Merge branch 'glsl2-head' into glsl2
[mesa.git] / src / gallium / state_trackers / vega / arc.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 **************************************************************************/
26
27 #include "arc.h"
28
29 #include "matrix.h"
30 #include "bezier.h"
31 #include "polygon.h"
32 #include "stroker.h"
33 #include "path.h"
34
35 #include "util/u_debug.h"
36 #include "util/u_math.h"
37
38 #ifndef M_PI
39 #define M_PI 3.14159265358979323846
40 #endif
41
42 #define DEBUG_ARCS 0
43
44 static const VGfloat two_pi = M_PI * 2;
45
46
47 static const double coeffs3Low[2][4][4] = {
48 {
49 { 3.85268, -21.229, -0.330434, 0.0127842 },
50 { -1.61486, 0.706564, 0.225945, 0.263682 },
51 { -0.910164, 0.388383, 0.00551445, 0.00671814 },
52 { -0.630184, 0.192402, 0.0098871, 0.0102527 }
53 },
54 {
55 { -0.162211, 9.94329, 0.13723, 0.0124084 },
56 { -0.253135, 0.00187735, 0.0230286, 0.01264 },
57 { -0.0695069, -0.0437594, 0.0120636, 0.0163087 },
58 { -0.0328856, -0.00926032, -0.00173573, 0.00527385 }
59 }
60 };
61
62 /* coefficients for error estimation
63 while using cubic Bézier curves for approximation
64 1/4 <= b/a <= 1 */
65 static const double coeffs3High[2][4][4] = {
66 {
67 { 0.0899116, -19.2349, -4.11711, 0.183362 },
68 { 0.138148, -1.45804, 1.32044, 1.38474 },
69 { 0.230903, -0.450262, 0.219963, 0.414038 },
70 { 0.0590565, -0.101062, 0.0430592, 0.0204699 }
71 },
72 {
73 { 0.0164649, 9.89394, 0.0919496, 0.00760802 },
74 { 0.0191603, -0.0322058, 0.0134667, -0.0825018 },
75 { 0.0156192, -0.017535, 0.00326508, -0.228157 },
76 { -0.0236752, 0.0405821, -0.0173086, 0.176187 }
77 }
78 };
79
80 /* safety factor to convert the "best" error approximation
81 into a "max bound" error */
82 static const double safety3[] = {
83 0.001, 4.98, 0.207, 0.0067
84 };
85
86 /* The code below is from the OpenVG 1.1 Spec
87 * Section 18.4 */
88
89 /* Given: Points (x0, y0) and (x1, y1)
90 * Return: TRUE if a solution exists, FALSE otherwise
91 * Circle centers are written to (cx0, cy0) and (cx1, cy1)
92 */
93 static VGboolean
94 find_unit_circles(double x0, double y0, double x1, double y1,
95 double *cx0, double *cy0,
96 double *cx1, double *cy1)
97 {
98 /* Compute differences and averages */
99 double dx = x0 - x1;
100 double dy = y0 - y1;
101 double xm = (x0 + x1)/2;
102 double ym = (y0 + y1)/2;
103 double dsq, disc, s, sdx, sdy;
104
105 /* Solve for intersecting unit circles */
106 dsq = dx*dx + dy*dy;
107 if (dsq == 0.0) return VG_FALSE; /* Points are coincident */
108 disc = 1.0/dsq - 1.0/4.0;
109
110 /* the precision we care about here is around float so if we're
111 * around the float defined zero then make it official to avoid
112 * precision problems later on */
113 if (floatIsZero(disc))
114 disc = 0.0;
115
116 if (disc < 0.0) return VG_FALSE; /* Points are too far apart */
117 s = sqrt(disc);
118 sdx = s*dx;
119 sdy = s*dy;
120 *cx0 = xm + sdy;
121 *cy0 = ym - sdx;
122 *cx1 = xm - sdy;
123 *cy1 = ym + sdx;
124 return VG_TRUE;
125 }
126
127
128 /* Given: Ellipse parameters rh, rv, rot (in degrees),
129 * endpoints (x0, y0) and (x1, y1)
130 * Return: TRUE if a solution exists, FALSE otherwise
