1b8b3195e5b111ca7df1cb9d757c1e25de73c93a
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28
29 inline unsigned min(unsigned a, unsigned b)
30 {
31 return (a < b) ? a : b;
32 }
33
34 static ir_rvalue *
35 convert_component(ir_rvalue *src, const glsl_type *desired_type);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 static ir_rvalue *
61 process_call(exec_list *instructions, ir_function *f,
62 YYLTYPE *loc, exec_list *actual_parameters,
63 struct _mesa_glsl_parse_state *state)
64 {
65 void *ctx = state;
66
67 ir_function_signature *sig = f->matching_signature(actual_parameters);
68
69 /* The instructions param will be used when the FINISHMEs below are done */
70 (void) instructions;
71
72 if (sig != NULL) {
73 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
74 * isn't done in ir_function::matching_signature because that function
75 * cannot generate the necessary diagnostics.
76 */
77 exec_list_iterator actual_iter = actual_parameters->iterator();
78 exec_list_iterator formal_iter = sig->parameters.iterator();
79
80 while (actual_iter.has_next()) {
81 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
82 ir_variable *formal = (ir_variable *) formal_iter.get();
83
84 assert(actual != NULL);
85 assert(formal != NULL);
86
87 if ((formal->mode == ir_var_out)
88 || (formal->mode == ir_var_inout)) {
89 if (! actual->is_lvalue()) {
90 /* FINISHME: Log a better diagnostic here. There is no way
91 * FINISHME: to tell the user which parameter is invalid.
92 */
93 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
94 (formal->mode == ir_var_out) ? "out" : "inout");
95 }
96 }
97
98 if (formal->type->is_numeric() || formal->type->is_boolean()) {
99 ir_rvalue *converted = convert_component(actual, formal->type);
100 actual->replace_with(converted);
101 }
102
103 actual_iter.next();
104 formal_iter.next();
105 }
106
107 /* Always insert the call in the instruction stream, and return a deref
108 * of its return val if it returns a value, since we don't know if
109 * the rvalue is going to be assigned to anything or not.
110 */
111 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
112 if (!sig->return_type->is_void()) {
113 ir_variable *var;
114 ir_dereference_variable *deref;
115
116 var = new(ctx) ir_variable(sig->return_type,
117 talloc_asprintf(ctx, "%s_retval",
118 sig->function_name()),
119 ir_var_temporary);
120 instructions->push_tail(var);
121
122 deref = new(ctx) ir_dereference_variable(var);
123 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
124 instructions->push_tail(assign);
125 if (state->language_version >= 120)
126 var->constant_value = call->constant_expression_value();
127
128 deref = new(ctx) ir_dereference_variable(var);
129 return deref;
130 } else {
131 instructions->push_tail(call);
132 return NULL;
133 }
134 } else {
135 /* FINISHME: Log a better error message here. G++ will show the types
136 * FINISHME: of the actual parameters and the set of candidate
137 * FINISHME: functions. A different error should also be logged when
138 * FINISHME: multiple functions match.
139 */
140 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
141 f->name);
142 return ir_call::get_error_instruction(ctx);
143 }
144 }
145
146
147 static ir_rvalue *
148 match_function_by_name(exec_list *instructions, const char *name,
149 YYLTYPE *loc, exec_list *actual_parameters,
150 struct _mesa_glsl_parse_state *state)
151 {
152 void *ctx = state;
153 ir_function *f = state->symbols->get_function(name);
154
155 if (f == NULL) {
156 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
157 return ir_call::get_error_instruction(ctx);
158 }
159
160 /* Once we've determined that the function being called might exist, try
161 * to find an overload of the function that matches the parameters.
