swr: [rasterizer core] Globally cache allocated arena blocks for fast re-allocation.
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / threads.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ****************************************************************************/
23
24 #include <stdio.h>
25 #include <thread>
26 #include <algorithm>
27 #include <float.h>
28 #include <vector>
29 #include <utility>
30 #include <fstream>
31 #include <string>
32
33 #if defined(__linux__) || defined(__gnu_linux__)
34 #include <pthread.h>
35 #include <sched.h>
36 #include <unistd.h>
37 #endif
38
39 #include "common/os.h"
40 #include "context.h"
41 #include "frontend.h"
42 #include "backend.h"
43 #include "rasterizer.h"
44 #include "rdtsc_core.h"
45 #include "tilemgr.h"
46
47
48
49
50 // ThreadId
51 struct Core
52 {
53 uint32_t procGroup = 0;
54 std::vector<uint32_t> threadIds;
55 };
56
57 struct NumaNode
58 {
59 std::vector<Core> cores;
60 };
61
62 typedef std::vector<NumaNode> CPUNumaNodes;
63
64 void CalculateProcessorTopology(CPUNumaNodes& out_nodes, uint32_t& out_numThreadsPerProcGroup)
65 {
66 out_nodes.clear();
67 out_numThreadsPerProcGroup = 0;
68
69 #if defined(_WIN32)
70
71 SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX buffer[KNOB_MAX_NUM_THREADS];
72 DWORD bufSize = sizeof(buffer);
73
74 BOOL ret = GetLogicalProcessorInformationEx(RelationProcessorCore, buffer, &bufSize);
75 SWR_ASSERT(ret != FALSE, "Failed to get Processor Topology Information");
76
77 uint32_t count = bufSize / buffer->Size;
78 PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX pBuffer = buffer;
79
80 for (uint32_t i = 0; i < count; ++i)
81 {
82 SWR_ASSERT(pBuffer->Relationship == RelationProcessorCore);
83 for (uint32_t g = 0; g < pBuffer->Processor.GroupCount; ++g)
84 {
85 auto& gmask = pBuffer->Processor.GroupMask[g];
86 uint32_t threadId = 0;
87 uint32_t procGroup = gmask.Group;
88
89 Core* pCore = nullptr;
90
91 uint32_t numThreads = (uint32_t)_mm_popcount_sizeT(gmask.Mask);
92
93 while (BitScanForwardSizeT((unsigned long*)&threadId, gmask.Mask))
94 {
95 // clear mask
96 gmask.Mask &= ~(KAFFINITY(1) << threadId);
97
98 // Find Numa Node
99 PROCESSOR_NUMBER procNum = {};
100 procNum.Group = WORD(procGroup);
101 procNum.Number = UCHAR(threadId);
102
103 uint32_t numaId = 0;
104 ret = GetNumaProcessorNodeEx(&procNum, (PUSHORT)&numaId);
105 SWR_ASSERT(ret);
106
107 // Store data
108 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
109 auto& numaNode = out_nodes[numaId];
110
111 uint32_t coreId = 0;
112
113 if (nullptr == pCore)
114 {
115 numaNode.cores.push_back(Core());
116 pCore = &numaNode.cores.back();
117 pCore->procGroup = procGroup;
118 #if !defined(_WIN64)
119 coreId = (uint32_t)numaNode.cores.size();
120 if ((coreId * numThreads) >= 32)
121 {
122 // Windows doesn't return threadIds >= 32 for a processor group correctly
123 // when running a 32-bit application.
124 // Just save -1 as the threadId
125 threadId = uint32_t(-1);
126 }
127 #endif
128 }
129 pCore->threadIds.push_back(threadId);
130 if (procGroup == 0)
131 {
132 out_numThreadsPerProcGroup++;
133 }
134 }
135 }
136 pBuffer = PtrAdd(pBuffer, pBuffer->Size);
137 }
138
139
140 #elif defined(__linux__) || defined (__gnu_linux__)
141
142 // Parse /proc/cpuinfo to get full topology
143 std::ifstream input("/proc/cpuinfo");
144 std::string line;
145 char* c;
146 uint32_t threadId = uint32_t(-1);
147 uint32_t coreId = uint32_t(-1);
148 uint32_t numaId = uint32_t(-1);
149
150 while (std::getline(input, line))
151 {
152 if (line.find("processor") != std::string::npos)
153 {
154 if (threadId != uint32_t(-1))
155 {
156 // Save information.
