swr: move msaa resolve to generalized StoreTile
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49
50 #if HAVE_LLVM < 0x0500
51 namespace llvm {
52 typedef AttributeSet AttributeList;
53 }
54 #endif
55
56 using namespace SwrJit;
57 using namespace llvm;
58
59 static unsigned
60 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
61
62 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
63 {
64 return !memcmp(&lhs, &rhs, sizeof(lhs));
65 }
66
67 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
68 {
69 return !memcmp(&lhs, &rhs, sizeof(lhs));
70 }
71
72 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
73 {
74 return !memcmp(&lhs, &rhs, sizeof(lhs));
75 }
76
77 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
78 {
79 return !memcmp(&lhs, &rhs, sizeof(lhs));
80 }
81
82 static void
83 swr_generate_sampler_key(const struct lp_tgsi_info &info,
84 struct swr_context *ctx,
85 enum pipe_shader_type shader_type,
86 struct swr_jit_sampler_key &key)
87 {
88 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
89
90 for (unsigned i = 0; i < key.nr_samplers; i++) {
91 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
92 lp_sampler_static_sampler_state(
93 &key.sampler[i].sampler_state,
94 ctx->samplers[shader_type][i]);
95 }
96 }
97
98 /*
99 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
100 * are dx10-style? Can't really have mixed opcodes, at least not
101 * if we want to skip the holes here (without rescanning tgsi).
102 */
103 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
104 key.nr_sampler_views =
105 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
106 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
107 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
108 const struct pipe_sampler_view *view =
109 ctx->sampler_views[shader_type][i];
110 lp_sampler_static_texture_state(
111 &key.sampler[i].texture_state, view);
112 if (view) {
113 struct swr_resource *swr_res = swr_resource(view->texture);
114 const struct util_format_description *desc =
115 util_format_description(view->format);
116 if (swr_res->has_depth && swr_res->has_stencil &&
117 !util_format_has_depth(desc))
118 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
119 }
120 }
121 }
122 } else {
123 key.nr_sampler_views = key.nr_samplers;
124 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
125 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
126 const struct pipe_sampler_view *view =
127 ctx->sampler_views[shader_type][i];
128 lp_sampler_static_texture_state(
129 &key.sampler[i].texture_state, view);
130 if (view) {
131 struct swr_resource *swr_res = swr_resource(view->texture);
132 const struct util_format_description *desc =
133 util_format_description(view->format);
134 if (swr_res->has_depth && swr_res->has_stencil &&
135 !util_format_has_depth(desc))
136 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
137 }
138 }
139 }
140 }
141 }
142
143 void
144 swr_generate_fs_key(struct swr_jit_fs_key &key,
145 struct swr_context *ctx,
146 swr_fragment_shader *swr_fs)
147 {
148 memset(&key, 0, sizeof(key));
149
150 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
151 key.light_twoside = ctx->rasterizer->light_twoside;
152 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
153
154 struct tgsi_shader_info *pPrevShader;
155 if (ctx->gs)
156 pPrevShader = &ctx->gs->info.base;
157 else
158 pPrevShader = &ctx->vs->info.base;
159
160 memcpy(&key.vs_output_semantic_name,
161 &pPrevShader->output_semantic_name,
162 sizeof(key.vs_output_semantic_name));
163 memcpy(&key.vs_output_semantic_idx,
164 &pPrevShader->output_semantic_index,
165 sizeof(key.vs_output_semantic_idx));
166
167 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
168
169 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
170 ctx->poly_stipple.prim_is_poly;
171 }
172
173 void
174 swr_generate_vs_key(struct swr_jit_vs_key &key,
175 struct swr_context *ctx,
176 swr_vertex_shader *swr_vs)
177 {
178 memset(&key, 0, sizeof(key));
179
180 key.clip_plane_mask =
181 swr_vs->info.base.clipdist_writemask ?
