6ea021a987eaebe4f33e9d576e8c302a50cbb082
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/IR/LegacyPassManager.h"
31 #pragma pop_macro("DEBUG")
32
33 #include "state.h"
34 #include "gen_state_llvm.h"
35 #include "builder.h"
36 #include "functionpasses/passes.h"
37
38 #include "tgsi/tgsi_strings.h"
39 #include "util/u_format.h"
40 #include "util/u_prim.h"
41 #include "gallivm/lp_bld_init.h"
42 #include "gallivm/lp_bld_flow.h"
43 #include "gallivm/lp_bld_struct.h"
44 #include "gallivm/lp_bld_tgsi.h"
45
46 #include "swr_context.h"
47 #include "gen_swr_context_llvm.h"
48 #include "swr_resource.h"
49 #include "swr_state.h"
50 #include "swr_screen.h"
51
52 using namespace SwrJit;
53 using namespace llvm;
54
55 static unsigned
56 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
57
58 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
59 {
60 return !memcmp(&lhs, &rhs, sizeof(lhs));
61 }
62
63 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
64 {
65 return !memcmp(&lhs, &rhs, sizeof(lhs));
66 }
67
68 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
69 {
70 return !memcmp(&lhs, &rhs, sizeof(lhs));
71 }
72
73 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
74 {
75 return !memcmp(&lhs, &rhs, sizeof(lhs));
76 }
77
78 static void
79 swr_generate_sampler_key(const struct lp_tgsi_info &info,
80 struct swr_context *ctx,
81 enum pipe_shader_type shader_type,
82 struct swr_jit_sampler_key &key)
83 {
84 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
85
86 for (unsigned i = 0; i < key.nr_samplers; i++) {
87 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
88 lp_sampler_static_sampler_state(
89 &key.sampler[i].sampler_state,
90 ctx->samplers[shader_type][i]);
91 }
92 }
93
94 /*
95 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
96 * are dx10-style? Can't really have mixed opcodes, at least not
97 * if we want to skip the holes here (without rescanning tgsi).
98 */
99 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
100 key.nr_sampler_views =
101 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
102 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
103 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
104 const struct pipe_sampler_view *view =
105 ctx->sampler_views[shader_type][i];
106 lp_sampler_static_texture_state(
107 &key.sampler[i].texture_state, view);
108 if (view) {
109 struct swr_resource *swr_res = swr_resource(view->texture);
110 const struct util_format_description *desc =
111 util_format_description(view->format);
112 if (swr_res->has_depth && swr_res->has_stencil &&
113 !util_format_has_depth(desc))
114 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
115 }
116 }
117 }
118 } else {
119 key.nr_sampler_views = key.nr_samplers;
120 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
121 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
122 const struct pipe_sampler_view *view =
123 ctx->sampler_views[shader_type][i];
124 lp_sampler_static_texture_state(
125 &key.sampler[i].texture_state, view);
126 if (view) {
127 struct swr_resource *swr_res = swr_resource(view->texture);
128 const struct util_format_description *desc =
129 util_format_description(view->format);
130 if (swr_res->has_depth && swr_res->has_stencil &&
131 !util_format_has_depth(desc))
132 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
133 }
134 }
135 }
136 }
137 }
138
139 void
140 swr_generate_fs_key(struct swr_jit_fs_key &key,
141 struct swr_context *ctx,
142 swr_fragment_shader *swr_fs)
143 {
144 memset(&key, 0, sizeof(key));
145
146 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
147 key.light_twoside = ctx->rasterizer->light_twoside;
148 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
149
150 struct tgsi_shader_info *pPrevShader;
151 if (ctx->gs)
152 pPrevShader = &ctx->gs->info.base;
153 else
154 pPrevShader = &ctx->vs->info.base;
155
156 memcpy(&key.vs_output_semantic_name,
157 &pPrevShader->output_semantic_name,
158 sizeof(key.vs_output_semantic_name));
159 memcpy(&key.vs_output_semantic_idx,
160 &pPrevShader->output_semantic_index,
161 sizeof(key.vs_output_semantic_idx));
162
163 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
164
165 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
166 ctx->poly_stipple.prim_is_poly;
167 }
168
169 void
170 swr_generate_vs_key(struct swr_jit_vs_key &key,
171 struct swr_context *ctx,
172 swr_vertex_shader *swr_vs)
173 {
174 memset(&key, 0, sizeof(key));
175
176 key.clip_plane_mask =
177 swr_vs->info.base.clipdist_writemask ?