131 * Ellipse centers are written to (cx0, cy0) and (cx1, cy1)
132 */
133 static VGboolean
134 find_ellipses(double rh, double rv, double rot,
135 double x0, double y0, double x1, double y1,
136 double *cx0, double *cy0, double *cx1, double *cy1)
137 {
138 double COS, SIN, x0p, y0p, x1p, y1p, pcx0, pcy0, pcx1, pcy1;
139 /* Convert rotation angle from degrees to radians */
140 rot *= M_PI/180.0;
141 /* Pre-compute rotation matrix entries */
142 COS = cos(rot); SIN = sin(rot);
143 /* Transform (x0, y0) and (x1, y1) into unit space */
144 /* using (inverse) rotate, followed by (inverse) scale */
145 x0p = (x0*COS + y0*SIN)/rh;
146 y0p = (-x0*SIN + y0*COS)/rv;
147 x1p = (x1*COS + y1*SIN)/rh;
148 y1p = (-x1*SIN + y1*COS)/rv;
149 if (!find_unit_circles(x0p, y0p, x1p, y1p,
150 &pcx0, &pcy0, &pcx1, &pcy1)) {
151 return VG_FALSE;
152 }
153 /* Transform back to original coordinate space */
154 /* using (forward) scale followed by (forward) rotate */
155 pcx0 *= rh; pcy0 *= rv;
156 pcx1 *= rh; pcy1 *= rv;
157 *cx0 = pcx0*COS - pcy0*SIN;
158 *cy0 = pcx0*SIN + pcy0*COS;
159 *cx1 = pcx1*COS - pcy1*SIN;
160 *cy1 = pcx1*SIN + pcy1*COS;
161 return VG_TRUE;
162 }
163
164 static INLINE VGboolean
165 try_to_fix_radii(struct arc *arc)
166 {
167 double COS, SIN, rot, x0p, y0p, x1p, y1p;
168 double dx, dy, dsq, scale;
169
170 /* Convert rotation angle from degrees to radians */
171 rot = DEGREES_TO_RADIANS(arc->theta);
172
173 /* Pre-compute rotation matrix entries */
174 COS = cos(rot); SIN = sin(rot);
175
176 /* Transform (x0, y0) and (x1, y1) into unit space */
177 /* using (inverse) rotate, followed by (inverse) scale */
178 x0p = (arc->x1*COS + arc->y1*SIN)/arc->a;
179 y0p = (-arc->x1*SIN + arc->y1*COS)/arc->b;
180 x1p = (arc->x2*COS + arc->y2*SIN)/arc->a;
181 y1p = (-arc->x2*SIN + arc->y2*COS)/arc->b;
182 /* Compute differences and averages */
183 dx = x0p - x1p;
184 dy = y0p - y1p;
185
186 dsq = dx*dx + dy*dy;
187 #if 0
188 if (dsq <= 0.001) {
189 debug_printf("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaaaaa\n");
190 }
191 #endif
192 scale = 1/(2/sqrt(dsq));
193 arc->a *= scale;
194 arc->b *= scale;
195 return VG_TRUE;
196 }
197
198 static INLINE double vector_normalize(double *v)
199 {
200 double sq = v[0] * v[0] + v[1] * v[1];
201 return sqrt(sq);
202 }
203 static INLINE double vector_orientation(double *v)
204 {
205 double norm = vector_normalize(v);
206 double cosa = v[0] / norm;
207 double sina = v[1] / norm;
208 return (sina>=0 ? acos(cosa) : 2*M_PI - acos(cosa));
209 }
210 static INLINE double vector_dot(double *v0,
211 double *v1)
212 {
213 return v0[0] * v1[0] + v0[1] * v1[1];
214 }
215
216 static INLINE double vector_angles(double *v0,
217 double *v1)
218 {
219 double dot = vector_dot(v0, v1);
220 double norm0 = vector_normalize(v0);
221 double norm1 = vector_normalize(v1);
222
223 return acos(dot / (norm0 * norm1));
224 }
225
226 static VGboolean find_angles(struct arc *arc)
227 {
228 double vec0[2], vec1[2];
229 double lambda1, lambda2;
230 double angle;
231 struct matrix matrix;
232
233 if (floatIsZero(arc->a) || floatIsZero(arc->b)) {
234 return VG_FALSE;
235 }
236 /* map the points to an identity circle */
