swr/rast: Remove unneeded copy of gather mask
[mesa.git] / src / gallium / drivers / swr / rasterizer / jitter / builder_misc.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file builder_misc.cpp
24 *
25 * @brief Implementation for miscellaneous builder functions
26 *
27 * Notes:
28 *
29 ******************************************************************************/
30 #include "builder.h"
31 #include "common/rdtsc_buckets.h"
32
33 #include <cstdarg>
34
35 namespace SwrJit
36 {
37 void __cdecl CallPrint(const char* fmt, ...);
38
39 //////////////////////////////////////////////////////////////////////////
40 /// @brief Convert an IEEE 754 32-bit single precision float to an
41 /// 16 bit float with 5 exponent bits and a variable
42 /// number of mantissa bits.
43 /// @param val - 32-bit float
44 /// @todo Maybe move this outside of this file into a header?
45 static uint16_t ConvertFloat32ToFloat16(float val)
46 {
47 uint32_t sign, exp, mant;
48 uint32_t roundBits;
49
50 // Extract the sign, exponent, and mantissa
51 uint32_t uf = *(uint32_t*)&val;
52 sign = (uf & 0x80000000) >> 31;
53 exp = (uf & 0x7F800000) >> 23;
54 mant = uf & 0x007FFFFF;
55
56 // Check for out of range
57 if (std::isnan(val))
58 {
59 exp = 0x1F;
60 mant = 0x200;
61 sign = 1; // set the sign bit for NANs
62 }
63 else if (std::isinf(val))
64 {
65 exp = 0x1f;
66 mant = 0x0;
67 }
68 else if (exp > (0x70 + 0x1E)) // Too big to represent -> max representable value
69 {
70 exp = 0x1E;
71 mant = 0x3FF;
72 }
73 else if ((exp <= 0x70) && (exp >= 0x66)) // It's a denorm
74 {
75 mant |= 0x00800000;
76 for (; exp <= 0x70; mant >>= 1, exp++)
77 ;
78 exp = 0;
79 mant = mant >> 13;
80 }
81 else if (exp < 0x66) // Too small to represent -> Zero
82 {
83 exp = 0;
84 mant = 0;
85 }
86 else
87 {
88 // Saves bits that will be shifted off for rounding
89 roundBits = mant & 0x1FFFu;
90 // convert exponent and mantissa to 16 bit format
91 exp = exp - 0x70;
92 mant = mant >> 13;
93
94 // Essentially RTZ, but round up if off by only 1 lsb
95 if (roundBits == 0x1FFFu)
96 {
97 mant++;
98 // check for overflow
99 if ((mant & 0xC00u) != 0)
100 exp++;
101 // make sure only the needed bits are used
102 mant &= 0x3FF;
103 }
104 }
105
106 uint32_t tmpVal = (sign << 15) | (exp << 10) | mant;
107 return (uint16_t)tmpVal;
108 }
109
110 //////////////////////////////////////////////////////////////////////////
111 /// @brief Convert an IEEE 754 16-bit float to an 32-bit single precision
112 /// float
113 /// @param val - 16-bit float
114 /// @todo Maybe move this outside of this file into a header?
115 static float ConvertFloat16ToFloat32(uint32_t val)
116 {
117 uint32_t result;
118 if ((val & 0x7fff) == 0)
119 {
120 result = ((uint32_t)(val & 0x8000)) << 16;
121 }
122 else if ((val & 0x7c00) == 0x7c00)
123 {
124 result = ((val & 0x3ff) == 0) ? 0x7f800000 : 0x7fc00000;
125 result |= ((uint32_t)val & 0x8000) << 16;
126 }
127 else
128 {
129 uint32_t sign = (val & 0x8000) << 16;
130 uint32_t mant = (val & 0x3ff) << 13;
131 uint32_t exp = (val >> 10) & 0x1f;
132 if ((exp == 0) && (mant != 0)) // Adjust exponent and mantissa for denormals
133 {
134 mant <<= 1;
135 while (mant < (0x400 << 13))
136 {
137 exp--;
138 mant <<= 1;
139 }
140 mant &= (0x3ff << 13);
141 }
142 exp = ((exp - 15 + 127) & 0xff) << 23;
143 result = sign | exp | mant;
144 }
145
146 return *(float*)&result;
147 }
148
149 Constant *Builder::C(bool i)
150 {
151 return ConstantInt::get(IRB()->getInt1Ty(), (i ? 1 : 0));
152 }
153
154 Constant *Builder::C(char i)
155 {
156 return ConstantInt::get(IRB()->getInt8Ty(), i);
157 }
158
159 Constant *Builder::C(uint8_t i)
160 {
161 return ConstantInt::get(IRB()->getInt8Ty(), i);
162 }
163
164 Constant *Builder::C(int i)
165 {
166 return ConstantInt::get(IRB()->getInt32Ty(), i);
167 }
168
169 Constant *Builder::C(int64_t i)
170 {
171 return ConstantInt::get(IRB()->getInt64Ty(), i);
172 }
173
174 Constant *Builder::C(uint16_t i)
175 {
176 return ConstantInt::get(mInt16Ty,i);
177 }
178
179 Constant *Builder::C(uint32_t i)
180 {
181 return ConstantInt::get(IRB()->getInt32Ty(), i);
182 }
183
184 Constant *Builder::C(float i)
185 {
186 return ConstantFP::get(IRB()->getFloatTy(), i);
187 }
188
189 Constant *Builder::PRED(bool pred)
190 {
191 return ConstantInt::get(IRB()->getInt1Ty(), (pred ? 1 : 0));
192 }
193
194 Value *Builder::VIMMED1(int i)
195 {
196 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
197 }
198
199 Value *Builder::VIMMED1(uint32_t i)
200 {
201 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
202 }
203
204 Value *Builder::VIMMED1(float i)
205 {
206 return ConstantVector::getSplat(mVWidth, cast<ConstantFP>(C(i)));
207 }
208
209 Value *Builder::VIMMED1(bool i)
210 {
211 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
212 }
213
214 #if USE_SIMD16_BUILDER
215 Value *Builder::VIMMED2_1(int i)
216 {
217 return ConstantVector::getSplat(mVWidth2, cast<ConstantInt>(C(i)));
218 }
219
220 Value *Builder::VIMMED2_1(uint32_t i)
221 {
222 return ConstantVector::getSplat(mVWidth2, cast<ConstantInt>(C(i)));
223 }
224
225 Value *Builder::VIMMED2_1(float i)
226 {
227 return ConstantVector::getSplat(mVWidth2, cast<ConstantFP>(C(i)));
228 }
229
230 Value *Builder::VIMMED2_1(bool i)
231 {
232 return ConstantVector::getSplat(mVWidth2, cast<ConstantInt>(C(i)));
233 }
234
235 #endif
236 Value *Builder::VUNDEF_IPTR()
237 {
238 return UndefValue::get(VectorType::get(mInt32PtrTy,mVWidth));
239 }
240
241 Value *Builder::VUNDEF_I()
242 {
243 return UndefValue::get(VectorType::get(mInt32Ty, mVWidth));
244 }
245
246 Value *Builder::VUNDEF(Type *ty, uint32_t size)
247 {
248 return UndefValue::get(VectorType::get(ty, size));
249 }
250
251 Value *Builder::VUNDEF_F()
252 {
253 return UndefValue::get(VectorType::get(mFP32Ty, mVWidth));
254 }
255
256 #if USE_SIMD16_BUILDER
257 Value *Builder::VUNDEF2_F()
258 {
259 return UndefValue::get(VectorType::get(mFP32Ty, mVWidth2));
260 }
261
262 Value *Builder::VUNDEF2_I()
263 {
264 return UndefValue::get(VectorType::get(mInt32Ty, mVWidth2));
265 }
266
267 #endif
268 Value *Builder::VUNDEF(Type* t)
269 {
270 return UndefValue::get(VectorType::get(t, mVWidth));
271 }
272
273 Value *Builder::VBROADCAST(Value *src)
274 {
275 // check if src is already a vector
276 if (src->getType()->isVectorTy())
277 {
278 return src;
279 }
280
281 return VECTOR_SPLAT(mVWidth, src);
282 }
283
284 #if USE_SIMD16_BUILDER
285 Value *Builder::VBROADCAST2(Value *src)
286 {
287 // check if src is already a vector
288 if (src->getType()->isVectorTy())
289 {
290 return src;
291 }
292
293 return VECTOR_SPLAT(mVWidth2, src);
294 }
295
296 #endif
297 uint32_t Builder::IMMED(Value* v)
298 {
299 SWR_ASSERT(isa<ConstantInt>(v));
300 ConstantInt *pValConst = cast<ConstantInt>(v);
301 return pValConst->getZExtValue();
302 }
303
304 int32_t Builder::S_IMMED(Value* v)
305 {
306 SWR_ASSERT(isa<ConstantInt>(v));
307 ConstantInt *pValConst = cast<ConstantInt>(v);
308 return pValConst->getSExtValue();
309 }
310
