virgl: remove virgl_transfer_queue_lists
[mesa.git] / src / gallium / drivers / virgl / virgl_resource.c
1 /*
2 * Copyright 2014, 2015 Red Hat.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "util/u_format.h"
24 #include "util/u_inlines.h"
25 #include "util/u_memory.h"
26 #include "util/u_upload_mgr.h"
27 #include "virgl_context.h"
28 #include "virgl_resource.h"
29 #include "virgl_screen.h"
30 #include "virgl_staging_mgr.h"
31
32 /* A (soft) limit for the amount of memory we want to allow for queued staging
33 * resources. This is used to decide when we should force a flush, in order to
34 * avoid exhausting virtio-gpu memory.
35 */
36 #define VIRGL_QUEUED_STAGING_RES_SIZE_LIMIT (128 * 1024 * 1024)
37
38 enum virgl_transfer_map_type {
39 VIRGL_TRANSFER_MAP_ERROR = -1,
40 VIRGL_TRANSFER_MAP_HW_RES,
41
42 /* Map a range of a staging buffer. The updated contents should be transferred
43 * with a copy transfer.
44 */
45 VIRGL_TRANSFER_MAP_STAGING,
46
47 /* Reallocate the underlying virgl_hw_res. */
48 VIRGL_TRANSFER_MAP_REALLOC,
49 };
50
51 /* We need to flush to properly sync the transfer with the current cmdbuf.
52 * But there are cases where the flushing can be skipped:
53 *
54 * - synchronization is disabled
55 * - the resource is not referenced by the current cmdbuf
56 */
57 static bool virgl_res_needs_flush(struct virgl_context *vctx,
58 struct virgl_transfer *trans)
59 {
60 struct virgl_winsys *vws = virgl_screen(vctx->base.screen)->vws;
61 struct virgl_resource *res = virgl_resource(trans->base.resource);
62
63 if (trans->base.usage & PIPE_TRANSFER_UNSYNCHRONIZED)
64 return false;
65
66 if (!vws->res_is_referenced(vws, vctx->cbuf, res->hw_res))
67 return false;
68
69 return true;
70 }
71
72 /* We need to read back from the host storage to make sure the guest storage
73 * is up-to-date. But there are cases where the readback can be skipped:
74 *
75 * - the content can be discarded
76 * - the host storage is read-only
77 *
78 * Note that PIPE_TRANSFER_WRITE without discard bits requires readback.
79 * PIPE_TRANSFER_READ becomes irrelevant. PIPE_TRANSFER_UNSYNCHRONIZED and
80 * PIPE_TRANSFER_FLUSH_EXPLICIT are also irrelevant.
81 */
82 static bool virgl_res_needs_readback(struct virgl_context *vctx,
83 struct virgl_resource *res,
84 unsigned usage, unsigned level)
85 {
86 if (usage & (PIPE_TRANSFER_DISCARD_RANGE |
87 PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
88 return false;
89
90 if (res->clean_mask & (1 << level))
91 return false;
92
93 return true;
94 }
95
96 static enum virgl_transfer_map_type
97 virgl_resource_transfer_prepare(struct virgl_context *vctx,
98 struct virgl_transfer *xfer)
99 {
100 struct virgl_screen *vs = virgl_screen(vctx->base.screen);
101 struct virgl_winsys *vws = vs->vws;
102 struct virgl_resource *res = virgl_resource(xfer->base.resource);
103 enum virgl_transfer_map_type map_type = VIRGL_TRANSFER_MAP_HW_RES;
104 bool flush;
105 bool readback;
106 bool wait;
107
108 /* there is no way to map the host storage currently */
109 if (xfer->base.usage & PIPE_TRANSFER_MAP_DIRECTLY)
110 return VIRGL_TRANSFER_MAP_ERROR;
111
112 /* We break the logic down into four steps
113 *
114 * step 1: determine the required operations independently
115 * step 2: look for chances to skip the operations
116 * step 3: resolve dependencies between the operations
117 * step 4: execute the operations
118 */
119
120 flush = virgl_res_needs_flush(vctx, xfer);
121 readback = virgl_res_needs_readback(vctx, res, xfer->base.usage,
122 xfer->base.level);
123 /* We need to wait for all cmdbufs, current or previous, that access the
124 * resource to finish unless synchronization is disabled.
