vc4: Use ra14/rb14 as the spilling registers.
[mesa.git] / src / gallium / drivers / vc4 / vc4_register_allocate.c
1 /*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25 #include "util/register_allocate.h"
26 #include "vc4_context.h"
27 #include "vc4_qir.h"
28 #include "vc4_qpu.h"
29
30 #define QPU_R(file, index) { QPU_MUX_##file, index }
31
32 static const struct qpu_reg vc4_regs[] = {
33 { QPU_MUX_R0, 0},
34 { QPU_MUX_R1, 0},
35 { QPU_MUX_R2, 0},
36 { QPU_MUX_R3, 0},
37 { QPU_MUX_R4, 0},
38 QPU_R(A, 0),
39 QPU_R(B, 0),
40 QPU_R(A, 1),
41 QPU_R(B, 1),
42 QPU_R(A, 2),
43 QPU_R(B, 2),
44 QPU_R(A, 3),
45 QPU_R(B, 3),
46 QPU_R(A, 4),
47 QPU_R(B, 4),
48 QPU_R(A, 5),
49 QPU_R(B, 5),
50 QPU_R(A, 6),
51 QPU_R(B, 6),
52 QPU_R(A, 7),
53 QPU_R(B, 7),
54 QPU_R(A, 8),
55 QPU_R(B, 8),
56 QPU_R(A, 9),
57 QPU_R(B, 9),
58 QPU_R(A, 10),
59 QPU_R(B, 10),
60 QPU_R(A, 11),
61 QPU_R(B, 11),
62 QPU_R(A, 12),
63 QPU_R(B, 12),
64 QPU_R(A, 13),
65 QPU_R(B, 13),
66 QPU_R(A, 14),
67 QPU_R(B, 14),
68 QPU_R(A, 15),
69 QPU_R(B, 15),
70 QPU_R(A, 16),
71 QPU_R(B, 16),
72 QPU_R(A, 17),
73 QPU_R(B, 17),
74 QPU_R(A, 18),
75 QPU_R(B, 18),
76 QPU_R(A, 19),
77 QPU_R(B, 19),
78 QPU_R(A, 20),
79 QPU_R(B, 20),
80 QPU_R(A, 21),
81 QPU_R(B, 21),
82 QPU_R(A, 22),
83 QPU_R(B, 22),
84 QPU_R(A, 23),
85 QPU_R(B, 23),
86 QPU_R(A, 24),
87 QPU_R(B, 24),
88 QPU_R(A, 25),
89 QPU_R(B, 25),
90 QPU_R(A, 26),
91 QPU_R(B, 26),
92 QPU_R(A, 27),
93 QPU_R(B, 27),
94 QPU_R(A, 28),
95 QPU_R(B, 28),
96 QPU_R(A, 29),
97 QPU_R(B, 29),
98 QPU_R(A, 30),
99 QPU_R(B, 30),
100 QPU_R(A, 31),
101 QPU_R(B, 31),
102 };
103 #define ACC_INDEX 0
104 #define AB_INDEX (ACC_INDEX + 5)
105
106 static void
107 vc4_alloc_reg_set(struct vc4_context *vc4)
108 {
109 assert(vc4_regs[AB_INDEX].addr == 0);
110 assert(vc4_regs[AB_INDEX + 1].addr == 0);
111 STATIC_ASSERT(ARRAY_SIZE(vc4_regs) == AB_INDEX + 64);
112
113 if (vc4->regs)
114 return;
115
116 vc4->regs = ra_alloc_reg_set(vc4, ARRAY_SIZE(vc4_regs), true);
117
118 /* The physical regfiles split us into two classes, with [0] being the
119 * whole space and [1] being the bottom half (for threaded fragment
120 * shaders).
121 */
122 for (int i = 0; i < 2; i++) {
123 vc4->reg_class_any[i] = ra_alloc_reg_class(vc4->regs);
124 vc4->reg_class_a_or_b[i] = ra_alloc_reg_class(vc4->regs);
125 vc4->reg_class_a_or_b_or_acc[i] = ra_alloc_reg_class(vc4->regs);
126 vc4->reg_class_r4_or_a[i] = ra_alloc_reg_class(vc4->regs);
127 vc4->reg_class_a[i] = ra_alloc_reg_class(vc4->regs);
128 }
129 vc4->reg_class_r0_r3 = ra_alloc_reg_class(vc4->regs);
130
131 /* r0-r3 */
132 for (uint32_t i = ACC_INDEX; i < ACC_INDEX + 4; i++) {
133 ra_class_add_reg(vc4->regs, vc4->reg_class_r0_r3, i);
134 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b_or_acc[0], i);
135 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b_or_acc[1], i);
136 }
137
138 /* R4 gets a special class because it can't be written as a general
139 * purpose register. (it's TMU_NOSWAP as a write address).