311 Value *Builder::GEP(Value* ptr, const std::initializer_list<Value*> &indexList)
312 {
313 std::vector<Value*> indices;
314 for (auto i : indexList)
315 indices.push_back(i);
316 return GEPA(ptr, indices);
317 }
318
319 Value *Builder::GEP(Value* ptr, const std::initializer_list<uint32_t> &indexList)
320 {
321 std::vector<Value*> indices;
322 for (auto i : indexList)
323 indices.push_back(C(i));
324 return GEPA(ptr, indices);
325 }
326
327 Value *Builder::IN_BOUNDS_GEP(Value* ptr, const std::initializer_list<Value*> &indexList)
328 {
329 std::vector<Value*> indices;
330 for (auto i : indexList)
331 indices.push_back(i);
332 return IN_BOUNDS_GEP(ptr, indices);
333 }
334
335 Value *Builder::IN_BOUNDS_GEP(Value* ptr, const std::initializer_list<uint32_t> &indexList)
336 {
337 std::vector<Value*> indices;
338 for (auto i : indexList)
339 indices.push_back(C(i));
340 return IN_BOUNDS_GEP(ptr, indices);
341 }
342
343 LoadInst *Builder::LOAD(Value *basePtr, const std::initializer_list<uint32_t> &indices, const llvm::Twine& name)
344 {
345 std::vector<Value*> valIndices;
346 for (auto i : indices)
347 valIndices.push_back(C(i));
348 return LOAD(GEPA(basePtr, valIndices), name);
349 }
350
351 LoadInst *Builder::LOADV(Value *basePtr, const std::initializer_list<Value*> &indices, const llvm::Twine& name)
352 {
353 std::vector<Value*> valIndices;
354 for (auto i : indices)
355 valIndices.push_back(i);
356 return LOAD(GEPA(basePtr, valIndices), name);
357 }
358
359 StoreInst *Builder::STORE(Value *val, Value *basePtr, const std::initializer_list<uint32_t> &indices)
360 {
361 std::vector<Value*> valIndices;
362 for (auto i : indices)
363 valIndices.push_back(C(i));
364 return STORE(val, GEPA(basePtr, valIndices));
365 }
366
367 StoreInst *Builder::STOREV(Value *val, Value *basePtr, const std::initializer_list<Value*> &indices)
368 {
369 std::vector<Value*> valIndices;
370 for (auto i : indices)
371 valIndices.push_back(i);
372 return STORE(val, GEPA(basePtr, valIndices));
373 }
374
375 CallInst *Builder::CALL(Value *Callee, const std::initializer_list<Value*> &argsList)
376 {
377 std::vector<Value*> args;
378 for (auto arg : argsList)
379 args.push_back(arg);
380 return CALLA(Callee, args);
381 }
382
383 CallInst *Builder::CALL(Value *Callee, Value* arg)
384 {
385 std::vector<Value*> args;
386 args.push_back(arg);
387 return CALLA(Callee, args);
388 }
389
390 CallInst *Builder::CALL2(Value *Callee, Value* arg1, Value* arg2)
391 {
392 std::vector<Value*> args;
393 args.push_back(arg1);
394 args.push_back(arg2);
395 return CALLA(Callee, args);
396 }
397
398 CallInst *Builder::CALL3(Value *Callee, Value* arg1, Value* arg2, Value* arg3)
399 {
400 std::vector<Value*> args;
401 args.push_back(arg1);
402 args.push_back(arg2);
403 args.push_back(arg3);
404 return CALLA(Callee, args);
405 }
406
407 //////////////////////////////////////////////////////////////////////////
408 Value *Builder::DEBUGTRAP()
409 {
410 Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::debugtrap);
411 return CALL(func);
412 }
413
414 Value *Builder::VRCP(Value *va)
415 {
416 return FDIV(VIMMED1(1.0f), va); // 1 / a
417 }
418
419 Value *Builder::VPLANEPS(Value* vA, Value* vB, Value* vC, Value* &vX, Value* &vY)
420 {
421 Value* vOut = FMADDPS(vA, vX, vC);
422 vOut = FMADDPS(vB, vY, vOut);
423 return vOut;
424 }
425
426 //////////////////////////////////////////////////////////////////////////
427 /// @brief Generate an i32 masked load operation in LLVM IR. If not
428 /// supported on the underlying platform, emulate it with float masked load
429 /// @param src - base address pointer for the load
430 /// @param vMask - SIMD wide mask that controls whether to access memory load 0
431 Value *Builder::MASKLOADD(Value* src,Value* mask)
432 {
433 Value* vResult;
434 // use avx2 gather instruction is available
435 if(JM()->mArch.AVX2())
436 {
437 Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx2_maskload_d_256);
438 vResult = CALL(func,{src,mask});
439 }
440 else
441 {
442 // maskload intrinsic expects integer mask operand in llvm >= 3.8
443 #if (LLVM_VERSION_MAJOR > 3) || (LLVM_VERSION_MAJOR == 3 && LLVM_VERSION_MINOR >= 8)
444 mask = BITCAST(mask,VectorType::get(mInt32Ty,mVWidth));
445 #else
446 mask = BITCAST(mask,VectorType::get(mFP32Ty,mVWidth));
447 #endif
448 Function *func = Intrinsic::getDeclaration(JM()->mpCurrentModule,Intrinsic::x86_avx_maskload_ps_256);
449 vResult = BITCAST(CALL(func,{src,mask}), VectorType::get(mInt32Ty,mVWidth));
450 }
451 return vResult;
452 }
453
454 //////////////////////////////////////////////////////////////////////////
455 /// @brief insert a JIT call to CallPrint
456 /// - outputs formatted string to both stdout and VS output window
457 /// - DEBUG builds only
458 /// Usage example:
459 /// PRINT("index %d = 0x%p\n",{C(lane), pIndex});
460 /// where C(lane) creates a constant value to print, and pIndex is the Value*
461 /// result from a GEP, printing out the pointer to memory
462 /// @param printStr - constant string to print, which includes format specifiers
463 /// @param printArgs - initializer list of Value*'s to print to std out
464 CallInst *Builder::PRINT(const std::string &printStr,const std::initializer_list<Value*> &printArgs)
465 {
466 // push the arguments to CallPrint into a vector
467 std::vector<Value*> printCallArgs;
468 // save room for the format string. we still need to modify it for vectors
469 printCallArgs.resize(1);
470
471 // search through the format string for special processing
472 size_t pos = 0;
473 std::string tempStr(printStr);
474 pos = tempStr.find('%', pos);
475 auto v = printArgs.begin();
476
477 while ((pos != std::string::npos) && (v != printArgs.end()))
478 {
479 Value* pArg = *v;
480 Type* pType = pArg->getType();
481
482 if (pType->isVectorTy())
483 {
484 Type* pContainedType = pType->getContainedType(0);
485
486 if (toupper(tempStr[pos + 1]) == 'X')
487 {
488 tempStr[pos] = '0';
489 tempStr[pos + 1] = 'x';
490 tempStr.insert(pos + 2, "%08X ");
491 pos += 7;
492
493 printCallArgs.push_back(VEXTRACT(pArg, C(0)));
494
495 std::string vectorFormatStr;
496 for (uint32_t i = 1; i < pType->getVectorNumElements(); ++i)
497 {
498 vectorFormatStr += "0x%08X ";
499 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
500 }
501
502 tempStr.insert(pos, vectorFormatStr);
503 pos += vectorFormatStr.size();
504 }
505 else if ((tempStr[pos + 1] == 'f') && (pContainedType->isFloatTy()))
506 {
507 uint32_t i = 0;
508 for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
509 {
510 tempStr.insert(pos, std::string("%f "));
511 pos += 3;
512 printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
513 }
514 printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
515 }
516 else if ((tempStr[pos + 1] == 'd') && (pContainedType->isIntegerTy()))
517 {
518 uint32_t i = 0;
519 for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
520 {
521 tempStr.insert(pos, std::string("%d "));
522 pos += 3;
523 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
524 }