182 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
183 ctx->rasterizer->clip_plane_enable;
184
185 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
186 }
187
188 void
189 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
190 struct swr_vertex_element_state *velems)
191 {
192 memset(&key, 0, sizeof(key));
193
194 key.fsState = velems->fsState;
195 }
196
197 void
198 swr_generate_gs_key(struct swr_jit_gs_key &key,
199 struct swr_context *ctx,
200 swr_geometry_shader *swr_gs)
201 {
202 memset(&key, 0, sizeof(key));
203
204 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
205
206 memcpy(&key.vs_output_semantic_name,
207 &pPrevShader->output_semantic_name,
208 sizeof(key.vs_output_semantic_name));
209 memcpy(&key.vs_output_semantic_idx,
210 &pPrevShader->output_semantic_index,
211 sizeof(key.vs_output_semantic_idx));
212
213 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
214 }
215
216 struct BuilderSWR : public Builder {
217 BuilderSWR(JitManager *pJitMgr, const char *pName)
218 : Builder(pJitMgr)
219 {
220 pJitMgr->SetupNewModule();
221 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
222 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
223 }
224
225 ~BuilderSWR() {
226 gallivm_free_ir(gallivm);
227 }
228
229 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
230 unsigned slot, unsigned channel);
231
232 struct gallivm_state *gallivm;
233 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
234 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
235 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
236
237 LLVMValueRef
238 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
239 struct lp_build_tgsi_context * bld_base,
240 boolean is_vindex_indirect,
241 LLVMValueRef vertex_index,
242 boolean is_aindex_indirect,
243 LLVMValueRef attrib_index,
244 LLVMValueRef swizzle_index);
245 void
246 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
247 struct lp_build_tgsi_context * bld_base,
248 LLVMValueRef (*outputs)[4],
249 LLVMValueRef emitted_vertices_vec);
250
251 void
252 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
253 struct lp_build_tgsi_context * bld_base,
254 LLVMValueRef verts_per_prim_vec,
255 LLVMValueRef emitted_prims_vec);
256
257 void
258 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
259 struct lp_build_tgsi_context * bld_base,
260 LLVMValueRef total_emitted_vertices_vec,
261 LLVMValueRef emitted_prims_vec);
262
263 };
264
265 struct swr_gs_llvm_iface {
266 struct lp_build_tgsi_gs_iface base;
267 struct tgsi_shader_info *info;
268
269 BuilderSWR *pBuilder;
270
271 Value *pGsCtx;
272 SWR_GS_STATE *pGsState;
273 uint32_t num_outputs;
274 uint32_t num_verts_per_prim;
275
276 Value *pVtxAttribMap;
277 };
278
279 // trampoline functions so we can use the builder llvm construction methods
280 static LLVMValueRef
281 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
282 struct lp_build_tgsi_context * bld_base,
283 boolean is_vindex_indirect,
284 LLVMValueRef vertex_index,
285 boolean is_aindex_indirect,
286 LLVMValueRef attrib_index,
287 LLVMValueRef swizzle_index)
288 {
289 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
290
291 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
292 is_vindex_indirect,
293 vertex_index,
294 is_aindex_indirect,
295 attrib_index,
296 swizzle_index);
297 }
298
299 static void
300 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
301 struct lp_build_tgsi_context * bld_base,
302 LLVMValueRef (*outputs)[4],
303 LLVMValueRef emitted_vertices_vec)
304 {
305 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
306
307 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
308 outputs,
309 emitted_vertices_vec);
310 }
311
312 static void
313 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
314 struct lp_build_tgsi_context * bld_base,
315 LLVMValueRef verts_per_prim_vec,
316 LLVMValueRef emitted_prims_vec)
317 {
318 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
319
320 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
321 verts_per_prim_vec,
322 emitted_prims_vec);
323 }
324
325 static void
326 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
327 struct lp_build_tgsi_context * bld_base,
328 LLVMValueRef total_emitted_vertices_vec,
329 LLVMValueRef emitted_prims_vec)
330 {
331 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
332
333 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
334 total_emitted_vertices_vec,
335 emitted_prims_vec);
336 }
337
338 LLVMValueRef
339 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
340 struct lp_build_tgsi_context * bld_base,
341 boolean is_vindex_indirect,
342 LLVMValueRef vertex_index,
343 boolean is_aindex_indirect,
344 LLVMValueRef attrib_index,
345 LLVMValueRef swizzle_index)
346 {
347 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
348
349 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
350
351 assert(is_vindex_indirect == false && is_aindex_indirect == false);
352
353 Value *attrib =
354 LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
355
356 Value *pInput =
357 LOAD(GEP(iface->pGsCtx,
358 {C(0),
359 C(SWR_GS_CONTEXT_vert),
360 unwrap(vertex_index),
361 C(0),
362 attrib,
363 unwrap(swizzle_index)}));
364
365 return wrap(pInput);
366 }
367
368 void
369 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
