vc4: Don't pair up TLB scoreboard locking instructions early in QPU sched.
[mesa.git] / src / gallium / drivers / vc4 / vc4_qpu_schedule.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 /**
26 * @file vc4_qpu_schedule.c
27 *
28 * The basic model of the list scheduler is to take a basic block, compute a
29 * DAG of the dependencies, and make a list of the DAG heads. Heuristically
30 * pick a DAG head, then put all the children that are now DAG heads into the
31 * list of things to schedule.
32 *
33 * The goal of scheduling here is to pack pairs of operations together in a
34 * single QPU instruction.
35 */
36
37 #include "vc4_qir.h"
38 #include "vc4_qpu.h"
39 #include "util/ralloc.h"
40
41 static bool debug;
42
43 struct schedule_node_child;
44
45 struct schedule_node {
46 struct list_head link;
47 struct queued_qpu_inst *inst;
48 struct schedule_node_child *children;
49 uint32_t child_count;
50 uint32_t child_array_size;
51 uint32_t parent_count;
52
53 /* Longest cycles + instruction_latency() of any parent of this node. */
54 uint32_t unblocked_time;
55
56 /**
57 * Minimum number of cycles from scheduling this instruction until the
58 * end of the program, based on the slowest dependency chain through
59 * the children.
60 */
61 uint32_t delay;
62
63 /**
64 * cycles between this instruction being scheduled and when its result
65 * can be consumed.
66 */
67 uint32_t latency;
68
69 /**
70 * Which uniform from uniform_data[] this instruction read, or -1 if
71 * not reading a uniform.
72 */
73 int uniform;
74 };
75
76 struct schedule_node_child {
77 struct schedule_node *node;
78 bool write_after_read;
79 };
80
81 /* When walking the instructions in reverse, we need to swap before/after in
82 * add_dep().
83 */
84 enum direction { F, R };
85
86 struct schedule_state {
87 struct schedule_node *last_r[6];
88 struct schedule_node *last_ra[32];
89 struct schedule_node *last_rb[32];
90 struct schedule_node *last_sf;
91 struct schedule_node *last_vpm_read;
92 struct schedule_node *last_tmu_write;
93 struct schedule_node *last_tlb;
94 struct schedule_node *last_vpm;
95 struct schedule_node *last_uniforms_reset;
96 enum direction dir;
97 /* Estimated cycle when the current instruction would start. */
98 uint32_t time;
99 };
100
101 static void
102 add_dep(struct schedule_state *state,
103 struct schedule_node *before,
104 struct schedule_node *after,
105 bool write)
106 {
107 bool write_after_read = !write && state->dir == R;
108
109 if (!before || !after)
110 return;
111
112 assert(before != after);
113
114 if (state->dir == R) {
115 struct schedule_node *t = before;
116 before = after;
117 after = t;
118 }
119
120 for (int i = 0; i < before->child_count; i++) {
121 if (before->children[i].node == after &&
122 (before->children[i].write_after_read == write_after_read)) {
123 return;
124 }
125 }
126
127 if (before->child_array_size <= before->child_count) {
128 before->child_array_size = MAX2(before->child_array_size * 2, 16);
129 before->children = reralloc(before, before->children,
130 struct schedule_node_child,
131 before->child_array_size);
132 }
133
134 before->children[before->child_count].node = after;
135 before->children[before->child_count].write_after_read =
136 write_after_read;
137 before->child_count++;
138 after->parent_count++;
139 }
140
141 static void
142 add_read_dep(struct schedule_state *state,
143 struct schedule_node *before,
144 struct schedule_node *after)
145 {
146 add_dep(state, before, after, false);
147 }
148
149 static void
150 add_write_dep(struct schedule_state *state,
151 struct schedule_node **before,
152 struct schedule_node *after)
153 {
154 add_dep(state, *before, after, true);
155 *before = after;
