swr: Add polygon stipple support
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49
50 #if HAVE_LLVM < 0x0500
51 namespace llvm {
52 typedef AttributeSet AttributeList;
53 }
54 #endif
55
56 using namespace SwrJit;
57 using namespace llvm;
58
59 static unsigned
60 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
61
62 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
63 {
64 return !memcmp(&lhs, &rhs, sizeof(lhs));
65 }
66
67 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
68 {
69 return !memcmp(&lhs, &rhs, sizeof(lhs));
70 }
71
72 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
73 {
74 return !memcmp(&lhs, &rhs, sizeof(lhs));
75 }
76
77 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
78 {
79 return !memcmp(&lhs, &rhs, sizeof(lhs));
80 }
81
82 static void
83 swr_generate_sampler_key(const struct lp_tgsi_info &info,
84 struct swr_context *ctx,
85 enum pipe_shader_type shader_type,
86 struct swr_jit_sampler_key &key)
87 {
88 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
89
90 for (unsigned i = 0; i < key.nr_samplers; i++) {
91 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
92 lp_sampler_static_sampler_state(
93 &key.sampler[i].sampler_state,
94 ctx->samplers[shader_type][i]);
95 }
96 }
97
98 /*
99 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
100 * are dx10-style? Can't really have mixed opcodes, at least not
101 * if we want to skip the holes here (without rescanning tgsi).
102 */
103 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
104 key.nr_sampler_views =
105 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
106 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
107 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
108 const struct pipe_sampler_view *view =
109 ctx->sampler_views[shader_type][i];
110 lp_sampler_static_texture_state(
111 &key.sampler[i].texture_state, view);
112 if (view) {
113 struct swr_resource *swr_res = swr_resource(view->texture);
114 const struct util_format_description *desc =
115 util_format_description(view->format);
116 if (swr_res->has_depth && swr_res->has_stencil &&
117 !util_format_has_depth(desc))
118 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
119 }
120 }
121 }
122 } else {
123 key.nr_sampler_views = key.nr_samplers;
124 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
125 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
126 const struct pipe_sampler_view *view =
127 ctx->sampler_views[shader_type][i];
128 lp_sampler_static_texture_state(
129 &key.sampler[i].texture_state, view);
130 if (view) {
131 struct swr_resource *swr_res = swr_resource(view->texture);
132 const struct util_format_description *desc =
133 util_format_description(view->format);
134 if (swr_res->has_depth && swr_res->has_stencil &&
135 !util_format_has_depth(desc))
136 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
137 }
138 }
139 }
140 }
141 }
142
143 void
144 swr_generate_fs_key(struct swr_jit_fs_key &key,
145 struct swr_context *ctx,
146 swr_fragment_shader *swr_fs)
147 {
148 memset(&key, 0, sizeof(key));
149
150 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
151 key.light_twoside = ctx->rasterizer->light_twoside;
152 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
153
154 struct tgsi_shader_info *pPrevShader;
155 if (ctx->gs)
156 pPrevShader = &ctx->gs->info.base;
157 else
158 pPrevShader = &ctx->vs->info.base;
159
160 memcpy(&key.vs_output_semantic_name,
161 &pPrevShader->output_semantic_name,
162 sizeof(key.vs_output_semantic_name));
163 memcpy(&key.vs_output_semantic_idx,
164 &pPrevShader->output_semantic_index,
165 sizeof(key.vs_output_semantic_idx));
166
167 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
168
169 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
170 ctx->poly_stipple.prim_is_poly;
171 }
172
173 void
174 swr_generate_vs_key(struct swr_jit_vs_key &key,
175 struct swr_context *ctx,
176 swr_vertex_shader *swr_vs)
177 {
178 memset(&key, 0, sizeof(key));
179
180 key.clip_plane_mask =
181 swr_vs->info.base.clipdist_writemask ?