178 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
179 ctx->rasterizer->clip_plane_enable;
180
181 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
182 }
183
184 void
185 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
186 struct swr_vertex_element_state *velems)
187 {
188 memset(&key, 0, sizeof(key));
189
190 key.fsState = velems->fsState;
191 }
192
193 void
194 swr_generate_gs_key(struct swr_jit_gs_key &key,
195 struct swr_context *ctx,
196 swr_geometry_shader *swr_gs)
197 {
198 memset(&key, 0, sizeof(key));
199
200 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
201
202 memcpy(&key.vs_output_semantic_name,
203 &pPrevShader->output_semantic_name,
204 sizeof(key.vs_output_semantic_name));
205 memcpy(&key.vs_output_semantic_idx,
206 &pPrevShader->output_semantic_index,
207 sizeof(key.vs_output_semantic_idx));
208
209 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
210 }
211
212 struct BuilderSWR : public Builder {
213 BuilderSWR(JitManager *pJitMgr, const char *pName)
214 : Builder(pJitMgr)
215 {
216 pJitMgr->SetupNewModule();
217 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
218 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
219 }
220
221 ~BuilderSWR() {
222 gallivm_free_ir(gallivm);
223 }
224
225 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
226 unsigned slot, unsigned channel);
227
228 struct gallivm_state *gallivm;
229 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
230 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
231 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
232
233 LLVMValueRef
234 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
235 struct lp_build_tgsi_context * bld_base,
236 boolean is_vindex_indirect,
237 LLVMValueRef vertex_index,
238 boolean is_aindex_indirect,
239 LLVMValueRef attrib_index,
240 LLVMValueRef swizzle_index);
241 void
242 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
243 struct lp_build_tgsi_context * bld_base,
244 LLVMValueRef (*outputs)[4],
245 LLVMValueRef emitted_vertices_vec);
246
247 void
248 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
249 struct lp_build_tgsi_context * bld_base,
250 LLVMValueRef verts_per_prim_vec,
251 LLVMValueRef emitted_prims_vec);
252
253 void
254 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
255 struct lp_build_tgsi_context * bld_base,
256 LLVMValueRef total_emitted_vertices_vec,
257 LLVMValueRef emitted_prims_vec);
258
259 };
260
261 struct swr_gs_llvm_iface {
262 struct lp_build_tgsi_gs_iface base;
263 struct tgsi_shader_info *info;
264
265 BuilderSWR *pBuilder;
266
267 Value *pGsCtx;
268 SWR_GS_STATE *pGsState;
269 uint32_t num_outputs;
270 uint32_t num_verts_per_prim;
271
272 Value *pVtxAttribMap;
273 };
274
275 // trampoline functions so we can use the builder llvm construction methods
276 static LLVMValueRef
277 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
278 struct lp_build_tgsi_context * bld_base,
279 boolean is_vindex_indirect,
280 LLVMValueRef vertex_index,
281 boolean is_aindex_indirect,
282 LLVMValueRef attrib_index,
283 LLVMValueRef swizzle_index)
284 {
285 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
286
287 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
288 is_vindex_indirect,
289 vertex_index,
290 is_aindex_indirect,
291 attrib_index,
292 swizzle_index);
293 }
294
295 static void
296 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
297 struct lp_build_tgsi_context * bld_base,
298 LLVMValueRef (*outputs)[4],
299 LLVMValueRef emitted_vertices_vec)
300 {
301 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
302
303 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
304 outputs,
305 emitted_vertices_vec);
306 }
307
308 static void
309 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
310 struct lp_build_tgsi_context * bld_base,
311 LLVMValueRef verts_per_prim_vec,
312 LLVMValueRef emitted_prims_vec)
313 {
314 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
315
316 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
317 verts_per_prim_vec,
318 emitted_prims_vec);
319 }
320
321 static void
322 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
323 struct lp_build_tgsi_context * bld_base,
324 LLVMValueRef total_emitted_vertices_vec,
325 LLVMValueRef emitted_prims_vec)
326 {
327 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
328
329 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
330 total_emitted_vertices_vec,
331 emitted_prims_vec);
332 }
333
334 LLVMValueRef
335 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
336 struct lp_build_tgsi_context * bld_base,
337 boolean is_vindex_indirect,
338 LLVMValueRef vertex_index,
339 boolean is_aindex_indirect,
340 LLVMValueRef attrib_index,
341 LLVMValueRef swizzle_index)
342 {
343 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
344 Value *vert_index = unwrap(vertex_index);
345 Value *attr_index = unwrap(attrib_index);
346
347 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
348
349 if (is_vindex_indirect || is_aindex_indirect) {
350 int i;
351 Value *res = unwrap(bld_base->base.zero);
352 struct lp_type type = bld_base->base.type;
353
354 for (i = 0; i < type.length; i++) {
355 Value *vert_chan_index = vert_index;
356 Value *attr_chan_index = attr_index;
357
358 if (is_vindex_indirect) {
359 vert_chan_index = VEXTRACT(vert_index, C(i));
360 }
361 if (is_aindex_indirect) {
362 attr_chan_index = VEXTRACT(attr_index, C(i));
363 }
364
365 Value *attrib =
366 LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_chan_index}));
367
368 Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
369 Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
370
371 Value *pVector = ADD(MUL(vert_chan_index, pInputVertStride), attrib);
372 Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
373
374 Value *value = VEXTRACT(pInput, C(i));
375 res = VINSERT(res, value, C(i));
376 }
377
378 return wrap(res);
379 } else {
