e6a5a7773e0798139124981a8463a49715c8caa6
[mesa.git] / src / gallium / winsys / amdgpu / drm / amdgpu_bo.c
1 /*
2 * Copyright © 2011 Marek Olšák <maraeo@gmail.com>
3 * Copyright © 2015 Advanced Micro Devices, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
16 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
18 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 */
27
28 #include "amdgpu_cs.h"
29
30 #include "util/hash_table.h"
31 #include "util/os_time.h"
32 #include "util/u_hash_table.h"
33 #include "state_tracker/drm_driver.h"
34 #include <amdgpu_drm.h>
35 #include <xf86drm.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38
39 #ifndef AMDGPU_GEM_CREATE_VM_ALWAYS_VALID
40 #define AMDGPU_GEM_CREATE_VM_ALWAYS_VALID (1 << 6)
41 #endif
42
43 #ifndef AMDGPU_VA_RANGE_HIGH
44 #define AMDGPU_VA_RANGE_HIGH 0x2
45 #endif
46
47 /* Set to 1 for verbose output showing committed sparse buffer ranges. */
48 #define DEBUG_SPARSE_COMMITS 0
49
50 struct amdgpu_sparse_backing_chunk {
51 uint32_t begin, end;
52 };
53
54 static void amdgpu_bo_unmap(struct pb_buffer *buf);
55
56 static bool amdgpu_bo_wait(struct pb_buffer *_buf, uint64_t timeout,
57 enum radeon_bo_usage usage)
58 {
59 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
60 struct amdgpu_winsys *ws = bo->ws;
61 int64_t abs_timeout;
62
63 if (timeout == 0) {
64 if (p_atomic_read(&bo->num_active_ioctls))
65 return false;
66
67 } else {
68 abs_timeout = os_time_get_absolute_timeout(timeout);
69
70 /* Wait if any ioctl is being submitted with this buffer. */
71 if (!os_wait_until_zero_abs_timeout(&bo->num_active_ioctls, abs_timeout))
72 return false;
73 }
74
75 if (bo->is_shared) {
76 /* We can't use user fences for shared buffers, because user fences
77 * are local to this process only. If we want to wait for all buffer
78 * uses in all processes, we have to use amdgpu_bo_wait_for_idle.
79 */
80 bool buffer_busy = true;
81 int r;
82
83 r = amdgpu_bo_wait_for_idle(bo->bo, timeout, &buffer_busy);
84 if (r)
85 fprintf(stderr, "%s: amdgpu_bo_wait_for_idle failed %i\n", __func__,
86 r);
87 return !buffer_busy;
88 }
89
90 if (timeout == 0) {
91 unsigned idle_fences;
92 bool buffer_idle;
93
94 simple_mtx_lock(&ws->bo_fence_lock);
95
96 for (idle_fences = 0; idle_fences < bo->num_fences; ++idle_fences) {
97 if (!amdgpu_fence_wait(bo->fences[idle_fences], 0, false))
98 break;
99 }
100
101 /* Release the idle fences to avoid checking them again later. */
102 for (unsigned i = 0; i < idle_fences; ++i)
103 amdgpu_fence_reference(&bo->fences[i], NULL);
104
105 memmove(&bo->fences[0], &bo->fences[idle_fences],
106 (bo->num_fences - idle_fences) * sizeof(*bo->fences));
107 bo->num_fences -= idle_fences;
108
109 buffer_idle = !bo->num_fences;
110 simple_mtx_unlock(&ws->bo_fence_lock);
111
112 return buffer_idle;
113 } else {
114 bool buffer_idle = true;
115
116 simple_mtx_lock(&ws->bo_fence_lock);
117 while (bo->num_fences && buffer_idle) {
118 struct pipe_fence_handle *fence = NULL;
119 bool fence_idle = false;
120
121 amdgpu_fence_reference(&fence, bo->fences[0]);
122
123 /* Wait for the fence. */
124 simple_mtx_unlock(&ws->bo_fence_lock);
125 if (amdgpu_fence_wait(fence, abs_timeout, true))
126 fence_idle = true;
127 else
128 buffer_idle = false;
129 simple_mtx_lock(&ws->bo_fence_lock);
130
131 /* Release an idle fence to avoid checking it again later, keeping in
132 * mind that the fence array may have been modified by other threads.
133 */
134 if (fence_idle && bo->num_fences && bo->fences[0] == fence) {
135 amdgpu_fence_reference(&bo->fences[0], NULL);
136 memmove(&bo->fences[0], &bo->fences[1],
137 (bo->num_fences - 1) * sizeof(*bo->fences));
138 bo->num_fences--;
139 }
140
141 amdgpu_fence_reference(&fence, NULL);
142 }
143 simple_mtx_unlock(&ws->bo_fence_lock);
144
145 return buffer_idle;
146 }
147 }
148
149 static enum radeon_bo_domain amdgpu_bo_get_initial_domain(
150 struct pb_buffer *buf)
151 {
152 return ((struct amdgpu_winsys_bo*)buf)->initial_domain;
153 }
154
155 static void amdgpu_bo_remove_fences(struct amdgpu_winsys_bo *bo)
156 {
157 for (unsigned i = 0; i < bo->num_fences; ++i)
158 amdgpu_fence_reference(&bo->fences[i], NULL);
159
160 FREE(bo->fences);
161 bo->num_fences = 0;
162 bo->max_fences = 0;
163 }
164
165 void amdgpu_bo_destroy(struct pb_buffer *_buf)
166 {
167 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
168 struct amdgpu_screen_winsys *sws_iter;
169 struct amdgpu_winsys *ws = bo->ws;
170
171 assert(bo->bo && "must not be called for slab entries");
172
173 if (!bo->is_user_ptr && bo->cpu_ptr) {
174 bo->cpu_ptr = NULL;
175 amdgpu_bo_unmap(&bo->base);
176 }
177 assert(bo->is_user_ptr || bo->u.real.map_count == 0);
178
179 if (ws->debug_all_bos) {
180 simple_mtx_lock(&ws->global_bo_list_lock);
181 list_del(&bo->u.real.global_list_item);
182 ws->num_buffers--;
183 simple_mtx_unlock(&ws->global_bo_list_lock);
184 }
185
186 simple_mtx_lock(&ws->sws_list_lock);
187 for (sws_iter = ws->sws_list; sws_iter; sws_iter = sws_iter->next) {
188 if (sws_iter->kms_handles)
189 _mesa_hash_table_remove_key(sws_iter->kms_handles, bo);
190 }
191 simple_mtx_unlock(&ws->sws_list_lock);
192
193 simple_mtx_lock(&ws->bo_export_table_lock);
194 util_hash_table_remove(ws->bo_export_table, bo->bo);
195 simple_mtx_unlock(&ws->bo_export_table_lock);
196
197 if (bo->initial_domain & RADEON_DOMAIN_VRAM_GTT) {
198 amdgpu_bo_va_op(bo->bo, 0, bo->base.size, bo->va, 0, AMDGPU_VA_OP_UNMAP);
199 amdgpu_va_range_free(bo->u.real.va_handle);
200 }
201 amdgpu_bo_free(bo->bo);
202
203 amdgpu_bo_remove_fences(bo);
204
205 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
206 ws->allocated_vram -= align64(bo->base.size, ws->info.gart_page_size);
207 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
208 ws->allocated_gtt -= align64(bo->base.size, ws->info.gart_page_size);
209
210 simple_mtx_destroy(&bo->lock);
211 FREE(bo);
212 }
213
214 static void amdgpu_bo_destroy_or_cache(struct pb_buffer *_buf)
215 {
216 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
217
218 assert(bo->bo); /* slab buffers have a separate vtbl */
219
220 if (bo->u.real.use_reusable_pool)
221 pb_cache_add_buffer(&bo->u.real.cache_entry);
222 else
223 amdgpu_bo_destroy(_buf);
224 }
225
226 static void amdgpu_clean_up_buffer_managers(struct amdgpu_winsys *ws)
227 {
228 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++)
229 pb_slabs_reclaim(&ws->bo_slabs[i]);
230
231 pb_cache_release_all_buffers(&ws->bo_cache);
232 }
233
234 static bool amdgpu_bo_do_map(struct amdgpu_winsys_bo *bo, void **cpu)
235 {
236 assert(!bo->sparse && bo->bo && !bo->is_user_ptr);
237 int r = amdgpu_bo_cpu_map(bo->bo, cpu);
238 if (r) {
239 /* Clean up buffer managers and try again. */
240 amdgpu_clean_up_buffer_managers(bo->ws);
241 r = amdgpu_bo_cpu_map(bo->bo, cpu);
242 if (r)
243 return false;
244 }
245
246 if (p_atomic_inc_return(&bo->u.real.map_count) == 1) {
247 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
248 bo->ws->mapped_vram += bo->base.size;
249 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
250 bo->ws->mapped_gtt += bo->base.size;
251 bo->ws->num_mapped_buffers++;
252 }
253
254 return true;
255 }
256
257 void *amdgpu_bo_map(struct pb_buffer *buf,
258 struct radeon_cmdbuf *rcs,
259 enum pipe_transfer_usage usage)
260 {
261 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
262 struct amdgpu_winsys_bo *real;
263 struct amdgpu_cs *cs = (struct amdgpu_cs*)rcs;
264
265 assert(!bo->sparse);
266
267 /* If it's not unsynchronized bo_map, flush CS if needed and then wait. */
268 if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) {
269 /* DONTBLOCK doesn't make sense with UNSYNCHRONIZED. */
270 if (usage & PIPE_TRANSFER_DONTBLOCK) {
271 if (!(usage & PIPE_TRANSFER_WRITE)) {
272 /* Mapping for read.
