swr/rast: Simplify GATHER* jit builder api
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49
50 using namespace SwrJit;
51 using namespace llvm;
52
53 static unsigned
54 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
55
56 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
57 {
58 return !memcmp(&lhs, &rhs, sizeof(lhs));
59 }
60
61 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
62 {
63 return !memcmp(&lhs, &rhs, sizeof(lhs));
64 }
65
66 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
67 {
68 return !memcmp(&lhs, &rhs, sizeof(lhs));
69 }
70
71 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
72 {
73 return !memcmp(&lhs, &rhs, sizeof(lhs));
74 }
75
76 static void
77 swr_generate_sampler_key(const struct lp_tgsi_info &info,
78 struct swr_context *ctx,
79 enum pipe_shader_type shader_type,
80 struct swr_jit_sampler_key &key)
81 {
82 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
83
84 for (unsigned i = 0; i < key.nr_samplers; i++) {
85 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
86 lp_sampler_static_sampler_state(
87 &key.sampler[i].sampler_state,
88 ctx->samplers[shader_type][i]);
89 }
90 }
91
92 /*
93 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
94 * are dx10-style? Can't really have mixed opcodes, at least not
95 * if we want to skip the holes here (without rescanning tgsi).
96 */
97 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
98 key.nr_sampler_views =
99 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
100 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
101 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
102 const struct pipe_sampler_view *view =
103 ctx->sampler_views[shader_type][i];
104 lp_sampler_static_texture_state(
105 &key.sampler[i].texture_state, view);
106 if (view) {
107 struct swr_resource *swr_res = swr_resource(view->texture);
108 const struct util_format_description *desc =
109 util_format_description(view->format);
110 if (swr_res->has_depth && swr_res->has_stencil &&
111 !util_format_has_depth(desc))
112 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
113 }
114 }
115 }
116 } else {
117 key.nr_sampler_views = key.nr_samplers;
118 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
119 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
120 const struct pipe_sampler_view *view =
121 ctx->sampler_views[shader_type][i];
122 lp_sampler_static_texture_state(
123 &key.sampler[i].texture_state, view);
124 if (view) {
125 struct swr_resource *swr_res = swr_resource(view->texture);
126 const struct util_format_description *desc =
127 util_format_description(view->format);
128 if (swr_res->has_depth && swr_res->has_stencil &&
129 !util_format_has_depth(desc))
130 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
131 }
132 }
133 }
134 }
135 }
136
137 void
138 swr_generate_fs_key(struct swr_jit_fs_key &key,
139 struct swr_context *ctx,
140 swr_fragment_shader *swr_fs)
141 {
142 memset(&key, 0, sizeof(key));
143
144 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
145 key.light_twoside = ctx->rasterizer->light_twoside;
146 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
147
148 struct tgsi_shader_info *pPrevShader;
149 if (ctx->gs)
150 pPrevShader = &ctx->gs->info.base;
151 else
152 pPrevShader = &ctx->vs->info.base;
153
154 memcpy(&key.vs_output_semantic_name,
155 &pPrevShader->output_semantic_name,
156 sizeof(key.vs_output_semantic_name));
157 memcpy(&key.vs_output_semantic_idx,
158 &pPrevShader->output_semantic_index,
159 sizeof(key.vs_output_semantic_idx));
160
161 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
162
163 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
164 ctx->poly_stipple.prim_is_poly;
165 }
166
167 void
168 swr_generate_vs_key(struct swr_jit_vs_key &key,
169 struct swr_context *ctx,
170 swr_vertex_shader *swr_vs)
171 {
172 memset(&key, 0, sizeof(key));
173
174 key.clip_plane_mask =
175 swr_vs->info.base.clipdist_writemask ?
