build: Bump C++ standard requirement to C++14 to fix FTBFS with LLVM 10
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #pragma pop_macro("DEBUG")
32
33 #include "state.h"
34 #include "gen_state_llvm.h"
35 #include "builder.h"
36 #include "functionpasses/passes.h"
37
38 #include "tgsi/tgsi_strings.h"
39 #include "util/u_format.h"
40 #include "util/u_prim.h"
41 #include "gallivm/lp_bld_init.h"
42 #include "gallivm/lp_bld_flow.h"
43 #include "gallivm/lp_bld_struct.h"
44 #include "gallivm/lp_bld_tgsi.h"
45
46 #include "swr_context.h"
47 #include "gen_surf_state_llvm.h"
48 #include "gen_swr_context_llvm.h"
49 #include "swr_resource.h"
50 #include "swr_state.h"
51 #include "swr_screen.h"
52
53 using namespace SwrJit;
54 using namespace llvm;
55
56 static unsigned
57 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
58
59 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
60 {
61 return !memcmp(&lhs, &rhs, sizeof(lhs));
62 }
63
64 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
65 {
66 return !memcmp(&lhs, &rhs, sizeof(lhs));
67 }
68
69 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
70 {
71 return !memcmp(&lhs, &rhs, sizeof(lhs));
72 }
73
74 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
75 {
76 return !memcmp(&lhs, &rhs, sizeof(lhs));
77 }
78
79 static void
80 swr_generate_sampler_key(const struct lp_tgsi_info &info,
81 struct swr_context *ctx,
82 enum pipe_shader_type shader_type,
83 struct swr_jit_sampler_key &key)
84 {
85 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
86
87 for (unsigned i = 0; i < key.nr_samplers; i++) {
88 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
89 lp_sampler_static_sampler_state(
90 &key.sampler[i].sampler_state,
91 ctx->samplers[shader_type][i]);
92 }
93 }
94
95 /*
96 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
97 * are dx10-style? Can't really have mixed opcodes, at least not
98 * if we want to skip the holes here (without rescanning tgsi).
99 */
100 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
101 key.nr_sampler_views =
102 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
103 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
104 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
105 const struct pipe_sampler_view *view =
106 ctx->sampler_views[shader_type][i];
107 lp_sampler_static_texture_state(
108 &key.sampler[i].texture_state, view);
109 if (view) {
110 struct swr_resource *swr_res = swr_resource(view->texture);
111 const struct util_format_description *desc =
112 util_format_description(view->format);
113 if (swr_res->has_depth && swr_res->has_stencil &&
114 !util_format_has_depth(desc))
115 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
116 }
117 }
118 }
119 } else {
120 key.nr_sampler_views = key.nr_samplers;
121 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
122 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
123 const struct pipe_sampler_view *view =
124 ctx->sampler_views[shader_type][i];
125 lp_sampler_static_texture_state(
126 &key.sampler[i].texture_state, view);
127 if (view) {
128 struct swr_resource *swr_res = swr_resource(view->texture);
129 const struct util_format_description *desc =
130 util_format_description(view->format);
131 if (swr_res->has_depth && swr_res->has_stencil &&
132 !util_format_has_depth(desc))
133 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
134 }
135 }
136 }
137 }
138 }
139
140 void
141 swr_generate_fs_key(struct swr_jit_fs_key &key,
142 struct swr_context *ctx,
143 swr_fragment_shader *swr_fs)
144 {
145 memset(&key, 0, sizeof(key));
146
147 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
148 key.light_twoside = ctx->rasterizer->light_twoside;
149 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
150
151 struct tgsi_shader_info *pPrevShader;
152 if (ctx->gs)
153 pPrevShader = &ctx->gs->info.base;
154 else
155 pPrevShader = &ctx->vs->info.base;
156
157 memcpy(&key.vs_output_semantic_name,
158 &pPrevShader->output_semantic_name,
159 sizeof(key.vs_output_semantic_name));
160 memcpy(&key.vs_output_semantic_idx,
161 &pPrevShader->output_semantic_index,
162 sizeof(key.vs_output_semantic_idx));
163
164 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
165
166 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
167 ctx->poly_stipple.prim_is_poly;
168 }
169
170 void
171 swr_generate_vs_key(struct swr_jit_vs_key &key,
172 struct swr_context *ctx,
173 swr_vertex_shader *swr_vs)
174 {
175 memset(&key, 0, sizeof(key));
176
177 key.clip_plane_mask =
178 swr_vs->info.base.clipdist_writemask ?