125 */
126 wait = !(xfer->base.usage & PIPE_TRANSFER_UNSYNCHRONIZED);
127
128 /* When the transfer range consists of only uninitialized data, we can
129 * assume the GPU is not accessing the range and readback is unnecessary.
130 * We can proceed as if PIPE_TRANSFER_UNSYNCHRONIZED and
131 * PIPE_TRANSFER_DISCARD_RANGE are set.
132 */
133 if (res->u.b.target == PIPE_BUFFER &&
134 !util_ranges_intersect(&res->valid_buffer_range, xfer->base.box.x,
135 xfer->base.box.x + xfer->base.box.width) &&
136 likely(!(virgl_debug & VIRGL_DEBUG_XFER))) {
137 flush = false;
138 readback = false;
139 wait = false;
140 }
141
142 /* When the resource is busy but its content can be discarded, we can
143 * replace its HW resource or use a staging buffer to avoid waiting.
144 */
145 if (wait &&
146 (xfer->base.usage & (PIPE_TRANSFER_DISCARD_RANGE |
147 PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)) &&
148 likely(!(virgl_debug & VIRGL_DEBUG_XFER))) {
149 bool can_realloc = false;
150 bool can_staging = false;
151
152 /* A PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE transfer may be followed by
153 * PIPE_TRANSFER_UNSYNCHRONIZED transfers to non-overlapping regions.
154 * It cannot be treated as a PIPE_TRANSFER_DISCARD_RANGE transfer,
155 * otherwise those following unsynchronized transfers may overwrite
156 * valid data.
157 */
158 if (xfer->base.usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE) {
159 can_realloc = virgl_can_rebind_resource(vctx, &res->u.b);
160 } else {
161 can_staging = vctx->supports_staging;
162 }
163
164 /* discard implies no readback */
165 assert(!readback);
166
167 if (can_realloc || can_staging) {
168 /* Both map types have some costs. Do them only when the resource is
169 * (or will be) busy for real. Otherwise, set wait to false.
170 */
171 wait = (flush || vws->resource_is_busy(vws, res->hw_res));
172 if (wait) {
173 map_type = (can_realloc) ?
174 VIRGL_TRANSFER_MAP_REALLOC :
175 VIRGL_TRANSFER_MAP_STAGING;
176 wait = false;
177
178 /* There is normally no need to flush either, unless the amount of
179 * memory we are using for staging resources starts growing, in
180 * which case we want to flush to keep our memory consumption in
181 * check.
182 */
183 flush = (vctx->queued_staging_res_size >
184 VIRGL_QUEUED_STAGING_RES_SIZE_LIMIT);
185 }
186 }
187 }
188
189 /* readback has some implications */
190 if (readback) {
191 /* Readback is yet another command and is transparent to the state
192 * trackers. It should be waited for in all cases, including when
193 * PIPE_TRANSFER_UNSYNCHRONIZED is set.
194 */
195 wait = true;
196
197 /* When the transfer queue has pending writes to this transfer's region,
198 * we have to flush before readback.
199 */
200 if (!flush && virgl_transfer_queue_is_queued(&vctx->queue, xfer))
201 flush = true;
202 }
203
204 if (flush)
205 vctx->base.flush(&vctx->base, NULL, 0);
206
207 /* If we are not allowed to block, and we know that we will have to wait,
208 * either because the resource is busy, or because it will become busy due
209 * to a readback, return early to avoid performing an incomplete
210 * transfer_get. Such an incomplete transfer_get may finish at any time,
211 * during which another unsynchronized map could write to the resource
212 * contents, leaving the contents in an undefined state.
213 */
214 if ((xfer->base.usage & PIPE_TRANSFER_DONTBLOCK) &&
215 (readback || (wait && vws->resource_is_busy(vws, res->hw_res))))
216 return VIRGL_TRANSFER_MAP_ERROR;
217
218 if (readback) {
219 vws->transfer_get(vws, res->hw_res, &xfer->base.box, xfer->base.stride,
220 xfer->l_stride, xfer->offset, xfer->base.level);
221 }
222
223 if (wait)
224 vws->resource_wait(vws, res->hw_res);
225
226 return map_type;
227 }
228
229 /* Calculate the minimum size of the memory required to service a resource
230 * transfer map. Also return the stride and layer_stride for the corresponding
231 * layout.