273 *
274 * Since we are mapping for read, we don't need to wait
275 * if the GPU is using the buffer for read too
276 * (neither one is changing it).
277 *
278 * Only check whether the buffer is being used for write. */
279 if (cs && amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
280 RADEON_USAGE_WRITE)) {
281 cs->flush_cs(cs->flush_data,
282 RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
283 return NULL;
284 }
285
286 if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
287 RADEON_USAGE_WRITE)) {
288 return NULL;
289 }
290 } else {
291 if (cs && amdgpu_bo_is_referenced_by_cs(cs, bo)) {
292 cs->flush_cs(cs->flush_data,
293 RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
294 return NULL;
295 }
296
297 if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
298 RADEON_USAGE_READWRITE)) {
299 return NULL;
300 }
301 }
302 } else {
303 uint64_t time = os_time_get_nano();
304
305 if (!(usage & PIPE_TRANSFER_WRITE)) {
306 /* Mapping for read.
307 *
308 * Since we are mapping for read, we don't need to wait
309 * if the GPU is using the buffer for read too
310 * (neither one is changing it).
311 *
312 * Only check whether the buffer is being used for write. */
313 if (cs) {
314 if (amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
315 RADEON_USAGE_WRITE)) {
316 cs->flush_cs(cs->flush_data,
317 RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
318 } else {
319 /* Try to avoid busy-waiting in amdgpu_bo_wait. */
320 if (p_atomic_read(&bo->num_active_ioctls))
321 amdgpu_cs_sync_flush(rcs);
322 }
323 }
324
325 amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
326 RADEON_USAGE_WRITE);
327 } else {
328 /* Mapping for write. */
329 if (cs) {
330 if (amdgpu_bo_is_referenced_by_cs(cs, bo)) {
331 cs->flush_cs(cs->flush_data,
332 RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
333 } else {
334 /* Try to avoid busy-waiting in amdgpu_bo_wait. */
335 if (p_atomic_read(&bo->num_active_ioctls))
336 amdgpu_cs_sync_flush(rcs);
337 }
338 }
339
340 amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
341 RADEON_USAGE_READWRITE);
342 }
343
344 bo->ws->buffer_wait_time += os_time_get_nano() - time;
345 }
346 }
347
348 /* Buffer synchronization has been checked, now actually map the buffer. */
349 void *cpu = NULL;
350 uint64_t offset = 0;
351
352 if (bo->bo) {
353 real = bo;
354 } else {
355 real = bo->u.slab.real;
356 offset = bo->va - real->va;
357 }
358
359 if (usage & RADEON_TRANSFER_TEMPORARY) {
360 if (real->is_user_ptr) {
361 cpu = real->cpu_ptr;
362 } else {
363 if (!amdgpu_bo_do_map(real, &cpu))
364 return NULL;
365 }
366 } else {
367 cpu = p_atomic_read(&real->cpu_ptr);
368 if (!cpu) {
369 simple_mtx_lock(&real->lock);
370 /* Must re-check due to the possibility of a race. Re-check need not
371 * be atomic thanks to the lock. */
372 cpu = real->cpu_ptr;
373 if (!cpu) {
374 if (!amdgpu_bo_do_map(real, &cpu)) {
375 simple_mtx_unlock(&real->lock);
376 return NULL;
377 }
378 p_atomic_set(&real->cpu_ptr, cpu);
379 }
380 simple_mtx_unlock(&real->lock);
381 }
382 }
383
384 return (uint8_t*)cpu + offset;
385 }
386
387 static void amdgpu_bo_unmap(struct pb_buffer *buf)
388 {
389 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
390 struct amdgpu_winsys_bo *real;
391
392 assert(!bo->sparse);
393
394 if (bo->is_user_ptr)
395 return;
396
397 real = bo->bo ? bo : bo->u.slab.real;
398 assert(real->u.real.map_count != 0 && "too many unmaps");
399 if (p_atomic_dec_zero(&real->u.real.map_count)) {
400 assert(!real->cpu_ptr &&
401 "too many unmaps or forgot RADEON_TRANSFER_TEMPORARY flag");
402
403 if (real->initial_domain & RADEON_DOMAIN_VRAM)
404 real->ws->mapped_vram -= real->base.size;
405 else if (real->initial_domain & RADEON_DOMAIN_GTT)
406 real->ws->mapped_gtt -= real->base.size;
407 real->ws->num_mapped_buffers--;
408 }
409
410 amdgpu_bo_cpu_unmap(real->bo);
411 }
412
413 static const struct pb_vtbl amdgpu_winsys_bo_vtbl = {
414 amdgpu_bo_destroy_or_cache
415 /* other functions are never called */
416 };
417
418 static void amdgpu_add_buffer_to_global_list(struct amdgpu_winsys_bo *bo)
419 {
420 struct amdgpu_winsys *ws = bo->ws;
421
422 assert(bo->bo);
423
424 if (ws->debug_all_bos) {
425 simple_mtx_lock(&ws->global_bo_list_lock);
426 list_addtail(&bo->u.real.global_list_item, &ws->global_bo_list);
427 ws->num_buffers++;
428 simple_mtx_unlock(&ws->global_bo_list_lock);
429 }
430 }
431
432 static uint64_t amdgpu_get_optimal_vm_alignment(struct amdgpu_winsys *ws,
433 uint64_t size, unsigned alignment)
434 {
435 uint64_t vm_alignment = alignment;
436
437 /* Increase the VM alignment for faster address translation. */
438 if (size >= ws->info.pte_fragment_size)
439 vm_alignment = MAX2(vm_alignment, ws->info.pte_fragment_size);
440
441 /* Gfx9: Increase the VM alignment to the most significant bit set
442 * in the size for faster address translation.