157 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
158 auto& numaNode = out_nodes[numaId];
159 if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
160 auto& core = numaNode.cores[coreId];
161
162 core.procGroup = coreId;
163 core.threadIds.push_back(threadId);
164
165 out_numThreadsPerProcGroup++;
166 }
167
168 auto data_start = line.find(": ") + 2;
169 threadId = std::strtoul(&line.c_str()[data_start], &c, 10);
170 continue;
171 }
172 if (line.find("core id") != std::string::npos)
173 {
174 auto data_start = line.find(": ") + 2;
175 coreId = std::strtoul(&line.c_str()[data_start], &c, 10);
176 continue;
177 }
178 if (line.find("physical id") != std::string::npos)
179 {
180 auto data_start = line.find(": ") + 2;
181 numaId = std::strtoul(&line.c_str()[data_start], &c, 10);
182 continue;
183 }
184 }
185
186 if (threadId != uint32_t(-1))
187 {
188 // Save information.
189 if (out_nodes.size() <= numaId) out_nodes.resize(numaId + 1);
190 auto& numaNode = out_nodes[numaId];
191 if (numaNode.cores.size() <= coreId) numaNode.cores.resize(coreId + 1);
192 auto& core = numaNode.cores[coreId];
193
194 core.procGroup = coreId;
195 core.threadIds.push_back(threadId);
196 out_numThreadsPerProcGroup++;
197 }
198
199 for (uint32_t node = 0; node < out_nodes.size(); node++) {
200 auto& numaNode = out_nodes[node];
201 auto it = numaNode.cores.begin();
202 for ( ; it != numaNode.cores.end(); ) {
203 if (it->threadIds.size() == 0)
204 numaNode.cores.erase(it);
205 else
206 ++it;
207 }
208 }
209
210 #else
211
212 #error Unsupported platform
213
214 #endif
215 }
216
217
218 void bindThread(uint32_t threadId, uint32_t procGroupId = 0, bool bindProcGroup=false)
219 {
220 // Only bind threads when MAX_WORKER_THREADS isn't set.
221 if (KNOB_MAX_WORKER_THREADS && bindProcGroup == false)
222 {
223 return;
224 }
225
226 #if defined(_WIN32)
227 {
228 GROUP_AFFINITY affinity = {};
229 affinity.Group = procGroupId;
230
231 #if !defined(_WIN64)
232 if (threadId >= 32)
233 {
234 // In a 32-bit process on Windows it is impossible to bind
235 // to logical processors 32-63 within a processor group.
236 // In this case set the mask to 0 and let the system assign
237 // the processor. Hopefully it will make smart choices.
238 affinity.Mask = 0;
239 }
240 else
241 #endif
242 {
243 // If KNOB_MAX_WORKER_THREADS is set, only bind to the proc group,
244 // Not the individual HW thread.