179 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
180 ctx->rasterizer->clip_plane_enable;
181
182 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
183 }
184
185 void
186 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
187 struct swr_vertex_element_state *velems)
188 {
189 memset(&key, 0, sizeof(key));
190
191 key.fsState = velems->fsState;
192 }
193
194 void
195 swr_generate_gs_key(struct swr_jit_gs_key &key,
196 struct swr_context *ctx,
197 swr_geometry_shader *swr_gs)
198 {
199 memset(&key, 0, sizeof(key));
200
201 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
202
203 memcpy(&key.vs_output_semantic_name,
204 &pPrevShader->output_semantic_name,
205 sizeof(key.vs_output_semantic_name));
206 memcpy(&key.vs_output_semantic_idx,
207 &pPrevShader->output_semantic_index,
208 sizeof(key.vs_output_semantic_idx));
209
210 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
211 }
212
213 struct BuilderSWR : public Builder {
214 BuilderSWR(JitManager *pJitMgr, const char *pName)
215 : Builder(pJitMgr)
216 {
217 pJitMgr->SetupNewModule();
218 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
219 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
220 }
221
222 ~BuilderSWR() {
223 gallivm_free_ir(gallivm);
224 }
225
226 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
227 unsigned slot, unsigned channel);
228
229 struct gallivm_state *gallivm;
230 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
231 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
232 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
233
234 LLVMValueRef
235 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
236 struct lp_build_tgsi_context * bld_base,
237 boolean is_vindex_indirect,
238 LLVMValueRef vertex_index,
239 boolean is_aindex_indirect,
240 LLVMValueRef attrib_index,
241 LLVMValueRef swizzle_index);
242 void
243 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
244 struct lp_build_tgsi_context * bld_base,
245 LLVMValueRef (*outputs)[4],
246 LLVMValueRef emitted_vertices_vec);
247
248 void
249 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
250 struct lp_build_tgsi_context * bld_base,
251 LLVMValueRef verts_per_prim_vec,
252 LLVMValueRef emitted_prims_vec);
253
254 void
255 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
256 struct lp_build_tgsi_context * bld_base,
257 LLVMValueRef total_emitted_vertices_vec,
258 LLVMValueRef emitted_prims_vec);
259
260 };
261
262 struct swr_gs_llvm_iface {
263 struct lp_build_tgsi_gs_iface base;
264 struct tgsi_shader_info *info;
265
266 BuilderSWR *pBuilder;
267
268 Value *pGsCtx;
269 SWR_GS_STATE *pGsState;
270 uint32_t num_outputs;
271 uint32_t num_verts_per_prim;
272
273 Value *pVtxAttribMap;
274 };
275
276 // trampoline functions so we can use the builder llvm construction methods
277 static LLVMValueRef
278 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
279 struct lp_build_tgsi_context * bld_base,
280 boolean is_vindex_indirect,
281 LLVMValueRef vertex_index,
282 boolean is_aindex_indirect,
283 LLVMValueRef attrib_index,
284 LLVMValueRef swizzle_index)
285 {
286 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
287
288 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
289 is_vindex_indirect,
290 vertex_index,
291 is_aindex_indirect,
292 attrib_index,
293 swizzle_index);
294 }
295
296 static void
297 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
298 struct lp_build_tgsi_context * bld_base,
299 LLVMValueRef (*outputs)[4],
300 LLVMValueRef emitted_vertices_vec)
301 {
302 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
303
304 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
305 outputs,
306 emitted_vertices_vec);
307 }
308
309 static void
310 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
311 struct lp_build_tgsi_context * bld_base,
312 LLVMValueRef verts_per_prim_vec,
313 LLVMValueRef emitted_prims_vec)
314 {
315 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
316
317 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
318 verts_per_prim_vec,
319 emitted_prims_vec);
320 }
321
322 static void
323 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
324 struct lp_build_tgsi_context * bld_base,
325 LLVMValueRef total_emitted_vertices_vec,
326 LLVMValueRef emitted_prims_vec)
327 {
328 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
329
330 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
331 total_emitted_vertices_vec,
332 emitted_prims_vec);
333 }
334
335 LLVMValueRef
336 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
337 struct lp_build_tgsi_context * bld_base,
338 boolean is_vindex_indirect,
339 LLVMValueRef vertex_index,
340 boolean is_aindex_indirect,
341 LLVMValueRef attrib_index,
342 LLVMValueRef swizzle_index)
343 {
344 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
345 Value *vert_index = unwrap(vertex_index);
346 Value *attr_index = unwrap(attrib_index);
347
348 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
349
350 if (is_vindex_indirect || is_aindex_indirect) {
351 int i;
352 Value *res = unwrap(bld_base->base.zero);
353 struct lp_type type = bld_base->base.type;
354
355 for (i = 0; i < type.length; i++) {
356 Value *vert_chan_index = vert_index;
357 Value *attr_chan_index = attr_index;
358
359 if (is_vindex_indirect) {
360 vert_chan_index = VEXTRACT(vert_index, C(i));
361 }
362 if (is_aindex_indirect) {
363 attr_chan_index = VEXTRACT(attr_index, C(i));
364 }
365
366 Value *attrib =
367 LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_chan_index}));
368
369 Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
370 Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
371
372 Value *pVector = ADD(MUL(vert_chan_index, pInputVertStride), attrib);
373 Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
374
375 Value *value = VEXTRACT(pInput, C(i));
376 res = VINSERT(res, value, C(i));
377 }
378
379 return wrap(res);
380 } else {
381 Value *attrib = LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_index}));
382
