swr/rast: Rework attribute layout
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49
50 using namespace SwrJit;
51 using namespace llvm;
52
53 static unsigned
54 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
55
56 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
57 {
58 return !memcmp(&lhs, &rhs, sizeof(lhs));
59 }
60
61 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
62 {
63 return !memcmp(&lhs, &rhs, sizeof(lhs));
64 }
65
66 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
67 {
68 return !memcmp(&lhs, &rhs, sizeof(lhs));
69 }
70
71 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
72 {
73 return !memcmp(&lhs, &rhs, sizeof(lhs));
74 }
75
76 static void
77 swr_generate_sampler_key(const struct lp_tgsi_info &info,
78 struct swr_context *ctx,
79 enum pipe_shader_type shader_type,
80 struct swr_jit_sampler_key &key)
81 {
82 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
83
84 for (unsigned i = 0; i < key.nr_samplers; i++) {
85 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
86 lp_sampler_static_sampler_state(
87 &key.sampler[i].sampler_state,
88 ctx->samplers[shader_type][i]);
89 }
90 }
91
92 /*
93 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
94 * are dx10-style? Can't really have mixed opcodes, at least not
95 * if we want to skip the holes here (without rescanning tgsi).
96 */
97 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
98 key.nr_sampler_views =
99 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
100 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
101 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
102 const struct pipe_sampler_view *view =
103 ctx->sampler_views[shader_type][i];
104 lp_sampler_static_texture_state(
105 &key.sampler[i].texture_state, view);
106 if (view) {
107 struct swr_resource *swr_res = swr_resource(view->texture);
108 const struct util_format_description *desc =
109 util_format_description(view->format);
110 if (swr_res->has_depth && swr_res->has_stencil &&
111 !util_format_has_depth(desc))
112 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
113 }
114 }
115 }
116 } else {
117 key.nr_sampler_views = key.nr_samplers;
118 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
119 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
120 const struct pipe_sampler_view *view =
121 ctx->sampler_views[shader_type][i];
122 lp_sampler_static_texture_state(
123 &key.sampler[i].texture_state, view);
124 if (view) {
125 struct swr_resource *swr_res = swr_resource(view->texture);
126 const struct util_format_description *desc =
127 util_format_description(view->format);
128 if (swr_res->has_depth && swr_res->has_stencil &&
129 !util_format_has_depth(desc))
130 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
131 }
132 }
133 }
134 }
135 }
136
137 void
138 swr_generate_fs_key(struct swr_jit_fs_key &key,
139 struct swr_context *ctx,
140 swr_fragment_shader *swr_fs)
141 {
142 memset(&key, 0, sizeof(key));
143
144 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
145 key.light_twoside = ctx->rasterizer->light_twoside;
146 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
147
148 struct tgsi_shader_info *pPrevShader;
149 if (ctx->gs)
150 pPrevShader = &ctx->gs->info.base;
151 else
152 pPrevShader = &ctx->vs->info.base;
153
154 memcpy(&key.vs_output_semantic_name,
155 &pPrevShader->output_semantic_name,
156 sizeof(key.vs_output_semantic_name));
157 memcpy(&key.vs_output_semantic_idx,
158 &pPrevShader->output_semantic_index,
159 sizeof(key.vs_output_semantic_idx));
160
161 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
162
163 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
164 ctx->poly_stipple.prim_is_poly;
165 }
166
167 void
168 swr_generate_vs_key(struct swr_jit_vs_key &key,
169 struct swr_context *ctx,
170 swr_vertex_shader *swr_vs)
171 {
172 memset(&key, 0, sizeof(key));
173
174 key.clip_plane_mask =
175 swr_vs->info.base.clipdist_writemask ?