232 */
233 static unsigned
234 virgl_transfer_map_size(struct virgl_transfer *vtransfer,
235 unsigned *out_stride,
236 unsigned *out_layer_stride)
237 {
238 struct pipe_resource *pres = vtransfer->base.resource;
239 struct pipe_box *box = &vtransfer->base.box;
240 unsigned stride;
241 unsigned layer_stride;
242 unsigned size;
243
244 assert(out_stride);
245 assert(out_layer_stride);
246
247 stride = util_format_get_stride(pres->format, box->width);
248 layer_stride = util_format_get_2d_size(pres->format, stride, box->height);
249
250 if (pres->target == PIPE_TEXTURE_CUBE ||
251 pres->target == PIPE_TEXTURE_CUBE_ARRAY ||
252 pres->target == PIPE_TEXTURE_3D ||
253 pres->target == PIPE_TEXTURE_2D_ARRAY) {
254 size = box->depth * layer_stride;
255 } else if (pres->target == PIPE_TEXTURE_1D_ARRAY) {
256 size = box->depth * stride;
257 } else {
258 size = layer_stride;
259 }
260
261 *out_stride = stride;
262 *out_layer_stride = layer_stride;
263
264 return size;
265 }
266
267 /* Maps a region from staging to service the transfer. */
268 static void *
269 virgl_staging_map(struct virgl_context *vctx,
270 struct virgl_transfer *vtransfer)
271 {
272 struct virgl_resource *vres = virgl_resource(vtransfer->base.resource);
273 unsigned size;
274 unsigned align_offset;
275 unsigned stride;
276 unsigned layer_stride;
277 void *map_addr;
278 bool alloc_succeeded;
279
280 assert(vctx->supports_staging);
281
282 size = virgl_transfer_map_size(vtransfer, &stride, &layer_stride);
283
284 /* For buffers we need to ensure that the start of the buffer would be
285 * aligned to VIRGL_MAP_BUFFER_ALIGNMENT, even if our transfer doesn't
286 * actually include it. To achieve this we may need to allocate a slightly
287 * larger range from the upload buffer, and later update the uploader
288 * resource offset and map address to point to the requested x coordinate
289 * within that range.
290 *
291 * 0 A 2A 3A
292 * |-------|---bbbb|bbbbb--|
293 * |--------| ==> size
294 * |---| ==> align_offset
295 * |------------| ==> allocation of size + align_offset
296 */
297 align_offset = vres->u.b.target == PIPE_BUFFER ?
298 vtransfer->base.box.x % VIRGL_MAP_BUFFER_ALIGNMENT :
299 0;
300
301 alloc_succeeded =
302 virgl_staging_alloc(&vctx->staging, size + align_offset,
303 VIRGL_MAP_BUFFER_ALIGNMENT,
304 &vtransfer->copy_src_offset,
305 &vtransfer->copy_src_hw_res,
306 &map_addr);
307 if (alloc_succeeded) {
308 /* Update source offset and address to point to the requested x coordinate
309 * if we have an align_offset (see above for more information). */
310 vtransfer->copy_src_offset += align_offset;
311 map_addr += align_offset;
312
313 /* Mark as dirty, since we are updating the host side resource
314 * without going through the corresponding guest side resource, and
315 * hence the two will diverge.
316 */
317 virgl_resource_dirty(vres, vtransfer->base.level);
318
319 /* We are using the minimum required size to hold the contents,
320 * possibly using a layout different from the layout of the resource,
321 * so update the transfer strides accordingly.