156 }
157
158 static bool
159 qpu_writes_r4(uint64_t inst)
160 {
161 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
162
163 switch(sig) {
164 case QPU_SIG_COLOR_LOAD:
165 case QPU_SIG_LOAD_TMU0:
166 case QPU_SIG_LOAD_TMU1:
167 case QPU_SIG_ALPHA_MASK_LOAD:
168 return true;
169 default:
170 return false;
171 }
172 }
173
174 static void
175 process_raddr_deps(struct schedule_state *state, struct schedule_node *n,
176 uint32_t raddr, bool is_a)
177 {
178 switch (raddr) {
179 case QPU_R_VARY:
180 add_write_dep(state, &state->last_r[5], n);
181 break;
182
183 case QPU_R_VPM:
184 add_write_dep(state, &state->last_vpm_read, n);
185 break;
186
187 case QPU_R_UNIF:
188 add_read_dep(state, state->last_uniforms_reset, n);
189 break;
190
191 case QPU_R_NOP:
192 case QPU_R_ELEM_QPU:
193 case QPU_R_XY_PIXEL_COORD:
194 case QPU_R_MS_REV_FLAGS:
195 break;
196
197 default:
198 if (raddr < 32) {
199 if (is_a)
200 add_read_dep(state, state->last_ra[raddr], n);
201 else
202 add_read_dep(state, state->last_rb[raddr], n);
203 } else {
204 fprintf(stderr, "unknown raddr %d\n", raddr);
205 abort();
206 }
207 break;
208 }
209 }
210
211 static bool
212 is_tmu_write(uint32_t waddr)
213 {
214 switch (waddr) {
215 case QPU_W_TMU0_S:
216 case QPU_W_TMU0_T:
217 case QPU_W_TMU0_R:
218 case QPU_W_TMU0_B:
219 case QPU_W_TMU1_S:
220 case QPU_W_TMU1_T:
221 case QPU_W_TMU1_R:
222 case QPU_W_TMU1_B:
223 return true;
224 default:
225 return false;
226 }
227 }
228
229 static bool
230 reads_uniform(uint64_t inst)
231 {
232 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_LOAD_IMM)
233 return false;
234
235 return (QPU_GET_FIELD(inst, QPU_RADDR_A) == QPU_R_UNIF ||
236 (QPU_GET_FIELD(inst, QPU_RADDR_B) == QPU_R_UNIF &&
237 QPU_GET_FIELD(inst, QPU_SIG) != QPU_SIG_SMALL_IMM) ||
238 is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_ADD)) ||
239 is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_MUL)));
240 }
241
242 static void
243 process_mux_deps(struct schedule_state *state, struct schedule_node *n,
244 uint32_t mux)
245 {
246 if (mux != QPU_MUX_A && mux != QPU_MUX_B)
247 add_read_dep(state, state->last_r[mux], n);
248 }
249
250
251 static void
252 process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
253 uint32_t waddr, bool is_add)
254 {
255 uint64_t inst = n->inst->inst;
256 bool is_a = is_add ^ ((inst & QPU_WS) != 0);
257
258 if (waddr < 32) {
259 if (is_a) {
260 add_write_dep(state, &state->last_ra[waddr], n);
261 } else {
262 add_write_dep(state, &state->last_rb[waddr], n);
263 }
264 } else if (is_tmu_write(waddr)) {
265 add_write_dep(state, &state->last_tmu_write, n);
266 add_read_dep(state, state->last_uniforms_reset, n);
267 } else if (qpu_waddr_is_tlb(waddr) ||
268 waddr == QPU_W_MS_FLAGS) {
269 add_write_dep(state, &state->last_tlb, n);
270 } else {
271 switch (waddr) {
272 case QPU_W_ACC0:
273 case QPU_W_ACC1:
274 case QPU_W_ACC2:
275 case QPU_W_ACC3:
276 case QPU_W_ACC5:
277 add_write_dep(state, &state->last_r[waddr - QPU_W_ACC0],
278 n);
279 break;
280
281 case QPU_W_VPM:
282 add_write_dep(state, &state->last_vpm, n);
283 break;
284
285 case QPU_W_VPMVCD_SETUP:
286 if (is_a)
287 add_write_dep(state, &state->last_vpm_read, n);
288 else
289 add_write_dep(state, &state->last_vpm, n);
290 break;
291
292 case QPU_W_SFU_RECIP:
293 case QPU_W_SFU_RECIPSQRT:
294 case QPU_W_SFU_EXP:
295 case QPU_W_SFU_LOG:
296 add_write_dep(state, &state->last_r[4], n);
297 break;
298
299 case QPU_W_TLB_STENCIL_SETUP:
300 /* This isn't a TLB operation that does things like
301 * implicitly lock the scoreboard, but it does have to
302 * appear before TLB_Z, and each of the TLB_STENCILs
303 * have to schedule in the same order relative to each
304 * other.