525 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
526 }
527 }
528 else
529 {
530 if (toupper(tempStr[pos + 1]) == 'X')
531 {
532 tempStr[pos] = '0';
533 tempStr.insert(pos + 1, "x%08");
534 printCallArgs.push_back(pArg);
535 pos += 3;
536 }
537 // for %f we need to cast float Values to doubles so that they print out correctly
538 else if ((tempStr[pos + 1] == 'f') && (pType->isFloatTy()))
539 {
540 printCallArgs.push_back(FP_EXT(pArg, Type::getDoubleTy(JM()->mContext)));
541 pos++;
542 }
543 else
544 {
545 printCallArgs.push_back(pArg);
546 }
547 }
548
549 // advance to the next arguement
550 v++;
551 pos = tempStr.find('%', ++pos);
552 }
553
554 // create global variable constant string
555 Constant *constString = ConstantDataArray::getString(JM()->mContext,tempStr,true);
556 GlobalVariable *gvPtr = new GlobalVariable(constString->getType(),true,GlobalValue::InternalLinkage,constString,"printStr");
557 JM()->mpCurrentModule->getGlobalList().push_back(gvPtr);
558
559 // get a pointer to the first character in the constant string array
560 std::vector<Constant*> geplist{C(0),C(0)};
561 Constant *strGEP = ConstantExpr::getGetElementPtr(nullptr, gvPtr,geplist,false);
562
563 // insert the pointer to the format string in the argument vector
564 printCallArgs[0] = strGEP;
565
566 // get pointer to CallPrint function and insert decl into the module if needed
567 std::vector<Type*> args;
568 args.push_back(PointerType::get(mInt8Ty,0));
569 FunctionType* callPrintTy = FunctionType::get(Type::getVoidTy(JM()->mContext),args,true);
570 Function *callPrintFn = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("CallPrint", callPrintTy));
571
572 // if we haven't yet added the symbol to the symbol table
573 if((sys::DynamicLibrary::SearchForAddressOfSymbol("CallPrint")) == nullptr)
574 {
575 sys::DynamicLibrary::AddSymbol("CallPrint", (void *)&CallPrint);
576 }
577
578 // insert a call to CallPrint
579 return CALLA(callPrintFn,printCallArgs);
580 }
581
582 //////////////////////////////////////////////////////////////////////////
583 /// @brief Wrapper around PRINT with initializer list.
584 CallInst* Builder::PRINT(const std::string &printStr)
585 {
586 return PRINT(printStr, {});
587 }
588
589 //////////////////////////////////////////////////////////////////////////
590 /// @brief Generate a masked gather operation in LLVM IR. If not
591 /// supported on the underlying platform, emulate it with loads
592 /// @param vSrc - SIMD wide value that will be loaded if mask is invalid
593 /// @param pBase - Int8* base VB address pointer value
594 /// @param vIndices - SIMD wide value of VB byte offsets
595 /// @param vMask - SIMD wide mask that controls whether to access memory or the src values
596 /// @param scale - value to scale indices by
597 Value *Builder::GATHERPS(Value *vSrc, Value *pBase, Value *vIndices, Value *vMask, uint8_t scale)
598 {
599 Value *vGather;
600
601 // use avx2 gather instruction if available
602 if(JM()->mArch.AVX2())
603 {
604 // force mask to <N x float>, required by vgather
605 Value *mask = BITCAST(vMask, mSimdFP32Ty);
606
607 vGather = VGATHERPS(vSrc, pBase, vIndices, mask, C(scale));
608 }
609 else
610 {
611 Value* pStack = STACKSAVE();
612
613 // store vSrc on the stack. this way we can select between a valid load address and the vSrc address
614 Value* vSrcPtr = ALLOCA(vSrc->getType());
615 STORE(vSrc, vSrcPtr);
616
617 vGather = VUNDEF_F();
618 Value *vScaleVec = VIMMED1((uint32_t)scale);
619 Value *vOffsets = MUL(vIndices,vScaleVec);
620 Value *mask = MASK(vMask);
621 for(uint32_t i = 0; i < mVWidth; ++i)
622 {
623 // single component byte index
624 Value *offset = VEXTRACT(vOffsets,C(i));
625 // byte pointer to component
626 Value *loadAddress = GEP(pBase,offset);
627 loadAddress = BITCAST(loadAddress,PointerType::get(mFP32Ty,0));
628 // pointer to the value to load if we're masking off a component
629 Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
630 Value *selMask = VEXTRACT(mask,C(i));
631 // switch in a safe address to load if we're trying to access a vertex
632 Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
633 Value *val = LOAD(validAddress);
634 vGather = VINSERT(vGather,val,C(i));
635 }
636 STACKRESTORE(pStack);
637 }
638
639 return vGather;
640 }
641
642 #if USE_SIMD16_BUILDER
643 Value *Builder::GATHERPS2(Value *vSrc, Value *pBase, Value *vIndices, Value *vMask, uint8_t scale)
644 {
645 Value *vGather = VUNDEF2_F();
646
647 // use avx512 gather instruction if available
648 if (JM()->mArch.AVX512F())
649 {
650 // force mask to <N-bit Integer>, required by vgather2
651 Value *mask = BITCAST(MASK2(vMask), mInt16Ty);
652
653 vGather = VGATHERPS2(vSrc, pBase, vIndices, mask, C((uint32_t)scale));
654 }
655 else
656 {
657 Value *src0 = EXTRACT2_F(vSrc, 0);
658 Value *src1 = EXTRACT2_F(vSrc, 1);
659
660 Value *indices0 = EXTRACT2_I(vIndices, 0);
661 Value *indices1 = EXTRACT2_I(vIndices, 1);
662
663 Value *mask0 = EXTRACT2_I(vMask, 0);
664 Value *mask1 = EXTRACT2_I(vMask, 1);
665
666 Value *gather0 = GATHERPS(src0, pBase, indices0, mask0, scale);
667 Value *gather1 = GATHERPS(src1, pBase, indices1, mask1, scale);
668
669 vGather = INSERT2_F(vGather, gather0, 0);
670 vGather = INSERT2_F(vGather, gather1, 1);
671 }
672
673 return vGather;
674 }
675
676 #endif
677 //////////////////////////////////////////////////////////////////////////
678 /// @brief Generate a masked gather operation in LLVM IR. If not
679 /// supported on the underlying platform, emulate it with loads
680 /// @param vSrc - SIMD wide value that will be loaded if mask is invalid
681 /// @param pBase - Int8* base VB address pointer value
682 /// @param vIndices - SIMD wide value of VB byte offsets
683 /// @param vMask - SIMD wide mask that controls whether to access memory or the src values
684 /// @param scale - value to scale indices by
685 Value *Builder::GATHERDD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, uint8_t scale)
686 {
687 Value* vGather;
688
689 // use avx2 gather instruction if available
690 if(JM()->mArch.AVX2())
691 {
692 vGather = VGATHERDD(vSrc, pBase, vIndices, vMask, C(scale));
693 }
694 else
695 {
696 Value* pStack = STACKSAVE();
697
698 // store vSrc on the stack. this way we can select between a valid load address and the vSrc address
699 Value* vSrcPtr = ALLOCA(vSrc->getType());
700 STORE(vSrc, vSrcPtr);
701
702 vGather = VUNDEF_I();
703 Value *vScaleVec = VIMMED1((uint32_t)scale);
704 Value *vOffsets = MUL(vIndices, vScaleVec);
705 Value *mask = MASK(vMask);
706 for(uint32_t i = 0; i < mVWidth; ++i)
707 {
708 // single component byte index
709 Value *offset = VEXTRACT(vOffsets, C(i));
710 // byte pointer to component
711 Value *loadAddress = GEP(pBase, offset);
712 loadAddress = BITCAST(loadAddress, PointerType::get(mInt32Ty, 0));
713 // pointer to the value to load if we're masking off a component
714 Value *maskLoadAddress = GEP(vSrcPtr, {C(0), C(i)});
715 Value *selMask = VEXTRACT(mask, C(i));