237 matrix_load_identity(&matrix);
238 matrix_scale(&matrix, 1.f, arc->a/arc->b);
239 matrix_rotate(&matrix, -arc->theta);
240 matrix_map_point(&matrix,
241 arc->x1, arc->y1,
242 &arc->x1, &arc->y1);
243 matrix_map_point(&matrix,
244 arc->x2, arc->y2,
245 &arc->x2, &arc->y2);
246 matrix_map_point(&matrix,
247 arc->cx, arc->cy,
248 &arc->cx, &arc->cy);
249
250 #if DEBUG_ARCS
251 debug_printf("Matrix 3 [%f, %f, %f| %f, %f, %f| %f, %f, %f]\n",
252 matrix.m[0], matrix.m[1], matrix.m[2],
253 matrix.m[3], matrix.m[4], matrix.m[5],
254 matrix.m[6], matrix.m[7], matrix.m[8]);
255 debug_printf("Endpoints [%f, %f], [%f, %f]\n",
256 arc->x1, arc->y1, arc->x2, arc->y2);
257 #endif
258
259 vec0[0] = arc->x1 - arc->cx;
260 vec0[1] = arc->y1 - arc->cy;
261 vec1[0] = arc->x2 - arc->cx;
262 vec1[1] = arc->y2 - arc->cy;
263
264 #if DEBUG_ARCS
265 debug_printf("Vec is [%f, %f], [%f, %f], [%f, %f]\n",
266 vec0[0], vec0[1], vec1[0], vec1[1], arc->cx, arc->cy);
267 #endif
268
269 lambda1 = vector_orientation(vec0);
270
271 if (isnan(lambda1))
272 lambda1 = 0.f;
273
274 if (arc->type == VG_SCWARC_TO ||
275 arc->type == VG_SCCWARC_TO)
276 angle = vector_angles(vec0, vec1);
277 else if (arc->type == VG_LCWARC_TO ||
278 arc->type == VG_LCCWARC_TO) {
279 angle = 2*M_PI - vector_angles(vec0, vec1);
280 } else
281 abort();
282
283 if (isnan(angle))
284 angle = M_PI;
285
286
287 if (arc->type == VG_SCWARC_TO ||
288 arc->type == VG_LCWARC_TO)
289 lambda2 = lambda1 - angle;
290 else
291 lambda2 = lambda1 + angle;
292
293 #if DEBUG_ARCS
294 debug_printf("Angle is %f and (%f, %f)\n", angle, lambda1, lambda2);
295 #endif
296
297 #if 0
298 arc->eta1 = atan2(sin(lambda1) / arc->b,
299 cos(lambda1) / arc->a);
300 arc->eta2 = atan2(sin(lambda2) / arc->b,
301 cos(lambda2) / arc->a);
302
303 /* make sure we have eta1 <= eta2 <= eta1 + 2 PI */
304 arc->eta2 -= two_pi * floor((arc->eta2 - arc->eta1) / two_pi);
305
306 /* the preceding correction fails if we have exactly et2 - eta1 = 2 PI
307 it reduces the interval to zero length */
308 if ((lambda2 - lambda1 > M_PI) && (arc->eta2 - arc->eta1 < M_PI)) {
309 arc->eta2 += 2 * M_PI;
310 }
311 #else
312 arc->eta1 = lambda1;
313 arc->eta2 = lambda2;
314 #endif
315
316 return VG_TRUE;
317 }
318
319 #if DEBUG_ARCS
320 static void check_endpoints(struct arc *arc)
321 {
322 double x1, y1, x2, y2;
323
324 double a_cos_eta1 = arc->a * cos(arc->eta1);
325 double b_sin_eta1 = arc->b * sin(arc->eta1);
326 x1 = arc->cx + a_cos_eta1 * arc->cos_theta -
327 b_sin_eta1 * arc->sin_theta;
328 y1 = arc->cy + a_cos_eta1 * arc->sin_theta +
329 b_sin_eta1 * arc->cos_theta;
330
331 double a_cos_eta2 = arc->a * cos(arc->eta2);
332 double b_sin_eta2 = arc->b * sin(arc->eta2);
333 x2 = arc->cx + a_cos_eta2 * arc->cos_theta -
334 b_sin_eta2 * arc->sin_theta;
335 y2 = arc->cy + a_cos_eta2 * arc->sin_theta +
336 b_sin_eta2 * arc->cos_theta;
337
338 debug_printf("Computed (%f, %f), (%f, %f)\n",
339 x1, y1, x2, y2);
340 debug_printf("Real (%f, %f), (%f, %f)\n",
341 arc->x1, arc->y1,
342 arc->x2, arc->y2);
343 }
344 #endif
345
346 void arc_init(struct arc *arc,
347 VGPathSegment type,
348 VGfloat x1, VGfloat y1,
349 VGfloat x2, VGfloat y2,