182 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
183 ctx->rasterizer->clip_plane_enable;
184
185 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
186 }
187
188 void
189 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
190 struct swr_vertex_element_state *velems)
191 {
192 memset(&key, 0, sizeof(key));
193
194 key.fsState = velems->fsState;
195 }
196
197 void
198 swr_generate_gs_key(struct swr_jit_gs_key &key,
199 struct swr_context *ctx,
200 swr_geometry_shader *swr_gs)
201 {
202 memset(&key, 0, sizeof(key));
203
204 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
205
206 memcpy(&key.vs_output_semantic_name,
207 &pPrevShader->output_semantic_name,
208 sizeof(key.vs_output_semantic_name));
209 memcpy(&key.vs_output_semantic_idx,
210 &pPrevShader->output_semantic_index,
211 sizeof(key.vs_output_semantic_idx));
212
213 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
214 }
215
216 struct BuilderSWR : public Builder {
217 BuilderSWR(JitManager *pJitMgr, const char *pName)
218 : Builder(pJitMgr)
219 {
220 pJitMgr->SetupNewModule();
221 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
222 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
223 }
224
225 ~BuilderSWR() {
226 gallivm_free_ir(gallivm);
227 }
228
229 struct gallivm_state *gallivm;
230 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
231 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
232 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
233
234 LLVMValueRef
235 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
236 struct lp_build_tgsi_context * bld_base,
237 boolean is_vindex_indirect,
238 LLVMValueRef vertex_index,
239 boolean is_aindex_indirect,
240 LLVMValueRef attrib_index,
241 LLVMValueRef swizzle_index);
242 void
243 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
244 struct lp_build_tgsi_context * bld_base,
245 LLVMValueRef (*outputs)[4],
246 LLVMValueRef emitted_vertices_vec);
247
248 void
249 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
250 struct lp_build_tgsi_context * bld_base,
251 LLVMValueRef verts_per_prim_vec,
252 LLVMValueRef emitted_prims_vec);
253
254 void
255 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
256 struct lp_build_tgsi_context * bld_base,
257 LLVMValueRef total_emitted_vertices_vec,
258 LLVMValueRef emitted_prims_vec);
259
260 };
261
262 struct swr_gs_llvm_iface {
263 struct lp_build_tgsi_gs_iface base;
264 struct tgsi_shader_info *info;
265
266 BuilderSWR *pBuilder;
267
268 Value *pGsCtx;
269 SWR_GS_STATE *pGsState;
270 uint32_t num_outputs;
271 uint32_t num_verts_per_prim;
272
273 Value *pVtxAttribMap;
274 };
275
276 // trampoline functions so we can use the builder llvm construction methods
277 static LLVMValueRef
278 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
279 struct lp_build_tgsi_context * bld_base,
280 boolean is_vindex_indirect,
281 LLVMValueRef vertex_index,
282 boolean is_aindex_indirect,
283 LLVMValueRef attrib_index,
284 LLVMValueRef swizzle_index)
285 {
286 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
287
288 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
289 is_vindex_indirect,
290 vertex_index,
291 is_aindex_indirect,
292 attrib_index,
293 swizzle_index);
294 }
295
296 static void
297 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
298 struct lp_build_tgsi_context * bld_base,
299 LLVMValueRef (*outputs)[4],
300 LLVMValueRef emitted_vertices_vec)
301 {
302 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
303
304 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
305 outputs,
306 emitted_vertices_vec);
307 }
308
309 static void
310 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
311 struct lp_build_tgsi_context * bld_base,
312 LLVMValueRef verts_per_prim_vec,
313 LLVMValueRef emitted_prims_vec)
314 {
315 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
316
317 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
318 verts_per_prim_vec,
319 emitted_prims_vec);
320 }
321
322 static void
323 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
324 struct lp_build_tgsi_context * bld_base,
325 LLVMValueRef total_emitted_vertices_vec,
326 LLVMValueRef emitted_prims_vec)
327 {
328 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
329
330 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
331 total_emitted_vertices_vec,
332 emitted_prims_vec);
333 }
334
335 LLVMValueRef
336 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
337 struct lp_build_tgsi_context * bld_base,
338 boolean is_vindex_indirect,
339 LLVMValueRef vertex_index,
340 boolean is_aindex_indirect,
341 LLVMValueRef attrib_index,
342 LLVMValueRef swizzle_index)
343 {
344 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
345
346 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
347
348 assert(is_vindex_indirect == false && is_aindex_indirect == false);
349
350 Value *attrib =
351 LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
352
353 Value *pInput =
354 LOAD(GEP(iface->pGsCtx,
355 {C(0),
356 C(SWR_GS_CONTEXT_vert),
357 unwrap(vertex_index),
358 C(0),
359 attrib,
360 unwrap(swizzle_index)}));
361
362 return wrap(pInput);
363 }
364
365 void
366 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
367 struct lp_build_tgsi_context * bld_base,