176 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
177 ctx->rasterizer->clip_plane_enable;
178
179 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
180 }
181
182 void
183 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
184 struct swr_vertex_element_state *velems)
185 {
186 memset(&key, 0, sizeof(key));
187
188 key.fsState = velems->fsState;
189 }
190
191 void
192 swr_generate_gs_key(struct swr_jit_gs_key &key,
193 struct swr_context *ctx,
194 swr_geometry_shader *swr_gs)
195 {
196 memset(&key, 0, sizeof(key));
197
198 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
199
200 memcpy(&key.vs_output_semantic_name,
201 &pPrevShader->output_semantic_name,
202 sizeof(key.vs_output_semantic_name));
203 memcpy(&key.vs_output_semantic_idx,
204 &pPrevShader->output_semantic_index,
205 sizeof(key.vs_output_semantic_idx));
206
207 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
208 }
209
210 struct BuilderSWR : public Builder {
211 BuilderSWR(JitManager *pJitMgr, const char *pName)
212 : Builder(pJitMgr)
213 {
214 pJitMgr->SetupNewModule();
215 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
216 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
217 }
218
219 ~BuilderSWR() {
220 gallivm_free_ir(gallivm);
221 }
222
223 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
224 unsigned slot, unsigned channel);
225
226 struct gallivm_state *gallivm;
227 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
228 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
229 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
230
231 LLVMValueRef
232 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
233 struct lp_build_tgsi_context * bld_base,
234 boolean is_vindex_indirect,
235 LLVMValueRef vertex_index,
236 boolean is_aindex_indirect,
237 LLVMValueRef attrib_index,
238 LLVMValueRef swizzle_index);
239 void
240 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
241 struct lp_build_tgsi_context * bld_base,
242 LLVMValueRef (*outputs)[4],
243 LLVMValueRef emitted_vertices_vec);
244
245 void
246 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
247 struct lp_build_tgsi_context * bld_base,
248 LLVMValueRef verts_per_prim_vec,
249 LLVMValueRef emitted_prims_vec);
250
251 void
252 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
253 struct lp_build_tgsi_context * bld_base,
254 LLVMValueRef total_emitted_vertices_vec,
255 LLVMValueRef emitted_prims_vec);
256
257 };
258
259 struct swr_gs_llvm_iface {
260 struct lp_build_tgsi_gs_iface base;
261 struct tgsi_shader_info *info;
262
263 BuilderSWR *pBuilder;
264
265 Value *pGsCtx;
266 SWR_GS_STATE *pGsState;
267 uint32_t num_outputs;
268 uint32_t num_verts_per_prim;
269
270 Value *pVtxAttribMap;
271 };
272
273 // trampoline functions so we can use the builder llvm construction methods
274 static LLVMValueRef
275 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
276 struct lp_build_tgsi_context * bld_base,
277 boolean is_vindex_indirect,
278 LLVMValueRef vertex_index,
279 boolean is_aindex_indirect,
280 LLVMValueRef attrib_index,
281 LLVMValueRef swizzle_index)
282 {
283 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
284
285 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
286 is_vindex_indirect,
287 vertex_index,
288 is_aindex_indirect,
289 attrib_index,
290 swizzle_index);
291 }
292
293 static void
294 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
295 struct lp_build_tgsi_context * bld_base,
296 LLVMValueRef (*outputs)[4],
297 LLVMValueRef emitted_vertices_vec)
298 {
299 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
300
301 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
302 outputs,
303 emitted_vertices_vec);
304 }
305
306 static void
307 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
308 struct lp_build_tgsi_context * bld_base,
309 LLVMValueRef verts_per_prim_vec,
310 LLVMValueRef emitted_prims_vec)
311 {
312 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
313
314 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
315 verts_per_prim_vec,
316 emitted_prims_vec);
317 }
318
319 static void
320 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
321 struct lp_build_tgsi_context * bld_base,
322 LLVMValueRef total_emitted_vertices_vec,
323 LLVMValueRef emitted_prims_vec)
324 {
325 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
326
327 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
328 total_emitted_vertices_vec,
329 emitted_prims_vec);
330 }
331
332 LLVMValueRef
333 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
334 struct lp_build_tgsi_context * bld_base,
335 boolean is_vindex_indirect,
336 LLVMValueRef vertex_index,
337 boolean is_aindex_indirect,
338 LLVMValueRef attrib_index,
339 LLVMValueRef swizzle_index)
340 {
341 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
342
343 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
344
345 assert(is_vindex_indirect == false && is_aindex_indirect == false);
346
347 Value *attrib =
348 LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
349
350 Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
351 Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
352
353 Value *pVector = ADD(MUL(unwrap(vertex_index), pInputVertStride), attrib);
354
355 Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
356
357 return wrap(pInput);
358 }
359
360 // GS output stream layout
361 #define VERTEX_COUNT_SIZE 32
362 #define CONTROL_HEADER_SIZE (8*32)
363
364 void