322 */
323 vtransfer->base.stride = stride;
324 vtransfer->base.layer_stride = layer_stride;
325
326 /* Track the total size of active staging resources. */
327 vctx->queued_staging_res_size += size + align_offset;
328 }
329
330 return map_addr;
331 }
332
333 static bool
334 virgl_resource_realloc(struct virgl_context *vctx, struct virgl_resource *res)
335 {
336 struct virgl_screen *vs = virgl_screen(vctx->base.screen);
337 const struct pipe_resource *templ = &res->u.b;
338 unsigned vbind;
339 struct virgl_hw_res *hw_res;
340
341 vbind = pipe_to_virgl_bind(vs, templ->bind, templ->flags);
342 hw_res = vs->vws->resource_create(vs->vws,
343 templ->target,
344 templ->format,
345 vbind,
346 templ->width0,
347 templ->height0,
348 templ->depth0,
349 templ->array_size,
350 templ->last_level,
351 templ->nr_samples,
352 res->metadata.total_size);
353 if (!hw_res)
354 return false;
355
356 vs->vws->resource_reference(vs->vws, &res->hw_res, NULL);
357 res->hw_res = hw_res;
358
359 /* We can safely clear the range here, since it will be repopulated in the
360 * following rebind operation, according to the active buffer binds.
361 */
362 util_range_set_empty(&res->valid_buffer_range);
363
364 /* count toward the staging resource size limit */
365 vctx->queued_staging_res_size += res->metadata.total_size;
366
367 virgl_rebind_resource(vctx, &res->u.b);
368
369 return true;
370 }
371
372 void *
373 virgl_resource_transfer_map(struct pipe_context *ctx,
374 struct pipe_resource *resource,
375 unsigned level,
376 unsigned usage,
377 const struct pipe_box *box,
378 struct pipe_transfer **transfer)
379 {
380 struct virgl_context *vctx = virgl_context(ctx);
381 struct virgl_winsys *vws = virgl_screen(ctx->screen)->vws;
382 struct virgl_resource *vres = virgl_resource(resource);
383 struct virgl_transfer *trans;
384 enum virgl_transfer_map_type map_type;
385 void *map_addr;
386
387 /* Multisampled resources require resolve before mapping. */
388 assert(resource->nr_samples <= 1);
389
390 trans = virgl_resource_create_transfer(vctx, resource,
391 &vres->metadata, level, usage, box);
392
393 map_type = virgl_resource_transfer_prepare(vctx, trans);
394 switch (map_type) {
395 case VIRGL_TRANSFER_MAP_REALLOC:
396 if (!virgl_resource_realloc(vctx, vres)) {
397 map_addr = NULL;
398 break;
399 }
400 vws->resource_reference(vws, &trans->hw_res, vres->hw_res);
401 /* fall through */
402 case VIRGL_TRANSFER_MAP_HW_RES:
403 trans->hw_res_map = vws->resource_map(vws, vres->hw_res);
404 if (trans->hw_res_map)
405 map_addr = trans->hw_res_map + trans->offset;
406 else
407 map_addr = NULL;
408 break;
409 case VIRGL_TRANSFER_MAP_STAGING:
410 map_addr = virgl_staging_map(vctx, trans);
411 /* Copy transfers don't make use of hw_res_map at the moment. */
412 trans->hw_res_map = NULL;
413 break;
414 case VIRGL_TRANSFER_MAP_ERROR:
415 default:
416 trans->hw_res_map = NULL;
417 map_addr = NULL;
418 break;
419 }
420
421 if (!map_addr) {
422 virgl_resource_destroy_transfer(vctx, trans);
423 return NULL;
424 }
425
426 if (vres->u.b.target == PIPE_BUFFER) {
427 /* For the checks below to be able to use 'usage', we assume that
428 * transfer preparation doesn't affect the usage.
429 */
430 assert(usage == trans->base.usage);
431
432 /* If we are doing a whole resource discard with a hw_res map, the buffer
433 * storage can now be considered unused and we don't care about previous
434 * contents. We can thus mark the storage as uninitialized, but only if
435 * the buffer is not host writable (in which case we can't clear the
436 * valid range, since that would result in missed readbacks in future
437 * transfers). We only do this for VIRGL_TRANSFER_MAP_HW_RES, since for
438 * VIRGL_TRANSFER_MAP_REALLOC we already take care of the buffer range
439 * when reallocating and rebinding, and VIRGL_TRANSFER_MAP_STAGING is not
440 * currently used for whole resource discards.
