swr: [rasterizer core] per-primitive viewports/scissors
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / threads.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2016 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ****************************************************************************/
23
24 #include <stdio.h>
25 #include <thread>
26 #include <algorithm>
27 #include <float.h>
28 #include <vector>
29 #include <utility>
30 #include <fstream>
31 #include <string>
32
33 #if defined(__linux__) || defined(__gnu_linux__)
34 #include <pthread.h>
35 #include <sched.h>
36 #include <unistd.h>
37 #endif
38
39 #include "common/os.h"
40 #include "context.h"
41 #include "frontend.h"
42 #include "backend.h"
43 #include "rasterizer.h"
44 #include "rdtsc_core.h"
45 #include "tilemgr.h"
46
47
48
49
50 // ThreadId
51 struct Core
52 {
53 uint32_t procGroup = 0;
54 std::vector<uint32_t> threadIds;
55 };
56
57 struct NumaNode
58 {
59 std::vector<Core> cores;
60 };
61
62 typedef std::vector<NumaNode> CPUNumaNodes;
63
64 void CalculateProcessorTopology(CPUNumaNodes& out_nodes, uint32_t& out_numThreadsPerProcGroup)
65 {
66 out_nodes.clear();
67 out_numThreadsPerProcGroup = 0;
68
69 #if defined(_WIN32)
70
71 std::vector<KAFFINITY> threadMaskPerProcGroup;
72
73 static std::mutex m;
74 std::lock_guard<std::mutex> l(m);
75
76 static SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX buffer[KNOB_MAX_NUM_THREADS];
77 DWORD bufSize = sizeof(buffer);
78
79 BOOL ret = GetLogicalProcessorInformationEx(RelationProcessorCore, buffer, &bufSize);
80 SWR_ASSERT(ret != FALSE, "Failed to get Processor Topology Information");
81
82 uint32_t count = bufSize / buffer->Size;
83 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pBuffer = buffer;
84
85 for (uint32_t i = 0; i < count; ++i)
86 {
87 SWR_ASSERT(pBuffer->Relationship == RelationProcessorCore);
88 for (uint32_t g = 0; g < pBuffer->Processor.GroupCount; ++g)
89 {
90 auto& gmask = pBuffer->Processor.GroupMask[g];
91 uint32_t threadId = 0;
92 uint32_t procGroup = gmask.Group;
93
94 Core* pCore = nullptr;
95
96 uint32_t numThreads = (uint32_t)_mm_popcount_sizeT(gmask.Mask);
97
98 while (BitScanForwardSizeT((unsigned long*)&threadId, gmask.Mask))
99 {
100 // clear mask
101 KAFFINITY threadMask = KAFFINITY(1) << threadId;
102 gmask.Mask &= ~threadMask;
103
104 if (procGroup >= threadMaskPerProcGroup.size())
105 {
106 threadMaskPerProcGroup.resize(procGroup + 1);
107 }
108
109 if (threadMaskPerProcGroup[procGroup] & threadMask)
110 {
111 // Already seen this mask. This means that we are in 32-bit mode and
112 // have seen more than 32 HW threads for this procGroup
113 // Don't use it
114 #if defined(_WIN64)
115 SWR_ASSERT(false, "Shouldn't get here in 64-bit mode");
116 #endif
117 continue;
118 }
119
120 threadMaskPerProcGroup[procGroup] |= (KAFFINITY(1) << threadId);
121
122 // Find Numa Node
123 uint32_t numaId = 0;
124 PROCESSOR_NUMBER procNum = {};
125 procNum.Group = WORD(procGroup);
126 procNum.Number = UCHAR(threadId);
127
128 ret = GetNumaProcessorNodeEx(&procNum, (PUSHORT)&numaId);
129 SWR_ASSERT(ret);
130
131 // Store data
132 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
133 auto& numaNode = out_nodes[numaId];
134
135 uint32_t coreId = 0;
136
137 if (nullptr == pCore)
138 {
139 numaNode.cores.push_back(Core());
140 pCore = &numaNode.cores.back();
141 pCore->procGroup = procGroup;
142 }
143 pCore->threadIds.push_back(threadId);
144 if (procGroup == 0)
145 {
146 out_numThreadsPerProcGroup++;
147 }
148 }
149 }
150 pBuffer = PtrAdd(pBuffer, pBuffer->Size);
151 }
152
153
154 #elif defined(__linux__) || defined (__gnu_linux__)
155
156 // Parse /proc/cpuinfo to get full topology
157 std::ifstream input("/proc/cpuinfo");
158 std::string line;
159 char* c;
160 uint32_t threadId = uint32_t(-1);
161 uint32_t coreId = uint32_t(-1);
162 uint32_t numaId = uint32_t(-1);
163
164 while (std::getline(input, line))
165 {
166 if (line.find("processor") != std::string::npos)
167 {
168 if (threadId != uint32_t(-1))
169 {
170 // Save information.