365 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
366 struct lp_build_tgsi_context * bld_base,
367 LLVMValueRef (*outputs)[4],
368 LLVMValueRef emitted_vertices_vec)
369 {
370 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
371
372 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
373
374 const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
375 const uint32_t attribSize = 4 * sizeof(float);
376 const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
377 Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
378
379 Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
380 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
381
382 Value *pStack = STACKSAVE();
383 Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
384
385 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
386 uint32_t attribSlot = attrib;
387 uint32_t sgvChannel = 0;
388 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
389 attribSlot = VERTEX_SGV_SLOT;
390 sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
391 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
392 attribSlot = VERTEX_SGV_SLOT;
393 sgvChannel = VERTEX_SGV_RTAI_COMP;
394 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
395 attribSlot = VERTEX_POSITION_SLOT;
396 } else {
397 attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
398 if (iface->info->writes_position) {
399 attribSlot--;
400 }
401 }
402
403 Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
404
405 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
406 Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
407 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
408 Value *pStreamOffset = GEP(pStream, pLaneOffset);
409 pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
410
411 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
412 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
413
414 for (uint32_t channel = 0; channel < 4; ++channel) {
415 Value *vData;
416
417 if (attribSlot == VERTEX_SGV_SLOT)
418 vData = LOAD(unwrap(outputs[attrib][0]));
419 else
420 vData = LOAD(unwrap(outputs[attrib][channel]));
421
422 if (attribSlot != VERTEX_SGV_SLOT ||
423 sgvChannel == channel) {
424 vData = VEXTRACT(vData, C(lane));
425 STORE(vData, pStreamOffset);
426 }
427 pStreamOffset = GEP(pStreamOffset, C(1));
428 }
429 }
430 }
431
432 STACKRESTORE(pStack);
433 }
434
435 void
436 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
437 struct lp_build_tgsi_context * bld_base,
438 LLVMValueRef verts_per_prim_vec,
439 LLVMValueRef emitted_prims_vec)
440 {
441 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
442
443 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
444
445 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
446 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
447
448 uint32_t vertsPerPrim = iface->num_verts_per_prim;
449
450 Value *vCount =
451 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
452 unwrap(verts_per_prim_vec));
453
454 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
455 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
456
457 struct lp_exec_mask *exec_mask = &bld->exec_mask;
458 Value *mask = unwrap(lp_build_mask_value(bld->mask));
459 if (exec_mask->has_mask)
460 mask = AND(mask, unwrap(exec_mask->exec_mask));
461
462 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
463 mask = AND(mask, cmpMask);
464 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
465
466 vCount = SUB(vCount, VIMMED1(1));
467 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
468 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
469
470 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
471
472 Value *pStack = STACKSAVE();
473 Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
474
475 for (uint32_t lane = 0; lane < mVWidth; ++lane) {
476 Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
477 Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
478 Value *pStreamOffset = GEP(pStream, vLaneOffset);
479
480 Value *pLaneMask = VEXTRACT(vMask1, C(lane));
481 pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
482
483 Value *vVal = LOAD(pStreamOffset);
484 vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
485 STORE(vVal, pStreamOffset);
486 }
487
488 STACKRESTORE(pStack);
489 }
490
491 void
492 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
493 struct lp_build_tgsi_context * bld_base,
494 LLVMValueRef total_emitted_vertices_vec,
495 LLVMValueRef emitted_prims_vec)
496 {
497 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
498
499 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
500
501 // Store emit count to each output stream in the first DWORD
502 for (uint32_t lane = 0; lane < mVWidth; ++lane)
503 {
504 Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
505 pStream = BITCAST(pStream, mInt32PtrTy);
506 Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
507 STORE(pLaneCount, pStream);
508 }
509 }
510
511 PFN_GS_FUNC
512 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
513 {
514 SWR_GS_STATE *pGS = &ctx->gs->gsState;
515 struct tgsi_shader_info *info = &ctx->gs->info.base;
516
517 memset(pGS, 0, sizeof(*pGS));
518
519 pGS->gsEnable = true;
520
521 pGS->numInputAttribs = info->num_inputs;
522 pGS->outputTopology =
523 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
524 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
525 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
526
527 // XXX: single stream for now...