370 struct lp_build_tgsi_context * bld_base,
371 LLVMValueRef (*outputs)[4],
372 LLVMValueRef emitted_vertices_vec)
373 {
374 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
375 SWR_GS_STATE *pGS = iface->pGsState;
376
377 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
378
379 const uint32_t simdVertexStride = sizeof(simdvertex);
380 const uint32_t numSimdBatches = (pGS->maxNumVerts + 7) / 8;
381 const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
382
383 Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
384 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
385 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
386
387 Value *vOffsets = C({
388 inputPrimStride * 0,
389 inputPrimStride * 1,
390 inputPrimStride * 2,
391 inputPrimStride * 3,
392 inputPrimStride * 4,
393 inputPrimStride * 5,
394 inputPrimStride * 6,
395 inputPrimStride * 7 } );
396
397 Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), 3);
398 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), 7);
399
400 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
401 uint32_t attribSlot = attrib;
402 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE)
403 attribSlot = VERTEX_POINT_SIZE_SLOT;
404 else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PRIMID)
405 attribSlot = VERTEX_PRIMID_SLOT;
406 else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER)
407 attribSlot = VERTEX_RTAI_SLOT;
408
409 Value *vOffsetsAttrib =
410 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
411 vOffsetsAttrib =
412 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
413 vOffsetsAttrib =
414 ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
415
416 for (uint32_t channel = 0; channel < 4; ++channel) {
417 Value *vData = LOAD(unwrap(outputs[attrib][channel]));
418 Value *vPtrs = GEP(pStream, vOffsetsAttrib);
419
420 vPtrs = BITCAST(vPtrs,
421 VectorType::get(PointerType::get(mFP32Ty, 0), 8));
422
423 MASKED_SCATTER(vData, vPtrs, 32, vMask1);
424
425 vOffsetsAttrib =
426 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
427 }
428 }
429 }
430
431 void
432 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
433 struct lp_build_tgsi_context * bld_base,
434 LLVMValueRef verts_per_prim_vec,
435 LLVMValueRef emitted_prims_vec)
436 {
437 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
438 SWR_GS_STATE *pGS = iface->pGsState;
439
440 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
441
442 Value *pCutBuffer =
443 LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
444 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
445 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
446
447 uint32_t vertsPerPrim = iface->num_verts_per_prim;
448
449 Value *vCount =
450 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
451 unwrap(verts_per_prim_vec));
452
453 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
454 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
455
456 struct lp_exec_mask *exec_mask = &bld->exec_mask;
457 Value *mask = unwrap(lp_build_mask_value(bld->mask));
458 if (exec_mask->has_mask)
459 mask = AND(mask, unwrap(exec_mask->exec_mask));
460
461 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
462 mask = AND(mask, cmpMask);
463 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
464
465 const uint32_t cutPrimStride =
466 (pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
467 Value *vOffsets = C({
468 (uint32_t)(cutPrimStride * 0),
469 (uint32_t)(cutPrimStride * 1),
470 (uint32_t)(cutPrimStride * 2),
471 (uint32_t)(cutPrimStride * 3),
472 (uint32_t)(cutPrimStride * 4),
473 (uint32_t)(cutPrimStride * 5),
474 (uint32_t)(cutPrimStride * 6),
475 (uint32_t)(cutPrimStride * 7) } );
476
477 vCount = SUB(vCount, VIMMED1(1));
478 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
479 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
480
481 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
482
483 Value *vPtrs = GEP(pCutBuffer, vOffset);
484 vPtrs =
485 BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
486
487 Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
488 vValue = OR(vGather, vValue);
489 MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
490 }
491
492 void
493 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
494 struct lp_build_tgsi_context * bld_base,
495 LLVMValueRef total_emitted_vertices_vec,
496 LLVMValueRef emitted_prims_vec)
497 {
498 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
499
500 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
501
502 STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
503 }
504
505 PFN_GS_FUNC
506 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
507 {
508 SWR_GS_STATE *pGS = &ctx->gs->gsState;
509 struct tgsi_shader_info *info = &ctx->gs->info.base;
510
511 pGS->gsEnable = true;
512
513 pGS->numInputAttribs = info->num_inputs;
514 pGS->outputTopology =
515 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
516 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
517 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
518
519 pGS->emitsRenderTargetArrayIndex = info->writes_layer;
520 pGS->emitsPrimitiveID = info->writes_primid;
521 pGS->emitsViewportArrayIndex = info->writes_viewport_index;
522
523 // XXX: single stream for now...