383 Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
384 Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
385
386 Value *pVector = ADD(MUL(vert_index, pInputVertStride), attrib);
387
388 Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
389
390 return wrap(pInput);
391 }
392 }
393
394 // GS output stream layout
395 #define VERTEX_COUNT_SIZE 32
396 #define CONTROL_HEADER_SIZE (8*32)
397
398 void
399 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
400 struct lp_build_tgsi_context * bld_base,
401 LLVMValueRef (*outputs)[4],
402 LLVMValueRef emitted_vertices_vec)
403 {
404 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
405
406 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
407
408 const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
409 const uint32_t attribSize = 4 * sizeof(float);
410 const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
411 Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
412
413 Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
414 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
415
416 Value *pStack = STACKSAVE();
417 Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
418
419 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
420 uint32_t attribSlot = attrib;
421 uint32_t sgvChannel = 0;
422 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
423 attribSlot = VERTEX_SGV_SLOT;
424 sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
425 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
426 attribSlot = VERTEX_SGV_SLOT;
427 sgvChannel = VERTEX_SGV_RTAI_COMP;
428 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_VIEWPORT_INDEX) {
429 attribSlot = VERTEX_SGV_SLOT;
430 sgvChannel = VERTEX_SGV_VAI_COMP;
431 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
432 attribSlot = VERTEX_POSITION_SLOT;
433 } else {
434 attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
435 if (iface->info->writes_position) {
436 attribSlot--;
437 }
438 }
439
440 Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
441
442 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
443 Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
444 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
445 Value *pStreamOffset = GEP(pStream, pLaneOffset);
446 pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
447
448 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
449 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
450
451 for (uint32_t channel = 0; channel < 4; ++channel) {
452 Value *vData;
453
454 if (attribSlot == VERTEX_SGV_SLOT)
455 vData = LOAD(unwrap(outputs[attrib][0]));
456 else
457 vData = LOAD(unwrap(outputs[attrib][channel]));
458
459 if (attribSlot != VERTEX_SGV_SLOT ||
460 sgvChannel == channel) {
461 vData = VEXTRACT(vData, C(lane));
462 STORE(vData, pStreamOffset);
463 }
464 pStreamOffset = GEP(pStreamOffset, C(1));
465 }
466 }
467 }
468
469 STACKRESTORE(pStack);
470 }
471
472 void
473 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
474 struct lp_build_tgsi_context * bld_base,
475 LLVMValueRef verts_per_prim_vec,
476 LLVMValueRef emitted_prims_vec)
477 {
478 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
479
480 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
481
482 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
483 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
484
485 uint32_t vertsPerPrim = iface->num_verts_per_prim;
486
487 Value *vCount =
488 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
489 unwrap(verts_per_prim_vec));
490
491 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
492 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
493
494 struct lp_exec_mask *exec_mask = &bld->exec_mask;
495 Value *mask = unwrap(lp_build_mask_value(bld->mask));
496 if (exec_mask->has_mask)
497 mask = AND(mask, unwrap(exec_mask->exec_mask));
498
499 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
500 mask = AND(mask, cmpMask);
501 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
502
503 vCount = SUB(vCount, VIMMED1(1));
504 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
505 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
506
507 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
508
509 Value *pStack = STACKSAVE();
510 Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
511
512 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
513 Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
514 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
515 Value *pStreamOffset = GEP(pStream, vLaneOffset);
516
517 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
518 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
519
520 Value *vVal = LOAD(pStreamOffset);
521 vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
522 STORE(vVal, pStreamOffset);
523 }
524
525 STACKRESTORE(pStack);
526 }
527
528 void
529 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
530 struct lp_build_tgsi_context * bld_base,
531 LLVMValueRef total_emitted_vertices_vec,
532 LLVMValueRef emitted_prims_vec)
533 {
534 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
535
536 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
537
538 // Store emit count to each output stream in the first DWORD
539 for (uint32_t lane = 0; lane < mVWidth; ++lane)
540 {
541 Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
542 pStream = BITCAST(pStream, mInt32PtrTy);
543 Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
544 STORE(pLaneCount, pStream);
545 }
546 }
547
548 PFN_GS_FUNC
549 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
550 {
551 SWR_GS_STATE *pGS = &ctx->gs->gsState;
552 struct tgsi_shader_info *info = &ctx->gs->info.base;
553
554 memset(pGS, 0, sizeof(*pGS));
555
556 pGS->gsEnable = true;
557
558 pGS->numInputAttribs = info->num_inputs;
559 pGS->outputTopology =
560 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
561 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
562 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
563
564 // XXX: single stream for now...