528 pGS->isSingleStream = true;
529 pGS->singleStreamID = 0;
530
531 pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
532 pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
533 pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
534 pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
535 pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
536 pGS->controlDataOffset = VERTEX_COUNT_SIZE;
537 pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
538
539 pGS->allocationSize =
540 VERTEX_COUNT_SIZE + // vertex count
541 CONTROL_HEADER_SIZE + // control header
542 (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
543 pGS->maxNumVerts; // num verts
544
545 struct swr_geometry_shader *gs = ctx->gs;
546
547 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
548 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
549
550 memset(outputs, 0, sizeof(outputs));
551
552 AttrBuilder attrBuilder;
553 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
554
555 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
556 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
557 FunctionType *vsFuncType =
558 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
559
560 // create new vertex shader function
561 auto pFunction = Function::Create(vsFuncType,
562 GlobalValue::ExternalLinkage,
563 "GS",
564 JM()->mpCurrentModule);
565 #if HAVE_LLVM < 0x0500
566 AttributeSet attrSet = AttributeSet::get(
567 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
568 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
569 #else
570 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
571 #endif
572
573 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
574 IRB()->SetInsertPoint(block);
575 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
576
577 auto argitr = pFunction->arg_begin();
578 Value *hPrivateData = &*argitr++;
579 hPrivateData->setName("hPrivateData");
580 Value *pGsCtx = &*argitr++;
581 pGsCtx->setName("gsCtx");
582
583 Value *consts_ptr =
584 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
585 consts_ptr->setName("gs_constants");
586 Value *const_sizes_ptr =
587 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
588 const_sizes_ptr->setName("num_gs_constants");
589
590 struct lp_build_sampler_soa *sampler =
591 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
592
593 struct lp_bld_tgsi_system_values system_values;
594 memset(&system_values, 0, sizeof(system_values));
595 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
596 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
597
598 std::vector<Constant*> mapConstants;
599 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
600 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
601 ubyte semantic_name = info->input_semantic_name[slot];
602 ubyte semantic_idx = info->input_semantic_index[slot];
603
604 unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
605
606 vs_slot += VERTEX_ATTRIB_START_SLOT;
607
608 if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
609 vs_slot--;
610
611 if (semantic_name == TGSI_SEMANTIC_POSITION)
612 vs_slot = VERTEX_POSITION_SLOT;
613
614 STORE(C(vs_slot), vtxAttribMap, {0, slot});
615 mapConstants.push_back(C(vs_slot));
616 }
617
618 struct lp_build_mask_context mask;
619 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
620 lp_build_mask_begin(&mask, gallivm,
621 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
622
623 // zero out cut buffer so we can load/modify/store bits
624 for (uint32_t lane = 0; lane < mVWidth; ++lane)
625 {
626 Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
627 MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
628 }
629
630 struct swr_gs_llvm_iface gs_iface;
631 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
632 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
633 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
634 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
635 gs_iface.pBuilder = this;
636 gs_iface.pGsCtx = pGsCtx;
637 gs_iface.pGsState = pGS;
638 gs_iface.num_outputs = gs->info.base.num_outputs;
639 gs_iface.num_verts_per_prim =
640 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
641 gs_iface.info = info;
642 gs_iface.pVtxAttribMap = vtxAttribMap;
643
644 lp_build_tgsi_soa(gallivm,
645 gs->pipe.tokens,
646 lp_type_float_vec(32, 32 * 8),
647 &mask,
648 wrap(consts_ptr),
649 wrap(const_sizes_ptr),
650 &system_values,
651 inputs,
652 outputs,
653 wrap(hPrivateData), // (sampler context)
654 NULL, // thread data
655 sampler,
656 &gs->info.base,
657 &gs_iface.base);
658
659 lp_build_mask_end(&mask);
660
661 sampler->destroy(sampler);
662
663 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
664
665 RET_VOID();
666
667 gallivm_verify_function(gallivm, wrap(pFunction));
668 gallivm_compile_module(gallivm);
669
670 PFN_GS_FUNC pFunc =
671 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
672
673 debug_printf("geom shader %p\n", pFunc);
674 assert(pFunc && "Error: GeomShader = NULL");
675
676 JM()->mIsModuleFinalized = true;
677
678 return pFunc;
679 }
680
681 PFN_GS_FUNC
682 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
683 {
684 BuilderSWR builder(
685 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
686 "GS");
687 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
688
689 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
690 return func;
691 }
692
693 void