176 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
177 ctx->rasterizer->clip_plane_enable;
178
179 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
180 }
181
182 void
183 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
184 struct swr_vertex_element_state *velems)
185 {
186 memset(&key, 0, sizeof(key));
187
188 key.fsState = velems->fsState;
189 }
190
191 void
192 swr_generate_gs_key(struct swr_jit_gs_key &key,
193 struct swr_context *ctx,
194 swr_geometry_shader *swr_gs)
195 {
196 memset(&key, 0, sizeof(key));
197
198 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
199
200 memcpy(&key.vs_output_semantic_name,
201 &pPrevShader->output_semantic_name,
202 sizeof(key.vs_output_semantic_name));
203 memcpy(&key.vs_output_semantic_idx,
204 &pPrevShader->output_semantic_index,
205 sizeof(key.vs_output_semantic_idx));
206
207 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
208 }
209
210 struct BuilderSWR : public Builder {
211 BuilderSWR(JitManager *pJitMgr, const char *pName)
212 : Builder(pJitMgr)
213 {
214 pJitMgr->SetupNewModule();
215 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
216 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
217 }
218
219 ~BuilderSWR() {
220 gallivm_free_ir(gallivm);
221 }
222
223 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
224 unsigned slot, unsigned channel);
225
226 struct gallivm_state *gallivm;
227 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
228 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
229 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
230
231 LLVMValueRef
232 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
233 struct lp_build_tgsi_context * bld_base,
234 boolean is_vindex_indirect,
235 LLVMValueRef vertex_index,
236 boolean is_aindex_indirect,
237 LLVMValueRef attrib_index,
238 LLVMValueRef swizzle_index);
239 void
240 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
241 struct lp_build_tgsi_context * bld_base,
242 LLVMValueRef (*outputs)[4],
243 LLVMValueRef emitted_vertices_vec);
244
245 void
246 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
247 struct lp_build_tgsi_context * bld_base,
248 LLVMValueRef verts_per_prim_vec,
249 LLVMValueRef emitted_prims_vec);
250
251 void
252 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
253 struct lp_build_tgsi_context * bld_base,
254 LLVMValueRef total_emitted_vertices_vec,
255 LLVMValueRef emitted_prims_vec);
256
257 };
258
259 struct swr_gs_llvm_iface {
260 struct lp_build_tgsi_gs_iface base;
261 struct tgsi_shader_info *info;
262
263 BuilderSWR *pBuilder;
264
265 Value *pGsCtx;
266 SWR_GS_STATE *pGsState;
267 uint32_t num_outputs;
268 uint32_t num_verts_per_prim;
269
270 Value *pVtxAttribMap;
271 };
272
273 // trampoline functions so we can use the builder llvm construction methods
274 static LLVMValueRef
275 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
276 struct lp_build_tgsi_context * bld_base,
277 boolean is_vindex_indirect,
278 LLVMValueRef vertex_index,
279 boolean is_aindex_indirect,
280 LLVMValueRef attrib_index,
281 LLVMValueRef swizzle_index)
282 {
283 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
284
285 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
286 is_vindex_indirect,
287 vertex_index,
288 is_aindex_indirect,
289 attrib_index,
290 swizzle_index);
291 }
292
293 static void
294 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
295 struct lp_build_tgsi_context * bld_base,
296 LLVMValueRef (*outputs)[4],
297 LLVMValueRef emitted_vertices_vec)
298 {
299 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
300
301 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
302 outputs,
303 emitted_vertices_vec);
304 }
305
306 static void
307 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
308 struct lp_build_tgsi_context * bld_base,
309 LLVMValueRef verts_per_prim_vec,
310 LLVMValueRef emitted_prims_vec)
311 {
312 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
313
314 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
315 verts_per_prim_vec,
316 emitted_prims_vec);
317 }
318
319 static void
320 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
321 struct lp_build_tgsi_context * bld_base,
322 LLVMValueRef total_emitted_vertices_vec,
323 LLVMValueRef emitted_prims_vec)
324 {
325 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
326
327 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
328 total_emitted_vertices_vec,
329 emitted_prims_vec);
330 }
331
332 LLVMValueRef
333 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
334 struct lp_build_tgsi_context * bld_base,
335 boolean is_vindex_indirect,
336 LLVMValueRef vertex_index,
337 boolean is_aindex_indirect,
338 LLVMValueRef attrib_index,
339 LLVMValueRef swizzle_index)
340 {
341 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
342
343 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
344
345 assert(is_vindex_indirect == false && is_aindex_indirect == false);
346
347 Value *attrib =
348 LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
349
350 Value *pInput =
351 LOAD(GEP(iface->pGsCtx,
352 {C(0),
353 C(SWR_GS_CONTEXT_vert),
354 unwrap(vertex_index),
355 C(0),
356 attrib,
357 unwrap(swizzle_index)}));
358
359 return wrap(pInput);
360 }
361
362 void
363 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