368 LLVMValueRef (*outputs)[4],
369 LLVMValueRef emitted_vertices_vec)
370 {
371 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
372 SWR_GS_STATE *pGS = iface->pGsState;
373
374 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
375
376 const uint32_t simdVertexStride = sizeof(simdvertex);
377 const uint32_t numSimdBatches = (pGS->maxNumVerts + 7) / 8;
378 const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
379
380 Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
381 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
382 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
383
384 Value *vOffsets = C({
385 inputPrimStride * 0,
386 inputPrimStride * 1,
387 inputPrimStride * 2,
388 inputPrimStride * 3,
389 inputPrimStride * 4,
390 inputPrimStride * 5,
391 inputPrimStride * 6,
392 inputPrimStride * 7 } );
393
394 Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), 3);
395 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), 7);
396
397 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
398 uint32_t attribSlot = attrib;
399 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE)
400 attribSlot = VERTEX_POINT_SIZE_SLOT;
401 else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PRIMID)
402 attribSlot = VERTEX_PRIMID_SLOT;
403 else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER)
404 attribSlot = VERTEX_RTAI_SLOT;
405
406 Value *vOffsetsAttrib =
407 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
408 vOffsetsAttrib =
409 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
410 vOffsetsAttrib =
411 ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
412
413 for (uint32_t channel = 0; channel < 4; ++channel) {
414 Value *vData = LOAD(unwrap(outputs[attrib][channel]));
415 Value *vPtrs = GEP(pStream, vOffsetsAttrib);
416
417 vPtrs = BITCAST(vPtrs,
418 VectorType::get(PointerType::get(mFP32Ty, 0), 8));
419
420 MASKED_SCATTER(vData, vPtrs, 32, vMask1);
421
422 vOffsetsAttrib =
423 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
424 }
425 }
426 }
427
428 void
429 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
430 struct lp_build_tgsi_context * bld_base,
431 LLVMValueRef verts_per_prim_vec,
432 LLVMValueRef emitted_prims_vec)
433 {
434 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
435 SWR_GS_STATE *pGS = iface->pGsState;
436
437 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
438
439 Value *pCutBuffer =
440 LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
441 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
442 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
443
444 uint32_t vertsPerPrim = iface->num_verts_per_prim;
445
446 Value *vCount =
447 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
448 unwrap(verts_per_prim_vec));
449
450 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
451 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
452
453 struct lp_exec_mask *exec_mask = &bld->exec_mask;
454 Value *mask = unwrap(lp_build_mask_value(bld->mask));
455 if (exec_mask->has_mask)
456 mask = AND(mask, unwrap(exec_mask->exec_mask));
457
458 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
459 mask = AND(mask, cmpMask);
460 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
461
462 const uint32_t cutPrimStride =
463 (pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
464 Value *vOffsets = C({
465 (uint32_t)(cutPrimStride * 0),
466 (uint32_t)(cutPrimStride * 1),
467 (uint32_t)(cutPrimStride * 2),
468 (uint32_t)(cutPrimStride * 3),
469 (uint32_t)(cutPrimStride * 4),
470 (uint32_t)(cutPrimStride * 5),
471 (uint32_t)(cutPrimStride * 6),
472 (uint32_t)(cutPrimStride * 7) } );
473
474 vCount = SUB(vCount, VIMMED1(1));
475 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
476 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
477
478 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
479
480 Value *vPtrs = GEP(pCutBuffer, vOffset);
481 vPtrs =
482 BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
483
484 Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
485 vValue = OR(vGather, vValue);
486 MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
487 }
488
489 void
490 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
491 struct lp_build_tgsi_context * bld_base,
492 LLVMValueRef total_emitted_vertices_vec,
493 LLVMValueRef emitted_prims_vec)
494 {
495 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
496
497 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
498
499 STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
500 }
501
502 PFN_GS_FUNC
503 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
504 {
505 SWR_GS_STATE *pGS = &ctx->gs->gsState;
506 struct tgsi_shader_info *info = &ctx->gs->info.base;
507
508 pGS->gsEnable = true;
509
510 pGS->numInputAttribs = info->num_inputs;
511 pGS->outputTopology =
512 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
513 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
514 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
515
516 pGS->emitsRenderTargetArrayIndex = info->writes_layer;
517 pGS->emitsPrimitiveID = info->writes_primid;
518 pGS->emitsViewportArrayIndex = info->writes_viewport_index;
519
520 // XXX: single stream for now...