380 Value *attrib = LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_index}));
381
382 Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
383 Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
384
385 Value *pVector = ADD(MUL(vert_index, pInputVertStride), attrib);
386
387 Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
388
389 return wrap(pInput);
390 }
391 }
392
393 // GS output stream layout
394 #define VERTEX_COUNT_SIZE 32
395 #define CONTROL_HEADER_SIZE (8*32)
396
397 void
398 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
399 struct lp_build_tgsi_context * bld_base,
400 LLVMValueRef (*outputs)[4],
401 LLVMValueRef emitted_vertices_vec)
402 {
403 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
404
405 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
406
407 const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
408 const uint32_t attribSize = 4 * sizeof(float);
409 const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
410 Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
411
412 Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
413 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
414
415 Value *pStack = STACKSAVE();
416 Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
417
418 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
419 uint32_t attribSlot = attrib;
420 uint32_t sgvChannel = 0;
421 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
422 attribSlot = VERTEX_SGV_SLOT;
423 sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
424 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
425 attribSlot = VERTEX_SGV_SLOT;
426 sgvChannel = VERTEX_SGV_RTAI_COMP;
427 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
428 attribSlot = VERTEX_POSITION_SLOT;
429 } else {
430 attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
431 if (iface->info->writes_position) {
432 attribSlot--;
433 }
434 }
435
436 Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
437
438 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
439 Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
440 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
441 Value *pStreamOffset = GEP(pStream, pLaneOffset);
442 pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
443
444 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
445 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
446
447 for (uint32_t channel = 0; channel < 4; ++channel) {
448 Value *vData;
449
450 if (attribSlot == VERTEX_SGV_SLOT)
451 vData = LOAD(unwrap(outputs[attrib][0]));
452 else
453 vData = LOAD(unwrap(outputs[attrib][channel]));
454
455 if (attribSlot != VERTEX_SGV_SLOT ||
456 sgvChannel == channel) {
457 vData = VEXTRACT(vData, C(lane));
458 STORE(vData, pStreamOffset);
459 }
460 pStreamOffset = GEP(pStreamOffset, C(1));
461 }
462 }
463 }
464
465 STACKRESTORE(pStack);
466 }
467
468 void
469 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
470 struct lp_build_tgsi_context * bld_base,
471 LLVMValueRef verts_per_prim_vec,
472 LLVMValueRef emitted_prims_vec)
473 {
474 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
475
476 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
477
478 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
479 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
480
481 uint32_t vertsPerPrim = iface->num_verts_per_prim;
482
483 Value *vCount =
484 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
485 unwrap(verts_per_prim_vec));
486
487 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
488 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
489
490 struct lp_exec_mask *exec_mask = &bld->exec_mask;
491 Value *mask = unwrap(lp_build_mask_value(bld->mask));
492 if (exec_mask->has_mask)
493 mask = AND(mask, unwrap(exec_mask->exec_mask));
494
495 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
496 mask = AND(mask, cmpMask);
497 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
498
499 vCount = SUB(vCount, VIMMED1(1));
500 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
501 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
502
503 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
504
505 Value *pStack = STACKSAVE();
506 Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
507
508 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
509 Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
510 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
511 Value *pStreamOffset = GEP(pStream, vLaneOffset);
512
513 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
514 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
515
516 Value *vVal = LOAD(pStreamOffset);
517 vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
518 STORE(vVal, pStreamOffset);
519 }
520
521 STACKRESTORE(pStack);
522 }
523
524 void
525 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
526 struct lp_build_tgsi_context * bld_base,
527 LLVMValueRef total_emitted_vertices_vec,
528 LLVMValueRef emitted_prims_vec)
529 {
530 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
531
532 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
533
534 // Store emit count to each output stream in the first DWORD
535 for (uint32_t lane = 0; lane < mVWidth; ++lane)
536 {
537 Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
538 pStream = BITCAST(pStream, mInt32PtrTy);
539 Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
540 STORE(pLaneCount, pStream);
541 }
542 }
543
544 PFN_GS_FUNC
545 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
546 {
547 SWR_GS_STATE *pGS = &ctx->gs->gsState;
548 struct tgsi_shader_info *info = &ctx->gs->info.base;
549
550 memset(pGS, 0, sizeof(*pGS));
551
552 pGS->gsEnable = true;
553
554 pGS->numInputAttribs = info->num_inputs;
555 pGS->outputTopology =
556 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
557 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
558 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
559
560 // XXX: single stream for now...
