampleNum, uint32_t val) { _yi[sampleNum] = val; }; // @llvm_func
943 INLINE uint32_t Xi(uint32_t sampleNum) const { return _xi[sampleNum]; }; // @llvm_func
944 INLINE uint32_t Yi(uint32_t sampleNum) const { return _yi[sampleNum]; }; // @llvm_func
945 INLINE void SetX(uint32_t sampleNum, float val) { _x[sampleNum] = val; }; // @llvm_func
946 INLINE void SetY(uint32_t sampleNum, float val) { _y[sampleNum] = val; }; // @llvm_func
947 INLINE float X(uint32_t sampleNum) const { return _x[sampleNum]; }; // @llvm_func
948 INLINE float Y(uint32_t sampleNum) const { return _y[sampleNum]; }; // @llvm_func
949 typedef const float(&sampleArrayT)[SWR_MAX_NUM_MULTISAMPLES]; //@llvm_typedef
950 INLINE sampleArrayT X() const { return _x; }; // @llvm_func
951 INLINE sampleArrayT Y() const { return _y; }; // @llvm_func
952 INLINE const __m128i& vXi(uint32_t sampleNum) const { return _vXi[sampleNum]; }; // @llvm_func
953 INLINE const __m128i& vYi(uint32_t sampleNum) const { return _vYi[sampleNum]; }; // @llvm_func
954 INLINE const simdscalar& vX(uint32_t sampleNum) const { return _vX[sampleNum]; }; // @llvm_func
955 INLINE const simdscalar& vY(uint32_t sampleNum) const { return _vY[sampleNum]; }; // @llvm_func
956 INLINE const __m128i& TileSampleOffsetsX() const { return tileSampleOffsetsX; }; // @llvm_func
957 INLINE const __m128i& TileSampleOffsetsY() const { return tileSampleOffsetsY; }; // @llvm_func
958
959 INLINE void PrecalcSampleData(int numSamples) // @llvm_func_start
960 {
961 for(int i = 0; i < numSamples; i++)
962 {
963 _vXi[i] = _mm_set1_epi32(_xi[i]);
964 _vYi[i] = _mm_set1_epi32(_yi[i]);
965 _vX[i] = _simd_set1_ps(_x[i]);
966 _vY[i] = _simd_set1_ps(_y[i]);
967 }
968 // precalculate the raster tile BB for the rasterizer.
969 CalcTileSampleOffsets(numSamples);
970 } // @llvm_func_end
971
972
973 private:
974 INLINE void CalcTileSampleOffsets(int numSamples) // @llvm_func_start
975 {
976 auto expandThenBlend4 = [](uint32_t* min, uint32_t* max, auto mask)
977 {
978 __m128i vMin = _mm_set1_epi32(*min);
979 __m128i vMax = _mm_set1_epi32(*max);
980 return _simd_blend4_epi32<decltype(mask)::value>(vMin, vMax);
981 };
982
983 auto minXi = std::min_element(std::begin(_xi), &_xi[numSamples]);
984 auto maxXi = std::max_element(std::begin(_xi), &_xi[numSamples]);
985 std::integral_constant<int, 0xA> xMask;
986 // BR(max), BL(min), UR(max), UL(min)
987 tileSampleOffsetsX = expandThenBlend4(minXi, maxXi, xMask);
988
989 auto minYi = std::min_element(std::begin(_yi), &_yi[numSamples]);
990 auto maxYi = std::max_element(std::begin(_yi), &_yi[numSamples]);
991 std::integral_constant<int, 0xC> yMask;
992 // BR(max), BL(min), UR(max), UL(min)
993 tileSampleOffsetsY = expandThenBlend4(minYi, maxYi, yMask);
994 }; // @llvm_func_end
995 // scalar sample values
996 uint32_t _xi[SWR_MAX_NUM_MULTISAMPLES];