443 */
444 if (ws->info.chip_class >= GFX9) {
445 unsigned msb = util_last_bit64(size); /* 0 = no bit is set */
446 uint64_t msb_alignment = msb ? 1ull << (msb - 1) : 0;
447
448 vm_alignment = MAX2(vm_alignment, msb_alignment);
449 }
450 return vm_alignment;
451 }
452
453 static struct amdgpu_winsys_bo *amdgpu_create_bo(struct amdgpu_winsys *ws,
454 uint64_t size,
455 unsigned alignment,
456 enum radeon_bo_domain initial_domain,
457 unsigned flags,
458 int heap)
459 {
460 struct amdgpu_bo_alloc_request request = {0};
461 amdgpu_bo_handle buf_handle;
462 uint64_t va = 0;
463 struct amdgpu_winsys_bo *bo;
464 amdgpu_va_handle va_handle;
465 int r;
466
467 /* VRAM or GTT must be specified, but not both at the same time. */
468 assert(util_bitcount(initial_domain & (RADEON_DOMAIN_VRAM_GTT |
469 RADEON_DOMAIN_GDS |
470 RADEON_DOMAIN_OA)) == 1);
471
472 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
473 if (!bo) {
474 return NULL;
475 }
476
477 if (heap >= 0) {
478 pb_cache_init_entry(&ws->bo_cache, &bo->u.real.cache_entry, &bo->base,
479 heap);
480 }
481 request.alloc_size = size;
482 request.phys_alignment = alignment;
483
484 if (initial_domain & RADEON_DOMAIN_VRAM) {
485 request.preferred_heap |= AMDGPU_GEM_DOMAIN_VRAM;
486
487 /* Since VRAM and GTT have almost the same performance on APUs, we could
488 * just set GTT. However, in order to decrease GTT(RAM) usage, which is
489 * shared with the OS, allow VRAM placements too. The idea is not to use
490 * VRAM usefully, but to use it so that it's not unused and wasted.
491 */
492 if (!ws->info.has_dedicated_vram)
493 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
494 }
495
496 if (initial_domain & RADEON_DOMAIN_GTT)
497 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
498 if (initial_domain & RADEON_DOMAIN_GDS)
499 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GDS;
500 if (initial_domain & RADEON_DOMAIN_OA)
501 request.preferred_heap |= AMDGPU_GEM_DOMAIN_OA;
502
503 if (flags & RADEON_FLAG_NO_CPU_ACCESS)
504 request.flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
505 if (flags & RADEON_FLAG_GTT_WC)
506 request.flags |= AMDGPU_GEM_CREATE_CPU_GTT_USWC;
507 if (flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
508 ws->info.has_local_buffers)
509 request.flags |= AMDGPU_GEM_CREATE_VM_ALWAYS_VALID;
510 if (ws->zero_all_vram_allocs &&
511 (request.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM))
512 request.flags |= AMDGPU_GEM_CREATE_VRAM_CLEARED;
513
514 r = amdgpu_bo_alloc(ws->dev, &request, &buf_handle);
515 if (r) {
516 fprintf(stderr, "amdgpu: Failed to allocate a buffer:\n");
517 fprintf(stderr, "amdgpu: size : %"PRIu64" bytes\n", size);
518 fprintf(stderr, "amdgpu: alignment : %u bytes\n", alignment);
519 fprintf(stderr, "amdgpu: domains : %u\n", initial_domain);
520 goto error_bo_alloc;
521 }
522
523 if (initial_domain & RADEON_DOMAIN_VRAM_GTT) {
524 unsigned va_gap_size = ws->check_vm ? MAX2(4 * alignment, 64 * 1024) : 0;
525
526 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
527 size + va_gap_size,
528 amdgpu_get_optimal_vm_alignment(ws, size, alignment),
529 0, &va, &va_handle,
530 (flags & RADEON_FLAG_32BIT ? AMDGPU_VA_RANGE_32_BIT : 0) |
531 AMDGPU_VA_RANGE_HIGH);
532 if (r)
533 goto error_va_alloc;
534
535 unsigned vm_flags = AMDGPU_VM_PAGE_READABLE |
536 AMDGPU_VM_PAGE_EXECUTABLE;
537
538 if (!(flags & RADEON_FLAG_READ_ONLY))
539 vm_flags |= AMDGPU_VM_PAGE_WRITEABLE;
540
541 r = amdgpu_bo_va_op_raw(ws->dev, buf_handle, 0, size, va, vm_flags,
542 AMDGPU_VA_OP_MAP);
543 if (r)
544 goto error_va_map;
545 }
546
547 simple_mtx_init(&bo->lock, mtx_plain);
548 pipe_reference_init(&bo->base.reference, 1);
549 bo->base.alignment = alignment;
550 bo->base.usage = 0;
551 bo->base.size = size;
552 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
553 bo->ws = ws;
554 bo->bo = buf_handle;
555 bo->va = va;
556 bo->u.real.va_handle = va_handle;
557 bo->initial_domain = initial_domain;
558 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
559 bo->is_local = !!(request.flags & AMDGPU_GEM_CREATE_VM_ALWAYS_VALID);
560
561 if (initial_domain & RADEON_DOMAIN_VRAM)
562 ws->allocated_vram += align64(size, ws->info.gart_page_size);
563 else if (initial_domain & RADEON_DOMAIN_GTT)
564 ws->allocated_gtt += align64(size, ws->info.gart_page_size);
565
566 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
567
568 amdgpu_add_buffer_to_global_list(bo);
569
570 return bo;
571
572 error_va_map:
573 amdgpu_va_range_free(va_handle);
574
575 error_va_alloc:
576 amdgpu_bo_free(buf_handle);
577
578 error_bo_alloc:
579 FREE(bo);
580 return NULL;
581 }
582
583 bool amdgpu_bo_can_reclaim(struct pb_buffer *_buf)
584 {
585 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
586
587 if (amdgpu_bo_is_referenced_by_any_cs(bo)) {
588 return false;
589 }
590
591 return amdgpu_bo_wait(_buf, 0, RADEON_USAGE_READWRITE);
592 }
593
594 bool amdgpu_bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
595 {
596 struct amdgpu_winsys_bo *bo = NULL; /* fix container_of */
597 bo = container_of(entry, bo, u.slab.entry);
598
599 return amdgpu_bo_can_reclaim(&bo->base);
600 }
601
602 static struct pb_slabs *get_slabs(struct amdgpu_winsys *ws, uint64_t size)
603 {
604 /* Find the correct slab allocator for the given size. */
605 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
606 struct pb_slabs *slabs = &ws->bo_slabs[i];
607
608 if (size <= 1 << (slabs->min_order + slabs->num_orders - 1))
609 return slabs;
610 }
611
612 assert(0);
613 return NULL;
614 }
615
616 static void amdgpu_bo_slab_destroy(struct pb_buffer *_buf)
617 {
618 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
619
620 assert(!bo->bo);
621
622 pb_slab_free(get_slabs(bo->ws, bo->base.size), &bo->u.slab.entry);
623 }
624
625 static const struct pb_vtbl amdgpu_winsys_bo_slab_vtbl = {
626 amdgpu_bo_slab_destroy
627 /* other functions are never called */
628 };
629
630 struct pb_slab *amdgpu_bo_slab_alloc(void *priv, unsigned heap,
631 unsigned entry_size,
632 unsigned group_index)
633 {
634 struct amdgpu_winsys *ws = priv;
635 struct amdgpu_slab *slab = CALLOC_STRUCT(amdgpu_slab);
636 enum radeon_bo_domain domains = radeon_domain_from_heap(heap);
637 enum radeon_bo_flag flags = radeon_flags_from_heap(heap);
638 uint32_t base_id;
639 unsigned slab_size = 0;
640
641 if (!slab)
642 return NULL;
643
644 /* Determine the slab buffer size. */
645 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
646 struct pb_slabs *slabs = &ws->bo_slabs[i];
647 unsigned max_entry_size = 1 << (slabs->min_order + slabs->num_orders - 1);
648
649 if (entry_size <= max_entry_size) {
650 /* The slab size is twice the size of the largest possible entry. */
651 slab_size = max_entry_size * 2;
652
653 /* The largest slab should have the same size as the PTE fragment
654 * size to get faster address translation.