171 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
172 auto& numaNode = out_nodes[numaId];
173 if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
174 auto& core = numaNode.cores[coreId];
175
176 core.procGroup = coreId;
177 core.threadIds.push_back(threadId);
178
179 out_numThreadsPerProcGroup++;
180 }
181
182 auto data_start = line.find(": ") + 2;
183 threadId = std::strtoul(&line.c_str()[data_start], &c, 10);
184 continue;
185 }
186 if (line.find("core id") != std::string::npos)
187 {
188 auto data_start = line.find(": ") + 2;
189 coreId = std::strtoul(&line.c_str()[data_start], &c, 10);
190 continue;
191 }
192 if (line.find("physical id") != std::string::npos)
193 {
194 auto data_start = line.find(": ") + 2;
195 numaId = std::strtoul(&line.c_str()[data_start], &c, 10);
196 continue;
197 }
198 }
199
200 if (threadId != uint32_t(-1))
201 {
202 // Save information.
203 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
204 auto& numaNode = out_nodes[numaId];
205 if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
206 auto& core = numaNode.cores[coreId];
207
208 core.procGroup = coreId;
209 core.threadIds.push_back(threadId);
210 out_numThreadsPerProcGroup++;
211 }
212
213 for (uint32_t node = 0; node < out_nodes.size(); node++) {
214 auto& numaNode = out_nodes[node];
215 auto it = numaNode.cores.begin();
216 for ( ; it != numaNode.cores.end(); ) {
217 if (it->threadIds.size() == 0)
218 numaNode.cores.erase(it);
219 else
220 ++it;
221 }
222 }
223
224 #else
225
226 #error Unsupported platform
227
228 #endif
229 }
230
231
232 void bindThread(SWR_CONTEXT* pContext, uint32_t threadId, uint32_t procGroupId = 0, bool bindProcGroup=false)
233 {
234 // Only bind threads when MAX_WORKER_THREADS isn't set.
235 if (pContext->threadInfo.MAX_WORKER_THREADS && bindProcGroup == false)
236 {
237 return;
238 }
239
240 #if defined(_WIN32)
241
242 GROUP_AFFINITY affinity = {};
243 affinity.Group = procGroupId;
244
245 #if !defined(_WIN64)
246 if (threadId >= 32)
247 {
248 // Hopefully we don't get here. Logic in CreateThreadPool should prevent this.
249 SWR_REL_ASSERT(false, "Shouldn't get here");
250
251 // In a 32-bit process on Windows it is impossible to bind
252 // to logical processors 32-63 within a processor group.
253 // In this case set the mask to 0 and let the system assign
254 // the processor. Hopefully it will make smart choices.
255 affinity.Mask = 0;
256 }
257 else
258 #endif
259 {
260 // If MAX_WORKER_THREADS is set, only bind to the proc group,
261 // Not the individual HW thread.
262 if (!pContext->threadInfo.MAX_WORKER_THREADS)
263 {
264 affinity.Mask = KAFFINITY(1) << threadId;
265 }
266 }
267
268 SetThreadGroupAffinity(GetCurrentThread(), &affinity, nullptr);
269
270 #else
271
272 cpu_set_t cpuset;
273 pthread_t thread = pthread_self();
274 CPU_ZERO(&cpuset);
275 CPU_SET(threadId, &cpuset);
276
277 pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
278
279 #endif
280 }
281
282 INLINE
283 uint32_t GetEnqueuedDraw(SWR_CONTEXT *pContext)
284 {
285 return pContext->dcRing.GetHead();
286 }
287
288 INLINE
289 DRAW_CONTEXT *GetDC(SWR_CONTEXT *pContext, uint32_t drawId)
290 {
291 return &pContext->dcRing[(drawId-1) % KNOB_MAX_DRAWS_IN_FLIGHT];
292 }
293
294 INLINE
295 bool IDComparesLess(uint32_t a, uint32_t b)
296 {
297 // Use signed delta to ensure that wrap-around to 0 is correctly handled.