162 */
163 return process_call(instructions, f, loc, actual_parameters, state);
164 }
165
166
167 /**
168 * Perform automatic type conversion of constructor parameters
169 *
170 * This implements the rules in the "Conversion and Scalar Constructors"
171 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
172 */
173 static ir_rvalue *
174 convert_component(ir_rvalue *src, const glsl_type *desired_type)
175 {
176 void *ctx = talloc_parent(src);
177 const unsigned a = desired_type->base_type;
178 const unsigned b = src->type->base_type;
179 ir_expression *result = NULL;
180
181 if (src->type->is_error())
182 return src;
183
184 assert(a <= GLSL_TYPE_BOOL);
185 assert(b <= GLSL_TYPE_BOOL);
186
187 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
188 return src;
189
190 switch (a) {
191 case GLSL_TYPE_UINT:
192 case GLSL_TYPE_INT:
193 if (b == GLSL_TYPE_FLOAT)
194 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
195 else {
196 assert(b == GLSL_TYPE_BOOL);
197 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
198 }
199 break;
200 case GLSL_TYPE_FLOAT:
201 switch (b) {
202 case GLSL_TYPE_UINT:
203 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
204 break;
205 case GLSL_TYPE_INT:
206 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
207 break;
208 case GLSL_TYPE_BOOL:
209 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
210 break;
211 }
212 break;
213 case GLSL_TYPE_BOOL:
214 switch (b) {
215 case GLSL_TYPE_UINT:
216 case GLSL_TYPE_INT:
217 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
218 break;
219 case GLSL_TYPE_FLOAT:
220 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
221 break;
222 }
223 break;
224 }
225
226 assert(result != NULL);
227
228 /* Try constant folding; it may fold in the conversion we just added. */
229 ir_constant *const constant = result->constant_expression_value();
230 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
231 }
232
233 /**
234 * Dereference a specific component from a scalar, vector, or matrix
235 */
236 static ir_rvalue *
237 dereference_component(ir_rvalue *src, unsigned component)
238 {
239 void *ctx = talloc_parent(src);
240 assert(component < src->type->components());
241
242 /* If the source is a constant, just create a new constant instead of a
243 * dereference of the existing constant.
244 */
245 ir_constant *constant = src->as_constant();
246 if (constant)
247 return new(ctx) ir_constant(constant, component);
248
249 if (src->type->is_scalar()) {
250 return src;
251 } else if (src->type->is_vector()) {
252 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
253 } else {
254 assert(src->type->is_matrix());
255
256 /* Dereference a row of the matrix, then call this function again to get
257 * a specific element from that row.
258 */
259 const int c = component / src->type->column_type()->vector_elements;
260 const int r = component % src->type->column_type()->vector_elements;
261 ir_constant *const col_index = new(ctx) ir_constant(c);
262 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
263
264 col->type = src->type->column_type();
265
266 return dereference_component(col, r);
267 }
268
269 assert(!"Should not get here.");
270 return NULL;
271 }
272
273
274 static ir_rvalue *
275 process_array_constructor(exec_list *instructions,
276 const glsl_type *constructor_type,
277 YYLTYPE *loc, exec_list *parameters,
278 struct _mesa_glsl_parse_state *state)
279 {
280 void *ctx = state;
281 /* Array constructors come in two forms: sized and unsized. Sized array
282 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
283 * variables. In this case the number of parameters must exactly match the
284 * specified size of the array.
285 *
286 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
287 * are vec4 variables. In this case the size of the array being constructed
288 * is determined by the number of parameters.
289 *
290 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
291 *
292 * "There must be exactly the same number of arguments as the size of
293 * the array being constructed. If no size is present in the
294 * constructor, then the array is explicitly sized to the number of
295 * arguments provided. The arguments are assigned in order, starting at
296 * element 0, to the elements of the constructed array. Each argument
297 * must be the same type as the element type of the array, or be a type
298 * that can be converted to the element type of the array according to
299 * Section 4.1.10 "Implicit Conversions.""