524 pGS->isSingleStream = true;
525 pGS->singleStreamID = 0;
526
527 struct swr_geometry_shader *gs = ctx->gs;
528
529 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
530 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
531
532 memset(outputs, 0, sizeof(outputs));
533
534 AttrBuilder attrBuilder;
535 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
536 AttributeList attrSet = AttributeList::get(
537 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
538
539 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
540 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
541 FunctionType *vsFuncType =
542 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
543
544 // create new vertex shader function
545 auto pFunction = Function::Create(vsFuncType,
546 GlobalValue::ExternalLinkage,
547 "GS",
548 JM()->mpCurrentModule);
549 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
550
551 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
552 IRB()->SetInsertPoint(block);
553 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
554
555 auto argitr = pFunction->arg_begin();
556 Value *hPrivateData = &*argitr++;
557 hPrivateData->setName("hPrivateData");
558 Value *pGsCtx = &*argitr++;
559 pGsCtx->setName("gsCtx");
560
561 Value *consts_ptr =
562 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
563 consts_ptr->setName("gs_constants");
564 Value *const_sizes_ptr =
565 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
566 const_sizes_ptr->setName("num_gs_constants");
567
568 struct lp_build_sampler_soa *sampler =
569 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
570
571 struct lp_bld_tgsi_system_values system_values;
572 memset(&system_values, 0, sizeof(system_values));
573 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
574 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
575
576 std::vector<Constant*> mapConstants;
577 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
578 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
579 ubyte semantic_name = info->input_semantic_name[slot];
580 ubyte semantic_idx = info->input_semantic_index[slot];
581
582 unsigned vs_slot =
583 locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base) + 1;
584
585 STORE(C(vs_slot), vtxAttribMap, {0, slot});
586 mapConstants.push_back(C(vs_slot));
587 }
588
589 struct lp_build_mask_context mask;
590 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
591 lp_build_mask_begin(&mask, gallivm,
592 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
593
594 // zero out cut buffer so we can load/modify/store bits
595 MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
596 C((char)0),
597 pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
598 sizeof(float) * KNOB_SIMD_WIDTH);
599
600 struct swr_gs_llvm_iface gs_iface;
601 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
602 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
603 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
604 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
605 gs_iface.pBuilder = this;
606 gs_iface.pGsCtx = pGsCtx;
607 gs_iface.pGsState = pGS;
608 gs_iface.num_outputs = gs->info.base.num_outputs;
609 gs_iface.num_verts_per_prim =
610 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
611 gs_iface.info = info;
612 gs_iface.pVtxAttribMap = vtxAttribMap;
613
614 lp_build_tgsi_soa(gallivm,
615 gs->pipe.tokens,
616 lp_type_float_vec(32, 32 * 8),
617 &mask,
618 wrap(consts_ptr),
619 wrap(const_sizes_ptr),
620 &system_values,
621 inputs,
622 outputs,
623 wrap(hPrivateData), // (sampler context)
624 NULL, // thread data
625 sampler,
626 &gs->info.base,
627 &gs_iface.base);
628
629 lp_build_mask_end(&mask);
630
631 sampler->destroy(sampler);
632
633 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
634
635 RET_VOID();
636
637 gallivm_verify_function(gallivm, wrap(pFunction));
638 gallivm_compile_module(gallivm);
639
640 PFN_GS_FUNC pFunc =
641 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
642
643 debug_printf("geom shader %p\n", pFunc);
644 assert(pFunc && "Error: GeomShader = NULL");
645
646 JM()->mIsModuleFinalized = true;
647
648 return pFunc;
649 }
650
651 PFN_GS_FUNC
652 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
653 {
654 BuilderSWR builder(
655 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
656 "GS");
657 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
658
659 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
660 return func;
661 }
662
663 void
664 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
665 {
666 #if USE_SIMD16_FRONTEND
667 // interleave the simdvertex components into the dest simd16vertex
668 // slot16offset = slot8offset * 2
669 // comp16offset = comp8offset * 2 + alternateOffset
670
671 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
672 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
673 STORE(pVal, pOut, {channel * 2});
674 #else