298 int32_t delta = int32_t(a - b);
299 return (delta < 0);
300 }
301
302 // returns true if dependency not met
303 INLINE
304 bool CheckDependency(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t lastRetiredDraw)
305 {
306 return pDC->dependent && IDComparesLess(lastRetiredDraw, pDC->drawId - 1);
307 }
308
309 //////////////////////////////////////////////////////////////////////////
310 /// @brief Update client stats.
311 INLINE void UpdateClientStats(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
312 {
313 if ((pContext->pfnUpdateStats == nullptr) || (GetApiState(pDC).enableStats == false))
314 {
315 return;
316 }
317
318 DRAW_DYNAMIC_STATE& dynState = pDC->dynState;
319 SWR_STATS stats{ 0 };
320
321 // Sum up stats across all workers before sending to client.
322 for (uint32_t i = 0; i < pContext->NumWorkerThreads; ++i)
323 {
324 stats.DepthPassCount += dynState.stats[i].DepthPassCount;
325
326 stats.PsInvocations += dynState.stats[i].PsInvocations;
327 stats.CsInvocations += dynState.stats[i].CsInvocations;
328 }
329
330 pContext->pfnUpdateStats(GetPrivateState(pDC), &stats);
331 }
332
333 INLINE void ExecuteCallbacks(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
334 {
335 UpdateClientStats(pContext, pDC);
336
337 if (pDC->retireCallback.pfnCallbackFunc)
338 {
339 pDC->retireCallback.pfnCallbackFunc(pDC->retireCallback.userData,
340 pDC->retireCallback.userData2,
341 pDC->retireCallback.userData3);
342 }
343 }
344
345 // inlined-only version
346 INLINE int32_t CompleteDrawContextInl(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
347 {
348 int32_t result = InterlockedDecrement((volatile LONG*)&pDC->threadsDone);
349 SWR_ASSERT(result >= 0);
350
351 if (result == 0)
352 {
353 ExecuteCallbacks(pContext, pDC);
354
355 // Cleanup memory allocations
356 pDC->pArena->Reset(true);
357 if (!pDC->isCompute)
358 {
359 pDC->pTileMgr->initialize();
360 }
361 if (pDC->cleanupState)
362 {
363 pDC->pState->pArena->Reset(true);
364 }
365
366 _ReadWriteBarrier();
367
368 pContext->dcRing.Dequeue(); // Remove from tail
369 }
370
371 return result;
372 }
373
374 // available to other translation modules
375 int32_t CompleteDrawContext(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
376 {
377 return CompleteDrawContextInl(pContext, pDC);
378 }
379
380 INLINE bool FindFirstIncompleteDraw(SWR_CONTEXT* pContext, uint32_t& curDrawBE, uint32_t& drawEnqueued)
381 {
382 // increment our current draw id to the first incomplete draw
383 drawEnqueued = GetEnqueuedDraw(pContext);
384 while (IDComparesLess(curDrawBE, drawEnqueued))
385 {
386 DRAW_CONTEXT *pDC = &pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT];
387
388 // If its not compute and FE is not done then break out of loop.
389 if (!pDC->doneFE && !pDC->isCompute) break;
390
391 bool isWorkComplete = pDC->isCompute ?
392 pDC->pDispatch->isWorkComplete() :
393 pDC->pTileMgr->isWorkComplete();
394
395 if (isWorkComplete)
396 {
397 curDrawBE++;
398 CompleteDrawContextInl(pContext, pDC);
399 }
400 else
401 {
402 break;
403 }
404 }
405
406 // If there are no more incomplete draws then return false.
407 return IDComparesLess(curDrawBE, drawEnqueued);
408 }
409
410 //////////////////////////////////////////////////////////////////////////
411 /// @brief If there is any BE work then go work on it.
412 /// @param pContext - pointer to SWR context.
413 /// @param workerId - The unique worker ID that is assigned to this thread.
414 /// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
415 /// has its own curDrawBE counter and this ensures that each worker processes all the
416 /// draws in order.