521 pGS->isSingleStream = true;
522 pGS->singleStreamID = 0;
523
524 struct swr_geometry_shader *gs = ctx->gs;
525
526 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
527 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
528
529 memset(outputs, 0, sizeof(outputs));
530
531 AttrBuilder attrBuilder;
532 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
533 AttributeList attrSet = AttributeList::get(
534 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
535
536 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
537 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
538 FunctionType *vsFuncType =
539 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
540
541 // create new vertex shader function
542 auto pFunction = Function::Create(vsFuncType,
543 GlobalValue::ExternalLinkage,
544 "GS",
545 JM()->mpCurrentModule);
546 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
547
548 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
549 IRB()->SetInsertPoint(block);
550 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
551
552 auto argitr = pFunction->arg_begin();
553 Value *hPrivateData = &*argitr++;
554 hPrivateData->setName("hPrivateData");
555 Value *pGsCtx = &*argitr++;
556 pGsCtx->setName("gsCtx");
557
558 Value *consts_ptr =
559 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
560 consts_ptr->setName("gs_constants");
561 Value *const_sizes_ptr =
562 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
563 const_sizes_ptr->setName("num_gs_constants");
564
565 struct lp_build_sampler_soa *sampler =
566 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
567
568 struct lp_bld_tgsi_system_values system_values;
569 memset(&system_values, 0, sizeof(system_values));
570 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
571 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
572
573 std::vector<Constant*> mapConstants;
574 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
575 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
576 ubyte semantic_name = info->input_semantic_name[slot];
577 ubyte semantic_idx = info->input_semantic_index[slot];
578
579 unsigned vs_slot =
580 locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base) + 1;
581
582 STORE(C(vs_slot), vtxAttribMap, {0, slot});
583 mapConstants.push_back(C(vs_slot));
584 }
585
586 struct lp_build_mask_context mask;
587 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
588 lp_build_mask_begin(&mask, gallivm,
589 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
590
591 // zero out cut buffer so we can load/modify/store bits
592 MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
593 C((char)0),
594 pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
595 sizeof(float) * KNOB_SIMD_WIDTH);
596
597 struct swr_gs_llvm_iface gs_iface;
598 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
599 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
600 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
601 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
602 gs_iface.pBuilder = this;
603 gs_iface.pGsCtx = pGsCtx;
604 gs_iface.pGsState = pGS;
605 gs_iface.num_outputs = gs->info.base.num_outputs;
606 gs_iface.num_verts_per_prim =
607 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
608 gs_iface.info = info;
609 gs_iface.pVtxAttribMap = vtxAttribMap;
610
611 lp_build_tgsi_soa(gallivm,
612 gs->pipe.tokens,
613 lp_type_float_vec(32, 32 * 8),
614 &mask,
615 wrap(consts_ptr),
616 wrap(const_sizes_ptr),
617 &system_values,
618 inputs,
619 outputs,
620 wrap(hPrivateData), // (sampler context)
621 NULL, // thread data
622 sampler,
623 &gs->info.base,
624 &gs_iface.base);
625
626 lp_build_mask_end(&mask);
627
628 sampler->destroy(sampler);
629
630 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
631
632 RET_VOID();
633
634 gallivm_verify_function(gallivm, wrap(pFunction));
635 gallivm_compile_module(gallivm);
636
637 PFN_GS_FUNC pFunc =
638 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
639
640 debug_printf("geom shader %p\n", pFunc);
641 assert(pFunc && "Error: GeomShader = NULL");
642
643 JM()->mIsModuleFinalized = true;
644
645 return pFunc;
646 }
647
648 PFN_GS_FUNC
649 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
650 {
651 BuilderSWR builder(
652 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
653 "GS");
654 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
655
656 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
657 return func;
658 }
659
660 PFN_VERTEX_FUNC
661 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
662 {
663 struct swr_vertex_shader *swr_vs = ctx->vs;
664
665 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
666 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
667
668 memset(outputs, 0, sizeof(outputs));
669
670 AttrBuilder attrBuilder;