305 */
306 add_write_dep(state, &state->last_tlb, n);
307 break;
308
309 case QPU_W_MS_FLAGS:
310 add_write_dep(state, &state->last_tlb, n);
311 break;
312
313 case QPU_W_UNIFORMS_ADDRESS:
314 add_write_dep(state, &state->last_uniforms_reset, n);
315 break;
316
317 case QPU_W_NOP:
318 break;
319
320 default:
321 fprintf(stderr, "Unknown waddr %d\n", waddr);
322 abort();
323 }
324 }
325 }
326
327 static void
328 process_cond_deps(struct schedule_state *state, struct schedule_node *n,
329 uint32_t cond)
330 {
331 switch (cond) {
332 case QPU_COND_NEVER:
333 case QPU_COND_ALWAYS:
334 break;
335 default:
336 add_read_dep(state, state->last_sf, n);
337 break;
338 }
339 }
340
341 /**
342 * Common code for dependencies that need to be tracked both forward and
343 * backward.
344 *
345 * This is for things like "all reads of r4 have to happen between the r4
346 * writes that surround them".
347 */
348 static void
349 calculate_deps(struct schedule_state *state, struct schedule_node *n)
350 {
351 uint64_t inst = n->inst->inst;
352 uint32_t add_op = QPU_GET_FIELD(inst, QPU_OP_ADD);
353 uint32_t mul_op = QPU_GET_FIELD(inst, QPU_OP_MUL);
354 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
355 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
356 uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
357 uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
358 uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A);
359 uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
360 uint32_t mul_a = QPU_GET_FIELD(inst, QPU_MUL_A);
361 uint32_t mul_b = QPU_GET_FIELD(inst, QPU_MUL_B);
362 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
363
364 if (sig != QPU_SIG_LOAD_IMM) {
365 process_raddr_deps(state, n, raddr_a, true);
366 if (sig != QPU_SIG_SMALL_IMM &&
367 sig != QPU_SIG_BRANCH)
368 process_raddr_deps(state, n, raddr_b, false);
369 }
370
371 if (add_op != QPU_A_NOP) {
372 process_mux_deps(state, n, add_a);
373 process_mux_deps(state, n, add_b);
374 }
375 if (mul_op != QPU_M_NOP) {
376 process_mux_deps(state, n, mul_a);
377 process_mux_deps(state, n, mul_b);
378 }
379
380 process_waddr_deps(state, n, waddr_add, true);
381 process_waddr_deps(state, n, waddr_mul, false);
382 if (qpu_writes_r4(inst))
383 add_write_dep(state, &state->last_r[4], n);
384
385 switch (sig) {
386 case QPU_SIG_SW_BREAKPOINT:
387 case QPU_SIG_NONE:
388 case QPU_SIG_THREAD_SWITCH:
389 case QPU_SIG_LAST_THREAD_SWITCH:
390 case QPU_SIG_SMALL_IMM:
391 case QPU_SIG_LOAD_IMM:
392 break;
393
394 case QPU_SIG_LOAD_TMU0:
395 case QPU_SIG_LOAD_TMU1:
396 /* TMU loads are coming from a FIFO, so ordering is important.