565 pGS->isSingleStream = true;
566 pGS->singleStreamID = 0;
567
568 pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
569 pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
570 pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
571 pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
572 pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
573 pGS->controlDataOffset = VERTEX_COUNT_SIZE;
574 pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
575
576 pGS->allocationSize =
577 VERTEX_COUNT_SIZE + // vertex count
578 CONTROL_HEADER_SIZE + // control header
579 (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
580 pGS->maxNumVerts; // num verts
581
582 struct swr_geometry_shader *gs = ctx->gs;
583
584 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
585 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
586
587 memset(outputs, 0, sizeof(outputs));
588
589 AttrBuilder attrBuilder;
590 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
591
592 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
593 PointerType::get(mInt8Ty, 0),
594 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
595 FunctionType *vsFuncType =
596 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
597
598 // create new vertex shader function
599 auto pFunction = Function::Create(vsFuncType,
600 GlobalValue::ExternalLinkage,
601 "GS",
602 JM()->mpCurrentModule);
603 #if HAVE_LLVM < 0x0500
604 AttributeSet attrSet = AttributeSet::get(
605 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
606 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
607 #else
608 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
609 #endif
610
611 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
612 IRB()->SetInsertPoint(block);
613 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
614
615 auto argitr = pFunction->arg_begin();
616 Value *hPrivateData = &*argitr++;
617 hPrivateData->setName("hPrivateData");
618 Value *pWorkerData = &*argitr++;
619 pWorkerData->setName("pWorkerData");
620 Value *pGsCtx = &*argitr++;
621 pGsCtx->setName("gsCtx");
622
623 Value *consts_ptr =
624 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
625 consts_ptr->setName("gs_constants");
626 Value *const_sizes_ptr =
627 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
628 const_sizes_ptr->setName("num_gs_constants");
629
630 struct lp_build_sampler_soa *sampler =
631 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
632
633 struct lp_bld_tgsi_system_values system_values;
634 memset(&system_values, 0, sizeof(system_values));
635 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
636 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
637
638 std::vector<Constant*> mapConstants;
639 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
640 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
641 ubyte semantic_name = info->input_semantic_name[slot];
642 ubyte semantic_idx = info->input_semantic_index[slot];
643
644 unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
645
646 vs_slot += VERTEX_ATTRIB_START_SLOT;
647
648 if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
649 vs_slot--;
650
651 if (semantic_name == TGSI_SEMANTIC_POSITION)
652 vs_slot = VERTEX_POSITION_SLOT;
653
654 STORE(C(vs_slot), vtxAttribMap, {0, slot});
655 mapConstants.push_back(C(vs_slot));
656 }
657
658 struct lp_build_mask_context mask;
659 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
660 lp_build_mask_begin(&mask, gallivm,
661 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
662
663 // zero out cut buffer so we can load/modify/store bits
664 for (uint32_t lane = 0; lane < mVWidth; ++lane)
665 {
666 Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
667 MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
668 }
669
670 struct swr_gs_llvm_iface gs_iface;
671 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
672 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
673 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
674 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
675 gs_iface.pBuilder = this;
676 gs_iface.pGsCtx = pGsCtx;
677 gs_iface.pGsState = pGS;
678 gs_iface.num_outputs = gs->info.base.num_outputs;
679 gs_iface.num_verts_per_prim =
680 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
681 gs_iface.info = info;
682 gs_iface.pVtxAttribMap = vtxAttribMap;
683
684 struct lp_build_tgsi_params params;
685 memset(&params, 0, sizeof(params));
686 params.type = lp_type_float_vec(32, 32 * 8);
687 params.mask = & mask;
688 params.consts_ptr = wrap(consts_ptr);
689 params.const_sizes_ptr = wrap(const_sizes_ptr);
690 params.system_values = &system_values;
691 params.inputs = inputs;
692 params.context_ptr = wrap(hPrivateData);
693 params.sampler = sampler;
694 params.info = &gs->info.base;
695 params.gs_iface = &gs_iface.base;
696
697 lp_build_tgsi_soa(gallivm,
698 gs->pipe.tokens,
699 &params,
700 outputs);
701
702 lp_build_mask_end(&mask);
703
704 sampler->destroy(sampler);
705
706 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
707
708 RET_VOID();
709
710 gallivm_verify_function(gallivm, wrap(pFunction));
711 gallivm_compile_module(gallivm);
712
713 PFN_GS_FUNC pFunc =
714 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
715
716 debug_printf("geom shader %p\n", pFunc);
717 assert(pFunc && "Error: GeomShader = NULL");
718
719 JM()->mIsModuleFinalized = true;
720
721 return pFunc;
722 }
723
724 PFN_GS_FUNC
725 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
726 {
727 BuilderSWR builder(
728 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
729 "GS");
730 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
731
732 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
733 return func;