671 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
672 AttributeList attrSet = AttributeList::get(
673 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
674
675 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
676 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
677 FunctionType *vsFuncType =
678 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
679
680 // create new vertex shader function
681 auto pFunction = Function::Create(vsFuncType,
682 GlobalValue::ExternalLinkage,
683 "VS",
684 JM()->mpCurrentModule);
685 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
686
687 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
688 IRB()->SetInsertPoint(block);
689 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
690
691 auto argitr = pFunction->arg_begin();
692 Value *hPrivateData = &*argitr++;
693 hPrivateData->setName("hPrivateData");
694 Value *pVsCtx = &*argitr++;
695 pVsCtx->setName("vsCtx");
696
697 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
698
699 consts_ptr->setName("vs_constants");
700 Value *const_sizes_ptr =
701 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
702 const_sizes_ptr->setName("num_vs_constants");
703
704 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
705
706 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
707 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
708 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
709 if (mask & (1 << channel)) {
710 inputs[attrib][channel] =
711 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
712 }
713 }
714 }
715
716 struct lp_build_sampler_soa *sampler =
717 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
718
719 struct lp_bld_tgsi_system_values system_values;
720 memset(&system_values, 0, sizeof(system_values));
721 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
722 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
723
724 lp_build_tgsi_soa(gallivm,
725 swr_vs->pipe.tokens,
726 lp_type_float_vec(32, 32 * 8),
727 NULL, // mask
728 wrap(consts_ptr),
729 wrap(const_sizes_ptr),
730 &system_values,
731 inputs,
732 outputs,
733 wrap(hPrivateData), // (sampler context)
734 NULL, // thread data
735 sampler, // sampler
736 &swr_vs->info.base,
737 NULL); // geometry shader face
738
739 sampler->destroy(sampler);
740
741 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
742
743 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
744
745 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
746 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
747 if (!outputs[attrib][channel])
748 continue;
749
750 Value *val = LOAD(unwrap(outputs[attrib][channel]));
751
752 uint32_t outSlot = attrib;
753 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE)
754 outSlot = VERTEX_POINT_SIZE_SLOT;
755 STORE(val, vtxOutput, {0, 0, outSlot, channel});
756 }
757 }
758
759 if (ctx->rasterizer->clip_plane_enable ||
760 swr_vs->info.base.culldist_writemask) {
761 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
762
763 unsigned cv = 0;
764 if (swr_vs->info.base.writes_clipvertex) {
765 cv = 1 + locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
766 &swr_vs->info.base);
767 } else {
768 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
769 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
770 swr_vs->info.base.output_semantic_index[i] == 0) {
771 cv = i;
772 break;
773 }
774 }
775 }
776 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
777 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
778 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
779 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
780
781 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
782 // clip distance overrides user clip planes
783 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
784 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
785 unsigned cv = 1 + locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
786 &swr_vs->info.base);
787 if (val < 4) {
788 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
789 STORE(unwrap(dist), vtxOutput, {0, 0, VERTEX_CLIPCULL_DIST_LO_SLOT, val});
790 } else {
791 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
792 STORE(unwrap(dist), vtxOutput, {0, 0, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4});
793 }
794 continue;
795 }
796
797 if (!(clip_mask & (1 << val)))
798 continue;
799
800 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
801 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
802 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
803 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
804 Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)),
805 FADD(FMUL(unwrap(cy), VBROADCAST(py)),
806 FADD(FMUL(unwrap(cz), VBROADCAST(pz)),
807 FMUL(unwrap(cw), VBROADCAST(pw)))));
808
809 if (val < 4)