350 VGfloat rh, VGfloat rv,
351 VGfloat rot)
352 {
353 assert(type == VG_SCCWARC_TO ||
354 type == VG_SCWARC_TO ||
355 type == VG_LCCWARC_TO ||
356 type == VG_LCWARC_TO);
357 arc->type = type;
358 arc->x1 = x1;
359 arc->y1 = y1;
360 arc->x2 = x2;
361 arc->y2 = y2;
362 arc->a = rh;
363 arc->b = rv;
364 arc->theta = rot;
365 arc->cos_theta = cos(arc->theta);
366 arc->sin_theta = sin(arc->theta);
367 {
368 double cx0, cy0, cx1, cy1;
369 double cx, cy;
370 arc->is_valid = find_ellipses(rh, rv, rot, x1, y1, x2, y2,
371 &cx0, &cy0, &cx1, &cy1);
372
373 if (!arc->is_valid && try_to_fix_radii(arc)) {
374 rh = arc->a;
375 rv = arc->b;
376 arc->is_valid =
377 find_ellipses(rh, rv, rot, x1, y1, x2, y2,
378 &cx0, &cy0, &cx1, &cy1);
379 }
380
381 if (type == VG_SCWARC_TO ||
382 type == VG_LCCWARC_TO) {
383 cx = cx1;
384 cy = cy1;
385 } else {
386 cx = cx0;
387 cy = cy0;
388 }
389 #if DEBUG_ARCS
390 debug_printf("Centers are : (%f, %f) , (%f, %f). Real (%f, %f)\n",
391 cx0, cy0, cx1, cy1, cx, cy);
392 #endif
393 arc->cx = cx;
394 arc->cy = cy;
395 if (arc->is_valid) {
396 arc->is_valid = find_angles(arc);
397 #if DEBUG_ARCS
398 check_endpoints(arc);
399 #endif
400 /* remap a few points. find_angles requires
401 * rot in angles, the rest of the code
402 * will need them in radians. and find_angles
403 * modifies the center to match an identity
404 * circle so lets reset it */
405 arc->theta = DEGREES_TO_RADIANS(rot);
406 arc->cos_theta = cos(arc->theta);
407 arc->sin_theta = sin(arc->theta);
408 arc->cx = cx;
409 arc->cy = cy;
410 }
411 }
412 }
413
414 static INLINE double rational_function(double x, const double *c)
415 {
416 return (x * (x * c[0] + c[1]) + c[2]) / (x + c[3]);
417 }
418
419 static double estimate_error(struct arc *arc,
420 double etaA, double etaB)
421 {
422 double eta = 0.5 * (etaA + etaB);
423
424 double x = arc->b / arc->a;
425 double dEta = etaB - etaA;
426 double cos2 = cos(2 * eta);
427 double cos4 = cos(4 * eta);
428 double cos6 = cos(6 * eta);
429 double c0, c1;
430
431 /* select the right coeficients set according to degree and b/a */
432 const double (*coeffs)[4][4];
433 const double *safety;
434 coeffs = (x < 0.25) ? coeffs3Low : coeffs3High;
435 safety = safety3;
436
437 c0 = rational_function(x, coeffs[0][0])
438 + cos2 * rational_function(x, coeffs[0][1])
439 + cos4 * rational_function(x, coeffs[0][2])
440 + cos6 * rational_function(x, coeffs[0][3]);
441
442 c1 = rational_function(x, coeffs[1][0])
443 + cos2 * rational_function(x, coeffs[1][1])
444 + cos4 * rational_function(x, coeffs[1][2])
445 + cos6 * rational_function(x, coeffs[1][3]);
446
447 return rational_function(x, safety) * arc->a * exp(c0 + c1 * dEta);
448 }
449
450 struct arc_cb {
451 void (*move)(struct arc_cb *cb, VGfloat x, VGfloat y);
452 void (*point)(struct arc_cb *cb, VGfloat x, VGfloat y);
453 void (*bezier)(struct arc_cb *cb, struct bezier *bezier);
454
455 void *user_data;
456 };
457
458 static void cb_null_move(struct arc_cb *cb, VGfloat x, VGfloat y)
459 {
460 }
461
462 static void polygon_point(struct arc_cb *cb, VGfloat x, VGfloat y)
463 {
464 struct polygon *poly = (struct polygon*)cb->user_data;
465 polygon_vertex_append(poly, x, y);