734 }
735
736 void
737 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
738 {
739 #if USE_SIMD16_FRONTEND && !USE_SIMD16_VS
740 // interleave the simdvertex components into the dest simd16vertex
741 // slot16offset = slot8offset * 2
742 // comp16offset = comp8offset * 2 + alternateOffset
743
744 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
745 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
746 STORE(pVal, pOut, {channel * 2});
747 #else
748 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
749 STORE(pVal, pOut, {0, channel});
750 #endif
751 }
752
753 PFN_VERTEX_FUNC
754 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
755 {
756 struct swr_vertex_shader *swr_vs = ctx->vs;
757
758 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
759 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
760
761 memset(outputs, 0, sizeof(outputs));
762
763 AttrBuilder attrBuilder;
764 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
765
766 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
767 PointerType::get(mInt8Ty, 0),
768 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
769 FunctionType *vsFuncType =
770 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
771
772 // create new vertex shader function
773 auto pFunction = Function::Create(vsFuncType,
774 GlobalValue::ExternalLinkage,
775 "VS",
776 JM()->mpCurrentModule);
777 #if HAVE_LLVM < 0x0500
778 AttributeSet attrSet = AttributeSet::get(
779 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
780 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
781 #else
782 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
783 #endif
784
785 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
786 IRB()->SetInsertPoint(block);
787 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
788
789 auto argitr = pFunction->arg_begin();
790 Value *hPrivateData = &*argitr++;
791 hPrivateData->setName("hPrivateData");
792 Value *pWorkerData = &*argitr++;
793 pWorkerData->setName("pWorkerData");
794 Value *pVsCtx = &*argitr++;
795 pVsCtx->setName("vsCtx");
796
797 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
798
799 consts_ptr->setName("vs_constants");
800 Value *const_sizes_ptr =
801 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
802 const_sizes_ptr->setName("num_vs_constants");
803
804 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
805 #if USE_SIMD16_VS
806 vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0));
807 #endif
808
809 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
810 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
811 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
812 if (mask & (1 << channel)) {
813 inputs[attrib][channel] =
814 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
815 }
816 }
817 }
818
819 struct lp_build_sampler_soa *sampler =
820 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
821
822 struct lp_bld_tgsi_system_values system_values;
823 memset(&system_values, 0, sizeof(system_values));
824 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
825
826 #if USE_SIMD16_VS
827 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID16}));
828 #else
829 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
830 #endif
831
832 #if USE_SIMD16_VS
833 uint32_t vectorWidth = mVWidth16;
834 #else
835 uint32_t vectorWidth = mVWidth;
836 #endif
837
838 struct lp_build_tgsi_params params;
839 memset(&params, 0, sizeof(params));
840 params.type = lp_type_float_vec(32, 32 * vectorWidth);
841 params.consts_ptr = wrap(consts_ptr);
842 params.const_sizes_ptr = wrap(const_sizes_ptr);
843 params.system_values = &system_values;
844 params.inputs = inputs;
845 params.context_ptr = wrap(hPrivateData);
846 params.sampler = sampler;
847 params.info = &swr_vs->info.base;
848
849 lp_build_tgsi_soa(gallivm,
850 swr_vs->pipe.tokens,
851 &params,
852 outputs);
853
854 sampler->destroy(sampler);
855
856 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
857
858 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
859 #if USE_SIMD16_VS
860 vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0));
861 #endif
862
863 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
864 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
865 if (!outputs[attrib][channel])
866 continue;
867
868 Value *val;
869 uint32_t outSlot;
870
871 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
872 if (channel != VERTEX_SGV_POINT_SIZE_COMP)
873 continue;
874 val = LOAD(unwrap(outputs[attrib][0]));
875 outSlot = VERTEX_SGV_SLOT;
876 } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
877 val = LOAD(unwrap(outputs[attrib][channel]));
878 outSlot = VERTEX_POSITION_SLOT;
879 } else {
880 val = LOAD(unwrap(outputs[attrib][channel]));
881 outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
882 if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
883 outSlot--;
884 }
885
886 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
887 }
888 }
889
890 if (ctx->rasterizer->clip_plane_enable ||
891 swr_vs->info.base.culldist_writemask) {
892 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
893
894 unsigned cv = 0;
895 if (swr_vs->info.base.writes_clipvertex) {
896 cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
897 &swr_vs->info.base);
898 } else {
899 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
900 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
901 swr_vs->info.base.output_semantic_index[i] == 0) {
902 cv = i;
903 break;
904 }
905 }
906 }
907 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
908 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
909 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
910 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
911