810 STORE(dist, vtxOutput, {0, 0, VERTEX_CLIPCULL_DIST_LO_SLOT, val});
811 else
812 STORE(dist, vtxOutput, {0, 0, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4});
813 }
814 }
815
816 RET_VOID();
817
818 gallivm_verify_function(gallivm, wrap(pFunction));
819 gallivm_compile_module(gallivm);
820
821 // lp_debug_dump_value(func);
822
823 PFN_VERTEX_FUNC pFunc =
824 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
825
826 debug_printf("vert shader %p\n", pFunc);
827 assert(pFunc && "Error: VertShader = NULL");
828
829 JM()->mIsModuleFinalized = true;
830
831 return pFunc;
832 }
833
834 PFN_VERTEX_FUNC
835 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
836 {
837 if (!ctx->vs->pipe.tokens)
838 return NULL;
839
840 BuilderSWR builder(
841 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
842 "VS");
843 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
844
845 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
846 return func;
847 }
848
849 static unsigned
850 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
851 {
852 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
853 if ((info->output_semantic_name[i] == name)
854 && (info->output_semantic_index[i] == index)) {
855 return i - 1; // position is not part of the linkage
856 }
857 }
858
859 return 0xFFFFFFFF;
860 }
861
862 PFN_PIXEL_KERNEL
863 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
864 {
865 struct swr_fragment_shader *swr_fs = ctx->fs;
866
867 struct tgsi_shader_info *pPrevShader;
868 if (ctx->gs)
869 pPrevShader = &ctx->gs->info.base;
870 else
871 pPrevShader = &ctx->vs->info.base;
872
873 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
874 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
875
876 memset(inputs, 0, sizeof(inputs));
877 memset(outputs, 0, sizeof(outputs));
878
879 struct lp_build_sampler_soa *sampler = NULL;
880
881 AttrBuilder attrBuilder;
882 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
883 AttributeList attrSet = AttributeList::get(
884 JM()->mContext, AttributeList::FunctionIndex, attrBuilder);
885
886 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
887 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
888 FunctionType *funcType =
889 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
890
891 auto pFunction = Function::Create(funcType,
892 GlobalValue::ExternalLinkage,
893 "FS",
894 JM()->mpCurrentModule);
895 pFunction->addAttributes(AttributeList::FunctionIndex, attrSet);
896
897 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
898 IRB()->SetInsertPoint(block);
899 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
900
901 auto args = pFunction->arg_begin();
902 Value *hPrivateData = &*args++;
903 hPrivateData->setName("hPrivateData");
904 Value *pPS = &*args++;
905 pPS->setName("psCtx");
906
907 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
908 consts_ptr->setName("fs_constants");
909 Value *const_sizes_ptr =
910 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
911 const_sizes_ptr->setName("num_fs_constants");
912
913 // load *pAttribs, *pPerspAttribs
914 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
915 Value *pPerspAttribs =
916 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
917
918 swr_fs->constantMask = 0;
919 swr_fs->flatConstantMask = 0;
920 swr_fs->pointSpriteMask = 0;
921
922 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
923 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
924 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
925 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
926
927 if (!mask)
928 continue;
929
930 // load i,j
931 Value *vi = nullptr, *vj = nullptr;
932 switch (interpLoc) {
933 case TGSI_INTERPOLATE_LOC_CENTER:
934 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
935 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
936 break;
937 case TGSI_INTERPOLATE_LOC_CENTROID:
938 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
939 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
940 break;
941 case TGSI_INTERPOLATE_LOC_SAMPLE:
942 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
943 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
944 break;
945 }
946
947 // load/compute w
948 Value *vw = nullptr, *pAttribs;
949 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
950 interpMode == TGSI_INTERPOLATE_COLOR) {
951 pAttribs = pPerspAttribs;
952 switch (interpLoc) {
953 case TGSI_INTERPOLATE_LOC_CENTER:
954 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
955 break;
956 case TGSI_INTERPOLATE_LOC_CENTROID:
957 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
958 break;
959 case TGSI_INTERPOLATE_LOC_SAMPLE:
960 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
961 break;
962 }
963 } else {
964 pAttribs = pRawAttribs;
965 vw = VIMMED1(1.f);
966 }
967
968 vw->setName("w");
969