675 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
676 STORE(pVal, pOut, {0, channel});
677 #endif
678 }
679
680 PFN_VERTEX_FUNC
681 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
682 {
683 struct swr_vertex_shader *swr_vs = ctx->vs;
684
685 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
686 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
687
688 memset(outputs, 0, sizeof(outputs));
689
690 AttrBuilder attrBuilder;
691 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
692 AttributeList attrSet = AttributeList::get(
693 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
694
695 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
696 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
697 FunctionType *vsFuncType =
698 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
699
700 // create new vertex shader function
701 auto pFunction = Function::Create(vsFuncType,
702 GlobalValue::ExternalLinkage,
703 "VS",
704 JM()->mpCurrentModule);
705 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
706
707 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
708 IRB()->SetInsertPoint(block);
709 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
710
711 auto argitr = pFunction->arg_begin();
712 Value *hPrivateData = &*argitr++;
713 hPrivateData->setName("hPrivateData");
714 Value *pVsCtx = &*argitr++;
715 pVsCtx->setName("vsCtx");
716
717 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
718
719 consts_ptr->setName("vs_constants");
720 Value *const_sizes_ptr =
721 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
722 const_sizes_ptr->setName("num_vs_constants");
723
724 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
725
726 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
727 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
728 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
729 if (mask & (1 << channel)) {
730 inputs[attrib][channel] =
731 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
732 }
733 }
734 }
735
736 struct lp_build_sampler_soa *sampler =
737 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
738
739 struct lp_bld_tgsi_system_values system_values;
740 memset(&system_values, 0, sizeof(system_values));
741 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
742 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
743
744 lp_build_tgsi_soa(gallivm,
745 swr_vs->pipe.tokens,
746 lp_type_float_vec(32, 32 * 8),
747 NULL, // mask
748 wrap(consts_ptr),
749 wrap(const_sizes_ptr),
750 &system_values,
751 inputs,
752 outputs,
753 wrap(hPrivateData), // (sampler context)
754 NULL, // thread data
755 sampler, // sampler
756 &swr_vs->info.base,
757 NULL); // geometry shader face
758
759 sampler->destroy(sampler);
760
761 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
762
763 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
764
765 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
766 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
767 if (!outputs[attrib][channel])
768 continue;
769
770 Value *val = LOAD(unwrap(outputs[attrib][channel]));
771
772 uint32_t outSlot = attrib;
773 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE)
774 outSlot = VERTEX_POINT_SIZE_SLOT;
775 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
776 }
777 }
778
779 if (ctx->rasterizer->clip_plane_enable ||
780 swr_vs->info.base.culldist_writemask) {
781 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
782
783 unsigned cv = 0;
784 if (swr_vs->info.base.writes_clipvertex) {
785 cv = 1 + locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
786 &swr_vs->info.base);
787 } else {
788 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
789 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
790 swr_vs->info.base.output_semantic_index[i] == 0) {
791 cv = i;
792 break;
793 }
794 }
795 }
796 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
797 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
798 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
799 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
800
801 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
802 // clip distance overrides user clip planes
803 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
804 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
805 unsigned cv = 1 + locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
806 &swr_vs->info.base);
807 if (val < 4) {
808 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
809 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
810 } else {
811 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
812 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
813 }
814 continue;
815 }
816
817 if (!(clip_mask & (1 << val)))
818 continue;
819
820 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
821 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
822 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