397 */
398 add_write_dep(state, &state->last_tmu_write, n);
399 break;
400
401 case QPU_SIG_COLOR_LOAD:
402 add_read_dep(state, state->last_tlb, n);
403 break;
404
405 case QPU_SIG_BRANCH:
406 add_read_dep(state, state->last_sf, n);
407 break;
408
409 case QPU_SIG_PROG_END:
410 case QPU_SIG_WAIT_FOR_SCOREBOARD:
411 case QPU_SIG_SCOREBOARD_UNLOCK:
412 case QPU_SIG_COVERAGE_LOAD:
413 case QPU_SIG_COLOR_LOAD_END:
414 case QPU_SIG_ALPHA_MASK_LOAD:
415 fprintf(stderr, "Unhandled signal bits %d\n", sig);
416 abort();
417 }
418
419 process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_ADD));
420 process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_MUL));
421 if ((inst & QPU_SF) && sig != QPU_SIG_BRANCH)
422 add_write_dep(state, &state->last_sf, n);
423 }
424
425 static void
426 calculate_forward_deps(struct vc4_compile *c, struct list_head *schedule_list)
427 {
428 struct schedule_state state;
429
430 memset(&state, 0, sizeof(state));
431 state.dir = F;
432
433 list_for_each_entry(struct schedule_node, node, schedule_list, link)
434 calculate_deps(&state, node);
435 }
436
437 static void
438 calculate_reverse_deps(struct vc4_compile *c, struct list_head *schedule_list)
439 {
440 struct list_head *node;
441 struct schedule_state state;
442
443 memset(&state, 0, sizeof(state));
444 state.dir = R;
445
446 for (node = schedule_list->prev; schedule_list != node; node = node->prev) {
447 calculate_deps(&state, (struct schedule_node *)node);
448 }
449 }
450
451 struct choose_scoreboard {
452 int tick;
453 int last_sfu_write_tick;
454 int last_uniforms_reset_tick;
455 uint32_t last_waddr_a, last_waddr_b;
456 bool tlb_locked;
457 };
458
459 static bool
460 reads_too_soon_after_write(struct choose_scoreboard *scoreboard, uint64_t inst)
461 {
462 uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
463 uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
464 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
465 uint32_t src_muxes[] = {
466 QPU_GET_FIELD(inst, QPU_ADD_A),
467 QPU_GET_FIELD(inst, QPU_ADD_B),
468 QPU_GET_FIELD(inst, QPU_MUL_A),
469 QPU_GET_FIELD(inst, QPU_MUL_B),
470 };
471 for (int i = 0; i < ARRAY_SIZE(src_muxes); i++) {
472 if ((src_muxes[i] == QPU_MUX_A &&
473 raddr_a < 32 &&
474 scoreboard->last_waddr_a == raddr_a) ||
475 (src_muxes[i] == QPU_MUX_B &&
476 sig != QPU_SIG_SMALL_IMM &&
477 raddr_b < 32 &&
478 scoreboard->last_waddr_b == raddr_b)) {
479 return true;
480 }
481
482 if (src_muxes[i] == QPU_MUX_R4) {
483 if (scoreboard->tick -
484 scoreboard->last_sfu_write_tick <= 2) {
485 return true;
486 }
487 }
488 }
489
490 if (sig == QPU_SIG_SMALL_IMM &&
491 QPU_GET_FIELD(inst, QPU_SMALL_IMM) >= QPU_SMALL_IMM_MUL_ROT) {
492 uint32_t mux_a = QPU_GET_FIELD(inst, QPU_MUL_A);
493 uint32_t mux_b = QPU_GET_FIELD(inst, QPU_MUL_B);
494
495 if (scoreboard->last_waddr_a == mux_a + QPU_W_ACC0 ||
496 scoreboard->last_waddr_a == mux_b + QPU_W_ACC0 ||
497 scoreboard->last_waddr_b == mux_a + QPU_W_ACC0 ||
498 scoreboard->last_waddr_b == mux_b + QPU_W_ACC0) {
499 return true;
500 }
501 }
502
503 if (reads_uniform(inst) &&
504 scoreboard->tick - scoreboard->last_uniforms_reset_tick <= 2) {
505 return true;
506 }
507
508 return false;
509 }
510
511 static bool
512 pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard, uint64_t inst)
513 {
514 return (scoreboard->tick < 2 && qpu_inst_is_tlb(inst));
515 }
516
517 static int
518 get_instruction_priority(uint64_t inst)
519 {
520 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
521 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
522 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
523 uint32_t baseline_score;
524 uint32_t next_score = 0;
525
526 /* Schedule TLB operations as late as possible, to get more
527 * parallelism between shaders.