417 /// @param lockedTiles - This is the set of tiles locked by other threads. Each thread maintains its
418 /// own set and each time it fails to lock a macrotile, because its already locked,
419 /// then it will add that tile to the lockedTiles set. As a worker begins to work
420 /// on future draws the lockedTiles ensure that it doesn't work on tiles that may
421 /// still have work pending in a previous draw. Additionally, the lockedTiles is
422 /// hueristic that can steer a worker back to the same macrotile that it had been
423 /// working on in a previous draw.
424 void WorkOnFifoBE(
425 SWR_CONTEXT *pContext,
426 uint32_t workerId,
427 uint32_t &curDrawBE,
428 TileSet& lockedTiles,
429 uint32_t numaNode,
430 uint32_t numaMask)
431 {
432 // Find the first incomplete draw that has pending work. If no such draw is found then
433 // return. FindFirstIncompleteDraw is responsible for incrementing the curDrawBE.
434 uint32_t drawEnqueued = 0;
435 if (FindFirstIncompleteDraw(pContext, curDrawBE, drawEnqueued) == false)
436 {
437 return;
438 }
439
440 uint32_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;
441
442 // Reset our history for locked tiles. We'll have to re-learn which tiles are locked.
443 lockedTiles.clear();
444
445 // Try to work on each draw in order of the available draws in flight.
446 // 1. If we're on curDrawBE, we can work on any macrotile that is available.
447 // 2. If we're trying to work on draws after curDrawBE, we are restricted to
448 // working on those macrotiles that are known to be complete in the prior draw to
449 // maintain order. The locked tiles provides the history to ensures this.
450 for (uint32_t i = curDrawBE; IDComparesLess(i, drawEnqueued); ++i)
451 {
452 DRAW_CONTEXT *pDC = &pContext->dcRing[i % KNOB_MAX_DRAWS_IN_FLIGHT];
453
454 if (pDC->isCompute) return; // We don't look at compute work.
455
456 // First wait for FE to be finished with this draw. This keeps threading model simple
457 // but if there are lots of bubbles between draws then serializing FE and BE may
458 // need to be revisited.
459 if (!pDC->doneFE) return;
460
461 // If this draw is dependent on a previous draw then we need to bail.
462 if (CheckDependency(pContext, pDC, lastRetiredDraw))
463 {
464 return;
465 }
466
467 // Grab the list of all dirty macrotiles. A tile is dirty if it has work queued to it.
468 auto &macroTiles = pDC->pTileMgr->getDirtyTiles();
469
470 for (auto tile : macroTiles)
471 {
472 uint32_t tileID = tile->mId;
473
474 // Only work on tiles for this numa node
475 uint32_t x, y;
476 pDC->pTileMgr->getTileIndices(tileID, x, y);
477 if (((x ^ y) & numaMask) != numaNode)
478 {
479 continue;
480 }
481
482 if (!tile->getNumQueued())
483 {
484 continue;
485 }
486
487 // can only work on this draw if it's not in use by other threads
488 if (lockedTiles.find(tileID) != lockedTiles.end())
489 {
490 continue;
491 }
492
493 if (tile->tryLock())
494 {
495 BE_WORK *pWork;
496
497 RDTSC_START(WorkerFoundWork);
498
499 uint32_t numWorkItems = tile->getNumQueued();
500 SWR_ASSERT(numWorkItems);
501
502 pWork = tile->peek();
503 SWR_ASSERT(pWork);
504 if (pWork->type == DRAW)
505 {
506 pContext->pHotTileMgr->InitializeHotTiles(pContext, pDC, tileID);
507 }
508
509 while ((pWork = tile->peek()) != nullptr)
510 {
511 pWork->pfnWork(pDC, workerId, tileID, &pWork->desc);
512 tile->dequeue();
513 }
514 RDTSC_STOP(WorkerFoundWork, numWorkItems, pDC->drawId);
515
516 _ReadWriteBarrier();
517
518 pDC->pTileMgr->markTileComplete(tileID);
519
520 // Optimization: If the draw is complete and we're the last one to have worked on it then
521 // we can reset the locked list as we know that all previous draws before the next are guaranteed to be complete.
522 if ((curDrawBE == i) && pDC->pTileMgr->isWorkComplete())
523 {
524 // We can increment the current BE and safely move to next draw since we know this draw is complete.