441 */
442 if (map_type == VIRGL_TRANSFER_MAP_HW_RES &&
443 (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE) &&
444 (vres->clean_mask & 1)) {
445 util_range_set_empty(&vres->valid_buffer_range);
446 }
447
448 if (usage & PIPE_TRANSFER_WRITE)
449 util_range_add(&vres->valid_buffer_range, box->x, box->x + box->width);
450 }
451
452 *transfer = &trans->base;
453 return map_addr;
454 }
455
456 static struct pipe_resource *virgl_resource_create(struct pipe_screen *screen,
457 const struct pipe_resource *templ)
458 {
459 unsigned vbind;
460 struct virgl_screen *vs = virgl_screen(screen);
461 struct virgl_resource *res = CALLOC_STRUCT(virgl_resource);
462
463 res->u.b = *templ;
464 res->u.b.screen = &vs->base;
465 pipe_reference_init(&res->u.b.reference, 1);
466 vbind = pipe_to_virgl_bind(vs, templ->bind, templ->flags);
467 virgl_resource_layout(&res->u.b, &res->metadata);
468
469 if ((vs->caps.caps.v2.capability_bits & VIRGL_CAP_APP_TWEAK_SUPPORT) &&
470 vs->tweak_gles_emulate_bgra &&
471 (templ->format == PIPE_FORMAT_B8G8R8A8_SRGB ||
472 templ->format == PIPE_FORMAT_B8G8R8A8_UNORM ||
473 templ->format == PIPE_FORMAT_B8G8R8X8_SRGB ||
474 templ->format == PIPE_FORMAT_B8G8R8X8_UNORM)) {
475 vbind |= VIRGL_BIND_PREFER_EMULATED_BGRA;
476 }
477
478 res->hw_res = vs->vws->resource_create(vs->vws, templ->target,
479 templ->format, vbind,
480 templ->width0,
481 templ->height0,
482 templ->depth0,
483 templ->array_size,
484 templ->last_level,
485 templ->nr_samples,
486 res->metadata.total_size);
487 if (!res->hw_res) {
488 FREE(res);
489 return NULL;
490 }
491
492 res->clean_mask = (1 << VR_MAX_TEXTURE_2D_LEVELS) - 1;
493
494 if (templ->target == PIPE_BUFFER) {
495 util_range_init(&res->valid_buffer_range);
496 virgl_buffer_init(res);
497 } else {
498 virgl_texture_init(res);
499 }
500
501 return &res->u.b;
502
503 }
504
505 static struct pipe_resource *virgl_resource_from_handle(struct pipe_screen *screen,
506 const struct pipe_resource *templ,
507 struct winsys_handle *whandle,
508 unsigned usage)
509 {
510 struct virgl_screen *vs = virgl_screen(screen);
511 if (templ->target == PIPE_BUFFER)
512 return NULL;
513
514 struct virgl_resource *res = CALLOC_STRUCT(virgl_resource);
515 res->u.b = *templ;
516 res->u.b.screen = &vs->base;
517 pipe_reference_init(&res->u.b.reference, 1);
518
519 res->hw_res = vs->vws->resource_create_from_handle(vs->vws, whandle);
520 if (!res->hw_res) {
521 FREE(res);
522 return NULL;
523 }
524
525 virgl_texture_init(res);
526
527 return &res->u.b;
528 }
529
530 void virgl_init_screen_resource_functions(struct pipe_screen *screen)
531 {
532 screen->resource_create = virgl_resource_create;
533 screen->resource_from_handle = virgl_resource_from_handle;
534 screen->resource_get_handle = u_resource_get_handle_vtbl;
535 screen->resource_destroy = u_resource_destroy_vtbl;
536 }
537
538 static bool virgl_buffer_transfer_extend(struct pipe_context *ctx,
539 struct pipe_resource *resource,
540 unsigned usage,
541 const struct pipe_box *box,
542 const void *data)
543 {
544 struct virgl_context *vctx = virgl_context(ctx);
545 struct virgl_resource *vbuf = virgl_resource(resource);
546 struct virgl_transfer dummy_trans = { 0 };
547 bool flush;
548 struct virgl_transfer *queued;
549
550 /*
551 * Attempts to short circuit the entire process of mapping and unmapping
552 * a resource if there is an existing transfer that can be extended.
553 * Pessimestically falls back if a flush is required.