364 struct lp_build_tgsi_context * bld_base,
365 LLVMValueRef (*outputs)[4],
366 LLVMValueRef emitted_vertices_vec)
367 {
368 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
369 SWR_GS_STATE *pGS = iface->pGsState;
370
371 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
372
373 #if USE_SIMD16_FRONTEND
374 const uint32_t simdVertexStride = sizeof(simdvertex) * 2;
375 const uint32_t numSimdBatches = (pGS->maxNumVerts + (mVWidth * 2) - 1) / (mVWidth * 2);
376 #else
377 const uint32_t simdVertexStride = sizeof(simdvertex);
378 const uint32_t numSimdBatches = (pGS->maxNumVerts + mVWidth - 1) / mVWidth;
379 #endif
380 const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
381
382 Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
383 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
384 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
385
386 Value *vOffsets = C({
387 inputPrimStride * 0,
388 inputPrimStride * 1,
389 inputPrimStride * 2,
390 inputPrimStride * 3,
391 inputPrimStride * 4,
392 inputPrimStride * 5,
393 inputPrimStride * 6,
394 inputPrimStride * 7 } );
395
396 #if USE_SIMD16_FRONTEND
397 const uint32_t simdShift = log2(mVWidth * 2);
398 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), (mVWidth * 2) - 1);
399 #else
400 const uint32_t simdShift = log2(mVWidth);
401 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), mVWidth - 1);
402 #endif
403 Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), simdShift);
404
405 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
406 uint32_t attribSlot = attrib;
407 uint32_t sgvChannel = 0;
408 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
409 attribSlot = VERTEX_SGV_SLOT;
410 sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
411 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
412 attribSlot = VERTEX_SGV_SLOT;
413 sgvChannel = VERTEX_SGV_RTAI_COMP;
414 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
415 attribSlot = VERTEX_POSITION_SLOT;
416 } else {
417 attribSlot = VERTEX_ATTRIB_START_SLOT + attrib - 1;
418 }
419
420 #if USE_SIMD16_FRONTEND
421 Value *vOffsetsAttrib =
422 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex) * 2)));
423 vOffsetsAttrib =
424 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector) * 2)));
425 #else
426 Value *vOffsetsAttrib =
427 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
428 vOffsetsAttrib =
429 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
430 #endif
431 vOffsetsAttrib =
432 ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
433
434 for (uint32_t channel = 0; channel < 4; ++channel) {
435 Value *vPtrs = GEP(pStream, vOffsetsAttrib);
436 Value *vData;
437
438 if (attribSlot == VERTEX_SGV_SLOT)
439 vData = LOAD(unwrap(outputs[attrib][0]));
440 else
441 vData = LOAD(unwrap(outputs[attrib][channel]));
442
443 if (attribSlot != VERTEX_SGV_SLOT ||
444 sgvChannel == channel) {
445 vPtrs = BITCAST(vPtrs,
446 VectorType::get(PointerType::get(mFP32Ty, 0), 8));
447
448 MASKED_SCATTER(vData, vPtrs, 32, vMask1);
449 }
450
451 #if USE_SIMD16_FRONTEND
452 vOffsetsAttrib =
453 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar) * 2));
454 #else
455 vOffsetsAttrib =
456 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
457 #endif
458 }
459 }
460 }
461
462 void
463 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
464 struct lp_build_tgsi_context * bld_base,
465 LLVMValueRef verts_per_prim_vec,
466 LLVMValueRef emitted_prims_vec)
467 {
468 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
469 SWR_GS_STATE *pGS = iface->pGsState;
470
471 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
472
473 Value *pCutBuffer =
474 LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
475 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
476 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
477
478 uint32_t vertsPerPrim = iface->num_verts_per_prim;
479
480 Value *vCount =
481 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
482 unwrap(verts_per_prim_vec));
483
484 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
485 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
486
487 struct lp_exec_mask *exec_mask = &bld->exec_mask;
488 Value *mask = unwrap(lp_build_mask_value(bld->mask));
489 if (exec_mask->has_mask)
490 mask = AND(mask, unwrap(exec_mask->exec_mask));
491
492 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
493 mask = AND(mask, cmpMask);
494 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
495
496 const uint32_t cutPrimStride =
497 (pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
498 Value *vOffsets = C({
499 (uint32_t)(cutPrimStride * 0),
500 (uint32_t)(cutPrimStride * 1),
501 (uint32_t)(cutPrimStride * 2),
502 (uint32_t)(cutPrimStride * 3),
503 (uint32_t)(cutPrimStride * 4),
504 (uint32_t)(cutPrimStride * 5),
505 (uint32_t)(cutPrimStride * 6),
506 (uint32_t)(cutPrimStride * 7) } );
507
508 vCount = SUB(vCount, VIMMED1(1));
509 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
510 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
511
512 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
513
514 Value *vPtrs = GEP(pCutBuffer, vOffset);
515 vPtrs =
516 BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
517
518 Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