655 */
656 if (i == NUM_SLAB_ALLOCATORS - 1 &&
657 slab_size < ws->info.pte_fragment_size)
658 slab_size = ws->info.pte_fragment_size;
659 break;
660 }
661 }
662 assert(slab_size != 0);
663
664 slab->buffer = amdgpu_winsys_bo(amdgpu_bo_create(ws,
665 slab_size, slab_size,
666 domains, flags));
667 if (!slab->buffer)
668 goto fail;
669
670 slab->base.num_entries = slab->buffer->base.size / entry_size;
671 slab->base.num_free = slab->base.num_entries;
672 slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries));
673 if (!slab->entries)
674 goto fail_buffer;
675
676 list_inithead(&slab->base.free);
677
678 base_id = __sync_fetch_and_add(&ws->next_bo_unique_id, slab->base.num_entries);
679
680 for (unsigned i = 0; i < slab->base.num_entries; ++i) {
681 struct amdgpu_winsys_bo *bo = &slab->entries[i];
682
683 simple_mtx_init(&bo->lock, mtx_plain);
684 bo->base.alignment = entry_size;
685 bo->base.usage = slab->buffer->base.usage;
686 bo->base.size = entry_size;
687 bo->base.vtbl = &amdgpu_winsys_bo_slab_vtbl;
688 bo->ws = ws;
689 bo->va = slab->buffer->va + i * entry_size;
690 bo->initial_domain = domains;
691 bo->unique_id = base_id + i;
692 bo->u.slab.entry.slab = &slab->base;
693 bo->u.slab.entry.group_index = group_index;
694
695 if (slab->buffer->bo) {
696 /* The slab is not suballocated. */
697 bo->u.slab.real = slab->buffer;
698 } else {
699 /* The slab is allocated out of a bigger slab. */
700 bo->u.slab.real = slab->buffer->u.slab.real;
701 assert(bo->u.slab.real->bo);
702 }
703
704 list_addtail(&bo->u.slab.entry.head, &slab->base.free);
705 }
706
707 return &slab->base;
708
709 fail_buffer:
710 amdgpu_winsys_bo_reference(&slab->buffer, NULL);
711 fail:
712 FREE(slab);
713 return NULL;
714 }
715
716 void amdgpu_bo_slab_free(void *priv, struct pb_slab *pslab)
717 {
718 struct amdgpu_slab *slab = amdgpu_slab(pslab);
719
720 for (unsigned i = 0; i < slab->base.num_entries; ++i) {
721 amdgpu_bo_remove_fences(&slab->entries[i]);
722 simple_mtx_destroy(&slab->entries[i].lock);
723 }
724
725 FREE(slab->entries);
726 amdgpu_winsys_bo_reference(&slab->buffer, NULL);
727 FREE(slab);
728 }
729
730 #if DEBUG_SPARSE_COMMITS
731 static void
732 sparse_dump(struct amdgpu_winsys_bo *bo, const char *func)
733 {
734 fprintf(stderr, "%s: %p (size=%"PRIu64", num_va_pages=%u) @ %s\n"
735 "Commitments:\n",
736 __func__, bo, bo->base.size, bo->u.sparse.num_va_pages, func);
737
738 struct amdgpu_sparse_backing *span_backing = NULL;
739 uint32_t span_first_backing_page = 0;
740 uint32_t span_first_va_page = 0;
741 uint32_t va_page = 0;
742
743 for (;;) {
744 struct amdgpu_sparse_backing *backing = 0;
745 uint32_t backing_page = 0;
746
747 if (va_page < bo->u.sparse.num_va_pages) {
748 backing = bo->u.sparse.commitments[va_page].backing;
749 backing_page = bo->u.sparse.commitments[va_page].page;
750 }
751
752 if (span_backing &&
753 (backing != span_backing ||
754 backing_page != span_first_backing_page + (va_page - span_first_va_page))) {
755 fprintf(stderr, " %u..%u: backing=%p:%u..%u\n",
756 span_first_va_page, va_page - 1, span_backing,
757 span_first_backing_page,
758 span_first_backing_page + (va_page - span_first_va_page) - 1);
759
760 span_backing = NULL;
761 }
762
763 if (va_page >= bo->u.sparse.num_va_pages)
764 break;
765
766 if (backing && !span_backing) {
767 span_backing = backing;
768 span_first_backing_page = backing_page;
769 span_first_va_page = va_page;
770 }
771
772 va_page++;
773 }
774
775 fprintf(stderr, "Backing:\n");
776
777 list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
778 fprintf(stderr, " %p (size=%"PRIu64")\n", backing, backing->bo->base.size);
779 for (unsigned i = 0; i < backing->num_chunks; ++i)
780 fprintf(stderr, " %u..%u\n", backing->chunks[i].begin, backing->chunks[i].end);
781 }
782 }
783 #endif
784
785 /*
786 * Attempt to allocate the given number of backing pages. Fewer pages may be
787 * allocated (depending on the fragmentation of existing backing buffers),
788 * which will be reflected by a change to *pnum_pages.
789 */
790 static struct amdgpu_sparse_backing *
791 sparse_backing_alloc(struct amdgpu_winsys_bo *bo, uint32_t *pstart_page, uint32_t *pnum_pages)
792 {
793 struct amdgpu_sparse_backing *best_backing;
794 unsigned best_idx;
795 uint32_t best_num_pages;
796
797 best_backing = NULL;
798 best_idx = 0;
799 best_num_pages = 0;
800
801 /* This is a very simple and inefficient best-fit algorithm. */
802 list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
803 for (unsigned idx = 0; idx < backing->num_chunks; ++idx) {
804 uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin;
805 if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) ||
806 (best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) {
807 best_backing = backing;
808 best_idx = idx;
809 best_num_pages = cur_num_pages;
810 }
811 }
812 }
813
814 /* Allocate a new backing buffer if necessary. */
815 if (!best_backing) {
816 struct pb_buffer *buf;
817 uint64_t size;
818 uint32_t pages;
819
820 best_backing = CALLOC_STRUCT(amdgpu_sparse_backing);
821 if (!best_backing)
822 return NULL;
823
824 best_backing->max_chunks = 4;
825 best_backing->chunks = CALLOC(best_backing->max_chunks,
826 sizeof(*best_backing->chunks));
827 if (!best_backing->chunks) {
828 FREE(best_backing);
829 return NULL;
830 }
831
832 assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, RADEON_SPARSE_PAGE_SIZE));
833
834 size = MIN3(bo->base.size / 16,
835 8 * 1024 * 1024,
836 bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * RADEON_SPARSE_PAGE_SIZE);
837 size = MAX2(size, RADEON_SPARSE_PAGE_SIZE);
838
839 buf = amdgpu_bo_create(bo->ws, size, RADEON_SPARSE_PAGE_SIZE,
840 bo->initial_domain,
841 bo->u.sparse.flags | RADEON_FLAG_NO_SUBALLOC);
842 if (!buf) {
843 FREE(best_backing->chunks);
844 FREE(best_backing);
845 return NULL;
846 }
847
848 /* We might have gotten a bigger buffer than requested via caching. */
849 pages = buf->size / RADEON_SPARSE_PAGE_SIZE;
850
851 best_backing->bo = amdgpu_winsys_bo(buf);
852 best_backing->num_chunks = 1;
853 best_backing->chunks[0].begin = 0;
854 best_backing->chunks[0].end = pages;
855
856 list_add(&best_backing->list, &bo->u.sparse.backing);
857 bo->u.sparse.num_backing_pages += pages;
858
859 best_idx = 0;
860 best_num_pages = pages;
861 }
862
863 *pnum_pages = MIN2(*pnum_pages, best_num_pages);
864 *pstart_page = best_backing->chunks[best_idx].begin;
865 best_backing->chunks[best_idx].begin += *pnum_pages;
866
867 if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) {
868 memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1],
869 sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1));
870 best_backing->num_chunks--;
871 }
872
873 return best_backing;
874 }
875
876 static void
877 sparse_free_backing_buffer(struct amdgpu_winsys_bo *bo,
878 struct amdgpu_sparse_backing *backing)
879 {
880 struct amdgpu_winsys *ws = backing->bo->ws;
881
882 bo->u.sparse.num_backing_pages -= backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE;
883
884 simple_mtx_lock(&ws->bo_fence_lock);
885 amdgpu_add_fences(backing->bo, bo->num_fences, bo->fences);
886 simple_mtx_unlock(&ws->bo_fence_lock);
887
888 list_del(&backing->list);
889 amdgpu_winsys_bo_reference(&backing->bo, NULL);
890 FREE(backing->chunks);
891 FREE(backing);
892 }
893
894 /*
895 * Return a range of pages from the given backing buffer back into the
896 * free structure.