245 if (!KNOB_MAX_WORKER_THREADS)
246 {
247 affinity.Mask = KAFFINITY(1) << threadId;
248 }
249 }
250
251 SetThreadGroupAffinity(GetCurrentThread(), &affinity, nullptr);
252 }
253 #else
254 cpu_set_t cpuset;
255 pthread_t thread = pthread_self();
256 CPU_ZERO(&cpuset);
257 CPU_SET(threadId, &cpuset);
258
259 pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
260 #endif
261 }
262
263 INLINE
264 uint64_t GetEnqueuedDraw(SWR_CONTEXT *pContext)
265 {
266 return pContext->dcRing.GetHead();
267 }
268
269 INLINE
270 DRAW_CONTEXT *GetDC(SWR_CONTEXT *pContext, uint64_t drawId)
271 {
272 return &pContext->dcRing[(drawId-1) % KNOB_MAX_DRAWS_IN_FLIGHT];
273 }
274
275 // returns true if dependency not met
276 INLINE
277 bool CheckDependency(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint64_t lastRetiredDraw)
278 {
279 return (pDC->dependency > lastRetiredDraw);
280 }
281
282
283
284 INLINE void CompleteDrawContext(SWR_CONTEXT* pContext, DRAW_CONTEXT* pDC)
285 {
286 int64_t result = InterlockedDecrement64(&pDC->threadsDone);
287
288 if (result == 0)
289 {
290 _ReadWriteBarrier();
291
292 // Cleanup memory allocations
293 pDC->pArena->Reset(true);
294 pDC->pTileMgr->initialize();
295
296 pContext->dcRing.Dequeue(); // Remove from tail
297 }
298 }
299
300 INLINE bool FindFirstIncompleteDraw(SWR_CONTEXT* pContext, uint64_t& curDrawBE)
301 {
302 // increment our current draw id to the first incomplete draw
303 uint64_t drawEnqueued = GetEnqueuedDraw(pContext);
304 while (curDrawBE < drawEnqueued)
305 {
306 DRAW_CONTEXT *pDC = &pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT];
307
308 // If its not compute and FE is not done then break out of loop.
309 if (!pDC->doneFE && !pDC->isCompute) break;
310
311 bool isWorkComplete = (pDC->isCompute) ?
312 pDC->pDispatch->isWorkComplete() : pDC->pTileMgr->isWorkComplete();
313
314 if (isWorkComplete)
315 {
316 curDrawBE++;
317 CompleteDrawContext(pContext, pDC);
318 }
319 else
320 {
321 break;
322 }
323 }
324
325 // If there are no more incomplete draws then return false.
326 return (curDrawBE >= drawEnqueued) ? false : true;
327 }
328
329 //////////////////////////////////////////////////////////////////////////
330 /// @brief If there is any BE work then go work on it.
331 /// @param pContext - pointer to SWR context.
332 /// @param workerId - The unique worker ID that is assigned to this thread.
333 /// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
334 /// has its own curDrawBE counter and this ensures that each worker processes all the
335 /// draws in order.
336 /// @param lockedTiles - This is the set of tiles locked by other threads. Each thread maintains its
337 /// own set and each time it fails to lock a macrotile, because its already locked,
338 /// then it will add that tile to the lockedTiles set. As a worker begins to work
339 /// on future draws the lockedTiles ensure that it doesn't work on tiles that may
340 /// still have work pending in a previous draw. Additionally, the lockedTiles is
341 /// hueristic that can steer a worker back to the same macrotile that it had been
342 /// working on in a previous draw.
343 void WorkOnFifoBE(
344 SWR_CONTEXT *pContext,
345 uint32_t workerId,
346 uint64_t &curDrawBE,
347 TileSet& lockedTiles)
348 {
349 // Find the first incomplete draw that has pending work. If no such draw is found then
350 // return. FindFirstIncompleteDraw is responsible for incrementing the curDrawBE.
351 if (FindFirstIncompleteDraw(pContext, curDrawBE) == false)
352 {
353 return;
354 }
355
356 uint64_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;
357
358 // Reset our history for locked tiles. We'll have to re-learn which tiles are locked.
359 lockedTiles.clear();
360
361 // Try to work on each draw in order of the available draws in flight.
362 // 1. If we're on curDrawBE, we can work on any macrotile that is available.
363 // 2. If we're trying to work on draws after curDrawBE, we are restricted to
364 // working on those macrotiles that are known to be complete in the prior draw to
365 // maintain order. The locked tiles provides the history to ensures this.
366 for (uint64_t i = curDrawBE; i < GetEnqueuedDraw(pContext); ++i)
367 {
368 DRAW_CONTEXT *pDC = &pContext->dcRing[i % KNOB_MAX_DRAWS_IN_FLIGHT];
369
370 if (pDC->isCompute) return; // We don't look at compute work.