997 uint32_t _yi[SWR_MAX_NUM_MULTISAMPLES];
998 float _x[SWR_MAX_NUM_MULTISAMPLES];
999 float _y[SWR_MAX_NUM_MULTISAMPLES];
1000
1001 // precalc'd / vectorized samples
1002 __m128i _vXi[SWR_MAX_NUM_MULTISAMPLES];
1003 __m128i _vYi[SWR_MAX_NUM_MULTISAMPLES];
1004 simdscalar _vX[SWR_MAX_NUM_MULTISAMPLES];
1005 simdscalar _vY[SWR_MAX_NUM_MULTISAMPLES];
1006 __m128i tileSampleOffsetsX;
1007 __m128i tileSampleOffsetsY;
1008
1009 };
1010
1011 //////////////////////////////////////////////////////////////////////////
1012 /// SWR_RASTSTATE
1013 //////////////////////////////////////////////////////////////////////////
1014 struct SWR_RASTSTATE
1015 {
1016 uint32_t cullMode : 2;
1017 uint32_t fillMode : 2;
1018 uint32_t frontWinding : 1;
1019 uint32_t scissorEnable : 1;
1020 uint32_t depthClipEnable : 1;
1021 uint32_t clipHalfZ : 1;
1022 uint32_t pointParam : 1;
1023 uint32_t pointSpriteEnable : 1;
1024 uint32_t pointSpriteTopOrigin : 1;
1025 uint32_t forcedSampleCount : 1;
1026 uint32_t pixelOffset : 1;
1027 uint32_t depthBiasPreAdjusted : 1; ///< depth bias constant is in float units, not per-format Z units
1028 uint32_t conservativeRast : 1;
1029
1030 float pointSize;
1031 float lineWidth;
1032
1033 float depthBias;
1034 float slopeScaledDepthBias;
1035 float depthBiasClamp;
1036 SWR_FORMAT depthFormat; // @llvm_enum
1037
1038 // sample count the rasterizer is running at
1039 SWR_MULTISAMPLE_COUNT sampleCount; // @llvm_enum
1040 uint32_t pixelLocation; // UL or Center
1041 SWR_MULTISAMPLE_POS samplePositions; // @llvm_struct
1042 bool bIsCenterPattern; // @llvm_enum
1043
1044 // user clip/cull distance enables
1045 uint8_t cullDistanceMask;
1046 uint8_t clipDistanceMask;
1047 };
1048
1049 enum SWR_CONSTANT_SOURCE
1050 {
1051 SWR_CONSTANT_SOURCE_CONST_0000,
1052 SWR_CONSTANT_SOURCE_CONST_0001_FLOAT,
1053 SWR_CONSTANT_SOURCE_CONST_1111_FLOAT,
1054 SWR_CONSTANT_SOURCE_PRIM_ID
1055 };
1056
1057 struct SWR_ATTRIB_SWIZZLE
1058 {
1059 uint16_t sourceAttrib : 5; // source attribute
1060 uint16_t constantSource : 2; // constant source to apply
1061 uint16_t componentOverrideMask : 4; // override component with constant source
1062 };
1063
1064 // backend state
1065 struct SWR_BACKEND_STATE
1066 {
1067 uint32_t constantInterpolationMask; // bitmask indicating which attributes have constant interpolation
1068 uint32_t pointSpriteTexCoordMask; // bitmask indicating the attribute(s) which should be interpreted as tex coordinates
1069
1070 uint8_t numAttributes; // total number of attributes to send to backend (up to 32)
1071 uint8_t numComponents[32]; // number of components to setup per attribute, this reduces some calculations for unneeded components
1072
1073 bool swizzleEnable; // when enabled, core will parse the swizzle map when
1074 // setting up attributes for the backend, otherwise