300 */
301 exec_list actual_parameters;
302 const unsigned parameter_count =
303 process_parameters(instructions, &actual_parameters, parameters, state);
304
305 if ((parameter_count == 0)
306 || ((constructor_type->length != 0)
307 && (constructor_type->length != parameter_count))) {
308 const unsigned min_param = (constructor_type->length == 0)
309 ? 1 : constructor_type->length;
310
311 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
312 "parameter%s",
313 (constructor_type->length != 0) ? "at least" : "exactly",
314 min_param, (min_param <= 1) ? "" : "s");
315 return ir_call::get_error_instruction(ctx);
316 }
317
318 if (constructor_type->length == 0) {
319 constructor_type =
320 glsl_type::get_array_instance(constructor_type->element_type(),
321 parameter_count);
322 assert(constructor_type != NULL);
323 assert(constructor_type->length == parameter_count);
324 }
325
326 bool all_parameters_are_constant = true;
327
328 /* Type cast each parameter and, if possible, fold constants. */
329 foreach_list_safe(n, &actual_parameters) {
330 ir_rvalue *ir = (ir_rvalue *) n;
331 ir_rvalue *result = ir;
332
333 /* Apply implicit conversions (not the scalar constructor rules!) */
334 if (constructor_type->element_type()->is_float()) {
335 const glsl_type *desired_type =
336 glsl_type::get_instance(GLSL_TYPE_FLOAT,
337 ir->type->vector_elements,
338 ir->type->matrix_columns);
339 result = convert_component(ir, desired_type);
340 }
341
342 if (result->type != constructor_type->element_type()) {
343 _mesa_glsl_error(loc, state, "type error in array constructor: "
344 "expected: %s, found %s",
345 constructor_type->element_type()->name,
346 result->type->name);
347 }
348
349 /* Attempt to convert the parameter to a constant valued expression.
350 * After doing so, track whether or not all the parameters to the
351 * constructor are trivially constant valued expressions.
352 */
353 ir_rvalue *const constant = result->constant_expression_value();
354
355 if (constant != NULL)
356 result = constant;
357 else
358 all_parameters_are_constant = false;
359
360 ir->replace_with(result);
361 }
362
363 if (all_parameters_are_constant)
364 return new(ctx) ir_constant(constructor_type, &actual_parameters);
365
366 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
367 ir_var_temporary);
368 instructions->push_tail(var);
369
370 int i = 0;
371 foreach_list(node, &actual_parameters) {
372 ir_rvalue *rhs = (ir_rvalue *) node;
373 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
374 new(ctx) ir_constant(i));
375
376 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
377 instructions->push_tail(assignment);
378
379 i++;
380 }
381
382 return new(ctx) ir_dereference_variable(var);
383 }
384
385
386 /**
387 * Try to convert a record constructor to a constant expression
388 */
389 static ir_constant *
390 constant_record_constructor(const glsl_type *constructor_type,
391 YYLTYPE *loc, exec_list *parameters,
392 struct _mesa_glsl_parse_state *state)
393 {
394 void *ctx = state;
395 bool all_parameters_are_constant = true;
396
397 exec_node *node = parameters->head;
398 for (unsigned i = 0; i < constructor_type->length; i++) {
399 ir_instruction *ir = (ir_instruction *) node;
400
401 if (node->is_tail_sentinel()) {
402 _mesa_glsl_error(loc, state,
403 "insufficient parameters to constructor for `%s'",
404 constructor_type->name);
405 return NULL;
406 }
407
408 if (ir->type != constructor_type->fields.structure[i].type) {
409 _mesa_glsl_error(loc, state,
410 "parameter type mismatch in constructor for `%s' "
411 " (%s vs %s)",
412 constructor_type->name,
413 ir->type->name,
414 constructor_type->fields.structure[i].type->name);
415 return NULL;
416 }
417
418 if (ir->as_constant() == NULL)
419 all_parameters_are_constant = false;
420
421 node = node->next;
422 }
423
424 if (!all_parameters_are_constant)
425 return NULL;
426
427 return new(ctx) ir_constant(constructor_type, parameters);
428 }
429
430
431 /**
432 * Generate data for a constant matrix constructor w/a single scalar parameter
433 *
434 * Matrix constructors in GLSL can be passed a single scalar of the
435 * approriate type. In these cases, the resulting matrix is the identity
436 * matrix multipled by the specified scalar. This function generates data for
437 * that matrix.