528 */
529 if (qpu_inst_is_tlb(inst))
530 return next_score;
531 next_score++;
532
533 /* Schedule texture read results collection late to hide latency. */
534 if (sig == QPU_SIG_LOAD_TMU0 || sig == QPU_SIG_LOAD_TMU1)
535 return next_score;
536 next_score++;
537
538 /* Default score for things that aren't otherwise special. */
539 baseline_score = next_score;
540 next_score++;
541
542 /* Schedule texture read setup early to hide their latency better. */
543 if (is_tmu_write(waddr_add) || is_tmu_write(waddr_mul))
544 return next_score;
545 next_score++;
546
547 return baseline_score;
548 }
549
550 static struct schedule_node *
551 choose_instruction_to_schedule(struct choose_scoreboard *scoreboard,
552 struct list_head *schedule_list,
553 struct schedule_node *prev_inst)
554 {
555 struct schedule_node *chosen = NULL;
556 int chosen_prio = 0;
557
558 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
559 uint64_t inst = n->inst->inst;
560
561 /* Don't choose the branch instruction until it's the last one
562 * left. XXX: We could potentially choose it before it's the
563 * last one, if the remaining instructions fit in the delay
564 * slots.
565 */
566 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_BRANCH &&
567 !list_is_singular(schedule_list)) {
568 continue;
569 }
570
571 /* "An instruction must not read from a location in physical
572 * regfile A or B that was written to by the previous
573 * instruction."
574 */
575 if (reads_too_soon_after_write(scoreboard, inst))
576 continue;
577
578 /* "A scoreboard wait must not occur in the first two
579 * instructions of a fragment shader. This is either the
580 * explicit Wait for Scoreboard signal or an implicit wait
581 * with the first tile-buffer read or write instruction."
582 */
583 if (pixel_scoreboard_too_soon(scoreboard, inst))
584 continue;
585
586 /* If we're trying to pair with another instruction, check
587 * that they're compatible.
588 */
589 if (prev_inst) {
590 if (prev_inst->uniform != -1 && n->uniform != -1)
591 continue;
592
593 /* Don't merge in something that will lock the TLB.
594 * Hopwefully what we have in inst will release some
595 * other instructions, allowing us to delay the
596 * TLB-locking instruction until later.
597 */
598 if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
599 continue;
600
601 inst = qpu_merge_inst(prev_inst->inst->inst, inst);
602 if (!inst)
603 continue;
604 }
605
606 int prio = get_instruction_priority(inst);
607
608 /* Found a valid instruction. If nothing better comes along,
609 * this one works.
610 */
611 if (!chosen) {
612 chosen = n;
613 chosen_prio = prio;
614 continue;
615 }
616
617 if (prio > chosen_prio) {
618 chosen = n;
619 chosen_prio = prio;
620 } else if (prio < chosen_prio) {
621 continue;
622 }
623
624 if (n->delay > chosen->delay) {
625 chosen = n;
626 chosen_prio = prio;
627 } else if (n->delay < chosen->delay) {
628 continue;
629 }
630 }
631
632 return chosen;
633 }
634
635 static void
636 update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
637 uint64_t inst)
638 {
639 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
640 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
641
642 if (!(inst & QPU_WS)) {
643 scoreboard->last_waddr_a = waddr_add;
644 scoreboard->last_waddr_b = waddr_mul;
645 } else {
646 scoreboard->last_waddr_b = waddr_add;
647 scoreboard->last_waddr_a = waddr_mul;
648 }
649
650 if ((waddr_add >= QPU_W_SFU_RECIP && waddr_add <= QPU_W_SFU_LOG) ||
651 (waddr_mul >= QPU_W_SFU_RECIP && waddr_mul <= QPU_W_SFU_LOG)) {
652 scoreboard->last_sfu_write_tick = scoreboard->tick;
653 }
654
655 if (waddr_add == QPU_W_UNIFORMS_ADDRESS ||
656 waddr_mul == QPU_W_UNIFORMS_ADDRESS) {
657 scoreboard->last_uniforms_reset_tick = scoreboard->tick;
658 }
659
660 if (qpu_inst_is_tlb(inst))
661 scoreboard->tlb_locked = true;
662 }
663
664 static void
665 dump_state(struct list_head *schedule_list)
666 {
667 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
668 fprintf(stderr, " t=%4d: ", n->unblocked_time);
669 vc4_qpu_disasm(&n->inst->inst, 1);
670 fprintf(stderr, "\n");
671
672 for (int i = 0; i < n->child_count; i++) {
673 struct schedule_node *child = n->children[i].node;
674 if (!child)
675 continue;
676
677 fprintf(stderr, " - ");
678 vc4_qpu_disasm(&child->inst->inst, 1);
679 fprintf(stderr, " (%d parents, %c)\n",
680 child->parent_count,
681 n->children[i].write_after_read ? 'w' : 'r');
682 }
683 }
684 }
685
686 static uint32_t waddr_latency(uint32_t waddr, uint64_t after)
687 {
688 if (waddr < 32)
689 return 2;
690
691 /* Apply some huge latency between texture fetch requests and getting
692 * their results back.