970 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
971 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
972
973 if (semantic_name == TGSI_SEMANTIC_FACE) {
974 Value *ff =
975 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
976 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
977 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
978
979 inputs[attrib][0] = wrap(ff);
980 inputs[attrib][1] = wrap(VIMMED1(0.0f));
981 inputs[attrib][2] = wrap(VIMMED1(0.0f));
982 inputs[attrib][3] = wrap(VIMMED1(1.0f));
983 continue;
984 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
985 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
986 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
987 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
988 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
989 } else {
990 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
991 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
992 }
993 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
994 inputs[attrib][3] =
995 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
996 continue;
997 } else if (semantic_name == TGSI_SEMANTIC_PRIMID) {
998 Value *primID = LOAD(pPS, {0, SWR_PS_CONTEXT_primID}, "primID");
999 inputs[attrib][0] = wrap(VECTOR_SPLAT(JM()->mVWidth, primID));
1000 inputs[attrib][1] = wrap(VIMMED1(0));
1001 inputs[attrib][2] = wrap(VIMMED1(0));
1002 inputs[attrib][3] = wrap(VIMMED1(0));
1003 continue;
1004 }
1005
1006 unsigned linkedAttrib =
1007 locate_linkage(semantic_name, semantic_idx, pPrevShader);
1008
1009 if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1010 key.sprite_coord_enable & (1 << semantic_idx)) {
1011 /* we add an extra attrib to the backendState in swr_update_derived. */
1012 linkedAttrib = pPrevShader->num_outputs - 1;
1013 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1014 } else if (linkedAttrib == 0xFFFFFFFF) {
1015 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1016 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1017 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1018 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1019 /* If we're reading in color and 2-sided lighting is enabled, we have
1020 * to keep going.
1021 */
1022 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1023 continue;
1024 } else {
1025 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1026 swr_fs->constantMask |= 1 << linkedAttrib;
1027 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1028 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1029 }
1030 }
1031
1032 unsigned bcolorAttrib = 0xFFFFFFFF;
1033 Value *offset = NULL;
1034 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1035 bcolorAttrib = locate_linkage(
1036 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader);
1037 /* Neither front nor back colors were available. Nothing to load. */
1038 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1039 continue;
1040 /* If there is no front color, just always use the back color. */
1041 if (linkedAttrib == 0xFFFFFFFF)
1042 linkedAttrib = bcolorAttrib;
1043
1044 if (bcolorAttrib != 0xFFFFFFFF) {
1045 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1046 swr_fs->constantMask |= 1 << bcolorAttrib;
1047 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1048 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1049 }
1050
1051 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1052
1053 if (diff) {
1054 Value *back =
1055 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1056
1057 offset = MUL(back, C(diff));
1058 offset->setName("offset");
1059 }
1060 }
1061 }
1062
1063 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1064 if (mask & (1 << channel)) {
1065 Value *indexA = C(linkedAttrib * 12 + channel);
1066 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1067 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1068
1069 if (offset) {
1070 indexA = ADD(indexA, offset);
1071 indexB = ADD(indexB, offset);
1072 indexC = ADD(indexC, offset);
1073 }
1074
1075 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1076 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1077 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1078
1079 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1080 inputs[attrib][channel] = wrap(va);
1081 } else {
1082 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1083
1084 vc = FMUL(vk, vc);
1085
1086 Value *interp = FMUL(va, vi);
1087 Value *interp1 = FMUL(vb, vj);
1088 interp = FADD(interp, interp1);
1089 interp = FADD(interp, vc);
1090 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1091 interpMode == TGSI_INTERPOLATE_COLOR)
1092 interp = FMUL(interp, vw);
1093 inputs[attrib][channel] = wrap(interp);
1094 }
1095 }
1096 }
1097 }
1098
1099 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1100