525 curDrawBE++;
526 CompleteDrawContextInl(pContext, pDC);
527
528 lastRetiredDraw++;
529
530 lockedTiles.clear();
531 break;
532 }
533 }
534 else
535 {
536 // This tile is already locked. So let's add it to our locked tiles set. This way we don't try locking this one again.
537 lockedTiles.insert(tileID);
538 }
539 }
540 }
541 }
542
543 //////////////////////////////////////////////////////////////////////////
544 /// @brief Called when FE work is complete for this DC.
545 INLINE void CompleteDrawFE(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
546 {
547 _ReadWriteBarrier();
548
549 if (pContext->pfnUpdateStatsFE && GetApiState(pDC).enableStats)
550 {
551 pContext->pfnUpdateStatsFE(GetPrivateState(pDC), &pDC->dynState.statsFE);
552 }
553
554 if (pContext->pfnUpdateSoWriteOffset)
555 {
556 for (uint32_t i = 0; i < MAX_SO_BUFFERS; ++i)
557 {
558 if ((pDC->dynState.SoWriteOffsetDirty[i]) &&
559 (pDC->pState->state.soBuffer[i].soWriteEnable))
560 {
561 pContext->pfnUpdateSoWriteOffset(GetPrivateState(pDC), i, pDC->dynState.SoWriteOffset[i]);
562 }
563 }
564 }
565
566 pDC->doneFE = true;
567
568 InterlockedDecrement((volatile LONG*)&pContext->drawsOutstandingFE);
569 }
570
571 void WorkOnFifoFE(SWR_CONTEXT *pContext, uint32_t workerId, uint32_t &curDrawFE)
572 {
573 // Try to grab the next DC from the ring
574 uint32_t drawEnqueued = GetEnqueuedDraw(pContext);
575 while (IDComparesLess(curDrawFE, drawEnqueued))
576 {
577 uint32_t dcSlot = curDrawFE % KNOB_MAX_DRAWS_IN_FLIGHT;
578 DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];
579 if (pDC->isCompute || pDC->doneFE || pDC->FeLock)
580 {
581 CompleteDrawContextInl(pContext, pDC);
582 curDrawFE++;
583 }
584 else
585 {
586 break;
587 }
588 }
589
590 uint32_t curDraw = curDrawFE;
591 while (IDComparesLess(curDraw, drawEnqueued))
592 {
593 uint32_t dcSlot = curDraw % KNOB_MAX_DRAWS_IN_FLIGHT;
594 DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];
595
596 if (!pDC->isCompute && !pDC->FeLock)
597 {
598 uint32_t initial = InterlockedCompareExchange((volatile uint32_t*)&pDC->FeLock, 1, 0);
599 if (initial == 0)
600 {
601 // successfully grabbed the DC, now run the FE
602 pDC->FeWork.pfnWork(pContext, pDC, workerId, &pDC->FeWork.desc);
603
604 CompleteDrawFE(pContext, pDC);
605 }
606 }
607 curDraw++;
608 }
609 }
610
611 //////////////////////////////////////////////////////////////////////////
612 /// @brief If there is any compute work then go work on it.
613 /// @param pContext - pointer to SWR context.
614 /// @param workerId - The unique worker ID that is assigned to this thread.
615 /// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
616 /// has its own curDrawBE counter and this ensures that each worker processes all the
617 /// draws in order.
618 void WorkOnCompute(
619 SWR_CONTEXT *pContext,
620 uint32_t workerId,
621 uint32_t& curDrawBE)
622 {
623 uint32_t drawEnqueued = 0;
624 if (FindFirstIncompleteDraw(pContext, curDrawBE, drawEnqueued) == false)
625 {
626 return;
627 }
628
629 uint32_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;
630
631 for (uint64_t i = curDrawBE; IDComparesLess(i, drawEnqueued); ++i)
632 {
633 DRAW_CONTEXT *pDC = &pContext->dcRing[i % KNOB_MAX_DRAWS_IN_FLIGHT];
634 if (pDC->isCompute == false) return;
635
636 // check dependencies
637 if (CheckDependency(pContext, pDC, lastRetiredDraw))
638 {
639 return;
640 }
641
642 SWR_ASSERT(pDC->pDispatch != nullptr);
643 DispatchQueue& queue = *pDC->pDispatch;
644
645 // Is there any work remaining?