519 vValue = OR(vGather, vValue);
520 MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
521 }
522
523 void
524 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
525 struct lp_build_tgsi_context * bld_base,
526 LLVMValueRef total_emitted_vertices_vec,
527 LLVMValueRef emitted_prims_vec)
528 {
529 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
530
531 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
532
533 STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
534 }
535
536 PFN_GS_FUNC
537 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
538 {
539 SWR_GS_STATE *pGS = &ctx->gs->gsState;
540 struct tgsi_shader_info *info = &ctx->gs->info.base;
541
542 pGS->gsEnable = true;
543
544 pGS->numInputAttribs = info->num_inputs;
545 pGS->outputTopology =
546 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
547 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
548 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
549
550 pGS->emitsRenderTargetArrayIndex = info->writes_layer;
551 pGS->emitsViewportArrayIndex = info->writes_viewport_index;
552
553 // XXX: single stream for now...
554 pGS->isSingleStream = true;
555 pGS->singleStreamID = 0;
556
557 struct swr_geometry_shader *gs = ctx->gs;
558
559 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
560 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
561
562 memset(outputs, 0, sizeof(outputs));
563
564 AttrBuilder attrBuilder;
565 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
566
567 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
568 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
569 FunctionType *vsFuncType =
570 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
571
572 // create new vertex shader function
573 auto pFunction = Function::Create(vsFuncType,
574 GlobalValue::ExternalLinkage,
575 "GS",
576 JM()->mpCurrentModule);
577 #if HAVE_LLVM < 0x0500
578 AttributeSet attrSet = AttributeSet::get(
579 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
580 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
581 #else
582 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
583 #endif
584
585 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
586 IRB()->SetInsertPoint(block);
587 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
588
589 auto argitr = pFunction->arg_begin();
590 Value *hPrivateData = &*argitr++;
591 hPrivateData->setName("hPrivateData");
592 Value *pGsCtx = &*argitr++;
593 pGsCtx->setName("gsCtx");
594
595 Value *consts_ptr =
596 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
597 consts_ptr->setName("gs_constants");
598 Value *const_sizes_ptr =
599 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
600 const_sizes_ptr->setName("num_gs_constants");
601
602 struct lp_build_sampler_soa *sampler =
603 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
604
605 struct lp_bld_tgsi_system_values system_values;
606 memset(&system_values, 0, sizeof(system_values));
607 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
608 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
609
610 std::vector<Constant*> mapConstants;
611 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
612 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
613 ubyte semantic_name = info->input_semantic_name[slot];
614 ubyte semantic_idx = info->input_semantic_index[slot];
615
616 unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
617
618 vs_slot += VERTEX_ATTRIB_START_SLOT;
619
620 if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
621 vs_slot--;
622
623 if (semantic_name == TGSI_SEMANTIC_POSITION)
624 vs_slot = VERTEX_POSITION_SLOT;
625
626 STORE(C(vs_slot), vtxAttribMap, {0, slot});
627 mapConstants.push_back(C(vs_slot));
628 }
629
630 struct lp_build_mask_context mask;
631 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
632 lp_build_mask_begin(&mask, gallivm,
633 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
634
635 // zero out cut buffer so we can load/modify/store bits
636 MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
637 C((char)0),
638 pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
639 sizeof(float) * KNOB_SIMD_WIDTH);
640
641 struct swr_gs_llvm_iface gs_iface;
642 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
643 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
644 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
645 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
646 gs_iface.pBuilder = this;
647 gs_iface.pGsCtx = pGsCtx;
648 gs_iface.pGsState = pGS;
649 gs_iface.num_outputs = gs->info.base.num_outputs;
650 gs_iface.num_verts_per_prim =
651 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
652 gs_iface.info = info;
653 gs_iface.pVtxAttribMap = vtxAttribMap;
654
655 lp_build_tgsi_soa(gallivm,
656 gs->pipe.tokens,
657 lp_type_float_vec(32, 32 * 8),
658 &mask,
659 wrap(consts_ptr),
660 wrap(const_sizes_ptr),
661 &system_values,
662 inputs,
663 outputs,
664 wrap(hPrivateData), // (sampler context)
665 NULL, // thread data
666 sampler,
667 &gs->info.base,
668 &gs_iface.base);
669
670 lp_build_mask_end(&mask);
671
672 sampler->destroy(sampler);
673
674 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
675
676 RET_VOID();
677
678 gallivm_verify_function(gallivm, wrap(pFunction));
679 gallivm_compile_module(gallivm);