912 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
913 // clip distance overrides user clip planes
914 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
915 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
916 unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
917 &swr_vs->info.base);
918 if (val < 4) {
919 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
920 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
921 } else {
922 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
923 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
924 }
925 continue;
926 }
927
928 if (!(clip_mask & (1 << val)))
929 continue;
930
931 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
932 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
933 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
934 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
935 #if USE_SIMD16_VS
936 Value *bpx = VBROADCAST_16(px);
937 Value *bpy = VBROADCAST_16(py);
938 Value *bpz = VBROADCAST_16(pz);
939 Value *bpw = VBROADCAST_16(pw);
940 #else
941 Value *bpx = VBROADCAST(px);
942 Value *bpy = VBROADCAST(py);
943 Value *bpz = VBROADCAST(pz);
944 Value *bpw = VBROADCAST(pw);
945 #endif
946 Value *dist = FADD(FMUL(unwrap(cx), bpx),
947 FADD(FMUL(unwrap(cy), bpy),
948 FADD(FMUL(unwrap(cz), bpz),
949 FMUL(unwrap(cw), bpw))));
950
951 if (val < 4)
952 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
953 else
954 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
955 }
956 }
957
958 RET_VOID();
959
960 gallivm_verify_function(gallivm, wrap(pFunction));
961 gallivm_compile_module(gallivm);
962
963 // lp_debug_dump_value(func);
964
965 PFN_VERTEX_FUNC pFunc =
966 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
967
968 debug_printf("vert shader %p\n", pFunc);
969 assert(pFunc && "Error: VertShader = NULL");
970
971 JM()->mIsModuleFinalized = true;
972
973 return pFunc;
974 }
975
976 PFN_VERTEX_FUNC
977 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
978 {
979 if (!ctx->vs->pipe.tokens)
980 return NULL;
981
982 BuilderSWR builder(
983 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
984 "VS");
985 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
986
987 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
988 return func;
989 }
990
991 unsigned
992 swr_so_adjust_attrib(unsigned in_attrib,
993 swr_vertex_shader *swr_vs)
994 {
995 ubyte semantic_name;
996 unsigned attrib;
997
998 attrib = in_attrib + VERTEX_ATTRIB_START_SLOT;
999
1000 if (swr_vs) {
1001 semantic_name = swr_vs->info.base.output_semantic_name[in_attrib];
1002 if (semantic_name == TGSI_SEMANTIC_POSITION) {
1003 attrib = VERTEX_POSITION_SLOT;
1004 } else if (semantic_name == TGSI_SEMANTIC_PSIZE) {
1005 attrib = VERTEX_SGV_SLOT;
1006 } else if (semantic_name == TGSI_SEMANTIC_LAYER) {
1007 attrib = VERTEX_SGV_SLOT;
1008 } else {
1009 if (swr_vs->info.base.writes_position) {
1010 attrib--;
1011 }
1012 }
1013 }
1014
1015 return attrib;
1016 }
1017
1018 static unsigned
1019 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
1020 {
1021 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1022 if ((info->output_semantic_name[i] == name)
1023 && (info->output_semantic_index[i] == index)) {
1024 return i;
1025 }
1026 }
1027
1028 return 0xFFFFFFFF;
1029 }
1030
1031 PFN_PIXEL_KERNEL
1032 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
1033 {
1034 struct swr_fragment_shader *swr_fs = ctx->fs;
1035
1036 struct tgsi_shader_info *pPrevShader;
1037 if (ctx->gs)
1038 pPrevShader = &ctx->gs->info.base;
1039 else
1040 pPrevShader = &ctx->vs->info.base;
1041
1042 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
1043 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
1044
1045 memset(inputs, 0, sizeof(inputs));
1046 memset(outputs, 0, sizeof(outputs));
1047
1048 struct lp_build_sampler_soa *sampler = NULL;
1049
1050 AttrBuilder attrBuilder;
1051 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
1052
1053 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
1054 PointerType::get(mInt8Ty, 0),
1055 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
1056 FunctionType *funcType =
1057 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
1058
1059 auto pFunction = Function::Create(funcType,
1060 GlobalValue::ExternalLinkage,
1061 "FS",
1062 JM()->mpCurrentModule);
1063 #if HAVE_LLVM < 0x0500
1064 AttributeSet attrSet = AttributeSet::get(
1065 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
1066 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
1067 #else
1068 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
1069 #endif
1070
1071 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
1072 IRB()->SetInsertPoint(block);
1073 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
1074
1075 auto args = pFunction->arg_begin();
1076 Value *hPrivateData = &*args++;
1077 hPrivateData->setName("hPrivateData");
1078 Value *pWorkerData = &*args++;
1079 pWorkerData->setName("pWorkerData");
1080 Value *pPS = &*args++;
1081 pPS->setName("psCtx");
1082
1083 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
1084 consts_ptr->setName("fs_constants");
1085 Value *const_sizes_ptr =
1086 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
1087 const_sizes_ptr->setName("num_fs_constants");
1088
1089 // load *pAttribs, *pPerspAttribs
1090 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
1091 Value *pPerspAttribs =
1092 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
1093
1094 swr_fs->constantMask = 0;
1095 swr_fs->flatConstantMask = 0;
1096 swr_fs->pointSpriteMask = 0;
1097
1098 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1099 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1100 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1101 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1102