897 */
898 static bool
899 sparse_backing_free(struct amdgpu_winsys_bo *bo,
900 struct amdgpu_sparse_backing *backing,
901 uint32_t start_page, uint32_t num_pages)
902 {
903 uint32_t end_page = start_page + num_pages;
904 unsigned low = 0;
905 unsigned high = backing->num_chunks;
906
907 /* Find the first chunk with begin >= start_page. */
908 while (low < high) {
909 unsigned mid = low + (high - low) / 2;
910
911 if (backing->chunks[mid].begin >= start_page)
912 high = mid;
913 else
914 low = mid + 1;
915 }
916
917 assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin);
918 assert(low == 0 || backing->chunks[low - 1].end <= start_page);
919
920 if (low > 0 && backing->chunks[low - 1].end == start_page) {
921 backing->chunks[low - 1].end = end_page;
922
923 if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
924 backing->chunks[low - 1].end = backing->chunks[low].end;
925 memmove(&backing->chunks[low], &backing->chunks[low + 1],
926 sizeof(*backing->chunks) * (backing->num_chunks - low - 1));
927 backing->num_chunks--;
928 }
929 } else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
930 backing->chunks[low].begin = start_page;
931 } else {
932 if (backing->num_chunks >= backing->max_chunks) {
933 unsigned new_max_chunks = 2 * backing->max_chunks;
934 struct amdgpu_sparse_backing_chunk *new_chunks =
935 REALLOC(backing->chunks,
936 sizeof(*backing->chunks) * backing->max_chunks,
937 sizeof(*backing->chunks) * new_max_chunks);
938 if (!new_chunks)
939 return false;
940
941 backing->max_chunks = new_max_chunks;
942 backing->chunks = new_chunks;
943 }
944
945 memmove(&backing->chunks[low + 1], &backing->chunks[low],
946 sizeof(*backing->chunks) * (backing->num_chunks - low));
947 backing->chunks[low].begin = start_page;
948 backing->chunks[low].end = end_page;
949 backing->num_chunks++;
950 }
951
952 if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 &&
953 backing->chunks[0].end == backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE)
954 sparse_free_backing_buffer(bo, backing);
955
956 return true;
957 }
958
959 static void amdgpu_bo_sparse_destroy(struct pb_buffer *_buf)
960 {
961 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
962 int r;
963
964 assert(!bo->bo && bo->sparse);
965
966 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
967 (uint64_t)bo->u.sparse.num_va_pages * RADEON_SPARSE_PAGE_SIZE,
968 bo->va, 0, AMDGPU_VA_OP_CLEAR);
969 if (r) {
970 fprintf(stderr, "amdgpu: clearing PRT VA region on destroy failed (%d)\n", r);
971 }
972
973 while (!list_is_empty(&bo->u.sparse.backing)) {
974 struct amdgpu_sparse_backing *dummy = NULL;
975 sparse_free_backing_buffer(bo,
976 container_of(bo->u.sparse.backing.next,
977 dummy, list));
978 }
979
980 amdgpu_va_range_free(bo->u.sparse.va_handle);
981 FREE(bo->u.sparse.commitments);
982 simple_mtx_destroy(&bo->lock);
983 FREE(bo);
984 }
985
986 static const struct pb_vtbl amdgpu_winsys_bo_sparse_vtbl = {
987 amdgpu_bo_sparse_destroy
988 /* other functions are never called */
989 };
990
991 static struct pb_buffer *
992 amdgpu_bo_sparse_create(struct amdgpu_winsys *ws, uint64_t size,
993 enum radeon_bo_domain domain,
994 enum radeon_bo_flag flags)
995 {
996 struct amdgpu_winsys_bo *bo;
997 uint64_t map_size;
998 uint64_t va_gap_size;
999 int r;
1000
1001 /* We use 32-bit page numbers; refuse to attempt allocating sparse buffers
1002 * that exceed this limit. This is not really a restriction: we don't have
1003 * that much virtual address space anyway.
1004 */
1005 if (size > (uint64_t)INT32_MAX * RADEON_SPARSE_PAGE_SIZE)
1006 return NULL;
1007
1008 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1009 if (!bo)
1010 return NULL;
1011
1012 simple_mtx_init(&bo->lock, mtx_plain);
1013 pipe_reference_init(&bo->base.reference, 1);
1014 bo->base.alignment = RADEON_SPARSE_PAGE_SIZE;
1015 bo->base.size = size;
1016 bo->base.vtbl = &amdgpu_winsys_bo_sparse_vtbl;
1017 bo->ws = ws;
1018 bo->initial_domain = domain;
1019 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1020 bo->sparse = true;
1021 bo->u.sparse.flags = flags & ~RADEON_FLAG_SPARSE;
1022
1023 bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
1024 bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages,
1025 sizeof(*bo->u.sparse.commitments));
1026 if (!bo->u.sparse.commitments)
1027 goto error_alloc_commitments;
1028
1029 list_inithead(&bo->u.sparse.backing);
1030
1031 /* For simplicity, we always map a multiple of the page size. */
1032 map_size = align64(size, RADEON_SPARSE_PAGE_SIZE);
1033 va_gap_size = ws->check_vm ? 4 * RADEON_SPARSE_PAGE_SIZE : 0;
1034 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1035 map_size + va_gap_size, RADEON_SPARSE_PAGE_SIZE,
1036 0, &bo->va, &bo->u.sparse.va_handle,
1037 AMDGPU_VA_RANGE_HIGH);
1038 if (r)
1039 goto error_va_alloc;
1040
1041 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, size, bo->va,
1042 AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_MAP);
1043 if (r)
1044 goto error_va_map;
1045
1046 return &bo->base;
1047
1048 error_va_map:
1049 amdgpu_va_range_free(bo->u.sparse.va_handle);
1050 error_va_alloc:
1051 FREE(bo->u.sparse.commitments);
1052 error_alloc_commitments:
1053 simple_mtx_destroy(&bo->lock);
1054 FREE(bo);
1055 return NULL;
1056 }
1057
1058 static bool
1059 amdgpu_bo_sparse_commit(struct pb_buffer *buf, uint64_t offset, uint64_t size,
1060 bool commit)
1061 {
1062 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buf);
1063 struct amdgpu_sparse_commitment *comm;
1064 uint32_t va_page, end_va_page;
1065 bool ok = true;
1066 int r;
1067
1068 assert(bo->sparse);
1069 assert(offset % RADEON_SPARSE_PAGE_SIZE == 0);
1070 assert(offset <= bo->base.size);
1071 assert(size <= bo->base.size - offset);
1072 assert(size % RADEON_SPARSE_PAGE_SIZE == 0 || offset + size == bo->base.size);
1073
1074 comm = bo->u.sparse.commitments;
1075 va_page = offset / RADEON_SPARSE_PAGE_SIZE;
1076 end_va_page = va_page + DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
1077
1078 simple_mtx_lock(&bo->lock);
1079
1080 #if DEBUG_SPARSE_COMMITS
1081 sparse_dump(bo, __func__);
1082 #endif
1083
1084 if (commit) {
1085 while (va_page < end_va_page) {
1086 uint32_t span_va_page;
1087
1088 /* Skip pages that are already committed. */
1089 if (comm[va_page].backing) {
1090 va_page++;
1091 continue;
1092 }
1093
1094 /* Determine length of uncommitted span. */
1095 span_va_page = va_page;