693 */
694 if (waddr == QPU_W_TMU0_S) {
695 if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU0)
696 return 100;
697 }
698 if (waddr == QPU_W_TMU1_S) {
699 if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU1)
700 return 100;
701 }
702
703 switch(waddr) {
704 case QPU_W_SFU_RECIP:
705 case QPU_W_SFU_RECIPSQRT:
706 case QPU_W_SFU_EXP:
707 case QPU_W_SFU_LOG:
708 return 3;
709 default:
710 return 1;
711 }
712 }
713
714 static uint32_t
715 instruction_latency(struct schedule_node *before, struct schedule_node *after)
716 {
717 uint64_t before_inst = before->inst->inst;
718 uint64_t after_inst = after->inst->inst;
719
720 return MAX2(waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_ADD),
721 after_inst),
722 waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_MUL),
723 after_inst));
724 }
725
726 /** Recursive computation of the delay member of a node. */
727 static void
728 compute_delay(struct schedule_node *n)
729 {
730 if (!n->child_count) {
731 n->delay = 1;
732 } else {
733 for (int i = 0; i < n->child_count; i++) {
734 if (!n->children[i].node->delay)
735 compute_delay(n->children[i].node);
736 n->delay = MAX2(n->delay,
737 n->children[i].node->delay +
738 instruction_latency(n, n->children[i].node));
739 }
740 }
741 }
742
743 static void
744 mark_instruction_scheduled(struct list_head *schedule_list,
745 uint32_t time,
746 struct schedule_node *node,
747 bool war_only)
748 {
749 if (!node)
750 return;
751
752 for (int i = node->child_count - 1; i >= 0; i--) {
753 struct schedule_node *child =
754 node->children[i].node;
755
756 if (!child)
757 continue;
758
759 if (war_only && !node->children[i].write_after_read)
760 continue;
761
762 /* If the requirement is only that the node not appear before
763 * the last read of its destination, then it can be scheduled
764 * immediately after (or paired with!) the thing reading the
765 * destination.
766 */
767 uint32_t latency = 0;
768 if (!war_only) {
769 latency = instruction_latency(node,
770 node->children[i].node);
771 }
772
773 child->unblocked_time = MAX2(child->unblocked_time,
774 time + latency);
775 child->parent_count--;
776 if (child->parent_count == 0)
777 list_add(&child->link, schedule_list);
778
779 node->children[i].node = NULL;
780 }
781 }
782
783 static uint32_t
784 schedule_instructions(struct vc4_compile *c,
785 struct choose_scoreboard *scoreboard,
786 struct qblock *block,
787 struct list_head *schedule_list,
788 enum quniform_contents *orig_uniform_contents,
789 uint32_t *orig_uniform_data,
790 uint32_t *next_uniform)
791 {
792 uint32_t time = 0;
793
794 if (debug) {
795 fprintf(stderr, "initial deps:\n");
796 dump_state(schedule_list);
797 fprintf(stderr, "\n");
798 }
799
800 /* Remove non-DAG heads from the list. */
801 list_for_each_entry_safe(struct schedule_node, n, schedule_list, link) {
802 if (n->parent_count != 0)
803 list_del(&n->link);
804 }
805
806 while (!list_empty(schedule_list)) {
807 struct schedule_node *chosen =
808 choose_instruction_to_schedule(scoreboard,
809 schedule_list,
810 NULL);
811 struct schedule_node *merge = NULL;
812
813 /* If there are no valid instructions to schedule, drop a NOP
814 * in.
815 */
816 uint64_t inst = chosen ? chosen->inst->inst : qpu_NOP();
817
818 if (debug) {
819 fprintf(stderr, "t=%4d: current list:\n",
820 time);
821 dump_state(schedule_list);
822 fprintf(stderr, "t=%4d: chose: ", time);
823 vc4_qpu_disasm(&inst, 1);
824 fprintf(stderr, "\n");
825 }
826
827 /* Schedule this instruction onto the QPU list. Also try to
828 * find an instruction to pair with it.