1075 // all attributes up to numAttributes will be sent
1076 SWR_ATTRIB_SWIZZLE swizzleMap[32];
1077 };
1078
1079
1080 union SWR_DEPTH_STENCIL_STATE
1081 {
1082 struct
1083 {
1084 // dword 0
1085 uint32_t depthWriteEnable : 1;
1086 uint32_t depthTestEnable : 1;
1087 uint32_t stencilWriteEnable : 1;
1088 uint32_t stencilTestEnable : 1;
1089 uint32_t doubleSidedStencilTestEnable : 1;
1090
1091 uint32_t depthTestFunc : 3;
1092 uint32_t stencilTestFunc : 3;
1093
1094 uint32_t backfaceStencilPassDepthPassOp : 3;
1095 uint32_t backfaceStencilPassDepthFailOp : 3;
1096 uint32_t backfaceStencilFailOp : 3;
1097 uint32_t backfaceStencilTestFunc : 3;
1098 uint32_t stencilPassDepthPassOp : 3;
1099 uint32_t stencilPassDepthFailOp : 3;
1100 uint32_t stencilFailOp : 3;
1101
1102 // dword 1
1103 uint8_t backfaceStencilWriteMask;
1104 uint8_t backfaceStencilTestMask;
1105 uint8_t stencilWriteMask;
1106 uint8_t stencilTestMask;
1107
1108 // dword 2
1109 uint8_t backfaceStencilRefValue;
1110 uint8_t stencilRefValue;
1111 };
1112 uint32_t value[3];
1113 };
1114
1115 enum SWR_SHADING_RATE
1116 {
1117 SWR_SHADING_RATE_PIXEL,
1118 SWR_SHADING_RATE_SAMPLE,
1119 SWR_SHADING_RATE_COUNT,
1120 };
1121
1122 enum SWR_INPUT_COVERAGE
1123 {
1124 SWR_INPUT_COVERAGE_NONE,
1125 SWR_INPUT_COVERAGE_NORMAL,
1126 SWR_INPUT_COVERAGE_INNER_CONSERVATIVE,
1127 SWR_INPUT_COVERAGE_COUNT,
1128 };
1129
1130 enum SWR_PS_POSITION_OFFSET
1131 {
1132 SWR_PS_POSITION_SAMPLE_NONE,
1133 SWR_PS_POSITION_SAMPLE_OFFSET,
1134 SWR_PS_POSITION_CENTROID_OFFSET,
1135 SWR_PS_POSITION_OFFSET_COUNT,
1136 };
1137
1138 enum SWR_BARYCENTRICS_MASK
1139 {
1140 SWR_BARYCENTRIC_PER_PIXEL_MASK = 0x1,
1141 SWR_BARYCENTRIC_CENTROID_MASK = 0x2,
1142 SWR_BARYCENTRIC_PER_SAMPLE_MASK = 0x4,
1143 };
1144
1145 // pixel shader state
1146 struct SWR_PS_STATE
1147 {
1148 // dword 0-1
1149 PFN_PIXEL_KERNEL pfnPixelShader; // @llvm_pfn
1150
1151 // dword 2
1152 uint32_t killsPixel : 1; // pixel shader can kill pixels
1153 uint32_t inputCoverage : 2; // ps uses input coverage
1154 uint32_t writesODepth : 1; // pixel shader writes to depth
1155 uint32_t usesSourceDepth : 1; // pixel shader reads depth
1156 uint32_t shadingRate : 2; // shading per pixel / sample / coarse pixel
1157 uint32_t numRenderTargets : 4; // number of render target outputs in use (0-8)
1158 uint32_t posOffset : 2; // type of offset (none, sample, centroid) to add to pixel position
1159 uint32_t barycentricsMask : 3; // which type(s) of barycentric coords does the PS interpolate attributes with
1160 uint32_t usesUAV : 1; // pixel shader accesses UAV
1161 uint32_t forceEarlyZ : 1; // force execution of early depth/stencil test
1162 };
1163
1164 // depth bounds state
1165 struct SWR_DEPTH_BOUNDS_STATE
1166 {
1167 bool depthBoundsTestEnable;
1168 float depthBoundsTestMinValue;
1169 float depthBoundsTestMaxValue;
1170 };
1171