1096 while (va_page < end_va_page && !comm[va_page].backing)
1097 va_page++;
1098
1099 /* Fill the uncommitted span with chunks of backing memory. */
1100 while (span_va_page < va_page) {
1101 struct amdgpu_sparse_backing *backing;
1102 uint32_t backing_start, backing_size;
1103
1104 backing_size = va_page - span_va_page;
1105 backing = sparse_backing_alloc(bo, &backing_start, &backing_size);
1106 if (!backing) {
1107 ok = false;
1108 goto out;
1109 }
1110
1111 r = amdgpu_bo_va_op_raw(bo->ws->dev, backing->bo->bo,
1112 (uint64_t)backing_start * RADEON_SPARSE_PAGE_SIZE,
1113 (uint64_t)backing_size * RADEON_SPARSE_PAGE_SIZE,
1114 bo->va + (uint64_t)span_va_page * RADEON_SPARSE_PAGE_SIZE,
1115 AMDGPU_VM_PAGE_READABLE |
1116 AMDGPU_VM_PAGE_WRITEABLE |
1117 AMDGPU_VM_PAGE_EXECUTABLE,
1118 AMDGPU_VA_OP_REPLACE);
1119 if (r) {
1120 ok = sparse_backing_free(bo, backing, backing_start, backing_size);
1121 assert(ok && "sufficient memory should already be allocated");
1122
1123 ok = false;
1124 goto out;
1125 }
1126
1127 while (backing_size) {
1128 comm[span_va_page].backing = backing;
1129 comm[span_va_page].page = backing_start;
1130 span_va_page++;
1131 backing_start++;
1132 backing_size--;
1133 }
1134 }
1135 }
1136 } else {
1137 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
1138 (uint64_t)(end_va_page - va_page) * RADEON_SPARSE_PAGE_SIZE,
1139 bo->va + (uint64_t)va_page * RADEON_SPARSE_PAGE_SIZE,
1140 AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_REPLACE);
1141 if (r) {
1142 ok = false;
1143 goto out;
1144 }
1145
1146 while (va_page < end_va_page) {
1147 struct amdgpu_sparse_backing *backing;
1148 uint32_t backing_start;
1149 uint32_t span_pages;
1150
1151 /* Skip pages that are already uncommitted. */
1152 if (!comm[va_page].backing) {
1153 va_page++;
1154 continue;
1155 }
1156
1157 /* Group contiguous spans of pages. */
1158 backing = comm[va_page].backing;
1159 backing_start = comm[va_page].page;
1160 comm[va_page].backing = NULL;
1161
1162 span_pages = 1;
1163 va_page++;
1164
1165 while (va_page < end_va_page &&
1166 comm[va_page].backing == backing &&
1167 comm[va_page].page == backing_start + span_pages) {
1168 comm[va_page].backing = NULL;
1169 va_page++;
1170 span_pages++;
1171 }
1172
1173 if (!sparse_backing_free(bo, backing, backing_start, span_pages)) {
1174 /* Couldn't allocate tracking data structures, so we have to leak */
1175 fprintf(stderr, "amdgpu: leaking PRT backing memory\n");
1176 ok = false;
1177 }
1178 }
1179 }
1180 out:
1181
1182 simple_mtx_unlock(&bo->lock);
1183
1184 return ok;
1185 }
1186
1187 static unsigned eg_tile_split(unsigned tile_split)
1188 {
1189 switch (tile_split) {
1190 case 0: tile_split = 64; break;
1191 case 1: tile_split = 128; break;
1192 case 2: tile_split = 256; break;
1193 case 3: tile_split = 512; break;
1194 default:
1195 case 4: tile_split = 1024; break;
1196 case 5: tile_split = 2048; break;
1197 case 6: tile_split = 4096; break;
1198 }
1199 return tile_split;
1200 }
1201
1202 static unsigned eg_tile_split_rev(unsigned eg_tile_split)
1203 {
1204 switch (eg_tile_split) {
1205 case 64: return 0;
1206 case 128: return 1;
1207 case 256: return 2;
1208 case 512: return 3;
1209 default:
1210 case 1024: return 4;
1211 case 2048: return 5;
1212 case 4096: return 6;
1213 }
1214 }
1215
1216 #define AMDGPU_TILING_SCANOUT_SHIFT 63
1217 #define AMDGPU_TILING_SCANOUT_MASK 0x1
1218
1219 static void amdgpu_buffer_get_metadata(struct pb_buffer *_buf,
1220 struct radeon_bo_metadata *md)
1221 {
1222 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
1223 struct amdgpu_bo_info info = {0};
1224 uint64_t tiling_flags;
1225 int r;
1226
1227 assert(bo->bo && "must not be called for slab entries");
1228
1229 r = amdgpu_bo_query_info(bo->bo, &info);
1230 if (r)
1231 return;
1232
1233 tiling_flags = info.metadata.tiling_info;
1234
1235 if (bo->ws->info.chip_class >= GFX9) {
1236 md->u.gfx9.swizzle_mode = AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE);
1237
1238 md->u.gfx9.dcc_offset_256B = AMDGPU_TILING_GET(tiling_flags, DCC_OFFSET_256B);
1239 md->u.gfx9.dcc_pitch_max = AMDGPU_TILING_GET(tiling_flags, DCC_PITCH_MAX);
1240 md->u.gfx9.dcc_independent_64B = AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_64B);
1241 md->u.gfx9.scanout = AMDGPU_TILING_GET(tiling_flags, SCANOUT);
1242 } else {
1243 md->u.legacy.microtile = RADEON_LAYOUT_LINEAR;
1244 md->u.legacy.macrotile = RADEON_LAYOUT_LINEAR;
1245
1246 if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 4) /* 2D_TILED_THIN1 */
1247 md->u.legacy.macrotile = RADEON_LAYOUT_TILED;
1248 else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 2) /* 1D_TILED_THIN1 */
1249 md->u.legacy.microtile = RADEON_LAYOUT_TILED;
1250
1251 md->u.legacy.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
1252 md->u.legacy.bankw = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
1253 md->u.legacy.bankh = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
1254 md->u.legacy.tile_split = eg_tile_split(AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT));
1255 md->u.legacy.mtilea = 1 << AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
1256 md->u.legacy.num_banks = 2 << AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
1257 md->u.legacy.scanout = AMDGPU_TILING_GET(tiling_flags, MICRO_TILE_MODE) == 0; /* DISPLAY */
1258 }
1259
1260 md->size_metadata = info.metadata.size_metadata;
1261 memcpy(md->metadata, info.metadata.umd_metadata, sizeof(md->metadata));
1262 }
1263
1264 static void amdgpu_buffer_set_metadata(struct pb_buffer *_buf,
1265 struct radeon_bo_metadata *md)
1266 {
1267 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
1268 struct amdgpu_bo_metadata metadata = {0};
1269 uint64_t tiling_flags = 0;
1270
1271 assert(bo->bo && "must not be called for slab entries");
1272
1273 if (bo->ws->info.chip_class >= GFX9) {
1274 tiling_flags |= AMDGPU_TILING_SET(SWIZZLE_MODE, md->u.gfx9.swizzle_mode);
1275
1276 tiling_flags |= AMDGPU_TILING_SET(DCC_OFFSET_256B, md->u.gfx9.dcc_offset_256B);
1277 tiling_flags |= AMDGPU_TILING_SET(DCC_PITCH_MAX, md->u.gfx9.dcc_pitch_max);
1278 tiling_flags |= AMDGPU_TILING_SET(DCC_INDEPENDENT_64B, md->u.gfx9.dcc_independent_64B);
1279 tiling_flags |= AMDGPU_TILING_SET(SCANOUT, md->u.gfx9.scanout);
1280 } else {
1281 if (md->u.legacy.macrotile == RADEON_LAYOUT_TILED)
1282 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 4); /* 2D_TILED_THIN1 */