140 */
141 for (int i = 0; i < 2; i++) {
142 ra_class_add_reg(vc4->regs, vc4->reg_class_r4_or_a[i],
143 ACC_INDEX + 4);
144 }
145
146 /* A/B */
147 for (uint32_t i = AB_INDEX; i < AB_INDEX + 64; i ++) {
148 /* Reserve ra14/rb14 for spilling fixup_raddr_conflict() in
149 * vc4_qpu_emit.c
150 */
151 if (vc4_regs[i].addr == 14)
152 continue;
153
154 ra_class_add_reg(vc4->regs, vc4->reg_class_any[0], i);
155 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b[0], i);
156 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b_or_acc[0], i);
157
158 if (vc4_regs[i].addr < 16) {
159 ra_class_add_reg(vc4->regs, vc4->reg_class_any[1], i);
160 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b[1], i);
161 ra_class_add_reg(vc4->regs, vc4->reg_class_a_or_b_or_acc[1], i);
162 }
163
164
165 /* A only */
166 if (((i - AB_INDEX) & 1) == 0) {
167 ra_class_add_reg(vc4->regs, vc4->reg_class_a[0], i);
168 ra_class_add_reg(vc4->regs, vc4->reg_class_r4_or_a[0], i);
169
170 if (vc4_regs[i].addr < 16) {
171 ra_class_add_reg(vc4->regs,
172 vc4->reg_class_a[1], i);
173 ra_class_add_reg(vc4->regs,
174 vc4->reg_class_r4_or_a[1], i);
175 }
176 }
177 }
178
179 ra_set_finalize(vc4->regs, NULL);
180 }
181
182 struct node_to_temp_map {
183 uint32_t temp;
184 uint32_t priority;
185 };
186
187 static int
188 node_to_temp_priority(const void *in_a, const void *in_b)
189 {
190 const struct node_to_temp_map *a = in_a;
191 const struct node_to_temp_map *b = in_b;
192
193 return a->priority - b->priority;
194 }
195
196 #define CLASS_BIT_A (1 << 0)
197 #define CLASS_BIT_B (1 << 1)
198 #define CLASS_BIT_R4 (1 << 2)
199 #define CLASS_BIT_R0_R3 (1 << 4)
200
201 /**
202 * Returns a mapping from QFILE_TEMP indices to struct qpu_regs.
203 *
204 * The return value should be freed by the caller.
205 */
206 struct qpu_reg *
207 vc4_register_allocate(struct vc4_context *vc4, struct vc4_compile *c)
208 {
209 struct node_to_temp_map map[c->num_temps];
210 uint32_t temp_to_node[c->num_temps];
211 uint8_t class_bits[c->num_temps];
212 struct qpu_reg *temp_registers = calloc(c->num_temps,
213 sizeof(*temp_registers));
214
215 /* If things aren't ever written (undefined values), just read from
216 * r0.
217 */
218 for (uint32_t i = 0; i < c->num_temps; i++)
219 temp_registers[i] = qpu_rn(0);
220
221 vc4_alloc_reg_set(vc4);
222
223 struct ra_graph *g = ra_alloc_interference_graph(vc4->regs,
224 c->num_temps);
225
226 /* Compute the live ranges so we can figure out interference. */
227 qir_calculate_live_intervals(c);
228
229 for (uint32_t i = 0; i < c->num_temps; i++) {
230 map[i].temp = i;
231 map[i].priority = c->temp_end[i] - c->temp_start[i];
232 }
233 qsort(map, c->num_temps, sizeof(map[0]), node_to_temp_priority);
234 for (uint32_t i = 0; i < c->num_temps; i++) {
235 temp_to_node[map[i].temp] = i;
236 }
237
238 /* Figure out our register classes and preallocated registers. We
239 * start with any temp being able to be in any file, then instructions
240 * incrementally remove bits that the temp definitely can't be in.
241 */
242 memset(class_bits,
243 CLASS_BIT_A | CLASS_BIT_B | CLASS_BIT_R4 | CLASS_BIT_R0_R3,
244 sizeof(class_bits));
245
246 int ip = 0;
247 qir_for_each_inst_inorder(inst, c) {
248 if (qir_writes_r4(inst)) {
249 /* This instruction writes r4 (and optionally moves
250 * its result to a temp), so nothing else can be
251 * stored in r4 across it.
252 */
253 for (int i = 0; i < c->num_temps; i++) {
254 if (c->temp_start[i] < ip && c->temp_end[i] > ip)
255 class_bits[i] &= ~CLASS_BIT_R4;
256 }
257 } else {
258 /* R4 can't be written as a general purpose
259 * register. (it's TMU_NOSWAP as a write address).