561 pGS->isSingleStream = true;
562 pGS->singleStreamID = 0;
563
564 pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
565 pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
566 pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
567 pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
568 pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
569 pGS->controlDataOffset = VERTEX_COUNT_SIZE;
570 pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
571
572 pGS->allocationSize =
573 VERTEX_COUNT_SIZE + // vertex count
574 CONTROL_HEADER_SIZE + // control header
575 (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
576 pGS->maxNumVerts; // num verts
577
578 struct swr_geometry_shader *gs = ctx->gs;
579
580 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
581 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
582
583 memset(outputs, 0, sizeof(outputs));
584
585 AttrBuilder attrBuilder;
586 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
587
588 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
589 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
590 FunctionType *vsFuncType =
591 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
592
593 // create new vertex shader function
594 auto pFunction = Function::Create(vsFuncType,
595 GlobalValue::ExternalLinkage,
596 "GS",
597 JM()->mpCurrentModule);
598 #if HAVE_LLVM < 0x0500
599 AttributeSet attrSet = AttributeSet::get(
600 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
601 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
602 #else
603 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
604 #endif
605
606 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
607 IRB()->SetInsertPoint(block);
608 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
609
610 auto argitr = pFunction->arg_begin();
611 Value *hPrivateData = &*argitr++;
612 hPrivateData->setName("hPrivateData");
613 Value *pGsCtx = &*argitr++;
614 pGsCtx->setName("gsCtx");
615
616 Value *consts_ptr =
617 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
618 consts_ptr->setName("gs_constants");
619 Value *const_sizes_ptr =
620 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
621 const_sizes_ptr->setName("num_gs_constants");
622
623 struct lp_build_sampler_soa *sampler =
624 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
625
626 struct lp_bld_tgsi_system_values system_values;
627 memset(&system_values, 0, sizeof(system_values));
628 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
629 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
630
631 std::vector<Constant*> mapConstants;
632 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
633 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
634 ubyte semantic_name = info->input_semantic_name[slot];
635 ubyte semantic_idx = info->input_semantic_index[slot];
636
637 unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
638
639 vs_slot += VERTEX_ATTRIB_START_SLOT;
640
641 if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
642 vs_slot--;
643
644 if (semantic_name == TGSI_SEMANTIC_POSITION)
645 vs_slot = VERTEX_POSITION_SLOT;
646
647 STORE(C(vs_slot), vtxAttribMap, {0, slot});
648 mapConstants.push_back(C(vs_slot));
649 }
650
651 struct lp_build_mask_context mask;
652 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
653 lp_build_mask_begin(&mask, gallivm,
654 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
655
656 // zero out cut buffer so we can load/modify/store bits
657 for (uint32_t lane = 0; lane < mVWidth; ++lane)
658 {
659 Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
660 MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
661 }
662
663 struct swr_gs_llvm_iface gs_iface;
664 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
665 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
666 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
667 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
668 gs_iface.pBuilder = this;
669 gs_iface.pGsCtx = pGsCtx;
670 gs_iface.pGsState = pGS;
671 gs_iface.num_outputs = gs->info.base.num_outputs;
672 gs_iface.num_verts_per_prim =
673 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
674 gs_iface.info = info;
675 gs_iface.pVtxAttribMap = vtxAttribMap;
676
677 lp_build_tgsi_soa(gallivm,
678 gs->pipe.tokens,
679 lp_type_float_vec(32, 32 * 8),
680 &mask,
681 wrap(consts_ptr),
682 wrap(const_sizes_ptr),
683 &system_values,
684 inputs,
685 outputs,
686 wrap(hPrivateData), // (sampler context)
687 NULL, // thread data
688 sampler,
689 &gs->info.base,
690 &gs_iface.base);
691
692 lp_build_mask_end(&mask);
693
694 sampler->destroy(sampler);
695
696 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
697
698 RET_VOID();
699
700 gallivm_verify_function(gallivm, wrap(pFunction));
701 gallivm_compile_module(gallivm);
702
703 PFN_GS_FUNC pFunc =
704 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
705
706 debug_printf("geom shader %p\n", pFunc);
707 assert(pFunc && "Error: GeomShader = NULL");
708
709 JM()->mIsModuleFinalized = true;
710
711 return pFunc;
712 }
713
714 PFN_GS_FUNC
715 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
716 {
717 BuilderSWR builder(
718 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
719 "GS");
720 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
721
722 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
723 return func;
724 }
725
726 void
727 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
728 {
729 #if USE_SIMD16_FRONTEND && !USE_SIMD16_VS
730 // interleave the simdvertex components into the dest simd16vertex