371
372 // First wait for FE to be finished with this draw. This keeps threading model simple
373 // but if there are lots of bubbles between draws then serializing FE and BE may
374 // need to be revisited.
375 if (!pDC->doneFE) return;
376
377 // If this draw is dependent on a previous draw then we need to bail.
378 if (CheckDependency(pContext, pDC, lastRetiredDraw))
379 {
380 return;
381 }
382
383 // Grab the list of all dirty macrotiles. A tile is dirty if it has work queued to it.
384 std::vector<uint32_t> &macroTiles = pDC->pTileMgr->getDirtyTiles();
385
386 for (uint32_t tileID : macroTiles)
387 {
388 MacroTileQueue &tile = pDC->pTileMgr->getMacroTileQueue(tileID);
389
390 // can only work on this draw if it's not in use by other threads
391 if (lockedTiles.find(tileID) == lockedTiles.end())
392 {
393 if (tile.getNumQueued())
394 {
395 if (tile.tryLock())
396 {
397 BE_WORK *pWork;
398
399 RDTSC_START(WorkerFoundWork);
400
401 uint32_t numWorkItems = tile.getNumQueued();
402
403 if (numWorkItems != 0)
404 {
405 pWork = tile.peek();
406 SWR_ASSERT(pWork);
407 if (pWork->type == DRAW)
408 {
409 pContext->pHotTileMgr->InitializeHotTiles(pContext, pDC, tileID);
410 }
411 }
412
413 while ((pWork = tile.peek()) != nullptr)
414 {
415 pWork->pfnWork(pDC, workerId, tileID, &pWork->desc);
416 tile.dequeue();
417 }
418 RDTSC_STOP(WorkerFoundWork, numWorkItems, pDC->drawId);
419
420 _ReadWriteBarrier();
421
422 pDC->pTileMgr->markTileComplete(tileID);
423
424 // Optimization: If the draw is complete and we're the last one to have worked on it then
425 // we can reset the locked list as we know that all previous draws before the next are guaranteed to be complete.
426 if ((curDrawBE == i) && pDC->pTileMgr->isWorkComplete())
427 {
428 // We can increment the current BE and safely move to next draw since we know this draw is complete.
429 curDrawBE++;
430 CompleteDrawContext(pContext, pDC);
431
432 lastRetiredDraw++;
433
434 lockedTiles.clear();
435 break;
436 }
437 }
438 else
439 {
440 // This tile is already locked. So let's add it to our locked tiles set. This way we don't try locking this one again.
441 lockedTiles.insert(tileID);
442 }
443 }
444 }
445 }
446 }
447 }
448
449 void WorkOnFifoFE(SWR_CONTEXT *pContext, uint32_t workerId, uint64_t &curDrawFE, int numaNode)
450 {
451 // Try to grab the next DC from the ring
452 uint64_t drawEnqueued = GetEnqueuedDraw(pContext);
453 while (curDrawFE < drawEnqueued)
454 {
455 uint32_t dcSlot = curDrawFE % KNOB_MAX_DRAWS_IN_FLIGHT;
456 DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];
457 if (pDC->isCompute || pDC->doneFE || pDC->FeLock)
458 {
459 CompleteDrawContext(pContext, pDC);
460 curDrawFE++;
461 }
462 else
463 {
464 break;
465 }
466 }
467
468 uint64_t curDraw = curDrawFE;
469 while (curDraw < drawEnqueued)
470 {
471 uint32_t dcSlot = curDraw % KNOB_MAX_DRAWS_IN_FLIGHT;
472 DRAW_CONTEXT *pDC = &pContext->dcRing[dcSlot];
473
474 if (!pDC->isCompute && !pDC->FeLock)
475 {
476 uint32_t initial = InterlockedCompareExchange((volatile uint32_t*)&pDC->FeLock, 1, 0);
477 if (initial == 0)
478 {
479 // successfully grabbed the DC, now run the FE
480 pDC->FeWork.pfnWork(pContext, pDC, workerId, &pDC->FeWork.desc);
481
482 _ReadWriteBarrier();
483 pDC->doneFE = true;
484 }
485 }
486 curDraw++;
487 }
488 }
489
490 //////////////////////////////////////////////////////////////////////////
491 /// @brief If there is any compute work then go work on it.