680
681 PFN_GS_FUNC pFunc =
682 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
683
684 debug_printf("geom shader %p\n", pFunc);
685 assert(pFunc && "Error: GeomShader = NULL");
686
687 JM()->mIsModuleFinalized = true;
688
689 return pFunc;
690 }
691
692 PFN_GS_FUNC
693 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
694 {
695 BuilderSWR builder(
696 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
697 "GS");
698 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
699
700 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
701 return func;
702 }
703
704 void
705 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
706 {
707 #if USE_SIMD16_FRONTEND
708 // interleave the simdvertex components into the dest simd16vertex
709 // slot16offset = slot8offset * 2
710 // comp16offset = comp8offset * 2 + alternateOffset
711
712 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
713 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
714 STORE(pVal, pOut, {channel * 2});
715 #else
716 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
717 STORE(pVal, pOut, {0, channel});
718 #endif
719 }
720
721 PFN_VERTEX_FUNC
722 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
723 {
724 struct swr_vertex_shader *swr_vs = ctx->vs;
725
726 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
727 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
728
729 memset(outputs, 0, sizeof(outputs));
730
731 AttrBuilder attrBuilder;
732 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
733
734 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
735 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
736 FunctionType *vsFuncType =
737 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
738
739 // create new vertex shader function
740 auto pFunction = Function::Create(vsFuncType,
741 GlobalValue::ExternalLinkage,
742 "VS",
743 JM()->mpCurrentModule);
744 #if HAVE_LLVM < 0x0500
745 AttributeSet attrSet = AttributeSet::get(
746 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
747 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
748 #else
749 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
750 #endif
751
752 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
753 IRB()->SetInsertPoint(block);
754 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
755
756 auto argitr = pFunction->arg_begin();
757 Value *hPrivateData = &*argitr++;
758 hPrivateData->setName("hPrivateData");
759 Value *pVsCtx = &*argitr++;
760 pVsCtx->setName("vsCtx");
761
762 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
763
764 consts_ptr->setName("vs_constants");
765 Value *const_sizes_ptr =
766 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
767 const_sizes_ptr->setName("num_vs_constants");
768
769 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
770
771 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
772 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
773 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
774 if (mask & (1 << channel)) {
775 inputs[attrib][channel] =
776 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
777 }
778 }
779 }
780
781 struct lp_build_sampler_soa *sampler =
782 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
783
784 struct lp_bld_tgsi_system_values system_values;
785 memset(&system_values, 0, sizeof(system_values));
786 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
787 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
788
789 lp_build_tgsi_soa(gallivm,
790 swr_vs->pipe.tokens,
791 lp_type_float_vec(32, 32 * 8),
792 NULL, // mask
793 wrap(consts_ptr),
794 wrap(const_sizes_ptr),
795 &system_values,
796 inputs,
797 outputs,
798 wrap(hPrivateData), // (sampler context)
799 NULL, // thread data
800 sampler, // sampler
801 &swr_vs->info.base,
802 NULL); // geometry shader face
803
804 sampler->destroy(sampler);
805
806 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
807
808 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
809
810 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
811 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
812 if (!outputs[attrib][channel])
813 continue;
814
815 Value *val;
816 uint32_t outSlot;
817
818 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
819 if (channel != VERTEX_SGV_POINT_SIZE_COMP)
820 continue;
821 val = LOAD(unwrap(outputs[attrib][0]));
822 outSlot = VERTEX_SGV_SLOT;
823 } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
824 val = LOAD(unwrap(outputs[attrib][channel]));
825 outSlot = VERTEX_POSITION_SLOT;
826 } else {
827 val = LOAD(unwrap(outputs[attrib][channel]));
828 outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
829 if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
830 outSlot--;
831 }
832
833 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
834 }
835 }
836
837 if (ctx->rasterizer->clip_plane_enable ||
838 swr_vs->info.base.culldist_writemask) {
839 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
840
841 unsigned cv = 0;
842 if (swr_vs->info.base.writes_clipvertex) {
843 cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
844 &swr_vs->info.base);
845 } else {
846 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
847 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
848 swr_vs->info.base.output_semantic_index[i] == 0) {