1103 if (!mask)
1104 continue;
1105
1106 // load i,j
1107 Value *vi = nullptr, *vj = nullptr;
1108 switch (interpLoc) {
1109 case TGSI_INTERPOLATE_LOC_CENTER:
1110 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1111 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1112 break;
1113 case TGSI_INTERPOLATE_LOC_CENTROID:
1114 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1115 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1116 break;
1117 case TGSI_INTERPOLATE_LOC_SAMPLE:
1118 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1119 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1120 break;
1121 }
1122
1123 // load/compute w
1124 Value *vw = nullptr, *pAttribs;
1125 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1126 interpMode == TGSI_INTERPOLATE_COLOR) {
1127 pAttribs = pPerspAttribs;
1128 switch (interpLoc) {
1129 case TGSI_INTERPOLATE_LOC_CENTER:
1130 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1131 break;
1132 case TGSI_INTERPOLATE_LOC_CENTROID:
1133 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1134 break;
1135 case TGSI_INTERPOLATE_LOC_SAMPLE:
1136 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1137 break;
1138 }
1139 } else {
1140 pAttribs = pRawAttribs;
1141 vw = VIMMED1(1.f);
1142 }
1143
1144 vw->setName("w");
1145
1146 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1147 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1148
1149 if (semantic_name == TGSI_SEMANTIC_FACE) {
1150 Value *ff =
1151 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1152 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1153 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1154
1155 inputs[attrib][0] = wrap(ff);
1156 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1157 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1158 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1159 continue;
1160 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1161 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1162 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1163 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1164 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1165 } else {
1166 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1167 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1168 }
1169 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1170 inputs[attrib][3] =
1171 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1172 continue;
1173 }
1174
1175 unsigned linkedAttrib =
1176 locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1177
1178 uint32_t extraAttribs = 0;
1179 if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1180 /* non-gs generated primID - need to grab from swizzleMap override */
1181 linkedAttrib = pPrevShader->num_outputs - 1;
1182 swr_fs->constantMask |= 1 << linkedAttrib;
1183 extraAttribs++;
1184 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1185 key.sprite_coord_enable & (1 << semantic_idx)) {
1186 /* we add an extra attrib to the backendState in swr_update_derived. */
1187 linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1188 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1189 extraAttribs++;
1190 } else if (linkedAttrib == 0xFFFFFFFF) {
1191 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1192 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1193 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1194 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1195 /* If we're reading in color and 2-sided lighting is enabled, we have
1196 * to keep going.
1197 */
1198 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1199 continue;
1200 } else {
1201 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1202 swr_fs->constantMask |= 1 << linkedAttrib;
1203 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1204 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1205 }
1206 }
1207
1208 unsigned bcolorAttrib = 0xFFFFFFFF;
1209 Value *offset = NULL;
1210 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1211 bcolorAttrib = locate_linkage(
1212 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1213 /* Neither front nor back colors were available. Nothing to load. */
1214 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1215 continue;
1216 /* If there is no front color, just always use the back color. */
1217 if (linkedAttrib == 0xFFFFFFFF)
1218 linkedAttrib = bcolorAttrib;
1219
1220 if (bcolorAttrib != 0xFFFFFFFF) {
1221 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1222 swr_fs->constantMask |= 1 << bcolorAttrib;
1223 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1224 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1225 }
1226
1227 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1228
1229 if (diff) {
1230 Value *back =
1231 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1232
1233 offset = MUL(back, C(diff));
1234 offset->setName("offset");
1235 }
1236 }
1237 }
1238
1239 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1240 if (mask & (1 << channel)) {
1241 Value *indexA = C(linkedAttrib * 12 + channel);
1242 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1243 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1244
1245 if (offset) {
1246 indexA = ADD(indexA, offset);
1247 indexB = ADD(indexB, offset);
1248 indexC = ADD(indexC, offset);
1249 }
1250
1251 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1252 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1253 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1254
1255 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1256 inputs[attrib][channel] = wrap(va);
1257 } else {