492 /// @param pContext - pointer to SWR context.
493 /// @param workerId - The unique worker ID that is assigned to this thread.
494 /// @param curDrawBE - This tracks the draw contexts that this thread has processed. Each worker thread
495 /// has its own curDrawBE counter and this ensures that each worker processes all the
496 /// draws in order.
497 void WorkOnCompute(
498 SWR_CONTEXT *pContext,
499 uint32_t workerId,
500 uint64_t& curDrawBE)
501 {
502 if (FindFirstIncompleteDraw(pContext, curDrawBE) == false)
503 {
504 return;
505 }
506
507 uint64_t lastRetiredDraw = pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT].drawId - 1;
508
509 DRAW_CONTEXT *pDC = &pContext->dcRing[curDrawBE % KNOB_MAX_DRAWS_IN_FLIGHT];
510 if (pDC->isCompute == false) return;
511
512 // check dependencies
513 if (CheckDependency(pContext, pDC, lastRetiredDraw))
514 {
515 return;
516 }
517
518 SWR_ASSERT(pDC->pDispatch != nullptr);
519 DispatchQueue& queue = *pDC->pDispatch;
520
521 // Is there any work remaining?
522 if (queue.getNumQueued() > 0)
523 {
524 uint32_t threadGroupId = 0;
525 while (queue.getWork(threadGroupId))
526 {
527 ProcessComputeBE(pDC, workerId, threadGroupId);
528
529 queue.finishedWork();
530 }
531 }
532 }
533
534 DWORD workerThreadMain(LPVOID pData)
535 {
536 THREAD_DATA *pThreadData = (THREAD_DATA*)pData;
537 SWR_CONTEXT *pContext = pThreadData->pContext;
538 uint32_t threadId = pThreadData->threadId;
539 uint32_t workerId = pThreadData->workerId;
540
541 bindThread(threadId, pThreadData->procGroupId, pThreadData->forceBindProcGroup);
542
543 RDTSC_INIT(threadId);
544
545 int numaNode = (int)pThreadData->numaId;
546
547 // flush denormals to 0
548 _mm_setcsr(_mm_getcsr() | _MM_FLUSH_ZERO_ON | _MM_DENORMALS_ZERO_ON);
549
550 // Track tiles locked by other threads. If we try to lock a macrotile and find its already
551 // locked then we'll add it to this list so that we don't try and lock it again.
552 TileSet lockedTiles;
553
554 // each worker has the ability to work on any of the queued draws as long as certain
555 // conditions are met. the data associated
556 // with a draw is guaranteed to be active as long as a worker hasn't signaled that he
557 // has moved on to the next draw when he determines there is no more work to do. The api
558 // thread will not increment the head of the dc ring until all workers have moved past the
559 // current head.
560 // the logic to determine what to work on is:
561 // 1- try to work on the FE any draw that is queued. For now there are no dependencies
562 // on the FE work, so any worker can grab any FE and process in parallel. Eventually
563 // we'll need dependency tracking to force serialization on FEs. The worker will try
564 // to pick an FE by atomically incrementing a counter in the swr context. he'll keep
565 // trying until he reaches the tail.
566 // 2- BE work must be done in strict order. we accomplish this today by pulling work off
567 // the oldest draw (ie the head) of the dcRing. the worker can determine if there is
568 // any work left by comparing the total # of binned work items and the total # of completed
569 // work items. If they are equal, then there is no more work to do for this draw, and
570 // the worker can safely increment its oldestDraw counter and move on to the next draw.