1283 else if (md->u.legacy.microtile == RADEON_LAYOUT_TILED)
1284 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 2); /* 1D_TILED_THIN1 */
1285 else
1286 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 1); /* LINEAR_ALIGNED */
1287
1288 tiling_flags |= AMDGPU_TILING_SET(PIPE_CONFIG, md->u.legacy.pipe_config);
1289 tiling_flags |= AMDGPU_TILING_SET(BANK_WIDTH, util_logbase2(md->u.legacy.bankw));
1290 tiling_flags |= AMDGPU_TILING_SET(BANK_HEIGHT, util_logbase2(md->u.legacy.bankh));
1291 if (md->u.legacy.tile_split)
1292 tiling_flags |= AMDGPU_TILING_SET(TILE_SPLIT, eg_tile_split_rev(md->u.legacy.tile_split));
1293 tiling_flags |= AMDGPU_TILING_SET(MACRO_TILE_ASPECT, util_logbase2(md->u.legacy.mtilea));
1294 tiling_flags |= AMDGPU_TILING_SET(NUM_BANKS, util_logbase2(md->u.legacy.num_banks)-1);
1295
1296 if (md->u.legacy.scanout)
1297 tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 0); /* DISPLAY_MICRO_TILING */
1298 else
1299 tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 1); /* THIN_MICRO_TILING */
1300 }
1301
1302 metadata.tiling_info = tiling_flags;
1303 metadata.size_metadata = md->size_metadata;
1304 memcpy(metadata.umd_metadata, md->metadata, sizeof(md->metadata));
1305
1306 amdgpu_bo_set_metadata(bo->bo, &metadata);
1307 }
1308
1309 struct pb_buffer *
1310 amdgpu_bo_create(struct amdgpu_winsys *ws,
1311 uint64_t size,
1312 unsigned alignment,
1313 enum radeon_bo_domain domain,
1314 enum radeon_bo_flag flags)
1315 {
1316 struct amdgpu_winsys_bo *bo;
1317 int heap = -1;
1318
1319 if (domain & (RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA))
1320 flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_SUBALLOC;
1321
1322 /* VRAM implies WC. This is not optional. */
1323 assert(!(domain & RADEON_DOMAIN_VRAM) || flags & RADEON_FLAG_GTT_WC);
1324
1325 /* NO_CPU_ACCESS is not valid with GTT. */
1326 assert(!(domain & RADEON_DOMAIN_GTT) || !(flags & RADEON_FLAG_NO_CPU_ACCESS));
1327
1328 /* Sparse buffers must have NO_CPU_ACCESS set. */
1329 assert(!(flags & RADEON_FLAG_SPARSE) || flags & RADEON_FLAG_NO_CPU_ACCESS);
1330
1331 struct pb_slabs *last_slab = &ws->bo_slabs[NUM_SLAB_ALLOCATORS - 1];
1332 unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1);
1333
1334 /* Sub-allocate small buffers from slabs. */
1335 if (!(flags & (RADEON_FLAG_NO_SUBALLOC | RADEON_FLAG_SPARSE)) &&
1336 size <= max_slab_entry_size &&
1337 /* The alignment must be at most the size of the smallest slab entry or
1338 * the next power of two. */
1339 alignment <= MAX2(1 << ws->bo_slabs[0].min_order, util_next_power_of_two(size))) {
1340 struct pb_slab_entry *entry;
1341 int heap = radeon_get_heap_index(domain, flags);
1342
1343 if (heap < 0 || heap >= RADEON_MAX_SLAB_HEAPS)
1344 goto no_slab;
1345
1346 struct pb_slabs *slabs = get_slabs(ws, size);
1347 entry = pb_slab_alloc(slabs, size, heap);
1348 if (!entry) {
1349 /* Clean up buffer managers and try again. */
1350 amdgpu_clean_up_buffer_managers(ws);
1351
1352 entry = pb_slab_alloc(slabs, size, heap);
1353 }
1354 if (!entry)
1355 return NULL;
1356
1357 bo = NULL;
1358 bo = container_of(entry, bo, u.slab.entry);
1359
1360 pipe_reference_init(&bo->base.reference, 1);
1361
1362 return &bo->base;
1363 }
1364 no_slab:
1365
1366 if (flags & RADEON_FLAG_SPARSE) {
1367 assert(RADEON_SPARSE_PAGE_SIZE % alignment == 0);
1368
1369 return amdgpu_bo_sparse_create(ws, size, domain, flags);
1370 }
1371
1372 /* This flag is irrelevant for the cache. */
1373 flags &= ~RADEON_FLAG_NO_SUBALLOC;
1374
1375 /* Align size to page size. This is the minimum alignment for normal
1376 * BOs. Aligning this here helps the cached bufmgr. Especially small BOs,
1377 * like constant/uniform buffers, can benefit from better and more reuse.
1378 */
1379 if (domain & RADEON_DOMAIN_VRAM_GTT) {
1380 size = align64(size, ws->info.gart_page_size);
1381 alignment = align(alignment, ws->info.gart_page_size);
1382 }
1383
1384 bool use_reusable_pool = flags & RADEON_FLAG_NO_INTERPROCESS_SHARING;
1385
1386 if (use_reusable_pool) {
1387 heap = radeon_get_heap_index(domain, flags);
1388 assert(heap >= 0 && heap < RADEON_MAX_CACHED_HEAPS);
1389
1390 /* Get a buffer from the cache. */
1391 bo = (struct amdgpu_winsys_bo*)
1392 pb_cache_reclaim_buffer(&ws->bo_cache, size, alignment, 0, heap);
1393 if (bo)
1394 return &bo->base;
1395 }
1396
1397 /* Create a new one. */
1398 bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
1399 if (!bo) {
1400 /* Clean up buffer managers and try again. */
1401 amdgpu_clean_up_buffer_managers(ws);
1402
1403 bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
1404 if (!bo)
1405 return NULL;
1406 }
1407
1408 bo->u.real.use_reusable_pool = use_reusable_pool;
1409 return &bo->base;
1410 }
1411
1412 static struct pb_buffer *
1413 amdgpu_buffer_create(struct radeon_winsys *ws,
1414 uint64_t size,
1415 unsigned alignment,
1416 enum radeon_bo_domain domain,
1417 enum radeon_bo_flag flags)
1418 {
1419 return amdgpu_bo_create(amdgpu_winsys(ws), size, alignment, domain,
1420 flags);
1421 }
1422
1423 static struct pb_buffer *amdgpu_bo_from_handle(struct radeon_winsys *rws,
1424 struct winsys_handle *whandle,
1425 unsigned vm_alignment)
1426 {
1427 struct amdgpu_winsys *ws = amdgpu_winsys(rws);
1428 struct amdgpu_winsys_bo *bo = NULL;
1429 enum amdgpu_bo_handle_type type;
1430 struct amdgpu_bo_import_result result = {0};
1431 uint64_t va;
1432 amdgpu_va_handle va_handle = NULL;
1433 struct amdgpu_bo_info info = {0};
1434 enum radeon_bo_domain initial = 0;
1435 int r;
1436
1437 switch (whandle->type) {
1438 case WINSYS_HANDLE_TYPE_SHARED:
1439 type = amdgpu_bo_handle_type_gem_flink_name;
1440 break;
1441 case WINSYS_HANDLE_TYPE_FD:
1442 type = amdgpu_bo_handle_type_dma_buf_fd;
1443 break;
1444 default:
1445 return NULL;
1446 }
1447
1448 r = amdgpu_bo_import(ws->dev, type, whandle->handle, &result);
1449 if (r)
1450 return NULL;
1451
1452 simple_mtx_lock(&ws->bo_export_table_lock);
1453 bo = util_hash_table_get(ws->bo_export_table, result.buf_handle);
1454
1455 /* If the amdgpu_winsys_bo instance already exists, bump the reference
1456 * counter and return it.
1457 */
1458 if (bo) {
1459 p_atomic_inc(&bo->base.reference.count);
1460 simple_mtx_unlock(&ws->bo_export_table_lock);
1461
1462 /* Release the buffer handle, because we don't need it anymore.
1463 * This function is returning an existing buffer, which has its own
1464 * handle.