694 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
695 {
696 #if USE_SIMD16_FRONTEND && !USE_SIMD16_SHADERS
697 // interleave the simdvertex components into the dest simd16vertex
698 // slot16offset = slot8offset * 2
699 // comp16offset = comp8offset * 2 + alternateOffset
700
701 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
702 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
703 STORE(pVal, pOut, {channel * 2});
704 #else
705 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
706 STORE(pVal, pOut, {0, channel});
707 #endif
708 }
709
710 PFN_VERTEX_FUNC
711 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
712 {
713 struct swr_vertex_shader *swr_vs = ctx->vs;
714
715 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
716 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
717
718 memset(outputs, 0, sizeof(outputs));
719
720 AttrBuilder attrBuilder;
721 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
722
723 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
724 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
725 FunctionType *vsFuncType =
726 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
727
728 // create new vertex shader function
729 auto pFunction = Function::Create(vsFuncType,
730 GlobalValue::ExternalLinkage,
731 "VS",
732 JM()->mpCurrentModule);
733 #if HAVE_LLVM < 0x0500
734 AttributeSet attrSet = AttributeSet::get(
735 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
736 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
737 #else
738 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
739 #endif
740
741 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
742 IRB()->SetInsertPoint(block);
743 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
744
745 auto argitr = pFunction->arg_begin();
746 Value *hPrivateData = &*argitr++;
747 hPrivateData->setName("hPrivateData");
748 Value *pVsCtx = &*argitr++;
749 pVsCtx->setName("vsCtx");
750
751 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
752
753 consts_ptr->setName("vs_constants");
754 Value *const_sizes_ptr =
755 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
756 const_sizes_ptr->setName("num_vs_constants");
757
758 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
759 #if USE_SIMD16_SHADERS
760 vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0));
761 #endif
762
763 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
764 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
765 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
766 if (mask & (1 << channel)) {
767 inputs[attrib][channel] =
768 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
769 }
770 }
771 }
772
773 struct lp_build_sampler_soa *sampler =
774 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
775
776 struct lp_bld_tgsi_system_values system_values;
777 memset(&system_values, 0, sizeof(system_values));
778 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
779 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
780
781 lp_build_tgsi_soa(gallivm,
782 swr_vs->pipe.tokens,
783 lp_type_float_vec(32, 32 * mVWidth),
784 NULL, // mask
785 wrap(consts_ptr),
786 wrap(const_sizes_ptr),
787 &system_values,
788 inputs,
789 outputs,
790 wrap(hPrivateData), // (sampler context)
791 NULL, // thread data
792 sampler, // sampler
793 &swr_vs->info.base,
794 NULL); // geometry shader face
795
796 sampler->destroy(sampler);
797
798 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
799
800 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
801 #if USE_SIMD16_SHADERS
802 vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0));
803 #endif
804
805 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
806 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
807 if (!outputs[attrib][channel])
808 continue;
809
810 Value *val;
811 uint32_t outSlot;
812
813 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
814 if (channel != VERTEX_SGV_POINT_SIZE_COMP)
815 continue;
816 val = LOAD(unwrap(outputs[attrib][0]));
817 outSlot = VERTEX_SGV_SLOT;
818 } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
819 val = LOAD(unwrap(outputs[attrib][channel]));
820 outSlot = VERTEX_POSITION_SLOT;
821 } else {
822 val = LOAD(unwrap(outputs[attrib][channel]));
823 outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
824 if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
825 outSlot--;
826 }
827
828 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
829 }
830 }
831
832 if (ctx->rasterizer->clip_plane_enable ||
833 swr_vs->info.base.culldist_writemask) {
834 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
835
836 unsigned cv = 0;
837 if (swr_vs->info.base.writes_clipvertex) {
838 cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
839 &swr_vs->info.base);
840 } else {
841 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
842 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
843 swr_vs->info.base.output_semantic_index[i] == 0) {
844 cv = i;
845 break;
846 }
847 }
848 }
849 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
850 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
851 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
852 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
853
854 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
855 // clip distance overrides user clip planes
856 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
857 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