571 std::unique_lock<std::mutex> lock(pContext->WaitLock, std::defer_lock);
572
573 auto threadHasWork = [&](uint64_t curDraw) { return curDraw != pContext->dcRing.GetHead(); };
574
575 uint64_t curDrawBE = 0;
576 uint64_t curDrawFE = 0;
577
578 while (pContext->threadPool.inThreadShutdown == false)
579 {
580 uint32_t loop = 0;
581 while (loop++ < KNOB_WORKER_SPIN_LOOP_COUNT && !threadHasWork(curDrawBE))
582 {
583 _mm_pause();
584 }
585
586 if (!threadHasWork(curDrawBE))
587 {
588 lock.lock();
589
590 // check for thread idle condition again under lock
591 if (threadHasWork(curDrawBE))
592 {
593 lock.unlock();
594 continue;
595 }
596
597 if (pContext->threadPool.inThreadShutdown)
598 {
599 lock.unlock();
600 break;
601 }
602
603 RDTSC_START(WorkerWaitForThreadEvent);
604
605 pContext->FifosNotEmpty.wait(lock);
606 lock.unlock();
607
608 RDTSC_STOP(WorkerWaitForThreadEvent, 0, 0);
609
610 if (pContext->threadPool.inThreadShutdown)
611 {
612 break;
613 }
614 }
615
616 RDTSC_START(WorkerWorkOnFifoBE);
617 WorkOnFifoBE(pContext, workerId, curDrawBE, lockedTiles);
618 RDTSC_STOP(WorkerWorkOnFifoBE, 0, 0);
619
620 WorkOnCompute(pContext, workerId, curDrawBE);
621
622 WorkOnFifoFE(pContext, workerId, curDrawFE, numaNode);
623 }
624
625 return 0;
626 }
627
628 DWORD workerThreadInit(LPVOID pData)
629 {
630 #if defined(_WIN32)
631 __try
632 #endif // _WIN32
633 {
634 return workerThreadMain(pData);
635 }
636
637 #if defined(_WIN32)
638 __except(EXCEPTION_CONTINUE_SEARCH)
639 {
640 }
641
642 #endif // _WIN32
643
644 return 1;
645 }
646
647 void CreateThreadPool(SWR_CONTEXT *pContext, THREAD_POOL *pPool)
648 {
649 bindThread(0);
650
651 CPUNumaNodes nodes;
652 uint32_t numThreadsPerProcGroup = 0;
653 CalculateProcessorTopology(nodes, numThreadsPerProcGroup);
654
655 uint32_t numHWNodes = (uint32_t)nodes.size();
656 uint32_t numHWCoresPerNode = (uint32_t)nodes[0].cores.size();
657 uint32_t numHWHyperThreads = (uint32_t)nodes[0].cores[0].threadIds.size();
658
659 uint32_t numNodes = numHWNodes;
660 uint32_t numCoresPerNode = numHWCoresPerNode;
661 uint32_t numHyperThreads = numHWHyperThreads;
662
663 if (KNOB_MAX_NUMA_NODES)
664 {
665 numNodes = std::min(numNodes, KNOB_MAX_NUMA_NODES);
666 }
667
668 if (KNOB_MAX_CORES_PER_NUMA_NODE)
669 {
670 numCoresPerNode = std::min(numCoresPerNode, KNOB_MAX_CORES_PER_NUMA_NODE);
671 }
672
673 if (KNOB_MAX_THREADS_PER_CORE)
674 {
675 numHyperThreads = std::min(numHyperThreads, KNOB_MAX_THREADS_PER_CORE);
676 }
677
678 // Calculate numThreads
679 uint32_t numThreads = numNodes * numCoresPerNode * numHyperThreads;
680
681 if (KNOB_MAX_WORKER_THREADS)
682 {
683 uint32_t maxHWThreads = numHWNodes * numHWCoresPerNode * numHWHyperThreads;
684 numThreads = std::min(KNOB_MAX_WORKER_THREADS, maxHWThreads);
685 }
686
687 if (numThreads > KNOB_MAX_NUM_THREADS)
688 {
689 printf("WARNING: system thread count %u exceeds max %u, "
690 "performance will be degraded\n",
691 numThreads, KNOB_MAX_NUM_THREADS);
692 }
693
694 uint32_t numAPIReservedThreads = 1;
695
696
697 if (numThreads == 1)
698 {
699 // If only 1 worker threads, try to move it to an available
700 // HW thread. If that fails, use the API thread.