1101 struct lp_bld_tgsi_system_values system_values;
1102 memset(&system_values, 0, sizeof(system_values));
1103
1104 struct lp_build_mask_context mask;
1105 bool uses_mask = false;
1106
1107 if (swr_fs->info.base.uses_kill ||
1108 key.poly_stipple_enable) {
1109 Value *vActiveMask = NULL;
1110 if (swr_fs->info.base.uses_kill) {
1111 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1112 }
1113 if (key.poly_stipple_enable) {
1114 // first get fragment xy coords and clip to stipple bounds
1115 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1116 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1117 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1118 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1119
1120 // stipple pattern is 32x32, which means that one line of stipple
1121 // is stored in one word:
1122 // vXstipple is bit offset inside 32-bit stipple word
1123 // vYstipple is word index is stipple array
1124 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1125 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1126
1127 // grab stipple pattern base address
1128 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1129 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1130
1131 // peform a gather to grab stipple words for each lane
1132 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1133 VIMMED1(0xffffffff), C((char)4));
1134
1135 // create a mask with one bit corresponding to the x stipple
1136 // and AND it with the pattern, to see if we have a bit
1137 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1138 Value *vStippleMask = AND(vStipple, vBitMask);
1139 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1140 vStippleMask = VMASK(vStippleMask);
1141
1142 if (swr_fs->info.base.uses_kill) {
1143 vActiveMask = AND(vActiveMask, vStippleMask);
1144 } else {
1145 vActiveMask = vStippleMask;
1146 }
1147 }
1148 lp_build_mask_begin(
1149 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1150 uses_mask = true;
1151 }
1152
1153 lp_build_tgsi_soa(gallivm,
1154 swr_fs->pipe.tokens,
1155 lp_type_float_vec(32, 32 * 8),
1156 uses_mask ? &mask : NULL, // mask
1157 wrap(consts_ptr),
1158 wrap(const_sizes_ptr),
1159 &system_values,
1160 inputs,
1161 outputs,
1162 wrap(hPrivateData),
1163 NULL, // thread data
1164 sampler, // sampler
1165 &swr_fs->info.base,
1166 NULL); // geometry shader face
1167
1168 sampler->destroy(sampler);
1169
1170 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1171
1172 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1173 attrib++) {
1174 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1175 case TGSI_SEMANTIC_POSITION: {
1176 // write z
1177 LLVMValueRef outZ =
1178 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1179 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1180 break;
1181 }
1182 case TGSI_SEMANTIC_COLOR: {
1183 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1184 if (!outputs[attrib][channel])
1185 continue;
1186
1187 LLVMValueRef out =
1188 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1189 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1190 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1191 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1192 STORE(unwrap(out),
1193 pPS,
1194 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1195 }
1196 } else {
1197 STORE(unwrap(out),
1198 pPS,
1199 {0,
1200 SWR_PS_CONTEXT_shaded,
1201 swr_fs->info.base.output_semantic_index[attrib],
1202 channel});
1203 }
1204 }
1205 break;
1206 }
1207 default: {
1208 fprintf(stderr,
1209 "unknown output from FS %s[%d]\n",
1210 tgsi_semantic_names[swr_fs->info.base
1211 .output_semantic_name[attrib]],
1212 swr_fs->info.base.output_semantic_index[attrib]);
1213 break;
1214 }
1215 }
1216 }
1217
1218 LLVMValueRef mask_result = 0;
1219 if (uses_mask) {
1220 mask_result = lp_build_mask_end(&mask);
1221 }
1222
1223 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1224
1225 if (uses_mask) {
1226 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1227 }
1228
1229 RET_VOID();
1230
1231 gallivm_verify_function(gallivm, wrap(pFunction));
1232
1233 gallivm_compile_module(gallivm);
1234
1235 PFN_PIXEL_KERNEL kernel =
1236 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1237 debug_printf("frag shader %p\n", kernel);
1238 assert(kernel && "Error: FragShader = NULL");
1239
1240 JM()->mIsModuleFinalized = true;
1241
1242 return kernel;
1243 }
1244
1245 PFN_PIXEL_KERNEL
1246 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1247 {
1248 if (!ctx->fs->pipe.tokens)
1249 return NULL;
1250
1251 BuilderSWR builder(
1252 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1253 "FS");
1254 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1255
1256 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1257 return func;
1258 }