858 unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
859 &swr_vs->info.base);
860 if (val < 4) {
861 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
862 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
863 } else {
864 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
865 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
866 }
867 continue;
868 }
869
870 if (!(clip_mask & (1 << val)))
871 continue;
872
873 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
874 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
875 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
876 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
877 Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)),
878 FADD(FMUL(unwrap(cy), VBROADCAST(py)),
879 FADD(FMUL(unwrap(cz), VBROADCAST(pz)),
880 FMUL(unwrap(cw), VBROADCAST(pw)))));
881
882 if (val < 4)
883 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
884 else
885 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
886 }
887 }
888
889 RET_VOID();
890
891 gallivm_verify_function(gallivm, wrap(pFunction));
892 gallivm_compile_module(gallivm);
893
894 // lp_debug_dump_value(func);
895
896 PFN_VERTEX_FUNC pFunc =
897 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
898
899 debug_printf("vert shader %p\n", pFunc);
900 assert(pFunc && "Error: VertShader = NULL");
901
902 JM()->mIsModuleFinalized = true;
903
904 return pFunc;
905 }
906
907 PFN_VERTEX_FUNC
908 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
909 {
910 if (!ctx->vs->pipe.tokens)
911 return NULL;
912
913 BuilderSWR builder(
914 #if USE_SIMD16_SHADERS
915 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr16),
916 #else
917 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
918 #endif
919 "VS");
920 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
921
922 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
923 return func;
924 }
925
926 unsigned
927 swr_so_adjust_attrib(unsigned in_attrib,
928 swr_vertex_shader *swr_vs)
929 {
930 ubyte semantic_name;
931 unsigned attrib;
932
933 attrib = in_attrib + VERTEX_ATTRIB_START_SLOT;
934
935 if (swr_vs) {
936 semantic_name = swr_vs->info.base.output_semantic_name[in_attrib];
937 if (semantic_name == TGSI_SEMANTIC_POSITION) {
938 attrib = VERTEX_POSITION_SLOT;
939 } else if (semantic_name == TGSI_SEMANTIC_PSIZE) {
940 attrib = VERTEX_SGV_SLOT;
941 } else if (semantic_name == TGSI_SEMANTIC_LAYER) {
942 attrib = VERTEX_SGV_SLOT;
943 } else {
944 if (swr_vs->info.base.writes_position) {
945 attrib--;
946 }
947 }
948 }
949
950 return attrib;
951 }
952
953 static unsigned
954 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
955 {
956 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
957 if ((info->output_semantic_name[i] == name)
958 && (info->output_semantic_index[i] == index)) {
959 return i;
960 }
961 }
962
963 return 0xFFFFFFFF;
964 }
965
966 PFN_PIXEL_KERNEL
967 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
968 {
969 struct swr_fragment_shader *swr_fs = ctx->fs;
970
971 struct tgsi_shader_info *pPrevShader;
972 if (ctx->gs)
973 pPrevShader = &ctx->gs->info.base;
974 else
975 pPrevShader = &ctx->vs->info.base;
976
977 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
978 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
979
980 memset(inputs, 0, sizeof(inputs));
981 memset(outputs, 0, sizeof(outputs));
982
983 struct lp_build_sampler_soa *sampler = NULL;
984
985 AttrBuilder attrBuilder;
986 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
987
988 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
989 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
990 FunctionType *funcType =
991 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
992
993 auto pFunction = Function::Create(funcType,
994 GlobalValue::ExternalLinkage,
995 "FS",
996 JM()->mpCurrentModule);
997 #if HAVE_LLVM < 0x0500
998 AttributeSet attrSet = AttributeSet::get(
999 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
1000 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
1001 #else
1002 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
1003 #endif
1004
1005 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
1006 IRB()->SetInsertPoint(block);
1007 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
1008
1009 auto args = pFunction->arg_begin();
1010 Value *hPrivateData = &*args++;
1011 hPrivateData->setName("hPrivateData");
1012 Value *pPS = &*args++;
1013 pPS->setName("psCtx");
1014
1015 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
1016 consts_ptr->setName("fs_constants");
1017 Value *const_sizes_ptr =
1018 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
1019 const_sizes_ptr->setName("num_fs_constants");
1020
1021 // load *pAttribs, *pPerspAttribs
1022 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
1023 Value *pPerspAttribs =
1024 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
1025
1026 swr_fs->constantMask = 0;
1027 swr_fs->flatConstantMask = 0;
1028 swr_fs->pointSpriteMask = 0;
1029
1030 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1031 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1032 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1033 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1034
1035 if (!mask)
1036 continue;
1037
1038 // load i,j
1039 Value *vi = nullptr, *vj = nullptr;
1040 switch (interpLoc) {