646 if (queue.getNumQueued() > 0)
647 {
648 void* pSpillFillBuffer = nullptr;
649 uint32_t threadGroupId = 0;
650 while (queue.getWork(threadGroupId))
651 {
652 ProcessComputeBE(pDC, workerId, threadGroupId, pSpillFillBuffer);
653
654 queue.finishedWork();
655 }
656 }
657 }
658 }
659
660 template<bool IsFEThread, bool IsBEThread>
661 DWORD workerThreadMain(LPVOID pData)
662 {
663 THREAD_DATA *pThreadData = (THREAD_DATA*)pData;
664 SWR_CONTEXT *pContext = pThreadData->pContext;
665 uint32_t threadId = pThreadData->threadId;
666 uint32_t workerId = pThreadData->workerId;
667
668 bindThread(pContext, threadId, pThreadData->procGroupId, pThreadData->forceBindProcGroup);
669
670 RDTSC_INIT(threadId);
671
672 uint32_t numaNode = pThreadData->numaId;
673 uint32_t numaMask = pContext->threadPool.numaMask;
674
675 // flush denormals to 0
676 _mm_setcsr(_mm_getcsr() | _MM_FLUSH_ZERO_ON | _MM_DENORMALS_ZERO_ON);
677
678 // Track tiles locked by other threads. If we try to lock a macrotile and find its already
679 // locked then we'll add it to this list so that we don't try and lock it again.
680 TileSet lockedTiles;
681
682 // each worker has the ability to work on any of the queued draws as long as certain
683 // conditions are met. the data associated
684 // with a draw is guaranteed to be active as long as a worker hasn't signaled that he
685 // has moved on to the next draw when he determines there is no more work to do. The api
686 // thread will not increment the head of the dc ring until all workers have moved past the
687 // current head.
688 // the logic to determine what to work on is:
689 // 1- try to work on the FE any draw that is queued. For now there are no dependencies
690 // on the FE work, so any worker can grab any FE and process in parallel. Eventually
691 // we'll need dependency tracking to force serialization on FEs. The worker will try
692 // to pick an FE by atomically incrementing a counter in the swr context. he'll keep
693 // trying until he reaches the tail.
694 // 2- BE work must be done in strict order. we accomplish this today by pulling work off
695 // the oldest draw (ie the head) of the dcRing. the worker can determine if there is
696 // any work left by comparing the total # of binned work items and the total # of completed
697 // work items. If they are equal, then there is no more work to do for this draw, and
698 // the worker can safely increment its oldestDraw counter and move on to the next draw.
699 std::unique_lock<std::mutex> lock(pContext->WaitLock, std::defer_lock);
700
701 auto threadHasWork = [&](uint32_t curDraw) { return curDraw != pContext->dcRing.GetHead(); };
702
703 uint32_t curDrawBE = 0;
704 uint32_t curDrawFE = 0;
705
706 while (pContext->threadPool.inThreadShutdown == false)
707 {
708 uint32_t loop = 0;
709 while (loop++ < KNOB_WORKER_SPIN_LOOP_COUNT && !threadHasWork(curDrawBE))
710 {
711 _mm_pause();
712 }
713
714 if (!threadHasWork(curDrawBE))
715 {
716 lock.lock();
717
718 // check for thread idle condition again under lock
719 if (threadHasWork(curDrawBE))
720 {
721 lock.unlock();
722 continue;
723 }
724
725 if (pContext->threadPool.inThreadShutdown)
726 {
727 lock.unlock();
728 break;
729 }
730
731 RDTSC_START(WorkerWaitForThreadEvent);
732
733 pContext->FifosNotEmpty.wait(lock);
734 lock.unlock();
735
736 RDTSC_STOP(WorkerWaitForThreadEvent, 0, 0);
737