466 }
467
468 static void polygon_bezier(struct arc_cb *cb, struct bezier *bezier)
469 {
470 struct polygon *poly = (struct polygon*)cb->user_data;
471 bezier_add_to_polygon(bezier, poly);
472 }
473
474 static void stroke_point(struct arc_cb *cb, VGfloat x, VGfloat y)
475 {
476 struct stroker *stroker = (struct stroker*)cb->user_data;
477 stroker_line_to(stroker, x, y);
478 }
479
480 static void stroke_curve(struct arc_cb *cb, struct bezier *bezier)
481 {
482 struct stroker *stroker = (struct stroker*)cb->user_data;
483 stroker_curve_to(stroker,
484 bezier->x2, bezier->y2,
485 bezier->x3, bezier->y3,
486 bezier->x4, bezier->y4);
487 }
488
489 static void stroke_emit_point(struct arc_cb *cb, VGfloat x, VGfloat y)
490 {
491 struct stroker *stroker = (struct stroker*)cb->user_data;
492 stroker_emit_line_to(stroker, x, y);
493 }
494
495 static void stroke_emit_curve(struct arc_cb *cb, struct bezier *bezier)
496 {
497 struct stroker *stroker = (struct stroker*)cb->user_data;
498 stroker_emit_curve_to(stroker,
499 bezier->x2, bezier->y2,
500 bezier->x3, bezier->y3,
501 bezier->x4, bezier->y4);
502 }
503
504 static void arc_path_move(struct arc_cb *cb, VGfloat x, VGfloat y)
505 {
506 struct path *path = (struct path*)cb->user_data;
507 path_move_to(path, x, y);
508 }
509
510 static void arc_path_point(struct arc_cb *cb, VGfloat x, VGfloat y)
511 {
512 struct path *path = (struct path*)cb->user_data;
513 path_line_to(path, x, y);
514 }
515
516 static void arc_path_bezier(struct arc_cb *cb, struct bezier *bezier)
517 {
518 struct path *path = (struct path*)cb->user_data;
519 path_cubic_to(path,
520 bezier->x2, bezier->y2,
521 bezier->x3, bezier->y3,
522 bezier->x4, bezier->y4);
523 }
524
525 static INLINE int num_beziers_needed(struct arc *arc)
526 {
527 double threshold = 0.05;
528 VGboolean found = VG_FALSE;
529 int n = 1;
530 double min_eta, max_eta;
531
532 min_eta = MIN2(arc->eta1, arc->eta2);
533 max_eta = MAX2(arc->eta1, arc->eta2);
534
535 while ((! found) && (n < 1024)) {
536 double d_eta = (max_eta - min_eta) / n;
537 if (d_eta <= 0.5 * M_PI) {
538 double eta_b = min_eta;
539 int i;
540 found = VG_TRUE;
541 for (i = 0; found && (i < n); ++i) {
542 double etaA = eta_b;
543 eta_b += d_eta;
544 found = (estimate_error(arc, etaA, eta_b) <= threshold);
545 }
546 }
547 n = n << 1;
548 }
549
550 return n;
551 }
552
553 static void arc_to_beziers(struct arc *arc,
554 struct arc_cb cb,
555 struct matrix *matrix)
556 {
557 int i;
558 int n = 1;
559 double d_eta, eta_b, cos_eta_b,
560 sin_eta_b, a_cos_eta_b, b_sin_eta_b, a_sin_eta_b,
561 b_cos_eta_b, x_b, y_b, x_b_dot, y_b_dot, lx, ly;
562 double t, alpha;
563
564 { /* always move to the start of the arc */
565 VGfloat x = arc->x1;
566 VGfloat y = arc->y1;
567 matrix_map_point(matrix, x, y, &x, &y);
568 cb.move(&cb, x, y);
569 }
570
571 if (!arc->is_valid) {
572 VGfloat x = arc->x2;
573 VGfloat y = arc->y2;
574 matrix_map_point(matrix, x, y, &x, &y);
575 cb.point(&cb, x, y);
576 return;
577 }
578
579 /* find the number of Bézier curves needed */
580 n = num_beziers_needed(arc);
581
582 d_eta = (arc->eta2 - arc->eta1) / n;
583 eta_b = arc->eta1;
584
585 cos_eta_b = cos(eta_b);