716 // switch in a safe address to load if we're trying to access a vertex
717 Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
718 Value *val = LOAD(validAddress, C(0));
719 vGather = VINSERT(vGather, val, C(i));
720 }
721
722 STACKRESTORE(pStack);
723 }
724 return vGather;
725 }
726
727 //////////////////////////////////////////////////////////////////////////
728 /// @brief Generate a masked gather operation in LLVM IR. If not
729 /// supported on the underlying platform, emulate it with loads
730 /// @param vSrc - SIMD wide value that will be loaded if mask is invalid
731 /// @param pBase - Int8* base VB address pointer value
732 /// @param vIndices - SIMD wide value of VB byte offsets
733 /// @param vMask - SIMD wide mask that controls whether to access memory or the src values
734 /// @param scale - value to scale indices by
735 Value *Builder::GATHERPD(Value* vSrc, Value* pBase, Value* vIndices, Value* vMask, uint8_t scale)
736 {
737 Value* vGather;
738
739 // use avx2 gather instruction if available
740 if(JM()->mArch.AVX2())
741 {
742 vGather = VGATHERPD(vSrc, pBase, vIndices, vMask, C(scale));
743 }
744 else
745 {
746 Value* pStack = STACKSAVE();
747
748 // store vSrc on the stack. this way we can select between a valid load address and the vSrc address
749 Value* vSrcPtr = ALLOCA(vSrc->getType());
750 STORE(vSrc, vSrcPtr);
751
752 vGather = UndefValue::get(VectorType::get(mDoubleTy, 4));
753 Value *vScaleVec = VECTOR_SPLAT(4, C((uint32_t)scale));
754 Value *vOffsets = MUL(vIndices,vScaleVec);
755 Value *mask = MASK(vMask);
756 for(uint32_t i = 0; i < mVWidth/2; ++i)
757 {
758 // single component byte index
759 Value *offset = VEXTRACT(vOffsets,C(i));
760 // byte pointer to component
761 Value *loadAddress = GEP(pBase,offset);
762 loadAddress = BITCAST(loadAddress,PointerType::get(mDoubleTy,0));
763 // pointer to the value to load if we're masking off a component
764 Value *maskLoadAddress = GEP(vSrcPtr,{C(0), C(i)});
765 Value *selMask = VEXTRACT(mask,C(i));
766 // switch in a safe address to load if we're trying to access a vertex
767 Value *validAddress = SELECT(selMask, loadAddress, maskLoadAddress);
768 Value *val = LOAD(validAddress);
769 vGather = VINSERT(vGather,val,C(i));
770 }
771 STACKRESTORE(pStack);
772 }
773 return vGather;
774 }
775
776 #if USE_SIMD16_BUILDER
777 //////////////////////////////////////////////////////////////////////////
778 /// @brief
779 Value *Builder::EXTRACT2_F(Value *a2, uint32_t imm)
780 {
781 const uint32_t i0 = (imm > 0) ? mVWidth : 0;
782
783 Value *result = VUNDEF_F();
784
785 for (uint32_t i = 0; i < mVWidth; i += 1)
786 {
787 #if 1
788 if (!a2->getType()->getScalarType()->isFloatTy())
789 {
790 a2 = BITCAST(a2, mSimd2FP32Ty);
791 }
792
793 #endif
794 Value *temp = VEXTRACT(a2, C(i0 + i));
795
796 result = VINSERT(result, temp, C(i));
797 }
798
799 return result;
800 }
801
802 Value *Builder::EXTRACT2_I(Value *a2, uint32_t imm)
803 {
804 return BITCAST(EXTRACT2_F(a2, imm), mSimdInt32Ty);
805 }
806
807 //////////////////////////////////////////////////////////////////////////
808 /// @brief
809 Value *Builder::INSERT2_F(Value *a2, Value *b, uint32_t imm)
810 {
811 const uint32_t i0 = (imm > 0) ? mVWidth : 0;
812
813 Value *result = BITCAST(a2, mSimd2FP32Ty);
814
815 for (uint32_t i = 0; i < mVWidth; i += 1)
816 {
817 #if 1
818 if (!b->getType()->getScalarType()->isFloatTy())
819 {
820 b = BITCAST(b, mSimdFP32Ty);
821 }
822
823 #endif
824 Value *temp = VEXTRACT(b, C(i));
825
826 result = VINSERT(result, temp, C(i0 + i));
827 }
828
829 return result;
830 }
831
832 Value *Builder::INSERT2_I(Value *a2, Value *b, uint32_t imm)
833 {
834 return BITCAST(INSERT2_F(a2, b, imm), mSimd2Int32Ty);
835 }
836
837 #endif
838 //////////////////////////////////////////////////////////////////////////
839 /// @brief convert x86 <N x float> mask to llvm <N x i1> mask
840 Value *Builder::MASK(Value *vmask)
841 {
842 Value *src = BITCAST(vmask, mSimdInt32Ty);
843 return ICMP_SLT(src, VIMMED1(0));
844 }
845
846 #if USE_SIMD16_BUILDER
847 Value *Builder::MASK2(Value *vmask)
848 {
849 Value *src = BITCAST(vmask, mSimd2Int32Ty);
850 return ICMP_SLT(src, VIMMED2_1(0));
851 }
852
853 #endif
854 //////////////////////////////////////////////////////////////////////////
855 /// @brief convert llvm <N x i1> mask to x86 <N x i32> mask
856 Value *Builder::VMASK(Value *mask)
857 {
858 return S_EXT(mask, mSimdInt32Ty);
859 }
860
861 #if USE_SIMD16_BUILDER
862 Value *Builder::VMASK2(Value *mask)
863 {
864 return S_EXT(mask, mSimd2Int32Ty);
865 }
866
867 #endif
868 //////////////////////////////////////////////////////////////////////////
869 /// @brief Generate a VPSHUFB operation in LLVM IR. If not
870 /// supported on the underlying platform, emulate it
871 /// @param a - 256bit SIMD(32x8bit) of 8bit integer values
872 /// @param b - 256bit SIMD(32x8bit) of 8bit integer mask values
873 /// Byte masks in lower 128 lane of b selects 8 bit values from lower
874 /// 128bits of a, and vice versa for the upper lanes. If the mask
875 /// value is negative, '0' is inserted.
876 Value *Builder::PSHUFB(Value* a, Value* b)
877 {
878 Value* res;
879 // use avx2 pshufb instruction if available
880 if(JM()->mArch.AVX2())
881 {
882 res = VPSHUFB(a, b);
883 }
884 else
885 {
886 Constant* cB = dyn_cast<Constant>(b);
887 // number of 8 bit elements in b
888 uint32_t numElms = cast<VectorType>(cB->getType())->getNumElements();
889 // output vector
890 Value* vShuf = UndefValue::get(VectorType::get(mInt8Ty, numElms));
891
892 // insert an 8 bit value from the high and low lanes of a per loop iteration
893 numElms /= 2;
894 for(uint32_t i = 0; i < numElms; i++)
895 {
896 ConstantInt* cLow128b = cast<ConstantInt>(cB->getAggregateElement(i));
897 ConstantInt* cHigh128b = cast<ConstantInt>(cB->getAggregateElement(i + numElms));
898
899 // extract values from constant mask
900 char valLow128bLane = (char)(cLow128b->getSExtValue());
901 char valHigh128bLane = (char)(cHigh128b->getSExtValue());
902
903 Value* insertValLow128b;
904 Value* insertValHigh128b;
905
906 // if the mask value is negative, insert a '0' in the respective output position
907 // otherwise, lookup the value at mask position (bits 3..0 of the respective mask byte) in a and insert in output vector
908 insertValLow128b = (valLow128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valLow128bLane & 0xF)));
909 insertValHigh128b = (valHigh128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valHigh128bLane & 0xF) + numElms));
910
911 vShuf = VINSERT(vShuf, insertValLow128b, i);
912 vShuf = VINSERT(vShuf, insertValHigh128b, (i + numElms));
913 }
914 res = vShuf;
915 }
916 return res;
917 }
918
919 //////////////////////////////////////////////////////////////////////////
920 /// @brief Generate a VPSHUFB operation (sign extend 8 8bit values to 32
921 /// bits)in LLVM IR. If not supported on the underlying platform, emulate it
922 /// @param a - 128bit SIMD lane(16x8bit) of 8bit integer values. Only
923 /// lower 8 values are used.