823 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
824 Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)),
825 FADD(FMUL(unwrap(cy), VBROADCAST(py)),
826 FADD(FMUL(unwrap(cz), VBROADCAST(pz)),
827 FMUL(unwrap(cw), VBROADCAST(pw)))));
828
829 if (val < 4)
830 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
831 else
832 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
833 }
834 }
835
836 RET_VOID();
837
838 gallivm_verify_function(gallivm, wrap(pFunction));
839 gallivm_compile_module(gallivm);
840
841 // lp_debug_dump_value(func);
842
843 PFN_VERTEX_FUNC pFunc =
844 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
845
846 debug_printf("vert shader %p\n", pFunc);
847 assert(pFunc && "Error: VertShader = NULL");
848
849 JM()->mIsModuleFinalized = true;
850
851 return pFunc;
852 }
853
854 PFN_VERTEX_FUNC
855 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
856 {
857 if (!ctx->vs->pipe.tokens)
858 return NULL;
859
860 BuilderSWR builder(
861 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
862 "VS");
863 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
864
865 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
866 return func;
867 }
868
869 static unsigned
870 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
871 {
872 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
873 if ((info->output_semantic_name[i] == name)
874 && (info->output_semantic_index[i] == index)) {
875 return i - 1; // position is not part of the linkage
876 }
877 }
878
879 return 0xFFFFFFFF;
880 }
881
882 PFN_PIXEL_KERNEL
883 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
884 {
885 struct swr_fragment_shader *swr_fs = ctx->fs;
886
887 struct tgsi_shader_info *pPrevShader;
888 if (ctx->gs)
889 pPrevShader = &ctx->gs->info.base;
890 else
891 pPrevShader = &ctx->vs->info.base;
892
893 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
894 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
895
896 memset(inputs, 0, sizeof(inputs));
897 memset(outputs, 0, sizeof(outputs));
898
899 struct lp_build_sampler_soa *sampler = NULL;
900
901 AttrBuilder attrBuilder;
902 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
903 AttributeList attrSet = AttributeList::get(
904 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
905
906 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
907 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
908 FunctionType *funcType =
909 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
910
911 auto pFunction = Function::Create(funcType,
912 GlobalValue::ExternalLinkage,
913 "FS",
914 JM()->mpCurrentModule);
915 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
916
917 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
918 IRB()->SetInsertPoint(block);
919 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
920
921 auto args = pFunction->arg_begin();
922 Value *hPrivateData = &*args++;
923 hPrivateData->setName("hPrivateData");
924 Value *pPS = &*args++;
925 pPS->setName("psCtx");
926
927 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
928 consts_ptr->setName("fs_constants");
929 Value *const_sizes_ptr =
930 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
931 const_sizes_ptr->setName("num_fs_constants");
932
933 // load *pAttribs, *pPerspAttribs
934 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
935 Value *pPerspAttribs =
936 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
937
938 swr_fs->constantMask = 0;
939 swr_fs->flatConstantMask = 0;
940 swr_fs->pointSpriteMask = 0;
941
942 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
943 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
944 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
945 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
946
947 if (!mask)
948 continue;
949
950 // load i,j
951 Value *vi = nullptr, *vj = nullptr;
952 switch (interpLoc) {
953 case TGSI_INTERPOLATE_LOC_CENTER:
954 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
955 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
956 break;
957 case TGSI_INTERPOLATE_LOC_CENTROID:
958 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
959 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
960 break;
961 case TGSI_INTERPOLATE_LOC_SAMPLE:
962 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
963 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
964 break;
965 }
966
967 // load/compute w
968 Value *vw = nullptr, *pAttribs;
969 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
970 interpMode == TGSI_INTERPOLATE_COLOR) {
971 pAttribs = pPerspAttribs;
972 switch (interpLoc) {
973 case TGSI_INTERPOLATE_LOC_CENTER:
974 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
975 break;
976 case TGSI_INTERPOLATE_LOC_CENTROID:
977 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
978 break;
979 case TGSI_INTERPOLATE_LOC_SAMPLE:
980 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