586 sin_eta_b = sin(eta_b);
587 a_cos_eta_b = arc->a * cos_eta_b;
588 b_sin_eta_b = arc->b * sin_eta_b;
589 a_sin_eta_b = arc->a * sin_eta_b;
590 b_cos_eta_b = arc->b * cos_eta_b;
591 x_b = arc->cx + a_cos_eta_b * arc->cos_theta -
592 b_sin_eta_b * arc->sin_theta;
593 y_b = arc->cy + a_cos_eta_b * arc->sin_theta +
594 b_sin_eta_b * arc->cos_theta;
595 x_b_dot = -a_sin_eta_b * arc->cos_theta -
596 b_cos_eta_b * arc->sin_theta;
597 y_b_dot = -a_sin_eta_b * arc->sin_theta +
598 b_cos_eta_b * arc->cos_theta;
599
600 {
601 VGfloat x = x_b, y = y_b;
602 matrix_map_point(matrix, x, y, &x, &y);
603 cb.point(&cb, x, y);
604 }
605 lx = x_b;
606 ly = y_b;
607
608 t = tan(0.5 * d_eta);
609 alpha = sin(d_eta) * (sqrt(4 + 3 * t * t) - 1) / 3;
610
611 for (i = 0; i < n; ++i) {
612 struct bezier bezier;
613 double xA = x_b;
614 double yA = y_b;
615 double xADot = x_b_dot;
616 double yADot = y_b_dot;
617
618 eta_b += d_eta;
619 cos_eta_b = cos(eta_b);
620 sin_eta_b = sin(eta_b);
621 a_cos_eta_b = arc->a * cos_eta_b;
622 b_sin_eta_b = arc->b * sin_eta_b;
623 a_sin_eta_b = arc->a * sin_eta_b;
624 b_cos_eta_b = arc->b * cos_eta_b;
625 x_b = arc->cx + a_cos_eta_b * arc->cos_theta -
626 b_sin_eta_b * arc->sin_theta;
627 y_b = arc->cy + a_cos_eta_b * arc->sin_theta +
628 b_sin_eta_b * arc->cos_theta;
629 x_b_dot = -a_sin_eta_b * arc->cos_theta -
630 b_cos_eta_b * arc->sin_theta;
631 y_b_dot = -a_sin_eta_b * arc->sin_theta +
632 b_cos_eta_b * arc->cos_theta;
633
634 bezier_init(&bezier,
635 lx, ly,
636 (float) (xA + alpha * xADot), (float) (yA + alpha * yADot),
637 (float) (x_b - alpha * x_b_dot), (float) (y_b - alpha * y_b_dot),
638 (float) x_b, (float) y_b);
639 #if 0
640 debug_printf("%d) Bezier (%f, %f), (%f, %f), (%f, %f), (%f, %f)\n",
641 i,
642 bezier.x1, bezier.y1,
643 bezier.x2, bezier.y2,
644 bezier.x3, bezier.y3,
645 bezier.x4, bezier.y4);
646 #endif
647 bezier_transform(&bezier, matrix);
648 cb.bezier(&cb, &bezier);
649 lx = x_b;
650 ly = y_b;
651 }
652 }
653
654
655 void arc_add_to_polygon(struct arc *arc,
656 struct polygon *poly,
657 struct matrix *matrix)
658 {
659 struct arc_cb cb;
660
661 cb.move = cb_null_move;
662 cb.point = polygon_point;
663 cb.bezier = polygon_bezier;
664 cb.user_data = poly;
665
666 arc_to_beziers(arc, cb, matrix);
667 }
668
669 void arc_stroke_cb(struct arc *arc,
670 struct stroker *stroke,
671 struct matrix *matrix)
672 {
673 struct arc_cb cb;
674
675 cb.move = cb_null_move;
676 cb.point = stroke_point;
677 cb.bezier = stroke_curve;
678 cb.user_data = stroke;
679
680 arc_to_beziers(arc, cb, matrix);
681 }
682
683 void arc_stroker_emit(struct arc *arc,
684 struct stroker *stroker,
685 struct matrix *matrix)
686 {
687 struct arc_cb cb;
688
689 cb.move = cb_null_move;
690 cb.point = stroke_emit_point;
691 cb.bezier = stroke_emit_curve;
692 cb.user_data = stroker;
693
694 arc_to_beziers(arc, cb, matrix);
695 }
696
697 void arc_to_path(struct arc *arc,
698 struct path *path,
699 struct matrix *matrix)
700 {
701 struct arc_cb cb;
702
703 cb.move = arc_path_move;
704 cb.point = arc_path_point;
705 cb.bezier = arc_path_bezier;
706 cb.user_data = path;
707
708 arc_to_beziers(arc, cb, matrix);
709 }