731 // slot16offset = slot8offset * 2
732 // comp16offset = comp8offset * 2 + alternateOffset
733
734 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
735 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
736 STORE(pVal, pOut, {channel * 2});
737 #else
738 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
739 STORE(pVal, pOut, {0, channel});
740 #endif
741 }
742
743 PFN_VERTEX_FUNC
744 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
745 {
746 struct swr_vertex_shader *swr_vs = ctx->vs;
747
748 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
749 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
750
751 memset(outputs, 0, sizeof(outputs));
752
753 AttrBuilder attrBuilder;
754 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
755
756 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
757 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
758 FunctionType *vsFuncType =
759 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
760
761 // create new vertex shader function
762 auto pFunction = Function::Create(vsFuncType,
763 GlobalValue::ExternalLinkage,
764 "VS",
765 JM()->mpCurrentModule);
766 #if HAVE_LLVM < 0x0500
767 AttributeSet attrSet = AttributeSet::get(
768 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
769 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
770 #else
771 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
772 #endif
773
774 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
775 IRB()->SetInsertPoint(block);
776 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
777
778 auto argitr = pFunction->arg_begin();
779 Value *hPrivateData = &*argitr++;
780 hPrivateData->setName("hPrivateData");
781 Value *pVsCtx = &*argitr++;
782 pVsCtx->setName("vsCtx");
783
784 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
785
786 consts_ptr->setName("vs_constants");
787 Value *const_sizes_ptr =
788 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
789 const_sizes_ptr->setName("num_vs_constants");
790
791 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
792 #if USE_SIMD16_VS
793 vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0));
794 #endif
795
796 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
797 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
798 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
799 if (mask & (1 << channel)) {
800 inputs[attrib][channel] =
801 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
802 }
803 }
804 }
805
806 struct lp_build_sampler_soa *sampler =
807 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
808
809 struct lp_bld_tgsi_system_values system_values;
810 memset(&system_values, 0, sizeof(system_values));
811 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
812
813 #if USE_SIMD16_VS
814 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID16}));
815 #else
816 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
817 #endif
818
819 #if USE_SIMD16_VS
820 uint32_t vectorWidth = mVWidth16;
821 #else
822 uint32_t vectorWidth = mVWidth;
823 #endif
824
825 lp_build_tgsi_soa(gallivm,
826 swr_vs->pipe.tokens,
827 lp_type_float_vec(32, 32 * vectorWidth),
828 NULL, // mask
829 wrap(consts_ptr),
830 wrap(const_sizes_ptr),
831 &system_values,
832 inputs,
833 outputs,
834 wrap(hPrivateData), // (sampler context)
835 NULL, // thread data
836 sampler, // sampler
837 &swr_vs->info.base,
838 NULL); // geometry shader face
839
840 sampler->destroy(sampler);
841
842 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
843
844 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
845 #if USE_SIMD16_VS
846 vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0));
847 #endif
848
849 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
850 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
851 if (!outputs[attrib][channel])
852 continue;
853
854 Value *val;
855 uint32_t outSlot;
856
857 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
858 if (channel != VERTEX_SGV_POINT_SIZE_COMP)
859 continue;
860 val = LOAD(unwrap(outputs[attrib][0]));
861 outSlot = VERTEX_SGV_SLOT;
862 } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
863 val = LOAD(unwrap(outputs[attrib][channel]));
864 outSlot = VERTEX_POSITION_SLOT;
865 } else {
866 val = LOAD(unwrap(outputs[attrib][channel]));
867 outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
868 if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
869 outSlot--;
870 }
871
872 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
873 }
874 }
875
876 if (ctx->rasterizer->clip_plane_enable ||
877 swr_vs->info.base.culldist_writemask) {
878 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
879
880 unsigned cv = 0;
881 if (swr_vs->info.base.writes_clipvertex) {
882 cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
883 &swr_vs->info.base);
884 } else {
885 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
886 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
887 swr_vs->info.base.output_semantic_index[i] == 0) {
888 cv = i;
889 break;
890 }
891 }
892 }
893 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
894 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
895 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
896 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
897
898 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
899 // clip distance overrides user clip planes
900 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
901 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