981 break;
982 }
983 } else {
984 pAttribs = pRawAttribs;
985 vw = VIMMED1(1.f);
986 }
987
988 vw->setName("w");
989
990 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
991 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
992
993 if (semantic_name == TGSI_SEMANTIC_FACE) {
994 Value *ff =
995 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
996 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
997 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
998
999 inputs[attrib][0] = wrap(ff);
1000 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1001 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1002 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1003 continue;
1004 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1005 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1006 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1007 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1008 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1009 } else {
1010 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1011 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1012 }
1013 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1014 inputs[attrib][3] =
1015 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1016 continue;
1017 } else if (semantic_name == TGSI_SEMANTIC_PRIMID) {
1018 Value *primID = LOAD(pPS, {0, SWR_PS_CONTEXT_primID}, "primID");
1019 inputs[attrib][0] = wrap(VECTOR_SPLAT(JM()->mVWidth, primID));
1020 inputs[attrib][1] = wrap(VIMMED1(0));
1021 inputs[attrib][2] = wrap(VIMMED1(0));
1022 inputs[attrib][3] = wrap(VIMMED1(0));
1023 continue;
1024 }
1025
1026 unsigned linkedAttrib =
1027 locate_linkage(semantic_name, semantic_idx, pPrevShader);
1028
1029 if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1030 key.sprite_coord_enable & (1 << semantic_idx)) {
1031 /* we add an extra attrib to the backendState in swr_update_derived. */
1032 linkedAttrib = pPrevShader->num_outputs - 1;
1033 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1034 } else if (linkedAttrib == 0xFFFFFFFF) {
1035 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1036 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1037 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1038 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1039 /* If we're reading in color and 2-sided lighting is enabled, we have
1040 * to keep going.
1041 */
1042 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1043 continue;
1044 } else {
1045 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1046 swr_fs->constantMask |= 1 << linkedAttrib;
1047 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1048 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1049 }
1050 }
1051
1052 unsigned bcolorAttrib = 0xFFFFFFFF;
1053 Value *offset = NULL;
1054 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1055 bcolorAttrib = locate_linkage(
1056 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader);
1057 /* Neither front nor back colors were available. Nothing to load. */
1058 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1059 continue;
1060 /* If there is no front color, just always use the back color. */
1061 if (linkedAttrib == 0xFFFFFFFF)
1062 linkedAttrib = bcolorAttrib;
1063
1064 if (bcolorAttrib != 0xFFFFFFFF) {
1065 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1066 swr_fs->constantMask |= 1 << bcolorAttrib;
1067 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1068 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1069 }
1070
1071 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1072
1073 if (diff) {
1074 Value *back =
1075 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1076
1077 offset = MUL(back, C(diff));
1078 offset->setName("offset");
1079 }
1080 }
1081 }
1082
1083 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1084 if (mask & (1 << channel)) {
1085 Value *indexA = C(linkedAttrib * 12 + channel);
1086 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1087 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1088
1089 if (offset) {
1090 indexA = ADD(indexA, offset);
1091 indexB = ADD(indexB, offset);
1092 indexC = ADD(indexC, offset);
1093 }
1094
1095 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1096 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1097 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1098
1099 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1100 inputs[attrib][channel] = wrap(va);
1101 } else {
1102 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1103
1104 vc = FMUL(vk, vc);
1105
1106 Value *interp = FMUL(va, vi);
1107 Value *interp1 = FMUL(vb, vj);
1108 interp = FADD(interp, interp1);
1109 interp = FADD(interp, vc);
1110 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1111 interpMode == TGSI_INTERPOLATE_COLOR)
1112 interp = FMUL(interp, vw);
1113 inputs[attrib][channel] = wrap(interp);