829 */
830 if (chosen) {
831 time = MAX2(chosen->unblocked_time, time);
832 list_del(&chosen->link);
833 mark_instruction_scheduled(schedule_list, time,
834 chosen, true);
835 if (chosen->uniform != -1) {
836 c->uniform_data[*next_uniform] =
837 orig_uniform_data[chosen->uniform];
838 c->uniform_contents[*next_uniform] =
839 orig_uniform_contents[chosen->uniform];
840 (*next_uniform)++;
841 }
842
843 merge = choose_instruction_to_schedule(scoreboard,
844 schedule_list,
845 chosen);
846 if (merge) {
847 time = MAX2(merge->unblocked_time, time);
848 list_del(&merge->link);
849 inst = qpu_merge_inst(inst, merge->inst->inst);
850 assert(inst != 0);
851 if (merge->uniform != -1) {
852 c->uniform_data[*next_uniform] =
853 orig_uniform_data[merge->uniform];
854 c->uniform_contents[*next_uniform] =
855 orig_uniform_contents[merge->uniform];
856 (*next_uniform)++;
857 }
858
859 if (debug) {
860 fprintf(stderr, "t=%4d: merging: ",
861 time);
862 vc4_qpu_disasm(&merge->inst->inst, 1);
863 fprintf(stderr, "\n");
864 fprintf(stderr, " resulting in: ");
865 vc4_qpu_disasm(&inst, 1);
866 fprintf(stderr, "\n");
867 }
868 }
869 }
870
871 if (debug) {
872 fprintf(stderr, "\n");
873 }
874
875 qpu_serialize_one_inst(c, inst);
876
877 update_scoreboard_for_chosen(scoreboard, inst);
878
879 /* Now that we've scheduled a new instruction, some of its
880 * children can be promoted to the list of instructions ready to
881 * be scheduled. Update the children's unblocked time for this
882 * DAG edge as we do so.
883 */
884 mark_instruction_scheduled(schedule_list, time, chosen, false);
885 mark_instruction_scheduled(schedule_list, time, merge, false);
886
887 scoreboard->tick++;
888 time++;
889
890 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_BRANCH) {
891 block->branch_qpu_ip = c->qpu_inst_count - 1;
892 /* Fill the delay slots.
893 *
894 * We should fill these with actual instructions,
895 * instead, but that will probably need to be done
896 * after this, once we know what the leading
897 * instructions of the successors are (so we can
898 * handle A/B register file write latency)
899 */
900 inst = qpu_NOP();
901 update_scoreboard_for_chosen(scoreboard, inst);
902 qpu_serialize_one_inst(c, inst);
903 qpu_serialize_one_inst(c, inst);
904 qpu_serialize_one_inst(c, inst);
905 }
906 }
907
908 return time;
909 }
910
911 static uint32_t
912 qpu_schedule_instructions_block(struct vc4_compile *c,
913 struct choose_scoreboard *scoreboard,
914 struct qblock *block,
915 enum quniform_contents *orig_uniform_contents,
916 uint32_t *orig_uniform_data,
917 uint32_t *next_uniform)
918 {
919 void *mem_ctx = ralloc_context(NULL);
920 struct list_head schedule_list;
921
922 list_inithead(&schedule_list);
923
924 /* Wrap each instruction in a scheduler structure. */
925 uint32_t next_sched_uniform = *next_uniform;
926 while (!list_empty(&block->qpu_inst_list)) {
927 struct queued_qpu_inst *inst =
928 (struct queued_qpu_inst *)block->qpu_inst_list.next;
929 struct schedule_node *n = rzalloc(mem_ctx, struct schedule_node);
930
931 n->inst = inst;
932
933 if (reads_uniform(inst->inst)) {
934 n->uniform = next_sched_uniform++;
935 } else {
936 n->uniform = -1;
937 }
938 list_del(&inst->link);
939 list_addtail(&n->link, &schedule_list);
940 }
941
942 calculate_forward_deps(c, &schedule_list);
943 calculate_reverse_deps(c, &schedule_list);
944
945 list_for_each_entry(struct schedule_node, n, &schedule_list, link) {
946 compute_delay(n);
947 }
948
949 uint32_t cycles = schedule_instructions(c, scoreboard, block,
950 &schedule_list,
951 orig_uniform_contents,
952 orig_uniform_data,
953 next_uniform);
954
955 ralloc_free(mem_ctx);
956
957 return cycles;
958 }
959
960 static void
961 qpu_set_branch_targets(struct vc4_compile *c)
962 {
963 qir_for_each_block(block, c) {
964 /* The end block of the program has no branch. */
965 if (!block->successors[0])
966 continue;
967
968 /* If there was no branch instruction, then the successor
969 * block must follow immediately after this one.