849 cv = i;
850 break;
851 }
852 }
853 }
854 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
855 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
856 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
857 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
858
859 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
860 // clip distance overrides user clip planes
861 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
862 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
863 unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
864 &swr_vs->info.base);
865 if (val < 4) {
866 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
867 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
868 } else {
869 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
870 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
871 }
872 continue;
873 }
874
875 if (!(clip_mask & (1 << val)))
876 continue;
877
878 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
879 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
880 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
881 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
882 Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)),
883 FADD(FMUL(unwrap(cy), VBROADCAST(py)),
884 FADD(FMUL(unwrap(cz), VBROADCAST(pz)),
885 FMUL(unwrap(cw), VBROADCAST(pw)))));
886
887 if (val < 4)
888 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
889 else
890 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
891 }
892 }
893
894 RET_VOID();
895
896 gallivm_verify_function(gallivm, wrap(pFunction));
897 gallivm_compile_module(gallivm);
898
899 // lp_debug_dump_value(func);
900
901 PFN_VERTEX_FUNC pFunc =
902 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
903
904 debug_printf("vert shader %p\n", pFunc);
905 assert(pFunc && "Error: VertShader = NULL");
906
907 JM()->mIsModuleFinalized = true;
908
909 return pFunc;
910 }
911
912 PFN_VERTEX_FUNC
913 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
914 {
915 if (!ctx->vs->pipe.tokens)
916 return NULL;
917
918 BuilderSWR builder(
919 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
920 "VS");
921 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
922
923 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
924 return func;
925 }
926
927 static unsigned
928 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
929 {
930 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
931 if ((info->output_semantic_name[i] == name)
932 && (info->output_semantic_index[i] == index)) {
933 return i;
934 }
935 }
936
937 return 0xFFFFFFFF;
938 }
939
940 PFN_PIXEL_KERNEL
941 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
942 {
943 struct swr_fragment_shader *swr_fs = ctx->fs;
944
945 struct tgsi_shader_info *pPrevShader;
946 if (ctx->gs)
947 pPrevShader = &ctx->gs->info.base;
948 else
949 pPrevShader = &ctx->vs->info.base;
950
951 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
952 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
953
954 memset(inputs, 0, sizeof(inputs));
955 memset(outputs, 0, sizeof(outputs));
956
957 struct lp_build_sampler_soa *sampler = NULL;
958
959 AttrBuilder attrBuilder;
960 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
961
962 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
963 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
964 FunctionType *funcType =
965 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
966
967 auto pFunction = Function::Create(funcType,
968 GlobalValue::ExternalLinkage,
969 "FS",
970 JM()->mpCurrentModule);
971 #if HAVE_LLVM < 0x0500
972 AttributeSet attrSet = AttributeSet::get(
973 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
974 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
975 #else
976 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
977 #endif
978
979 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
980 IRB()->SetInsertPoint(block);
981 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
982
983 auto args = pFunction->arg_begin();
984 Value *hPrivateData = &*args++;
985 hPrivateData->setName("hPrivateData");
986 Value *pPS = &*args++;
987 pPS->setName("psCtx");
988
989 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
990 consts_ptr->setName("fs_constants");
991 Value *const_sizes_ptr =
992 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
993 const_sizes_ptr->setName("num_fs_constants");
994
995 // load *pAttribs, *pPerspAttribs
996 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
997 Value *pPerspAttribs =
998 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
999
1000 swr_fs->constantMask = 0;
1001 swr_fs->flatConstantMask = 0;
1002 swr_fs->pointSpriteMask = 0;
1003
1004 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1005 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1006 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1007 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1008
1009 if (!mask)
1010 continue;
1011
1012 // load i,j
1013 Value *vi = nullptr, *vj = nullptr;
1014 switch (interpLoc) {
1015 case TGSI_INTERPOLATE_LOC_CENTER:
1016 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1017 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1018 break;
1019 case TGSI_INTERPOLATE_LOC_CENTROID:
1020 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1021 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1022 break;
1023 case TGSI_INTERPOLATE_LOC_SAMPLE:
1024 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1025 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1026 break;
1027 }
1028
1029 // load/compute w
1030 Value *vw = nullptr, *pAttribs;
1031 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1032 interpMode == TGSI_INTERPOLATE_COLOR) {
1033 pAttribs = pPerspAttribs;
1034 switch (interpLoc) {
1035 case TGSI_INTERPOLATE_LOC_CENTER:
1036 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1037 break;
1038 case TGSI_INTERPOLATE_LOC_CENTROID:
1039 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1040 break;
1041 case TGSI_INTERPOLATE_LOC_SAMPLE:
1042 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1043 break;
1044 }
1045 } else {
1046 pAttribs = pRawAttribs;
1047 vw = VIMMED1(1.f);
1048 }
1049
1050 vw->setName("w");
1051
1052 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1053 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1054
1055 if (semantic_name == TGSI_SEMANTIC_FACE) {
1056 Value *ff =
1057 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1058 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1059 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1060
1061 inputs[attrib][0] = wrap(ff);
1062 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1063 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1064 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1065 continue;
1066 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1067 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1068 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1069 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1070 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1071 } else {
1072 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1073 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1074 }
1075 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1076 inputs[attrib][3] =
1077 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1078 continue;
1079 }
1080
1081 unsigned linkedAttrib =
1082 locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1083
1084 uint32_t extraAttribs = 0;
1085 if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1086 /* non-gs generated primID - need to grab from swizzleMap override */
1087 linkedAttrib = pPrevShader->num_outputs - 1;
1088 swr_fs->constantMask |= 1 << linkedAttrib;
1089 extraAttribs++;
1090 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1091 key.sprite_coord_enable & (1 << semantic_idx)) {
1092 /* we add an extra attrib to the backendState in swr_update_derived. */
1093 linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1094 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1095 extraAttribs++;
1096 } else if (linkedAttrib == 0xFFFFFFFF) {
1097 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1098 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1099 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1100 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1101 /* If we're reading in color and 2-sided lighting is enabled, we have
1102 * to keep going.
1103 */
1104 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1105 continue;
1106 } else {
1107 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1108 swr_fs->constantMask |= 1 << linkedAttrib;
1109 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1110 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1111 }
1112 }
1113
1114 unsigned bcolorAttrib = 0xFFFFFFFF;
1115 Value *offset = NULL;
1116 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1117 bcolorAttrib = locate_linkage(
1118 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1119 /* Neither front nor back colors were available. Nothing to load. */
1120 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1121 continue;
1122 /* If there is no front color, just always use the back color. */
1123 if (linkedAttrib == 0xFFFFFFFF)
1124 linkedAttrib = bcolorAttrib;
1125
1126 if (bcolorAttrib != 0xFFFFFFFF) {
1127 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1128 swr_fs->constantMask |= 1 << bcolorAttrib;
1129 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1130 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1131 }
1132
1133 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1134
1135 if (diff) {
1136 Value *back =
1137 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1138
1139 offset = MUL(back, C(diff));
1140 offset->setName("offset");
1141 }
1142 }
1143 }
1144
1145 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1146 if (mask & (1 << channel)) {
1147 Value *indexA = C(linkedAttrib * 12 + channel);
1148 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1149 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1150
1151 if (offset) {
1152 indexA = ADD(indexA, offset);
1153 indexB = ADD(indexB, offset);
1154 indexC = ADD(indexC, offset);
1155 }
1156
1157 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1158 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1159 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1160
1161 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1162 inputs[attrib][channel] = wrap(va);
1163 } else {