554 */
555 dummy_trans.base.resource = resource;
556 dummy_trans.base.usage = usage;
557 dummy_trans.base.box = *box;
558 dummy_trans.base.stride = vbuf->metadata.stride[0];
559 dummy_trans.base.layer_stride = vbuf->metadata.layer_stride[0];
560 dummy_trans.offset = box->x;
561
562 flush = virgl_res_needs_flush(vctx, &dummy_trans);
563 if (flush && util_ranges_intersect(&vbuf->valid_buffer_range,
564 box->x, box->x + box->width))
565 return false;
566
567 queued = virgl_transfer_queue_extend(&vctx->queue, &dummy_trans);
568 if (!queued || !queued->hw_res_map)
569 return false;
570
571 memcpy(queued->hw_res_map + dummy_trans.offset, data, box->width);
572 util_range_add(&vbuf->valid_buffer_range, box->x, box->x + box->width);
573
574 return true;
575 }
576
577 static void virgl_buffer_subdata(struct pipe_context *pipe,
578 struct pipe_resource *resource,
579 unsigned usage, unsigned offset,
580 unsigned size, const void *data)
581 {
582 struct pipe_transfer *transfer;
583 uint8_t *map;
584 struct pipe_box box;
585
586 assert(!(usage & PIPE_TRANSFER_READ));
587
588 /* the write flag is implicit by the nature of buffer_subdata */
589 usage |= PIPE_TRANSFER_WRITE;
590
591 if (offset == 0 && size == resource->width0)
592 usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE;
593 else
594 usage |= PIPE_TRANSFER_DISCARD_RANGE;
595
596 u_box_1d(offset, size, &box);
597
598 if (usage & PIPE_TRANSFER_DISCARD_RANGE &&
599 virgl_buffer_transfer_extend(pipe, resource, usage, &box, data))
600 return;
601
602 map = pipe->transfer_map(pipe, resource, 0, usage, &box, &transfer);
603 if (map) {
604 memcpy(map, data, size);
605 pipe_transfer_unmap(pipe, transfer);
606 }
607 }
608
609 void virgl_init_context_resource_functions(struct pipe_context *ctx)
610 {
611 ctx->transfer_map = u_transfer_map_vtbl;
612 ctx->transfer_flush_region = u_transfer_flush_region_vtbl;
613 ctx->transfer_unmap = u_transfer_unmap_vtbl;
614 ctx->buffer_subdata = virgl_buffer_subdata;
615 ctx->texture_subdata = u_default_texture_subdata;
616 }
617
618 void virgl_resource_layout(struct pipe_resource *pt,
619 struct virgl_resource_metadata *metadata)
620 {
621 unsigned level, nblocksy;
622 unsigned width = pt->width0;
623 unsigned height = pt->height0;
624 unsigned depth = pt->depth0;
625 unsigned buffer_size = 0;
626
627 for (level = 0; level <= pt->last_level; level++) {
628 unsigned slices;
629
630 if (pt->target == PIPE_TEXTURE_CUBE)
631 slices = 6;
632 else if (pt->target == PIPE_TEXTURE_3D)
633 slices = depth;
634 else
635 slices = pt->array_size;
636
637 nblocksy = util_format_get_nblocksy(pt->format, height);
638 metadata->stride[level] = util_format_get_stride(pt->format, width);
639 metadata->layer_stride[level] = nblocksy * metadata->stride[level];
640 metadata->level_offset[level] = buffer_size;
641
642 buffer_size += slices * metadata->layer_stride[level];
643
644 width = u_minify(width, 1);
645 height = u_minify(height, 1);
646 depth = u_minify(depth, 1);
647 }
648
649 if (pt->nr_samples <= 1)
650 metadata->total_size = buffer_size;
651 else /* don't create guest backing store for MSAA */
652 metadata->total_size = 0;
653 }
654
655 struct virgl_transfer *
656 virgl_resource_create_transfer(struct virgl_context *vctx,
657 struct pipe_resource *pres,
658 const struct virgl_resource_metadata *metadata,
659 unsigned level, unsigned usage,
660 const struct pipe_box *box)
661 {
662 struct virgl_winsys *vws = virgl_screen(vctx->base.screen)->vws;
663 struct virgl_transfer *trans;