1258 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1259
1260 vc = FMUL(vk, vc);
1261
1262 Value *interp = FMUL(va, vi);
1263 Value *interp1 = FMUL(vb, vj);
1264 interp = FADD(interp, interp1);
1265 interp = FADD(interp, vc);
1266 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1267 interpMode == TGSI_INTERPOLATE_COLOR)
1268 interp = FMUL(interp, vw);
1269 inputs[attrib][channel] = wrap(interp);
1270 }
1271 }
1272 }
1273 }
1274
1275 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1276
1277 struct lp_bld_tgsi_system_values system_values;
1278 memset(&system_values, 0, sizeof(system_values));
1279
1280 struct lp_build_mask_context mask;
1281 bool uses_mask = false;
1282
1283 if (swr_fs->info.base.uses_kill ||
1284 key.poly_stipple_enable) {
1285 Value *vActiveMask = NULL;
1286 if (swr_fs->info.base.uses_kill) {
1287 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1288 }
1289 if (key.poly_stipple_enable) {
1290 // first get fragment xy coords and clip to stipple bounds
1291 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1292 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1293 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1294 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1295
1296 // stipple pattern is 32x32, which means that one line of stipple
1297 // is stored in one word:
1298 // vXstipple is bit offset inside 32-bit stipple word
1299 // vYstipple is word index is stipple array
1300 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1301 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1302
1303 // grab stipple pattern base address
1304 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1305 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1306
1307 // peform a gather to grab stipple words for each lane
1308 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1309 VIMMED1(0xffffffff), 4);
1310
1311 // create a mask with one bit corresponding to the x stipple
1312 // and AND it with the pattern, to see if we have a bit
1313 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1314 Value *vStippleMask = AND(vStipple, vBitMask);
1315 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1316 vStippleMask = VMASK(vStippleMask);
1317
1318 if (swr_fs->info.base.uses_kill) {
1319 vActiveMask = AND(vActiveMask, vStippleMask);
1320 } else {
1321 vActiveMask = vStippleMask;
1322 }
1323 }
1324 lp_build_mask_begin(
1325 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1326 uses_mask = true;
1327 }
1328
1329 struct lp_build_tgsi_params params;
1330 memset(&params, 0, sizeof(params));
1331 params.type = lp_type_float_vec(32, 32 * 8);
1332 params.mask = uses_mask ? &mask : NULL;
1333 params.consts_ptr = wrap(consts_ptr);
1334 params.const_sizes_ptr = wrap(const_sizes_ptr);
1335 params.system_values = &system_values;
1336 params.inputs = inputs;
1337 params.context_ptr = wrap(hPrivateData);
1338 params.sampler = sampler;
1339 params.info = &swr_fs->info.base;
1340
1341 lp_build_tgsi_soa(gallivm,
1342 swr_fs->pipe.tokens,
1343 &params,
1344 outputs);
1345
1346 sampler->destroy(sampler);
1347
1348 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1349
1350 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1351 attrib++) {
1352 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1353 case TGSI_SEMANTIC_POSITION: {
1354 // write z
1355 LLVMValueRef outZ =
1356 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1357 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1358 break;
1359 }
1360 case TGSI_SEMANTIC_COLOR: {
1361 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1362 if (!outputs[attrib][channel])
1363 continue;
1364
1365 LLVMValueRef out =
1366 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1367 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1368 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1369 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1370 STORE(unwrap(out),
1371 pPS,
1372 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1373 }
1374 } else {
1375 STORE(unwrap(out),
1376 pPS,
1377 {0,
1378 SWR_PS_CONTEXT_shaded,
1379 swr_fs->info.base.output_semantic_index[attrib],
1380 channel});
1381 }
1382 }
1383 break;
1384 }
1385 default: {
1386 fprintf(stderr,
1387 "unknown output from FS %s[%d]\n",
1388 tgsi_semantic_names[swr_fs->info.base
1389 .output_semantic_name[attrib]],
1390 swr_fs->info.base.output_semantic_index[attrib]);
1391 break;
1392 }
1393 }
1394 }
1395
1396 LLVMValueRef mask_result = 0;
1397 if (uses_mask) {
1398 mask_result = lp_build_mask_end(&mask);
1399 }
1400
1401 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1402
1403 if (uses_mask) {
1404 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1405 }
1406
1407 RET_VOID();
1408
1409 gallivm_verify_function(gallivm, wrap(pFunction));
1410
1411 gallivm_compile_module(gallivm);
1412
1413 // after the gallivm passes, we have to lower the core's intrinsics
1414 llvm::legacy::FunctionPassManager lowerPass(JM()->mpCurrentModule);
1415 lowerPass.add(createLowerX86Pass(this));
1416 lowerPass.run(*pFunction);
1417
1418 PFN_PIXEL_KERNEL kernel =
1419 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1420 debug_printf("frag shader %p\n", kernel);
1421 assert(kernel && "Error: FragShader = NULL");
1422
1423 JM()->mIsModuleFinalized = true;
1424
1425 return kernel;
1426 }
1427
1428 PFN_PIXEL_KERNEL
1429 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1430 {
1431 if (!ctx->fs->pipe.tokens)
1432 return NULL;
1433
1434 BuilderSWR builder(
1435 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1436 "FS");
1437 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1438
1439 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1440 return func;
1441 }