924 Value *Builder::PMOVSXBD(Value* a)
925 {
926 // VPMOVSXBD output type
927 Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
928 // Extract 8 values from 128bit lane and sign extend
929 return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
930 }
931
932 //////////////////////////////////////////////////////////////////////////
933 /// @brief Generate a VPSHUFB operation (sign extend 8 16bit values to 32
934 /// bits)in LLVM IR. If not supported on the underlying platform, emulate it
935 /// @param a - 128bit SIMD lane(8x16bit) of 16bit integer values.
936 Value *Builder::PMOVSXWD(Value* a)
937 {
938 // VPMOVSXWD output type
939 Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
940 // Extract 8 values from 128bit lane and sign extend
941 return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
942 }
943
944 //////////////////////////////////////////////////////////////////////////
945 /// @brief Generate a VPERMD operation (shuffle 32 bit integer values
946 /// across 128 bit lanes) in LLVM IR. If not supported on the underlying
947 /// platform, emulate it
948 /// @param a - 256bit SIMD lane(8x32bit) of integer values.
949 /// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
950 Value *Builder::PERMD(Value* a, Value* idx)
951 {
952 Value* res;
953 // use avx2 permute instruction if available
954 if(JM()->mArch.AVX2())
955 {
956 res = VPERMD(a, idx);
957 }
958 else
959 {
960 if (isa<Constant>(idx))
961 {
962 res = VSHUFFLE(a, a, idx);
963 }
964 else
965 {
966 res = VUNDEF_I();
967 for (uint32_t l = 0; l < JM()->mVWidth; ++l)
968 {
969 Value* pIndex = VEXTRACT(idx, C(l));
970 Value* pVal = VEXTRACT(a, pIndex);
971 res = VINSERT(res, pVal, C(l));
972 }
973 }
974 }
975 return res;
976 }
977
978 //////////////////////////////////////////////////////////////////////////
979 /// @brief Generate a VPERMPS operation (shuffle 32 bit float values
980 /// across 128 bit lanes) in LLVM IR. If not supported on the underlying
981 /// platform, emulate it
982 /// @param a - 256bit SIMD lane(8x32bit) of float values.
983 /// @param idx - 256bit SIMD lane(8x32bit) of 3 bit lane index values
984 Value *Builder::PERMPS(Value* a, Value* idx)
985 {
986 Value* res;
987 // use avx2 permute instruction if available
988 if (JM()->mArch.AVX2())
989 {
990 // llvm 3.6.0 swapped the order of the args to vpermd
991 res = VPERMPS(idx, a);
992 }
993 else
994 {
995 if (isa<Constant>(idx))
996 {
997 res = VSHUFFLE(a, a, idx);
998 }
999 else
1000 {
1001 res = VUNDEF_F();
1002 for (uint32_t l = 0; l < JM()->mVWidth; ++l)
1003 {
1004 Value* pIndex = VEXTRACT(idx, C(l));
1005 Value* pVal = VEXTRACT(a, pIndex);
1006 res = VINSERT(res, pVal, C(l));
1007 }
1008 }
1009 }
1010
1011 return res;
1012 }
1013
1014 //////////////////////////////////////////////////////////////////////////
1015 /// @brief Generate a VCVTPH2PS operation (float16->float32 conversion)
1016 /// in LLVM IR. If not supported on the underlying platform, emulate it
1017 /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
1018 Value *Builder::CVTPH2PS(Value* a)
1019 {
1020 if (JM()->mArch.F16C())
1021 {
1022 return VCVTPH2PS(a);
1023 }
1024 else
1025 {
1026 FunctionType* pFuncTy = FunctionType::get(mFP32Ty, mInt16Ty);
1027 Function* pCvtPh2Ps = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat16ToFloat32", pFuncTy));
1028
1029 if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat16ToFloat32") == nullptr)
1030 {
1031 sys::DynamicLibrary::AddSymbol("ConvertFloat16ToFloat32", (void *)&ConvertFloat16ToFloat32);
1032 }
1033
1034 Value* pResult = UndefValue::get(mSimdFP32Ty);
1035 for (uint32_t i = 0; i < mVWidth; ++i)
1036 {
1037 Value* pSrc = VEXTRACT(a, C(i));
1038 Value* pConv = CALL(pCvtPh2Ps, std::initializer_list<Value*>{pSrc});
1039 pResult = VINSERT(pResult, pConv, C(i));
1040 }
1041
1042 return pResult;
1043 }
1044 }
1045
1046 //////////////////////////////////////////////////////////////////////////
1047 /// @brief Generate a VCVTPS2PH operation (float32->float16 conversion)
1048 /// in LLVM IR. If not supported on the underlying platform, emulate it
1049 /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
1050 Value *Builder::CVTPS2PH(Value* a, Value* rounding)
1051 {
1052 if (JM()->mArch.F16C())
1053 {
1054 return VCVTPS2PH(a, rounding);
1055 }
1056 else
1057 {
1058 // call scalar C function for now
1059 FunctionType* pFuncTy = FunctionType::get(mInt16Ty, mFP32Ty);
1060 Function* pCvtPs2Ph = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat32ToFloat16", pFuncTy));
1061
1062 if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat32ToFloat16") == nullptr)
1063 {
1064 sys::DynamicLibrary::AddSymbol("ConvertFloat32ToFloat16", (void *)&ConvertFloat32ToFloat16);
1065 }
1066
1067 Value* pResult = UndefValue::get(mSimdInt16Ty);
1068 for (uint32_t i = 0; i < mVWidth; ++i)
1069 {
1070 Value* pSrc = VEXTRACT(a, C(i));
1071 Value* pConv = CALL(pCvtPs2Ph, std::initializer_list<Value*>{pSrc});
1072 pResult = VINSERT(pResult, pConv, C(i));
1073 }
1074
1075 return pResult;
1076 }
1077 }
1078
1079 Value *Builder::PMAXSD(Value* a, Value* b)
1080 {
1081 Value* cmp = ICMP_SGT(a, b);
1082 return SELECT(cmp, a, b);
1083 }
1084
1085 Value *Builder::PMINSD(Value* a, Value* b)
1086 {
1087 Value* cmp = ICMP_SLT(a, b);
1088 return SELECT(cmp, a, b);
1089 }
1090
1091 void Builder::Gather4(const SWR_FORMAT format, Value* pSrcBase, Value* byteOffsets,
1092 Value* mask, Value* vGatherComponents[], bool bPackedOutput)
1093 {
1094 const SWR_FORMAT_INFO &info = GetFormatInfo(format);
1095 if(info.type[0] == SWR_TYPE_FLOAT && info.bpc[0] == 32)
1096 {
1097 // ensure our mask is the correct type
1098 mask = BITCAST(mask, mSimdFP32Ty);
1099 GATHER4PS(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
1100 }
1101 else
1102 {
1103 // ensure our mask is the correct type
1104 mask = BITCAST(mask, mSimdInt32Ty);
1105 GATHER4DD(info, pSrcBase, byteOffsets, mask, vGatherComponents, bPackedOutput);
1106 }
1107 }
1108
1109 void Builder::GATHER4PS(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
1110 Value* vMask, Value* vGatherComponents[], bool bPackedOutput)
1111 {
1112 switch(info.bpp / info.numComps)
1113 {
1114 case 16:
1115 {
1116 Value* vGatherResult[2];
1117
1118 // TODO: vGatherMaskedVal
1119 Value* vGatherMaskedVal = VIMMED1((float)0);
1120
1121 // always have at least one component out of x or y to fetch
1122
1123 vGatherResult[0] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask);
1124 // e.g. result of first 8x32bit integer gather for 16bit components
1125 // 256i - 0 1 2 3 4 5 6 7
1126 // xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
1127 //
1128
1129 // if we have at least one component out of x or y to fetch
1130 if(info.numComps > 2)
1131 {
1132 // offset base to the next components(zw) in the vertex to gather
1133 pSrcBase = GEP(pSrcBase, C((char)4));
1134
1135 vGatherResult[1] = GATHERPS(vGatherMaskedVal, pSrcBase, byteOffsets, vMask);
1136 // e.g. result of second 8x32bit integer gather for 16bit components
1137 // 256i - 0 1 2 3 4 5 6 7