664 enum pipe_format format = pres->format;
665 const unsigned blocksy = box->y / util_format_get_blockheight(format);
666 const unsigned blocksx = box->x / util_format_get_blockwidth(format);
667
668 unsigned offset = metadata->level_offset[level];
669 if (pres->target == PIPE_TEXTURE_CUBE ||
670 pres->target == PIPE_TEXTURE_CUBE_ARRAY ||
671 pres->target == PIPE_TEXTURE_3D ||
672 pres->target == PIPE_TEXTURE_2D_ARRAY) {
673 offset += box->z * metadata->layer_stride[level];
674 }
675 else if (pres->target == PIPE_TEXTURE_1D_ARRAY) {
676 offset += box->z * metadata->stride[level];
677 assert(box->y == 0);
678 } else if (pres->target == PIPE_BUFFER) {
679 assert(box->y == 0 && box->z == 0);
680 } else {
681 assert(box->z == 0);
682 }
683
684 offset += blocksy * metadata->stride[level];
685 offset += blocksx * util_format_get_blocksize(format);
686
687 trans = slab_alloc(&vctx->transfer_pool);
688 if (!trans)
689 return NULL;
690
691 /* note that trans is not zero-initialized */
692 trans->base.resource = NULL;
693 pipe_resource_reference(&trans->base.resource, pres);
694 trans->hw_res = NULL;
695 vws->resource_reference(vws, &trans->hw_res, virgl_resource(pres)->hw_res);
696
697 trans->base.level = level;
698 trans->base.usage = usage;
699 trans->base.box = *box;
700 trans->base.stride = metadata->stride[level];
701 trans->base.layer_stride = metadata->layer_stride[level];
702 trans->offset = offset;
703 util_range_init(&trans->range);
704 trans->copy_src_hw_res = NULL;
705 trans->copy_src_offset = 0;
706 trans->resolve_transfer = NULL;
707
708 if (trans->base.resource->target != PIPE_TEXTURE_3D &&
709 trans->base.resource->target != PIPE_TEXTURE_CUBE &&
710 trans->base.resource->target != PIPE_TEXTURE_1D_ARRAY &&
711 trans->base.resource->target != PIPE_TEXTURE_2D_ARRAY &&
712 trans->base.resource->target != PIPE_TEXTURE_CUBE_ARRAY)
713 trans->l_stride = 0;
714 else
715 trans->l_stride = trans->base.layer_stride;
716
717 return trans;
718 }
719
720 void virgl_resource_destroy_transfer(struct virgl_context *vctx,
721 struct virgl_transfer *trans)
722 {
723 struct virgl_winsys *vws = virgl_screen(vctx->base.screen)->vws;
724
725 vws->resource_reference(vws, &trans->copy_src_hw_res, NULL);
726
727 util_range_destroy(&trans->range);
728 vws->resource_reference(vws, &trans->hw_res, NULL);
729 pipe_resource_reference(&trans->base.resource, NULL);
730 slab_free(&vctx->transfer_pool, trans);
731 }
732
733 void virgl_resource_destroy(struct pipe_screen *screen,
734 struct pipe_resource *resource)
735 {
736 struct virgl_screen *vs = virgl_screen(screen);
737 struct virgl_resource *res = virgl_resource(resource);
738
739 if (res->u.b.target == PIPE_BUFFER)
740 util_range_destroy(&res->valid_buffer_range);
741
742 vs->vws->resource_reference(vs->vws, &res->hw_res, NULL);
743 FREE(res);
744 }
745
746 boolean virgl_resource_get_handle(struct pipe_screen *screen,
747 struct pipe_resource *resource,
748 struct winsys_handle *whandle)
749 {
750 struct virgl_screen *vs = virgl_screen(screen);
751 struct virgl_resource *res = virgl_resource(resource);
752
753 if (res->u.b.target == PIPE_BUFFER)
754 return FALSE;
755
756 return vs->vws->resource_get_handle(vs->vws, res->hw_res,
757 res->metadata.stride[0],
758 whandle);
759 }
760
761 void virgl_resource_dirty(struct virgl_resource *res, uint32_t level)
762 {
763 if (res) {
764 if (res->u.b.target == PIPE_BUFFER)
765 res->clean_mask &= ~1;
766 else
767 res->clean_mask &= ~(1 << level);
768 }
769 }