902 unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
903 &swr_vs->info.base);
904 if (val < 4) {
905 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
906 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
907 } else {
908 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
909 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
910 }
911 continue;
912 }
913
914 if (!(clip_mask & (1 << val)))
915 continue;
916
917 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
918 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
919 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
920 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
921 #if USE_SIMD16_VS
922 Value *bpx = VBROADCAST_16(px);
923 Value *bpy = VBROADCAST_16(py);
924 Value *bpz = VBROADCAST_16(pz);
925 Value *bpw = VBROADCAST_16(pw);
926 #else
927 Value *bpx = VBROADCAST(px);
928 Value *bpy = VBROADCAST(py);
929 Value *bpz = VBROADCAST(pz);
930 Value *bpw = VBROADCAST(pw);
931 #endif
932 Value *dist = FADD(FMUL(unwrap(cx), bpx),
933 FADD(FMUL(unwrap(cy), bpy),
934 FADD(FMUL(unwrap(cz), bpz),
935 FMUL(unwrap(cw), bpw))));
936
937 if (val < 4)
938 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
939 else
940 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
941 }
942 }
943
944 RET_VOID();
945
946 gallivm_verify_function(gallivm, wrap(pFunction));
947 gallivm_compile_module(gallivm);
948
949 // lp_debug_dump_value(func);
950
951 PFN_VERTEX_FUNC pFunc =
952 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
953
954 debug_printf("vert shader %p\n", pFunc);
955 assert(pFunc && "Error: VertShader = NULL");
956
957 JM()->mIsModuleFinalized = true;
958
959 return pFunc;
960 }
961
962 PFN_VERTEX_FUNC
963 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
964 {
965 if (!ctx->vs->pipe.tokens)
966 return NULL;
967
968 BuilderSWR builder(
969 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
970 "VS");
971 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
972
973 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
974 return func;
975 }
976
977 unsigned
978 swr_so_adjust_attrib(unsigned in_attrib,
979 swr_vertex_shader *swr_vs)
980 {
981 ubyte semantic_name;
982 unsigned attrib;
983
984 attrib = in_attrib + VERTEX_ATTRIB_START_SLOT;
985
986 if (swr_vs) {
987 semantic_name = swr_vs->info.base.output_semantic_name[in_attrib];
988 if (semantic_name == TGSI_SEMANTIC_POSITION) {
989 attrib = VERTEX_POSITION_SLOT;
990 } else if (semantic_name == TGSI_SEMANTIC_PSIZE) {
991 attrib = VERTEX_SGV_SLOT;
992 } else if (semantic_name == TGSI_SEMANTIC_LAYER) {
993 attrib = VERTEX_SGV_SLOT;
994 } else {
995 if (swr_vs->info.base.writes_position) {
996 attrib--;
997 }
998 }
999 }
1000
1001 return attrib;
1002 }
1003
1004 static unsigned
1005 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
1006 {
1007 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1008 if ((info->output_semantic_name[i] == name)
1009 && (info->output_semantic_index[i] == index)) {
1010 return i;
1011 }
1012 }
1013
1014 return 0xFFFFFFFF;
1015 }
1016
1017 PFN_PIXEL_KERNEL
1018 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
1019 {
1020 struct swr_fragment_shader *swr_fs = ctx->fs;
1021
1022 struct tgsi_shader_info *pPrevShader;
1023 if (ctx->gs)
1024 pPrevShader = &ctx->gs->info.base;
1025 else
1026 pPrevShader = &ctx->vs->info.base;
1027
1028 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
1029 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
1030
1031 memset(inputs, 0, sizeof(inputs));
1032 memset(outputs, 0, sizeof(outputs));
1033
1034 struct lp_build_sampler_soa *sampler = NULL;
1035
1036 AttrBuilder attrBuilder;
1037 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
1038
1039 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
1040 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
1041 FunctionType *funcType =
1042 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
1043
1044 auto pFunction = Function::Create(funcType,
1045 GlobalValue::ExternalLinkage,
1046 "FS",
1047 JM()->mpCurrentModule);
1048 #if HAVE_LLVM < 0x0500
1049 AttributeSet attrSet = AttributeSet::get(
1050 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
1051 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
1052 #else
1053 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
1054 #endif
1055
1056 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
1057 IRB()->SetInsertPoint(block);
1058 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
1059
1060 auto args = pFunction->arg_begin();
1061 Value *hPrivateData = &*args++;
1062 hPrivateData->setName("hPrivateData");
1063 Value *pPS = &*args++;
1064 pPS->setName("psCtx");
1065
1066 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
1067 consts_ptr->setName("fs_constants");
1068 Value *const_sizes_ptr =
1069 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
1070 const_sizes_ptr->setName("num_fs_constants");
1071
1072 // load *pAttribs, *pPerspAttribs
1073 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
1074 Value *pPerspAttribs =
1075 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
1076
1077 swr_fs->constantMask = 0;
1078 swr_fs->flatConstantMask = 0;
1079 swr_fs->pointSpriteMask = 0;
1080
1081 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1082 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1083 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1084 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1085
1086 if (!mask)
1087 continue;
1088
1089 // load i,j
1090 Value *vi = nullptr, *vj = nullptr;