738 if (pContext->threadPool.inThreadShutdown)
739 {
740 break;
741 }
742 }
743
744 if (IsBEThread)
745 {
746 RDTSC_START(WorkerWorkOnFifoBE);
747 WorkOnFifoBE(pContext, workerId, curDrawBE, lockedTiles, numaNode, numaMask);
748 RDTSC_STOP(WorkerWorkOnFifoBE, 0, 0);
749
750 WorkOnCompute(pContext, workerId, curDrawBE);
751 }
752
753 if (IsFEThread)
754 {
755 WorkOnFifoFE(pContext, workerId, curDrawFE);
756
757 if (!IsBEThread)
758 {
759 curDrawBE = curDrawFE;
760 }
761 }
762 }
763
764 return 0;
765 }
766 template<> DWORD workerThreadMain<false, false>(LPVOID) = delete;
767
768 template <bool IsFEThread, bool IsBEThread>
769 DWORD workerThreadInit(LPVOID pData)
770 {
771 #if defined(_WIN32)
772 __try
773 #endif // _WIN32
774 {
775 return workerThreadMain<IsFEThread, IsBEThread>(pData);
776 }
777
778 #if defined(_WIN32)
779 __except(EXCEPTION_CONTINUE_SEARCH)
780 {
781 }
782
783 #endif // _WIN32
784
785 return 1;
786 }
787 template<> DWORD workerThreadInit<false, false>(LPVOID pData) = delete;
788
789 void CreateThreadPool(SWR_CONTEXT *pContext, THREAD_POOL *pPool)
790 {
791 bindThread(pContext, 0);
792
793 CPUNumaNodes nodes;
794 uint32_t numThreadsPerProcGroup = 0;
795 CalculateProcessorTopology(nodes, numThreadsPerProcGroup);
796
797 uint32_t numHWNodes = (uint32_t)nodes.size();
798 uint32_t numHWCoresPerNode = (uint32_t)nodes[0].cores.size();
799 uint32_t numHWHyperThreads = (uint32_t)nodes[0].cores[0].threadIds.size();
800
801 // Calculate num HW threads. Due to asymmetric topologies, this is not
802 // a trivial multiplication.
803 uint32_t numHWThreads = 0;
804 for (auto& node : nodes)
805 {
806 for (auto& core : node.cores)
807 {
808 numHWThreads += (uint32_t)core.threadIds.size();
809 }
810 }
811
812 uint32_t numNodes = numHWNodes;
813 uint32_t numCoresPerNode = numHWCoresPerNode;
814 uint32_t numHyperThreads = numHWHyperThreads;
815
816 if (pContext->threadInfo.MAX_NUMA_NODES)
817 {
818 numNodes = std::min(numNodes, pContext->threadInfo.MAX_NUMA_NODES);
819 }
820
821 if (pContext->threadInfo.MAX_CORES_PER_NUMA_NODE)
822 {
823 numCoresPerNode = std::min(numCoresPerNode, pContext->threadInfo.MAX_CORES_PER_NUMA_NODE);
824 }
825
826 if (pContext->threadInfo.MAX_THREADS_PER_CORE)
827 {
828 numHyperThreads = std::min(numHyperThreads, pContext->threadInfo.MAX_THREADS_PER_CORE);
829 }
830
831 #if defined(_WIN32) && !defined(_WIN64)
832 if (!pContext->threadInfo.MAX_WORKER_THREADS)
833 {
834 // Limit 32-bit windows to bindable HW threads only
835 if ((numCoresPerNode * numHWHyperThreads) > 32)
836 {
837 numCoresPerNode = 32 / numHWHyperThreads;
838 }
839 }
840 #endif
841
842 // Calculate numThreads
843 uint32_t numThreads = numNodes * numCoresPerNode * numHyperThreads;
844 numThreads = std::min(numThreads, numHWThreads);
845
846 if (pContext->threadInfo.MAX_WORKER_THREADS)
847 {
848 uint32_t maxHWThreads = numHWNodes * numHWCoresPerNode * numHWHyperThreads;
849 numThreads = std::min(pContext->threadInfo.MAX_WORKER_THREADS, maxHWThreads);
850 }
851
852 if (numThreads > KNOB_MAX_NUM_THREADS)
853 {
854 printf("WARNING: system thread count %u exceeds max %u, "
855 "performance will be degraded\n",
856 numThreads, KNOB_MAX_NUM_THREADS);
857 }
858
859 uint32_t numAPIReservedThreads = 1;
860
861
862 if (numThreads == 1)
863 {
864 // If only 1 worker threads, try to move it to an available
865 // HW thread. If that fails, use the API thread.