701 if (numCoresPerNode < numHWCoresPerNode)
702 {
703 numCoresPerNode++;
704 }
705 else if (numHyperThreads < numHWHyperThreads)
706 {
707 numHyperThreads++;
708 }
709 else if (numNodes < numHWNodes)
710 {
711 numNodes++;
712 }
713 else
714 {
715 pPool->numThreads = 0;
716 SET_KNOB(SINGLE_THREADED, true);
717 return;
718 }
719 }
720 else
721 {
722 // Save HW threads for the API if we can
723 if (numThreads > numAPIReservedThreads)
724 {
725 numThreads -= numAPIReservedThreads;
726 }
727 else
728 {
729 numAPIReservedThreads = 0;
730 }
731 }
732
733 pPool->numThreads = numThreads;
734 pContext->NumWorkerThreads = pPool->numThreads;
735
736 pPool->inThreadShutdown = false;
737 pPool->pThreadData = (THREAD_DATA *)malloc(pPool->numThreads * sizeof(THREAD_DATA));
738
739 if (KNOB_MAX_WORKER_THREADS)
740 {
741 bool bForceBindProcGroup = (numThreads > numThreadsPerProcGroup);
742 uint32_t numProcGroups = (numThreads + numThreadsPerProcGroup - 1) / numThreadsPerProcGroup;
743 // When MAX_WORKER_THREADS is set we don't bother to bind to specific HW threads
744 // But Windows will still require binding to specific process groups
745 for (uint32_t workerId = 0; workerId < numThreads; ++workerId)
746 {
747 pPool->pThreadData[workerId].workerId = workerId;
748 pPool->pThreadData[workerId].procGroupId = workerId % numProcGroups;
749 pPool->pThreadData[workerId].threadId = 0;
750 pPool->pThreadData[workerId].numaId = 0;
751 pPool->pThreadData[workerId].pContext = pContext;
752 pPool->pThreadData[workerId].forceBindProcGroup = bForceBindProcGroup;
753 pPool->threads[workerId] = new std::thread(workerThreadInit, &pPool->pThreadData[workerId]);
754 }
755 }
756 else
757 {
758 uint32_t workerId = 0;
759 for (uint32_t n = 0; n < numNodes; ++n)
760 {
761 auto& node = nodes[n];
762
763 uint32_t numCores = numCoresPerNode;
764 for (uint32_t c = 0; c < numCores; ++c)
765 {
766 auto& core = node.cores[c];
767 for (uint32_t t = 0; t < numHyperThreads; ++t)
768 {
769 if (numAPIReservedThreads)
770 {
771 --numAPIReservedThreads;
772 continue;
773 }
774
775 pPool->pThreadData[workerId].workerId = workerId;
776 pPool->pThreadData[workerId].procGroupId = core.procGroup;
777 pPool->pThreadData[workerId].threadId = core.threadIds[t];
778 pPool->pThreadData[workerId].numaId = n;
779 pPool->pThreadData[workerId].pContext = pContext;
780 pPool->threads[workerId] = new std::thread(workerThreadInit, &pPool->pThreadData[workerId]);
781
782 ++workerId;
783 }
784 }
785 }
786 }
787 }
788
789 void DestroyThreadPool(SWR_CONTEXT *pContext, THREAD_POOL *pPool)
790 {
791 if (!KNOB_SINGLE_THREADED)
792 {
793 // Inform threads to finish up
794 std::unique_lock<std::mutex> lock(pContext->WaitLock);
795 pPool->inThreadShutdown = true;
796 _mm_mfence();
797 pContext->FifosNotEmpty.notify_all();
798 lock.unlock();
799
800 // Wait for threads to finish and destroy them
801 for (uint32_t t = 0; t < pPool->numThreads; ++t)
802 {
803 pPool->threads[t]->join();
804 delete(pPool->threads[t]);
805 }
806
807 // Clean up data used by threads
808 free(pPool->pThreadData);
809 }
810 }