1164 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1165
1166 vc = FMUL(vk, vc);
1167
1168 Value *interp = FMUL(va, vi);
1169 Value *interp1 = FMUL(vb, vj);
1170 interp = FADD(interp, interp1);
1171 interp = FADD(interp, vc);
1172 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1173 interpMode == TGSI_INTERPOLATE_COLOR)
1174 interp = FMUL(interp, vw);
1175 inputs[attrib][channel] = wrap(interp);
1176 }
1177 }
1178 }
1179 }
1180
1181 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1182
1183 struct lp_bld_tgsi_system_values system_values;
1184 memset(&system_values, 0, sizeof(system_values));
1185
1186 struct lp_build_mask_context mask;
1187 bool uses_mask = false;
1188
1189 if (swr_fs->info.base.uses_kill ||
1190 key.poly_stipple_enable) {
1191 Value *vActiveMask = NULL;
1192 if (swr_fs->info.base.uses_kill) {
1193 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1194 }
1195 if (key.poly_stipple_enable) {
1196 // first get fragment xy coords and clip to stipple bounds
1197 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1198 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1199 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1200 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1201
1202 // stipple pattern is 32x32, which means that one line of stipple
1203 // is stored in one word:
1204 // vXstipple is bit offset inside 32-bit stipple word
1205 // vYstipple is word index is stipple array
1206 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1207 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1208
1209 // grab stipple pattern base address
1210 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1211 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1212
1213 // peform a gather to grab stipple words for each lane
1214 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1215 VIMMED1(0xffffffff), C((char)4));
1216
1217 // create a mask with one bit corresponding to the x stipple
1218 // and AND it with the pattern, to see if we have a bit
1219 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1220 Value *vStippleMask = AND(vStipple, vBitMask);
1221 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1222 vStippleMask = VMASK(vStippleMask);
1223
1224 if (swr_fs->info.base.uses_kill) {
1225 vActiveMask = AND(vActiveMask, vStippleMask);
1226 } else {
1227 vActiveMask = vStippleMask;
1228 }
1229 }
1230 lp_build_mask_begin(
1231 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1232 uses_mask = true;
1233 }
1234
1235 lp_build_tgsi_soa(gallivm,
1236 swr_fs->pipe.tokens,
1237 lp_type_float_vec(32, 32 * 8),
1238 uses_mask ? &mask : NULL, // mask
1239 wrap(consts_ptr),
1240 wrap(const_sizes_ptr),
1241 &system_values,
1242 inputs,
1243 outputs,
1244 wrap(hPrivateData),
1245 NULL, // thread data
1246 sampler, // sampler
1247 &swr_fs->info.base,
1248 NULL); // geometry shader face
1249
1250 sampler->destroy(sampler);
1251
1252 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1253
1254 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1255 attrib++) {
1256 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1257 case TGSI_SEMANTIC_POSITION: {
1258 // write z
1259 LLVMValueRef outZ =
1260 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1261 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1262 break;
1263 }
1264 case TGSI_SEMANTIC_COLOR: {
1265 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1266 if (!outputs[attrib][channel])
1267 continue;
1268
1269 LLVMValueRef out =
1270 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1271 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1272 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1273 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1274 STORE(unwrap(out),
1275 pPS,
1276 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1277 }
1278 } else {
1279 STORE(unwrap(out),
1280 pPS,
1281 {0,
1282 SWR_PS_CONTEXT_shaded,
1283 swr_fs->info.base.output_semantic_index[attrib],
1284 channel});
1285 }
1286 }
1287 break;
1288 }
1289 default: {
1290 fprintf(stderr,
1291 "unknown output from FS %s[%d]\n",
1292 tgsi_semantic_names[swr_fs->info.base
1293 .output_semantic_name[attrib]],
1294 swr_fs->info.base.output_semantic_index[attrib]);
1295 break;
1296 }
1297 }
1298 }
1299
1300 LLVMValueRef mask_result = 0;
1301 if (uses_mask) {
1302 mask_result = lp_build_mask_end(&mask);
1303 }
1304
1305 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1306
1307 if (uses_mask) {
1308 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1309 }
1310
1311 RET_VOID();
1312
1313 gallivm_verify_function(gallivm, wrap(pFunction));
1314
1315 gallivm_compile_module(gallivm);
1316
1317 PFN_PIXEL_KERNEL kernel =
1318 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1319 debug_printf("frag shader %p\n", kernel);
1320 assert(kernel && "Error: FragShader = NULL");
1321
1322 JM()->mIsModuleFinalized = true;
1323
1324 return kernel;
1325 }
1326
1327 PFN_PIXEL_KERNEL
1328 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1329 {
1330 if (!ctx->fs->pipe.tokens)
1331 return NULL;
1332
1333 BuilderSWR builder(
1334 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1335 "FS");
1336 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1337
1338 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1339 return func;
1340 }