970 */
971 if (block->branch_qpu_ip == ~0) {
972 assert(block->end_qpu_ip + 1 ==
973 block->successors[0]->start_qpu_ip);
974 continue;
975 }
976
977 /* Set the branch target for the block that doesn't follow
978 * immediately after ours.
979 */
980 uint64_t *branch_inst = &c->qpu_insts[block->branch_qpu_ip];
981 assert(QPU_GET_FIELD(*branch_inst, QPU_SIG) == QPU_SIG_BRANCH);
982 assert(QPU_GET_FIELD(*branch_inst, QPU_BRANCH_TARGET) == 0);
983
984 uint32_t branch_target =
985 (block->successors[0]->start_qpu_ip -
986 (block->branch_qpu_ip + 4)) * sizeof(uint64_t);
987 *branch_inst = (*branch_inst |
988 QPU_SET_FIELD(branch_target, QPU_BRANCH_TARGET));
989
990 /* Make sure that the if-we-don't-jump successor was scheduled
991 * just after the delay slots.
992 */
993 if (block->successors[1]) {
994 assert(block->successors[1]->start_qpu_ip ==
995 block->branch_qpu_ip + 4);
996 }
997 }
998 }
999
1000 uint32_t
1001 qpu_schedule_instructions(struct vc4_compile *c)
1002 {
1003 /* We reorder the uniforms as we schedule instructions, so save the
1004 * old data off and replace it.
1005 */
1006 uint32_t *uniform_data = c->uniform_data;
1007 enum quniform_contents *uniform_contents = c->uniform_contents;
1008 c->uniform_contents = ralloc_array(c, enum quniform_contents,
1009 c->num_uniforms);
1010 c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
1011 c->uniform_array_size = c->num_uniforms;
1012 uint32_t next_uniform = 0;
1013
1014 struct choose_scoreboard scoreboard;
1015 memset(&scoreboard, 0, sizeof(scoreboard));
1016 scoreboard.last_waddr_a = ~0;
1017 scoreboard.last_waddr_b = ~0;
1018 scoreboard.last_sfu_write_tick = -10;
1019 scoreboard.last_uniforms_reset_tick = -10;
1020
1021 if (debug) {
1022 fprintf(stderr, "Pre-schedule instructions\n");
1023 qir_for_each_block(block, c) {
1024 fprintf(stderr, "BLOCK %d\n", block->index);
1025 list_for_each_entry(struct queued_qpu_inst, q,
1026 &block->qpu_inst_list, link) {
1027 vc4_qpu_disasm(&q->inst, 1);
1028 fprintf(stderr, "\n");
1029 }
1030 }
1031 fprintf(stderr, "\n");
1032 }
1033
1034 uint32_t cycles = 0;
1035 qir_for_each_block(block, c) {
1036 block->start_qpu_ip = c->qpu_inst_count;
1037 block->branch_qpu_ip = ~0;
1038
1039 cycles += qpu_schedule_instructions_block(c,
1040 &scoreboard,
1041 block,
1042 uniform_contents,
1043 uniform_data,
1044 &next_uniform);
1045
1046 block->end_qpu_ip = c->qpu_inst_count - 1;
1047 }
1048
1049 qpu_set_branch_targets(c);
1050
1051 assert(next_uniform == c->num_uniforms);
1052
1053 if (debug) {
1054 fprintf(stderr, "Post-schedule instructions\n");
1055 vc4_qpu_disasm(c->qpu_insts, c->qpu_inst_count);
1056 fprintf(stderr, "\n");
1057 }
1058
1059 return cycles;
1060 }