1091 switch (interpLoc) {
1092 case TGSI_INTERPOLATE_LOC_CENTER:
1093 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1094 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1095 break;
1096 case TGSI_INTERPOLATE_LOC_CENTROID:
1097 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1098 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1099 break;
1100 case TGSI_INTERPOLATE_LOC_SAMPLE:
1101 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1102 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1103 break;
1104 }
1105
1106 // load/compute w
1107 Value *vw = nullptr, *pAttribs;
1108 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1109 interpMode == TGSI_INTERPOLATE_COLOR) {
1110 pAttribs = pPerspAttribs;
1111 switch (interpLoc) {
1112 case TGSI_INTERPOLATE_LOC_CENTER:
1113 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1114 break;
1115 case TGSI_INTERPOLATE_LOC_CENTROID:
1116 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1117 break;
1118 case TGSI_INTERPOLATE_LOC_SAMPLE:
1119 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1120 break;
1121 }
1122 } else {
1123 pAttribs = pRawAttribs;
1124 vw = VIMMED1(1.f);
1125 }
1126
1127 vw->setName("w");
1128
1129 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1130 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1131
1132 if (semantic_name == TGSI_SEMANTIC_FACE) {
1133 Value *ff =
1134 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1135 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1136 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1137
1138 inputs[attrib][0] = wrap(ff);
1139 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1140 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1141 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1142 continue;
1143 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1144 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1145 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1146 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1147 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1148 } else {
1149 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1150 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1151 }
1152 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1153 inputs[attrib][3] =
1154 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1155 continue;
1156 }
1157
1158 unsigned linkedAttrib =
1159 locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1160
1161 uint32_t extraAttribs = 0;
1162 if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1163 /* non-gs generated primID - need to grab from swizzleMap override */
1164 linkedAttrib = pPrevShader->num_outputs - 1;
1165 swr_fs->constantMask |= 1 << linkedAttrib;
1166 extraAttribs++;
1167 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1168 key.sprite_coord_enable & (1 << semantic_idx)) {
1169 /* we add an extra attrib to the backendState in swr_update_derived. */
1170 linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1171 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1172 extraAttribs++;
1173 } else if (linkedAttrib == 0xFFFFFFFF) {
1174 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1175 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1176 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1177 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1178 /* If we're reading in color and 2-sided lighting is enabled, we have
1179 * to keep going.
1180 */
1181 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1182 continue;
1183 } else {
1184 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1185 swr_fs->constantMask |= 1 << linkedAttrib;
1186 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1187 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1188 }
1189 }
1190
1191 unsigned bcolorAttrib = 0xFFFFFFFF;
1192 Value *offset = NULL;
1193 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1194 bcolorAttrib = locate_linkage(
1195 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1196 /* Neither front nor back colors were available. Nothing to load. */
1197 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1198 continue;
1199 /* If there is no front color, just always use the back color. */
1200 if (linkedAttrib == 0xFFFFFFFF)
1201 linkedAttrib = bcolorAttrib;
1202
1203 if (bcolorAttrib != 0xFFFFFFFF) {
1204 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1205 swr_fs->constantMask |= 1 << bcolorAttrib;
1206 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1207 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1208 }
1209
1210 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1211
1212 if (diff) {
1213 Value *back =
1214 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1215
1216 offset = MUL(back, C(diff));
1217 offset->setName("offset");
1218 }
1219 }
1220 }
1221
1222 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1223 if (mask & (1 << channel)) {
1224 Value *indexA = C(linkedAttrib * 12 + channel);
1225 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1226 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1227
1228 if (offset) {
1229 indexA = ADD(indexA, offset);
1230 indexB = ADD(indexB, offset);
1231 indexC = ADD(indexC, offset);
1232 }
1233
1234 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1235 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1236 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1237
1238 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1239 inputs[attrib][channel] = wrap(va);
1240 } else {