1138 // zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
1139 //
1140 }
1141 else
1142 {
1143 vGatherResult[1] = vGatherMaskedVal;
1144 }
1145
1146 // Shuffle gathered components into place, each row is a component
1147 Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
1148 }
1149 break;
1150 case 32:
1151 {
1152 // apply defaults
1153 for (uint32_t i = 0; i < 4; ++i)
1154 {
1155 vGatherComponents[i] = VIMMED1(*(float*)&info.defaults[i]);
1156 }
1157
1158 for(uint32_t i = 0; i < info.numComps; i++)
1159 {
1160 uint32_t swizzleIndex = info.swizzle[i];
1161
1162 // Gather a SIMD of components
1163 vGatherComponents[swizzleIndex] = GATHERPS(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask);
1164
1165 // offset base to the next component to gather
1166 pSrcBase = GEP(pSrcBase, C((char)4));
1167 }
1168 }
1169 break;
1170 default:
1171 SWR_INVALID("Invalid float format");
1172 break;
1173 }
1174 }
1175
1176 void Builder::GATHER4DD(const SWR_FORMAT_INFO &info, Value* pSrcBase, Value* byteOffsets,
1177 Value* vMask, Value* vGatherComponents[], bool bPackedOutput)
1178 {
1179 switch (info.bpp / info.numComps)
1180 {
1181 case 8:
1182 {
1183 Value* vGatherMaskedVal = VIMMED1((int32_t)0);
1184 Value* vGatherResult = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask);
1185 // e.g. result of an 8x32bit integer gather for 8bit components
1186 // 256i - 0 1 2 3 4 5 6 7
1187 // xyzw xyzw xyzw xyzw xyzw xyzw xyzw xyzw
1188
1189 Shuffle8bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
1190 }
1191 break;
1192 case 16:
1193 {
1194 Value* vGatherResult[2];
1195
1196 // TODO: vGatherMaskedVal
1197 Value* vGatherMaskedVal = VIMMED1((int32_t)0);
1198
1199 // always have at least one component out of x or y to fetch
1200
1201 vGatherResult[0] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask);
1202 // e.g. result of first 8x32bit integer gather for 16bit components
1203 // 256i - 0 1 2 3 4 5 6 7
1204 // xyxy xyxy xyxy xyxy xyxy xyxy xyxy xyxy
1205 //
1206
1207 // if we have at least one component out of x or y to fetch
1208 if(info.numComps > 2)
1209 {
1210 // offset base to the next components(zw) in the vertex to gather
1211 pSrcBase = GEP(pSrcBase, C((char)4));
1212
1213 vGatherResult[1] = GATHERDD(vGatherMaskedVal, pSrcBase, byteOffsets, vMask);
1214 // e.g. result of second 8x32bit integer gather for 16bit components
1215 // 256i - 0 1 2 3 4 5 6 7
1216 // zwzw zwzw zwzw zwzw zwzw zwzw zwzw zwzw
1217 //
1218 }
1219 else
1220 {
1221 vGatherResult[1] = vGatherMaskedVal;
1222 }
1223
1224 // Shuffle gathered components into place, each row is a component
1225 Shuffle16bpcGather4(info, vGatherResult, vGatherComponents, bPackedOutput);
1226
1227 }
1228 break;
1229 case 32:
1230 {
1231 // apply defaults
1232 for (uint32_t i = 0; i < 4; ++i)
1233 {
1234 vGatherComponents[i] = VIMMED1((int)info.defaults[i]);
1235 }
1236
1237 for(uint32_t i = 0; i < info.numComps; i++)
1238 {
1239 uint32_t swizzleIndex = info.swizzle[i];
1240
1241 // Gather a SIMD of components
1242 vGatherComponents[swizzleIndex] = GATHERDD(vGatherComponents[swizzleIndex], pSrcBase, byteOffsets, vMask);
1243
1244 // offset base to the next component to gather
1245 pSrcBase = GEP(pSrcBase, C((char)4));
1246 }
1247 }
1248 break;
1249 default:
1250 SWR_INVALID("unsupported format");
1251 break;
1252 }
1253 }
1254
1255 void Builder::Shuffle16bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput[2], Value* vGatherOutput[4], bool bPackedOutput)
1256 {
1257 // cast types
1258 Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
1259 Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4); // vwidth is units of 32 bits
1260
1261 // input could either be float or int vector; do shuffle work in int
1262 vGatherInput[0] = BITCAST(vGatherInput[0], mSimdInt32Ty);
1263 vGatherInput[1] = BITCAST(vGatherInput[1], mSimdInt32Ty);
1264
1265 if(bPackedOutput)
1266 {
1267 Type* v128bitTy = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
1268
1269 // shuffle mask
1270 Value* vConstMask = C<char>({0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15,
1271 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15});
1272 Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[0], v32x8Ty), vConstMask), vGatherTy);
1273 // after pshufb: group components together in each 128bit lane
1274 // 256i - 0 1 2 3 4 5 6 7
1275 // xxxx xxxx yyyy yyyy xxxx xxxx yyyy yyyy
1276
1277 Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
1278 // after PERMD: move and pack xy components into each 128bit lane
1279 // 256i - 0 1 2 3 4 5 6 7
1280 // xxxx xxxx xxxx xxxx yyyy yyyy yyyy yyyy
1281
1282 // do the same for zw components
1283 Value* vi128ZW = nullptr;
1284 if(info.numComps > 2)
1285 {
1286 Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput[1], v32x8Ty), vConstMask), vGatherTy);
1287 vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({0, 1, 4, 5, 2, 3, 6, 7})), v128bitTy);
1288 }
1289
1290 for(uint32_t i = 0; i < 4; i++)
1291 {
1292 uint32_t swizzleIndex = info.swizzle[i];
1293 // todo: fixed for packed
1294 Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
1295 if(i >= info.numComps)
1296 {
1297 // set the default component val
1298 vGatherOutput[swizzleIndex] = vGatherMaskedVal;
1299 continue;
1300 }
1301
1302 // if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
1303 uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
1304 // if x or y, use vi128XY permute result, else use vi128ZW
1305 Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
1306
1307 // extract packed component 128 bit lanes
1308 vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
1309 }
1310
1311 }
1312 else
1313 {
1314 // pshufb masks for each component
1315 Value* vConstMask[2];
1316 // x/z shuffle mask
1317 vConstMask[0] = C<char>({0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1,
1318 0, 1, -1, -1, 4, 5, -1, -1, 8, 9, -1, -1, 12, 13, -1, -1, });
1319
1320 // y/w shuffle mask
1321 vConstMask[1] = C<char>({2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1,
1322 2, 3, -1, -1, 6, 7, -1, -1, 10, 11, -1, -1, 14, 15, -1, -1});
1323
1324
1325 // shuffle enabled components into lower word of each 32bit lane, 0 extending to 32 bits
1326 // apply defaults
1327 for (uint32_t i = 0; i < 4; ++i)
1328 {
1329 vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
1330 }
1331
1332 for(uint32_t i = 0; i < info.numComps; i++)
1333 {
1334 uint32_t swizzleIndex = info.swizzle[i];
1335
1336 // select correct constMask for x/z or y/w pshufb
1337 uint32_t selectedMask = ((i == 0) || (i == 2)) ? 0 : 1;
1338 // if x or y, use vi128XY permute result, else use vi128ZW
1339 uint32_t selectedGather = (i < 2) ? 0 : 1;
1340
1341 vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput[selectedGather], v32x8Ty), vConstMask[selectedMask]), vGatherTy);
1342 // after pshufb mask for x channel; z uses the same shuffle from the second gather
1343 // 256i - 0 1 2 3 4 5 6 7
1344 // xx00 xx00 xx00 xx00 xx00 xx00 xx00 xx00
1345 }
1346 }
1347 }
1348
1349 void Builder::Shuffle8bpcGather4(const SWR_FORMAT_INFO &info, Value* vGatherInput, Value* vGatherOutput[], bool bPackedOutput)