1465 */
1466 amdgpu_bo_free(result.buf_handle);
1467 return &bo->base;
1468 }
1469
1470 /* Get initial domains. */
1471 r = amdgpu_bo_query_info(result.buf_handle, &info);
1472 if (r)
1473 goto error;
1474
1475 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1476 result.alloc_size,
1477 amdgpu_get_optimal_vm_alignment(ws, result.alloc_size,
1478 vm_alignment),
1479 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH);
1480 if (r)
1481 goto error;
1482
1483 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1484 if (!bo)
1485 goto error;
1486
1487 r = amdgpu_bo_va_op(result.buf_handle, 0, result.alloc_size, va, 0, AMDGPU_VA_OP_MAP);
1488 if (r)
1489 goto error;
1490
1491 if (info.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM)
1492 initial |= RADEON_DOMAIN_VRAM;
1493 if (info.preferred_heap & AMDGPU_GEM_DOMAIN_GTT)
1494 initial |= RADEON_DOMAIN_GTT;
1495
1496 /* Initialize the structure. */
1497 simple_mtx_init(&bo->lock, mtx_plain);
1498 pipe_reference_init(&bo->base.reference, 1);
1499 bo->base.alignment = info.phys_alignment;
1500 bo->bo = result.buf_handle;
1501 bo->base.size = result.alloc_size;
1502 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
1503 bo->ws = ws;
1504 bo->va = va;
1505 bo->u.real.va_handle = va_handle;
1506 bo->initial_domain = initial;
1507 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1508 bo->is_shared = true;
1509
1510 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
1511 ws->allocated_vram += align64(bo->base.size, ws->info.gart_page_size);
1512 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
1513 ws->allocated_gtt += align64(bo->base.size, ws->info.gart_page_size);
1514
1515 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
1516
1517 amdgpu_add_buffer_to_global_list(bo);
1518
1519 util_hash_table_set(ws->bo_export_table, bo->bo, bo);
1520 simple_mtx_unlock(&ws->bo_export_table_lock);
1521
1522 return &bo->base;
1523
1524 error:
1525 simple_mtx_unlock(&ws->bo_export_table_lock);
1526 if (bo)
1527 FREE(bo);
1528 if (va_handle)
1529 amdgpu_va_range_free(va_handle);
1530 amdgpu_bo_free(result.buf_handle);
1531 return NULL;
1532 }
1533
1534 static bool amdgpu_bo_get_handle(struct radeon_winsys *rws,
1535 struct pb_buffer *buffer,
1536 struct winsys_handle *whandle)
1537 {
1538 struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws);
1539 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buffer);
1540 struct amdgpu_winsys *ws = bo->ws;
1541 enum amdgpu_bo_handle_type type;
1542 struct hash_entry *entry;
1543 int r;
1544
1545 /* Don't allow exports of slab entries and sparse buffers. */
1546 if (!bo->bo)
1547 return false;
1548
1549 bo->u.real.use_reusable_pool = false;
1550
1551 switch (whandle->type) {
1552 case WINSYS_HANDLE_TYPE_SHARED:
1553 type = amdgpu_bo_handle_type_gem_flink_name;
1554 break;
1555 case WINSYS_HANDLE_TYPE_KMS:
1556 if (sws->fd == ws->fd) {
1557 whandle->handle = bo->u.real.kms_handle;
1558
1559 if (bo->is_shared)
1560 return true;
1561
1562 goto hash_table_set;
1563 }
1564
1565 simple_mtx_lock(&ws->sws_list_lock);
1566 entry = _mesa_hash_table_search(sws->kms_handles, bo);
1567 simple_mtx_unlock(&ws->sws_list_lock);
1568 if (entry) {
1569 whandle->handle = (uintptr_t)entry->data;
1570 return true;
1571 }
1572 /* Fall through */
1573 case WINSYS_HANDLE_TYPE_FD:
1574 type = amdgpu_bo_handle_type_dma_buf_fd;
1575 break;
1576 default:
1577 return false;
1578 }
1579
1580 r = amdgpu_bo_export(bo->bo, type, &whandle->handle);
1581 if (r)
1582 return false;
1583
1584 if (whandle->type == WINSYS_HANDLE_TYPE_KMS) {
1585 int dma_fd = whandle->handle;
1586
1587 r = drmPrimeFDToHandle(sws->fd, dma_fd, &whandle->handle);
1588 close(dma_fd);
1589
1590 if (r)
1591 return false;
1592
1593 simple_mtx_lock(&ws->sws_list_lock);
1594 _mesa_hash_table_insert_pre_hashed(sws->kms_handles,
1595 bo->u.real.kms_handle, bo,
1596 (void*)(uintptr_t)whandle->handle);
1597 simple_mtx_unlock(&ws->sws_list_lock);
1598 }
1599
1600 hash_table_set:
1601 simple_mtx_lock(&ws->bo_export_table_lock);
1602 util_hash_table_set(ws->bo_export_table, bo->bo, bo);
1603 simple_mtx_unlock(&ws->bo_export_table_lock);
1604
1605 bo->is_shared = true;
1606 return true;
1607 }
1608
1609 static struct pb_buffer *amdgpu_bo_from_ptr(struct radeon_winsys *rws,
1610 void *pointer, uint64_t size)
1611 {
1612 struct amdgpu_winsys *ws = amdgpu_winsys(rws);
1613 amdgpu_bo_handle buf_handle;
1614 struct amdgpu_winsys_bo *bo;
1615 uint64_t va;
1616 amdgpu_va_handle va_handle;
1617 /* Avoid failure when the size is not page aligned */
1618 uint64_t aligned_size = align64(size, ws->info.gart_page_size);
1619
1620 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1621 if (!bo)
1622 return NULL;
1623
1624 if (amdgpu_create_bo_from_user_mem(ws->dev, pointer,
1625 aligned_size, &buf_handle))
1626 goto error;
1627
1628 if (amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1629 aligned_size,
1630 amdgpu_get_optimal_vm_alignment(ws, aligned_size,
1631 ws->info.gart_page_size),
1632 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH))
1633 goto error_va_alloc;
1634
1635 if (amdgpu_bo_va_op(buf_handle, 0, aligned_size, va, 0, AMDGPU_VA_OP_MAP))
1636 goto error_va_map;
1637
1638 /* Initialize it. */
1639 bo->is_user_ptr = true;
1640 pipe_reference_init(&bo->base.reference, 1);
1641 simple_mtx_init(&bo->lock, mtx_plain);
1642 bo->bo = buf_handle;
1643 bo->base.alignment = 0;
1644 bo->base.size = size;
1645 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
1646 bo->ws = ws;
1647 bo->cpu_ptr = pointer;
1648 bo->va = va;
1649 bo->u.real.va_handle = va_handle;
1650 bo->initial_domain = RADEON_DOMAIN_GTT;
1651 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1652
1653 ws->allocated_gtt += aligned_size;
1654
1655 amdgpu_add_buffer_to_global_list(bo);
1656
1657 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
1658
1659 return (struct pb_buffer*)bo;
1660
1661 error_va_map:
1662 amdgpu_va_range_free(va_handle);
1663
1664 error_va_alloc:
1665 amdgpu_bo_free(buf_handle);
1666
1667 error:
1668 FREE(bo);
1669 return NULL;
1670 }
1671
1672 static bool amdgpu_bo_is_user_ptr(struct pb_buffer *buf)
1673 {
1674 return ((struct amdgpu_winsys_bo*)buf)->is_user_ptr;
1675 }
1676
1677 static bool amdgpu_bo_is_suballocated(struct pb_buffer *buf)
1678 {
1679 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
1680
1681 return !bo->bo && !bo->sparse;
1682 }
1683
1684 static uint64_t amdgpu_bo_get_va(struct pb_buffer *buf)
1685 {
1686 return ((struct amdgpu_winsys_bo*)buf)->va;
1687 }
1688
1689 void amdgpu_bo_init_functions(struct amdgpu_screen_winsys *ws)
1690 {
1691 ws->base.buffer_set_metadata = amdgpu_buffer_set_metadata;
1692 ws->base.buffer_get_metadata = amdgpu_buffer_get_metadata;
1693 ws->base.buffer_map = amdgpu_bo_map;
1694 ws->base.buffer_unmap = amdgpu_bo_unmap;
1695 ws->base.buffer_wait = amdgpu_bo_wait;
1696 ws->base.buffer_create = amdgpu_buffer_create;
1697 ws->base.buffer_from_handle = amdgpu_bo_from_handle;
1698 ws->base.buffer_from_ptr = amdgpu_bo_from_ptr;
1699 ws->base.buffer_is_user_ptr = amdgpu_bo_is_user_ptr;
1700 ws->base.buffer_is_suballocated = amdgpu_bo_is_suballocated;
1701 ws->base.buffer_get_handle = amdgpu_bo_get_handle;
1702 ws->base.buffer_commit = amdgpu_bo_sparse_commit;
1703 ws->base.buffer_get_virtual_address = amdgpu_bo_get_va;
1704 ws->base.buffer_get_initial_domain = amdgpu_bo_get_initial_domain;
1705 }