260 */
261 if (inst->dst.file == QFILE_TEMP)
262 class_bits[inst->dst.index] &= ~CLASS_BIT_R4;
263 }
264
265 switch (inst->op) {
266 case QOP_FRAG_Z:
267 ra_set_node_reg(g, temp_to_node[inst->dst.index],
268 AB_INDEX + QPU_R_FRAG_PAYLOAD_ZW * 2 + 1);
269 break;
270
271 case QOP_FRAG_W:
272 ra_set_node_reg(g, temp_to_node[inst->dst.index],
273 AB_INDEX + QPU_R_FRAG_PAYLOAD_ZW * 2);
274 break;
275
276 case QOP_ROT_MUL:
277 assert(inst->src[0].file == QFILE_TEMP);
278 class_bits[inst->src[0].index] &= CLASS_BIT_R0_R3;
279 break;
280
281 case QOP_THRSW:
282 /* All accumulators are invalidated across a thread
283 * switch.
284 */
285 for (int i = 0; i < c->num_temps; i++) {
286 if (c->temp_start[i] < ip && c->temp_end[i] > ip)
287 class_bits[i] &= ~(CLASS_BIT_R0_R3 |
288 CLASS_BIT_R4);
289 }
290 break;
291
292 default:
293 break;
294 }
295
296 if (inst->dst.pack && !qir_is_mul(inst)) {
297 /* The non-MUL pack flags require an A-file dst
298 * register.
299 */
300 class_bits[inst->dst.index] &= CLASS_BIT_A;
301 }
302
303 /* Apply restrictions for src unpacks. The integer unpacks
304 * can only be done from regfile A, while float unpacks can be
305 * either A or R4.
306 */
307 for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
308 if (inst->src[i].file == QFILE_TEMP &&
309 inst->src[i].pack) {
310 if (qir_is_float_input(inst)) {
311 class_bits[inst->src[i].index] &=
312 CLASS_BIT_A | CLASS_BIT_R4;
313 } else {
314 class_bits[inst->src[i].index] &=
315 CLASS_BIT_A;
316 }
317 }
318 }
319
320 ip++;
321 }
322
323 for (uint32_t i = 0; i < c->num_temps; i++) {
324 int node = temp_to_node[i];
325
326 switch (class_bits[i]) {
327 case CLASS_BIT_A | CLASS_BIT_B | CLASS_BIT_R4 | CLASS_BIT_R0_R3:
328 ra_set_node_class(g, node,
329 vc4->reg_class_any[c->fs_threaded]);
330 break;
331 case CLASS_BIT_A | CLASS_BIT_B:
332 ra_set_node_class(g, node,
333 vc4->reg_class_a_or_b[c->fs_threaded]);
334 break;
335 case CLASS_BIT_A | CLASS_BIT_B | CLASS_BIT_R0_R3:
336 ra_set_node_class(g, node,
337 vc4->reg_class_a_or_b_or_acc[c->fs_threaded]);
338 break;
339 case CLASS_BIT_A | CLASS_BIT_R4:
340 ra_set_node_class(g, node,
341 vc4->reg_class_r4_or_a[c->fs_threaded]);
342 break;
343 case CLASS_BIT_A:
344 ra_set_node_class(g, node,
345 vc4->reg_class_a[c->fs_threaded]);
346 break;
347 case CLASS_BIT_R0_R3:
348 ra_set_node_class(g, node, vc4->reg_class_r0_r3);
349 break;
350
351 default:
352 /* DDX/DDY used across thread switched might get us
353 * here.
354 */
355 if (c->fs_threaded) {
356 c->failed = true;
357 return NULL;
358 }
359
360 fprintf(stderr, "temp %d: bad class bits: 0x%x\n",
361 i, class_bits[i]);
362 abort();
363 break;
364 }
365 }
366
367 for (uint32_t i = 0; i < c->num_temps; i++) {
368 for (uint32_t j = i + 1; j < c->num_temps; j++) {
369 if (!(c->temp_start[i] >= c->temp_end[j] ||
370 c->temp_start[j] >= c->temp_end[i])) {
371 ra_add_node_interference(g,
372 temp_to_node[i],
373 temp_to_node[j]);
374 }
375 }
376 }
377
378 bool ok = ra_allocate(g);
379 if (!ok) {
380 if (!c->fs_threaded) {
381 fprintf(stderr, "Failed to register allocate:\n");
382 qir_dump(c);
383 }
384
385 c->failed = true;
386 return NULL;
387 }
388
389 for (uint32_t i = 0; i < c->num_temps; i++) {
390 temp_registers[i] = vc4_regs[ra_get_node_reg(g, temp_to_node[i])];
391
392 /* If the value's never used, just write to the NOP register
393 * for clarity in debug output.
394 */
395 if (c->temp_start[i] == c->temp_end[i])
396 temp_registers[i] = qpu_ra(QPU_W_NOP);
397 }
398
399 ralloc_free(g);
400
401 return temp_registers;
402 }