866 if (numCoresPerNode < numHWCoresPerNode)
867 {
868 numCoresPerNode++;
869 }
870 else if (numHyperThreads < numHWHyperThreads)
871 {
872 numHyperThreads++;
873 }
874 else if (numNodes < numHWNodes)
875 {
876 numNodes++;
877 }
878 else
879 {
880 pPool->numThreads = 0;
881 SET_KNOB(SINGLE_THREADED, true);
882 return;
883 }
884 }
885 else
886 {
887 // Save HW threads for the API if we can
888 if (numThreads > numAPIReservedThreads)
889 {
890 numThreads -= numAPIReservedThreads;
891 }
892 else
893 {
894 numAPIReservedThreads = 0;
895 }
896 }
897
898 pPool->numThreads = numThreads;
899 pContext->NumWorkerThreads = pPool->numThreads;
900
901 pPool->inThreadShutdown = false;
902 pPool->pThreadData = (THREAD_DATA *)malloc(pPool->numThreads * sizeof(THREAD_DATA));
903 pPool->numaMask = 0;
904
905 if (pContext->threadInfo.MAX_WORKER_THREADS)
906 {
907 bool bForceBindProcGroup = (numThreads > numThreadsPerProcGroup);
908 uint32_t numProcGroups = (numThreads + numThreadsPerProcGroup - 1) / numThreadsPerProcGroup;
909 // When MAX_WORKER_THREADS is set we don't bother to bind to specific HW threads
910 // But Windows will still require binding to specific process groups
911 for (uint32_t workerId = 0; workerId < numThreads; ++workerId)
912 {
913 pPool->pThreadData[workerId].workerId = workerId;
914 pPool->pThreadData[workerId].procGroupId = workerId % numProcGroups;
915 pPool->pThreadData[workerId].threadId = 0;
916 pPool->pThreadData[workerId].numaId = 0;
917 pPool->pThreadData[workerId].coreId = 0;
918 pPool->pThreadData[workerId].htId = 0;
919 pPool->pThreadData[workerId].pContext = pContext;
920 pPool->pThreadData[workerId].forceBindProcGroup = bForceBindProcGroup;
921 pPool->threads[workerId] = new std::thread(workerThreadInit<true, true>, &pPool->pThreadData[workerId]);
922
923 pContext->NumBEThreads++;
924 pContext->NumFEThreads++;
925 }
926 }
927 else
928 {
929 pPool->numaMask = numNodes - 1; // Only works for 2**n numa nodes (1, 2, 4, etc.)
930
931 uint32_t workerId = 0;
932 for (uint32_t n = 0; n < numNodes; ++n)
933 {
934 auto& node = nodes[n];
935 uint32_t numCores = numCoresPerNode;
936 for (uint32_t c = 0; c < numCores; ++c)
937 {
938 if (c >= node.cores.size())
939 {
940 break;
941 }
942
943 auto& core = node.cores[c];
944 for (uint32_t t = 0; t < numHyperThreads; ++t)
945 {
946 if (t >= core.threadIds.size())
947 {
948 break;
949 }
950
951 if (numAPIReservedThreads)
952 {
953 --numAPIReservedThreads;
954 continue;
955 }
956
957 SWR_ASSERT(workerId < numThreads);
958
959 pPool->pThreadData[workerId].workerId = workerId;
960 pPool->pThreadData[workerId].procGroupId = core.procGroup;
961 pPool->pThreadData[workerId].threadId = core.threadIds[t];
962 pPool->pThreadData[workerId].numaId = n;
963 pPool->pThreadData[workerId].coreId = c;
964 pPool->pThreadData[workerId].htId = t;
965 pPool->pThreadData[workerId].pContext = pContext;
966
967 pPool->threads[workerId] = new std::thread(workerThreadInit<true, true>, &pPool->pThreadData[workerId]);
968 pContext->NumBEThreads++;
969 pContext->NumFEThreads++;
970
971 ++workerId;
972 }
973 }
974 }
975 }
976 }
977
978 void DestroyThreadPool(SWR_CONTEXT *pContext, THREAD_POOL *pPool)
979 {
980 if (!pContext->threadInfo.SINGLE_THREADED)
981 {
982 // Inform threads to finish up
983 std::unique_lock<std::mutex> lock(pContext->WaitLock);
984 pPool->inThreadShutdown = true;
985 _mm_mfence();
986 pContext->FifosNotEmpty.notify_all();
987 lock.unlock();
988
989 // Wait for threads to finish and destroy them
990 for (uint32_t t = 0; t < pPool->numThreads; ++t)
991 {
992 pPool->threads[t]->join();
993 delete(pPool->threads[t]);
994 }
995
996 // Clean up data used by threads
997 free(pPool->pThreadData);
998 }
999 }