1114 }
1115 }
1116 }
1117 }
1118
1119 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1120
1121 struct lp_bld_tgsi_system_values system_values;
1122 memset(&system_values, 0, sizeof(system_values));
1123
1124 struct lp_build_mask_context mask;
1125 bool uses_mask = false;
1126
1127 if (swr_fs->info.base.uses_kill ||
1128 key.poly_stipple_enable) {
1129 Value *vActiveMask = NULL;
1130 if (swr_fs->info.base.uses_kill) {
1131 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1132 }
1133 if (key.poly_stipple_enable) {
1134 // first get fragment xy coords and clip to stipple bounds
1135 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1136 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1137 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1138 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1139
1140 // stipple pattern is 32x32, which means that one line of stipple
1141 // is stored in one word:
1142 // vXstipple is bit offset inside 32-bit stipple word
1143 // vYstipple is word index is stipple array
1144 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1145 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1146
1147 // grab stipple pattern base address
1148 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1149 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1150
1151 // peform a gather to grab stipple words for each lane
1152 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1153 VIMMED1(0xffffffff), C((char)4));
1154
1155 // create a mask with one bit corresponding to the x stipple
1156 // and AND it with the pattern, to see if we have a bit
1157 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1158 Value *vStippleMask = AND(vStipple, vBitMask);
1159 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1160 vStippleMask = VMASK(vStippleMask);
1161
1162 if (swr_fs->info.base.uses_kill) {
1163 vActiveMask = AND(vActiveMask, vStippleMask);
1164 } else {
1165 vActiveMask = vStippleMask;
1166 }
1167 }
1168 lp_build_mask_begin(
1169 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1170 uses_mask = true;
1171 }
1172
1173 lp_build_tgsi_soa(gallivm,
1174 swr_fs->pipe.tokens,
1175 lp_type_float_vec(32, 32 * 8),
1176 uses_mask ? &mask : NULL, // mask
1177 wrap(consts_ptr),
1178 wrap(const_sizes_ptr),
1179 &system_values,
1180 inputs,
1181 outputs,
1182 wrap(hPrivateData),
1183 NULL, // thread data
1184 sampler, // sampler
1185 &swr_fs->info.base,
1186 NULL); // geometry shader face
1187
1188 sampler->destroy(sampler);
1189
1190 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1191
1192 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1193 attrib++) {
1194 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1195 case TGSI_SEMANTIC_POSITION: {
1196 // write z
1197 LLVMValueRef outZ =
1198 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1199 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1200 break;
1201 }
1202 case TGSI_SEMANTIC_COLOR: {
1203 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1204 if (!outputs[attrib][channel])
1205 continue;
1206
1207 LLVMValueRef out =
1208 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1209 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1210 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1211 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1212 STORE(unwrap(out),
1213 pPS,
1214 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1215 }
1216 } else {
1217 STORE(unwrap(out),
1218 pPS,
1219 {0,
1220 SWR_PS_CONTEXT_shaded,
1221 swr_fs->info.base.output_semantic_index[attrib],
1222 channel});
1223 }
1224 }
1225 break;
1226 }
1227 default: {
1228 fprintf(stderr,
1229 "unknown output from FS %s[%d]\n",
1230 tgsi_semantic_names[swr_fs->info.base
1231 .output_semantic_name[attrib]],
1232 swr_fs->info.base.output_semantic_index[attrib]);
1233 break;
1234 }
1235 }
1236 }
1237
1238 LLVMValueRef mask_result = 0;
1239 if (uses_mask) {
1240 mask_result = lp_build_mask_end(&mask);
1241 }
1242
1243 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1244
1245 if (uses_mask) {
1246 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1247 }
1248
1249 RET_VOID();
1250
1251 gallivm_verify_function(gallivm, wrap(pFunction));
1252
1253 gallivm_compile_module(gallivm);
1254
1255 PFN_PIXEL_KERNEL kernel =
1256 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1257 debug_printf("frag shader %p\n", kernel);
1258 assert(kernel && "Error: FragShader = NULL");
1259
1260 JM()->mIsModuleFinalized = true;
1261
1262 return kernel;
1263 }
1264
1265 PFN_PIXEL_KERNEL
1266 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1267 {
1268 if (!ctx->fs->pipe.tokens)
1269 return NULL;
1270
1271 BuilderSWR builder(
1272 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1273 "FS");
1274 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1275
1276 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1277 return func;
1278 }