1350 {
1351 // cast types
1352 Type* vGatherTy = VectorType::get(IntegerType::getInt32Ty(JM()->mContext), mVWidth);
1353 Type* v32x8Ty = VectorType::get(mInt8Ty, mVWidth * 4 ); // vwidth is units of 32 bits
1354
1355 if(bPackedOutput)
1356 {
1357 Type* v128Ty = VectorType::get(IntegerType::getIntNTy(JM()->mContext, 128), mVWidth / 4); // vwidth is units of 32 bits
1358 // shuffle mask
1359 Value* vConstMask = C<char>({0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15,
1360 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15});
1361 Value* vShufResult = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
1362 // after pshufb: group components together in each 128bit lane
1363 // 256i - 0 1 2 3 4 5 6 7
1364 // xxxx yyyy zzzz wwww xxxx yyyy zzzz wwww
1365
1366 Value* vi128XY = BITCAST(PERMD(vShufResult, C<int32_t>({0, 4, 0, 0, 1, 5, 0, 0})), v128Ty);
1367 // after PERMD: move and pack xy and zw components in low 64 bits of each 128bit lane
1368 // 256i - 0 1 2 3 4 5 6 7
1369 // xxxx xxxx dcdc dcdc yyyy yyyy dcdc dcdc (dc - don't care)
1370
1371 // do the same for zw components
1372 Value* vi128ZW = nullptr;
1373 if(info.numComps > 2)
1374 {
1375 vi128ZW = BITCAST(PERMD(vShufResult, C<int32_t>({2, 6, 0, 0, 3, 7, 0, 0})), v128Ty);
1376 }
1377
1378 // sign extend all enabled components. If we have a fill vVertexElements, output to current simdvertex
1379 for(uint32_t i = 0; i < 4; i++)
1380 {
1381 uint32_t swizzleIndex = info.swizzle[i];
1382 // todo: fix for packed
1383 Value* vGatherMaskedVal = VIMMED1((int32_t)(info.defaults[i]));
1384 if(i >= info.numComps)
1385 {
1386 // set the default component val
1387 vGatherOutput[swizzleIndex] = vGatherMaskedVal;
1388 continue;
1389 }
1390
1391 // if x or z, extract 128bits from lane 0, else for y or w, extract from lane 1
1392 uint32_t lane = ((i == 0) || (i == 2)) ? 0 : 1;
1393 // if x or y, use vi128XY permute result, else use vi128ZW
1394 Value* selectedPermute = (i < 2) ? vi128XY : vi128ZW;
1395
1396 // sign extend
1397 vGatherOutput[swizzleIndex] = VEXTRACT(selectedPermute, C(lane));
1398 }
1399 }
1400 // else zero extend
1401 else{
1402 // shuffle enabled components into lower byte of each 32bit lane, 0 extending to 32 bits
1403 // apply defaults
1404 for (uint32_t i = 0; i < 4; ++i)
1405 {
1406 vGatherOutput[i] = VIMMED1((int32_t)info.defaults[i]);
1407 }
1408
1409 for(uint32_t i = 0; i < info.numComps; i++){
1410 uint32_t swizzleIndex = info.swizzle[i];
1411
1412 // pshufb masks for each component
1413 Value* vConstMask;
1414 switch(i)
1415 {
1416 case 0:
1417 // x shuffle mask
1418 vConstMask = C<char>({0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1,
1419 0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1});
1420 break;
1421 case 1:
1422 // y shuffle mask
1423 vConstMask = C<char>({1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1,
1424 1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1});
1425 break;
1426 case 2:
1427 // z shuffle mask
1428 vConstMask = C<char>({2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1,
1429 2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1});
1430 break;
1431 case 3:
1432 // w shuffle mask
1433 vConstMask = C<char>({3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1,
1434 3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1});
1435 break;
1436 default:
1437 vConstMask = nullptr;
1438 break;
1439 }
1440
1441 vGatherOutput[swizzleIndex] = BITCAST(PSHUFB(BITCAST(vGatherInput, v32x8Ty), vConstMask), vGatherTy);
1442 // after pshufb for x channel
1443 // 256i - 0 1 2 3 4 5 6 7
1444 // x000 x000 x000 x000 x000 x000 x000 x000
1445 }
1446 }
1447 }
1448
1449 // Helper function to create alloca in entry block of function
1450 Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType)
1451 {
1452 auto saveIP = IRB()->saveIP();
1453 IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
1454 pFunc->getEntryBlock().begin());
1455 Value* pAlloca = ALLOCA(pType);
1456 if (saveIP.isSet()) IRB()->restoreIP(saveIP);
1457 return pAlloca;
1458 }
1459
1460 Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType, Value* pArraySize)
1461 {
1462 auto saveIP = IRB()->saveIP();
1463 IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
1464 pFunc->getEntryBlock().begin());
1465 Value* pAlloca = ALLOCA(pType, pArraySize);
1466 if (saveIP.isSet()) IRB()->restoreIP(saveIP);
1467 return pAlloca;
1468 }
1469
1470 //////////////////////////////////////////////////////////////////////////
1471 /// @brief emulates a scatter operation.
1472 /// @param pDst - pointer to destination
1473 /// @param vSrc - vector of src data to scatter
1474 /// @param vOffsets - vector of byte offsets from pDst
1475 /// @param vMask - mask of valid lanes
1476 void Builder::SCATTERPS(Value* pDst, Value* vSrc, Value* vOffsets, Value* vMask)
1477 {
1478 /* Scatter algorithm
1479
1480 while(Index = BitScanForward(mask))
1481 srcElem = srcVector[Index]
1482 offsetElem = offsetVector[Index]
1483 *(pDst + offsetElem) = srcElem
1484 Update mask (&= ~(1<<Index)
1485
1486 */
1487
1488 BasicBlock* pCurBB = IRB()->GetInsertBlock();
1489 Function* pFunc = pCurBB->getParent();
1490 Type* pSrcTy = vSrc->getType()->getVectorElementType();
1491
1492 // Store vectors on stack
1493 if (pScatterStackSrc == nullptr)
1494 {
1495 // Save off stack allocations and reuse per scatter. Significantly reduces stack
1496 // requirements for shaders with a lot of scatters.
1497 pScatterStackSrc = CreateEntryAlloca(pFunc, mSimdInt64Ty);
1498 pScatterStackOffsets = CreateEntryAlloca(pFunc, mSimdInt32Ty);
1499 }
1500
1501 Value* pSrcArrayPtr = BITCAST(pScatterStackSrc, PointerType::get(vSrc->getType(), 0));
1502 Value* pOffsetsArrayPtr = pScatterStackOffsets;
1503 STORE(vSrc, pSrcArrayPtr);
1504 STORE(vOffsets, pOffsetsArrayPtr);
1505
1506 // Cast to pointers for random access
1507 pSrcArrayPtr = POINTER_CAST(pSrcArrayPtr, PointerType::get(pSrcTy, 0));
1508 pOffsetsArrayPtr = POINTER_CAST(pOffsetsArrayPtr, PointerType::get(mInt32Ty, 0));
1509
1510 Value* pMask = VMOVMSKPS(BITCAST(vMask, mSimdFP32Ty));
1511
1512 // Get cttz function
1513 Function* pfnCttz = Intrinsic::getDeclaration(mpJitMgr->mpCurrentModule, Intrinsic::cttz, { mInt32Ty });
1514
1515 // Setup loop basic block
1516 BasicBlock* pLoop = BasicBlock::Create(mpJitMgr->mContext, "Scatter Loop", pFunc);
1517
1518 // compute first set bit
1519 Value* pIndex = CALL(pfnCttz, { pMask, C(false) });
1520
1521 Value* pIsUndef = ICMP_EQ(pIndex, C(32));
1522
1523 // Split current block
1524 BasicBlock* pPostLoop = pCurBB->splitBasicBlock(cast<Instruction>(pIsUndef)->getNextNode());
1525
1526 // Remove unconditional jump created by splitBasicBlock
1527 pCurBB->getTerminator()->eraseFromParent();
1528
1529 // Add terminator to end of original block
1530 IRB()->SetInsertPoint(pCurBB);
1531
1532 // Add conditional branch
1533 COND_BR(pIsUndef, pPostLoop, pLoop);
1534
1535 // Add loop basic block contents
1536 IRB()->SetInsertPoint(pLoop);
1537 PHINode* pIndexPhi = PHI(mInt32Ty, 2);
1538 PHINode* pMaskPhi = PHI(mInt32Ty, 2);
1539