1041 case TGSI_INTERPOLATE_LOC_CENTER:
1042 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1043 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1044 break;
1045 case TGSI_INTERPOLATE_LOC_CENTROID:
1046 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1047 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1048 break;
1049 case TGSI_INTERPOLATE_LOC_SAMPLE:
1050 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1051 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1052 break;
1053 }
1054
1055 // load/compute w
1056 Value *vw = nullptr, *pAttribs;
1057 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1058 interpMode == TGSI_INTERPOLATE_COLOR) {
1059 pAttribs = pPerspAttribs;
1060 switch (interpLoc) {
1061 case TGSI_INTERPOLATE_LOC_CENTER:
1062 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1063 break;
1064 case TGSI_INTERPOLATE_LOC_CENTROID:
1065 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1066 break;
1067 case TGSI_INTERPOLATE_LOC_SAMPLE:
1068 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1069 break;
1070 }
1071 } else {
1072 pAttribs = pRawAttribs;
1073 vw = VIMMED1(1.f);
1074 }
1075
1076 vw->setName("w");
1077
1078 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1079 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1080
1081 if (semantic_name == TGSI_SEMANTIC_FACE) {
1082 Value *ff =
1083 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1084 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1085 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1086
1087 inputs[attrib][0] = wrap(ff);
1088 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1089 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1090 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1091 continue;
1092 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1093 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1094 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1095 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1096 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1097 } else {
1098 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1099 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1100 }
1101 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1102 inputs[attrib][3] =
1103 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1104 continue;
1105 }
1106
1107 unsigned linkedAttrib =
1108 locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1109
1110 uint32_t extraAttribs = 0;
1111 if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1112 /* non-gs generated primID - need to grab from swizzleMap override */
1113 linkedAttrib = pPrevShader->num_outputs - 1;
1114 swr_fs->constantMask |= 1 << linkedAttrib;
1115 extraAttribs++;
1116 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1117 key.sprite_coord_enable & (1 << semantic_idx)) {
1118 /* we add an extra attrib to the backendState in swr_update_derived. */
1119 linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1120 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1121 extraAttribs++;
1122 } else if (linkedAttrib == 0xFFFFFFFF) {
1123 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1124 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1125 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1126 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1127 /* If we're reading in color and 2-sided lighting is enabled, we have
1128 * to keep going.
1129 */
1130 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1131 continue;
1132 } else {
1133 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1134 swr_fs->constantMask |= 1 << linkedAttrib;
1135 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1136 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1137 }
1138 }
1139
1140 unsigned bcolorAttrib = 0xFFFFFFFF;
1141 Value *offset = NULL;
1142 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1143 bcolorAttrib = locate_linkage(
1144 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1145 /* Neither front nor back colors were available. Nothing to load. */
1146 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1147 continue;
1148 /* If there is no front color, just always use the back color. */
1149 if (linkedAttrib == 0xFFFFFFFF)
1150 linkedAttrib = bcolorAttrib;
1151
1152 if (bcolorAttrib != 0xFFFFFFFF) {
1153 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1154 swr_fs->constantMask |= 1 << bcolorAttrib;
1155 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1156 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1157 }
1158
1159 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1160
1161 if (diff) {
1162 Value *back =
1163 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1164
1165 offset = MUL(back, C(diff));
1166 offset->setName("offset");
1167 }
1168 }
1169 }
1170
1171 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1172 if (mask & (1 << channel)) {
1173 Value *indexA = C(linkedAttrib * 12 + channel);
1174 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1175 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1176
1177 if (offset) {
1178 indexA = ADD(indexA, offset);
1179 indexB = ADD(indexB, offset);
1180 indexC = ADD(indexC, offset);
1181 }
1182
1183 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1184 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1185 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1186