1241 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1242
1243 vc = FMUL(vk, vc);
1244
1245 Value *interp = FMUL(va, vi);
1246 Value *interp1 = FMUL(vb, vj);
1247 interp = FADD(interp, interp1);
1248 interp = FADD(interp, vc);
1249 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1250 interpMode == TGSI_INTERPOLATE_COLOR)
1251 interp = FMUL(interp, vw);
1252 inputs[attrib][channel] = wrap(interp);
1253 }
1254 }
1255 }
1256 }
1257
1258 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1259
1260 struct lp_bld_tgsi_system_values system_values;
1261 memset(&system_values, 0, sizeof(system_values));
1262
1263 struct lp_build_mask_context mask;
1264 bool uses_mask = false;
1265
1266 if (swr_fs->info.base.uses_kill ||
1267 key.poly_stipple_enable) {
1268 Value *vActiveMask = NULL;
1269 if (swr_fs->info.base.uses_kill) {
1270 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1271 }
1272 if (key.poly_stipple_enable) {
1273 // first get fragment xy coords and clip to stipple bounds
1274 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1275 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1276 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1277 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1278
1279 // stipple pattern is 32x32, which means that one line of stipple
1280 // is stored in one word:
1281 // vXstipple is bit offset inside 32-bit stipple word
1282 // vYstipple is word index is stipple array
1283 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1284 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1285
1286 // grab stipple pattern base address
1287 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1288 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1289
1290 // peform a gather to grab stipple words for each lane
1291 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1292 VIMMED1(0xffffffff), 4);
1293
1294 // create a mask with one bit corresponding to the x stipple
1295 // and AND it with the pattern, to see if we have a bit
1296 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1297 Value *vStippleMask = AND(vStipple, vBitMask);
1298 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1299 vStippleMask = VMASK(vStippleMask);
1300
1301 if (swr_fs->info.base.uses_kill) {
1302 vActiveMask = AND(vActiveMask, vStippleMask);
1303 } else {
1304 vActiveMask = vStippleMask;
1305 }
1306 }
1307 lp_build_mask_begin(
1308 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1309 uses_mask = true;
1310 }
1311
1312 lp_build_tgsi_soa(gallivm,
1313 swr_fs->pipe.tokens,
1314 lp_type_float_vec(32, 32 * 8),
1315 uses_mask ? &mask : NULL, // mask
1316 wrap(consts_ptr),
1317 wrap(const_sizes_ptr),
1318 &system_values,
1319 inputs,
1320 outputs,
1321 wrap(hPrivateData),
1322 NULL, // thread data
1323 sampler, // sampler
1324 &swr_fs->info.base,
1325 NULL); // geometry shader face
1326
1327 sampler->destroy(sampler);
1328
1329 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1330
1331 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1332 attrib++) {
1333 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1334 case TGSI_SEMANTIC_POSITION: {
1335 // write z
1336 LLVMValueRef outZ =
1337 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1338 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1339 break;
1340 }
1341 case TGSI_SEMANTIC_COLOR: {
1342 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1343 if (!outputs[attrib][channel])
1344 continue;
1345
1346 LLVMValueRef out =
1347 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1348 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1349 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1350 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1351 STORE(unwrap(out),
1352 pPS,
1353 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1354 }
1355 } else {
1356 STORE(unwrap(out),
1357 pPS,
1358 {0,
1359 SWR_PS_CONTEXT_shaded,
1360 swr_fs->info.base.output_semantic_index[attrib],
1361 channel});
1362 }
1363 }
1364 break;
1365 }
1366 default: {
1367 fprintf(stderr,
1368 "unknown output from FS %s[%d]\n",
1369 tgsi_semantic_names[swr_fs->info.base
1370 .output_semantic_name[attrib]],
1371 swr_fs->info.base.output_semantic_index[attrib]);
1372 break;
1373 }
1374 }
1375 }
1376
1377 LLVMValueRef mask_result = 0;
1378 if (uses_mask) {
1379 mask_result = lp_build_mask_end(&mask);
1380 }
1381
1382 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1383
1384 if (uses_mask) {
1385 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1386 }
1387
1388 RET_VOID();
1389
1390 gallivm_verify_function(gallivm, wrap(pFunction));
1391
1392 gallivm_compile_module(gallivm);
1393
1394 // after the gallivm passes, we have to lower the core's intrinsics
1395 llvm::legacy::FunctionPassManager lowerPass(JM()->mpCurrentModule);
1396 lowerPass.add(createLowerX86Pass(mpJitMgr, this));
1397 lowerPass.run(*pFunction);
1398
1399 PFN_PIXEL_KERNEL kernel =
1400 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1401 debug_printf("frag shader %p\n", kernel);
1402 assert(kernel && "Error: FragShader = NULL");
1403
1404 JM()->mIsModuleFinalized = true;
1405
1406 return kernel;
1407 }
1408
1409 PFN_PIXEL_KERNEL
1410 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1411 {
1412 if (!ctx->fs->pipe.tokens)
1413 return NULL;
1414
1415 BuilderSWR builder(
1416 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1417 "FS");
1418 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1419
1420 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1421 return func;
1422 }