1540 pIndexPhi->addIncoming(pIndex, pCurBB);
1541 pMaskPhi->addIncoming(pMask, pCurBB);
1542
1543 // Extract elements for this index
1544 Value* pSrcElem = LOADV(pSrcArrayPtr, { pIndexPhi });
1545 Value* pOffsetElem = LOADV(pOffsetsArrayPtr, { pIndexPhi });
1546
1547 // GEP to this offset in dst
1548 Value* pCurDst = GEP(pDst, pOffsetElem);
1549 pCurDst = POINTER_CAST(pCurDst, PointerType::get(pSrcTy, 0));
1550 STORE(pSrcElem, pCurDst);
1551
1552 // Update the mask
1553 Value* pNewMask = AND(pMaskPhi, NOT(SHL(C(1), pIndexPhi)));
1554
1555 // Terminator
1556 Value* pNewIndex = CALL(pfnCttz, { pNewMask, C(false) });
1557
1558 pIsUndef = ICMP_EQ(pNewIndex, C(32));
1559 COND_BR(pIsUndef, pPostLoop, pLoop);
1560
1561 // Update phi edges
1562 pIndexPhi->addIncoming(pNewIndex, pLoop);
1563 pMaskPhi->addIncoming(pNewMask, pLoop);
1564
1565 // Move builder to beginning of post loop
1566 IRB()->SetInsertPoint(pPostLoop, pPostLoop->begin());
1567 }
1568
1569 Value* Builder::VABSPS(Value* a)
1570 {
1571 Value* asInt = BITCAST(a, mSimdInt32Ty);
1572 Value* result = BITCAST(AND(asInt, VIMMED1(0x7fffffff)), mSimdFP32Ty);
1573 return result;
1574 }
1575
1576 Value *Builder::ICLAMP(Value* src, Value* low, Value* high)
1577 {
1578 Value *lowCmp = ICMP_SLT(src, low);
1579 Value *ret = SELECT(lowCmp, low, src);
1580
1581 Value *highCmp = ICMP_SGT(ret, high);
1582 ret = SELECT(highCmp, high, ret);
1583
1584 return ret;
1585 }
1586
1587 Value *Builder::FCLAMP(Value* src, Value* low, Value* high)
1588 {
1589 Value *lowCmp = FCMP_OLT(src, low);
1590 Value *ret = SELECT(lowCmp, low, src);
1591
1592 Value *highCmp = FCMP_OGT(ret, high);
1593 ret = SELECT(highCmp, high, ret);
1594
1595 return ret;
1596 }
1597
1598 Value *Builder::FCLAMP(Value* src, float low, float high)
1599 {
1600 Value* result = VMAXPS(src, VIMMED1(low));
1601 result = VMINPS(result, VIMMED1(high));
1602
1603 return result;
1604 }
1605
1606 //////////////////////////////////////////////////////////////////////////
1607 /// @brief save/restore stack, providing ability to push/pop the stack and
1608 /// reduce overall stack requirements for temporary stack use
1609 Value* Builder::STACKSAVE()
1610 {
1611 Function* pfnStackSave = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stacksave);
1612 return CALLA(pfnStackSave);
1613 }
1614
1615 void Builder::STACKRESTORE(Value* pSaved)
1616 {
1617 Function* pfnStackRestore = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::stackrestore);
1618 CALL(pfnStackRestore, std::initializer_list<Value*>{pSaved});
1619 }
1620
1621 Value *Builder::FMADDPS(Value* a, Value* b, Value* c)
1622 {
1623 Value* vOut;
1624 // use FMADs if available
1625 if(JM()->mArch.AVX2())
1626 {
1627 vOut = VFMADDPS(a, b, c);
1628 }
1629 else
1630 {
1631 vOut = FADD(FMUL(a, b), c);
1632 }
1633 return vOut;
1634 }
1635
1636 Value* Builder::POPCNT(Value* a)
1637 {
1638 Function* pCtPop = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::ctpop, { a->getType() });
1639 return CALL(pCtPop, std::initializer_list<Value*>{a});
1640 }
1641
1642 //////////////////////////////////////////////////////////////////////////
1643 /// @brief C functions called by LLVM IR
1644 //////////////////////////////////////////////////////////////////////////
1645
1646 //////////////////////////////////////////////////////////////////////////
1647 /// @brief called in JIT code, inserted by PRINT
1648 /// output to both stdout and visual studio debug console
1649 void __cdecl CallPrint(const char* fmt, ...)
1650 {
1651 va_list args;
1652 va_start(args, fmt);
1653 vprintf(fmt, args);
1654
1655 #if defined( _WIN32 )
1656 char strBuf[1024];
1657 vsnprintf_s(strBuf, _TRUNCATE, fmt, args);
1658 OutputDebugStringA(strBuf);
1659 #endif
1660
1661 va_end(args);
1662 }
1663
1664 Value *Builder::VEXTRACTI128(Value* a, Constant* imm8)
1665 {
1666 bool flag = !imm8->isZeroValue();
1667 SmallVector<Constant*,8> idx;
1668 for (unsigned i = 0; i < mVWidth / 2; i++) {
1669 idx.push_back(C(flag ? i + mVWidth / 2 : i));
1670 }
1671 return VSHUFFLE(a, VUNDEF_I(), ConstantVector::get(idx));
1672 }
1673
1674 Value *Builder::VINSERTI128(Value* a, Value* b, Constant* imm8)
1675 {
1676 bool flag = !imm8->isZeroValue();
1677 SmallVector<Constant*,8> idx;
1678 for (unsigned i = 0; i < mVWidth; i++) {
1679 idx.push_back(C(i));
1680 }
1681 Value *inter = VSHUFFLE(b, VUNDEF_I(), ConstantVector::get(idx));
1682
1683 SmallVector<Constant*,8> idx2;
1684 for (unsigned i = 0; i < mVWidth / 2; i++) {
1685 idx2.push_back(C(flag ? i : i + mVWidth));
1686 }
1687 for (unsigned i = mVWidth / 2; i < mVWidth; i++) {
1688 idx2.push_back(C(flag ? i + mVWidth / 2 : i));
1689 }
1690 return VSHUFFLE(a, inter, ConstantVector::get(idx2));
1691 }
1692
1693 // rdtsc buckets macros
1694 void Builder::RDTSC_START(Value* pBucketMgr, Value* pId)
1695 {
1696 // @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
1697 // buckets framework when single threaded
1698 if (KNOB_SINGLE_THREADED)
1699 {
1700 std::vector<Type*> args{
1701 PointerType::get(mInt32Ty, 0), // pBucketMgr
1702 mInt32Ty // id
1703 };
1704
1705 FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
1706 Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StartBucket", pFuncTy));
1707 if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StartBucket") == nullptr)
1708 {
1709 sys::DynamicLibrary::AddSymbol("BucketManager_StartBucket", (void*)&BucketManager_StartBucket);
1710 }
1711
1712 CALL(pFunc, { pBucketMgr, pId });
1713 }
1714 }
1715
1716 void Builder::RDTSC_STOP(Value* pBucketMgr, Value* pId)
1717 {
1718 // @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
1719 // buckets framework when single threaded
1720 if (KNOB_SINGLE_THREADED)
1721 {
1722 std::vector<Type*> args{
1723 PointerType::get(mInt32Ty, 0), // pBucketMgr
1724 mInt32Ty // id
1725 };
1726
1727 FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
1728 Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StopBucket", pFuncTy));
1729 if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StopBucket") == nullptr)
1730 {
1731 sys::DynamicLibrary::AddSymbol("BucketManager_StopBucket", (void*)&BucketManager_StopBucket);
1732 }
1733
1734 CALL(pFunc, { pBucketMgr, pId });
1735 }
1736 }
1737
1738
1739 uint32_t Builder::GetTypeSize(Type* pType)
1740 {
1741 if (pType->isStructTy())
1742 {
1743 uint32_t numElems = pType->getStructNumElements();
1744 Type* pElemTy = pType->getStructElementType(0);
1745 return numElems * GetTypeSize(pElemTy);
1746 }
1747
1748 if (pType->isArrayTy())
1749 {
1750 uint32_t numElems = pType->getArrayNumElements();
1751 Type* pElemTy = pType->getArrayElementType();
1752 return numElems * GetTypeSize(pElemTy);
1753 }
1754
1755 if (pType->isIntegerTy())
1756 {
1757 uint32_t bitSize = pType->getIntegerBitWidth();
1758 return bitSize / 8;
1759 }
1760
1761 if (pType->isFloatTy())
1762 {
1763 return 4;
1764 }
1765
1766 if (pType->isHalfTy())
1767 {
1768 return 2;
1769 }
1770
1771 if (pType->isDoubleTy())
1772 {
1773 return 8;
1774 }
1775
1776 SWR_ASSERT(false, "Unimplemented type.");
1777 return 0;
1778 }
1779 }