1187 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1188 inputs[attrib][channel] = wrap(va);
1189 } else {
1190 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1191
1192 vc = FMUL(vk, vc);
1193
1194 Value *interp = FMUL(va, vi);
1195 Value *interp1 = FMUL(vb, vj);
1196 interp = FADD(interp, interp1);
1197 interp = FADD(interp, vc);
1198 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1199 interpMode == TGSI_INTERPOLATE_COLOR)
1200 interp = FMUL(interp, vw);
1201 inputs[attrib][channel] = wrap(interp);
1202 }
1203 }
1204 }
1205 }
1206
1207 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1208
1209 struct lp_bld_tgsi_system_values system_values;
1210 memset(&system_values, 0, sizeof(system_values));
1211
1212 struct lp_build_mask_context mask;
1213 bool uses_mask = false;
1214
1215 if (swr_fs->info.base.uses_kill ||
1216 key.poly_stipple_enable) {
1217 Value *vActiveMask = NULL;
1218 if (swr_fs->info.base.uses_kill) {
1219 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1220 }
1221 if (key.poly_stipple_enable) {
1222 // first get fragment xy coords and clip to stipple bounds
1223 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1224 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1225 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1226 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1227
1228 // stipple pattern is 32x32, which means that one line of stipple
1229 // is stored in one word:
1230 // vXstipple is bit offset inside 32-bit stipple word
1231 // vYstipple is word index is stipple array
1232 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1233 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1234
1235 // grab stipple pattern base address
1236 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1237 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1238
1239 // peform a gather to grab stipple words for each lane
1240 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1241 VIMMED1(0xffffffff), 4);
1242
1243 // create a mask with one bit corresponding to the x stipple
1244 // and AND it with the pattern, to see if we have a bit
1245 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1246 Value *vStippleMask = AND(vStipple, vBitMask);
1247 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1248 vStippleMask = VMASK(vStippleMask);
1249
1250 if (swr_fs->info.base.uses_kill) {
1251 vActiveMask = AND(vActiveMask, vStippleMask);
1252 } else {
1253 vActiveMask = vStippleMask;
1254 }
1255 }
1256 lp_build_mask_begin(
1257 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1258 uses_mask = true;
1259 }
1260
1261 lp_build_tgsi_soa(gallivm,
1262 swr_fs->pipe.tokens,
1263 lp_type_float_vec(32, 32 * 8),
1264 uses_mask ? &mask : NULL, // mask
1265 wrap(consts_ptr),
1266 wrap(const_sizes_ptr),
1267 &system_values,
1268 inputs,
1269 outputs,
1270 wrap(hPrivateData),
1271 NULL, // thread data
1272 sampler, // sampler
1273 &swr_fs->info.base,
1274 NULL); // geometry shader face
1275
1276 sampler->destroy(sampler);
1277
1278 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1279
1280 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1281 attrib++) {
1282 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1283 case TGSI_SEMANTIC_POSITION: {
1284 // write z
1285 LLVMValueRef outZ =
1286 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1287 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1288 break;
1289 }
1290 case TGSI_SEMANTIC_COLOR: {
1291 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1292 if (!outputs[attrib][channel])
1293 continue;
1294
1295 LLVMValueRef out =
1296 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1297 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1298 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1299 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1300 STORE(unwrap(out),
1301 pPS,
1302 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1303 }
1304 } else {
1305 STORE(unwrap(out),
1306 pPS,
1307 {0,
1308 SWR_PS_CONTEXT_shaded,
1309 swr_fs->info.base.output_semantic_index[attrib],
1310 channel});
1311 }
1312 }
1313 break;
1314 }
1315 default: {
1316 fprintf(stderr,
1317 "unknown output from FS %s[%d]\n",
1318 tgsi_semantic_names[swr_fs->info.base
1319 .output_semantic_name[attrib]],
1320 swr_fs->info.base.output_semantic_index[attrib]);
1321 break;
1322 }
1323 }
1324 }
1325
1326 LLVMValueRef mask_result = 0;
1327 if (uses_mask) {
1328 mask_result = lp_build_mask_end(&mask);
1329 }
1330
1331 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1332
1333 if (uses_mask) {
1334 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1335 }
1336
1337 RET_VOID();
1338
1339 gallivm_verify_function(gallivm, wrap(pFunction));
1340
1341 gallivm_compile_module(gallivm);
1342
1343 PFN_PIXEL_KERNEL kernel =
1344 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1345 debug_printf("frag shader %p\n", kernel);
1346 assert(kernel && "Error: FragShader = NULL");
1347
1348 JM()->mIsModuleFinalized = true;
1349
1350 return kernel;
1351 }
1352
1353 PFN_PIXEL_KERNEL
1354 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1355 {
1356 if (!ctx->fs->pipe.tokens)
1357 return NULL;
1358
1359 BuilderSWR builder(
1360 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1361 "FS");
1362 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1363
1364 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1365 return func;
1366 }