438 *
439 * \param type Type of the desired matrix.
440 * \param initializer Scalar value used to initialize the matrix diagonal.
441 * \param data Location to store the resulting matrix.
442 */
443 void
444 generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
445 ir_constant_data *data)
446 {
447 switch (type->base_type) {
448 case GLSL_TYPE_UINT:
449 case GLSL_TYPE_INT:
450 for (unsigned i = 0; i < type->components(); i++)
451 data->u[i] = 0;
452
453 for (unsigned i = 0; i < type->matrix_columns; i++) {
454 /* The array offset of the ith row and column of the matrix.
455 */
456 const unsigned idx = (i * type->vector_elements) + i;
457
458 data->u[idx] = initializer->value.u[0];
459 }
460 break;
461
462 case GLSL_TYPE_FLOAT:
463 for (unsigned i = 0; i < type->components(); i++)
464 data->f[i] = 0;
465
466 for (unsigned i = 0; i < type->matrix_columns; i++) {
467 /* The array offset of the ith row and column of the matrix.
468 */
469 const unsigned idx = (i * type->vector_elements) + i;
470
471 data->f[idx] = initializer->value.f[0];
472 }
473
474 break;
475
476 default:
477 assert(!"Should not get here.");
478 break;
479 }
480 }
481
482
483 /**
484 * Generate data for a constant vector constructor w/a single scalar parameter
485 *
486 * Vector constructors in GLSL can be passed a single scalar of the
487 * approriate type. In these cases, the resulting vector contains the specified
488 * value in all components. This function generates data for that vector.
489 *
490 * \param type Type of the desired vector.
491 * \param initializer Scalar value used to initialize the vector.
492 * \param data Location to store the resulting vector data.
493 */
494 void
495 generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
496 ir_constant_data *data)
497 {
498 switch (type->base_type) {
499 case GLSL_TYPE_UINT:
500 case GLSL_TYPE_INT:
501 for (unsigned i = 0; i < type->components(); i++)
502 data->u[i] = initializer->value.u[0];
503
504 break;
505
506 case GLSL_TYPE_FLOAT:
507 for (unsigned i = 0; i < type->components(); i++)
508 data->f[i] = initializer->value.f[0];
509
510 break;
511
512 case GLSL_TYPE_BOOL:
513 for (unsigned i = 0; i < type->components(); i++)
514 data->b[i] = initializer->value.b[0];
515
516 break;
517
518 default:
519 assert(!"Should not get here.");
520 break;
521 }
522 }
523
524
525 /**
526 * Determine if a list consists of a single scalar r-value
527 */
528 bool
529 single_scalar_parameter(exec_list *parameters)
530 {
531 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
532 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
533
534 return (p->type->is_scalar() && p->next->is_tail_sentinel());
535 }
536
537
538 /**
539 * Generate inline code for a vector constructor
540 *
541 * The generated constructor code will consist of a temporary variable
542 * declaration of the same type as the constructor. A sequence of assignments
543 * from constructor parameters to the temporary will follow.
544 *
545 * \return
546 * An \c ir_dereference_variable of the temprorary generated in the constructor
547 * body.
548 */
549 ir_rvalue *
550 emit_inline_vector_constructor(const glsl_type *type,
551 exec_list *instructions,
552 exec_list *parameters,
553 void *ctx)
554 {
555 assert(!parameters->is_empty());
556
557 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
558 instructions->push_tail(var);
559
560 /* There are two kinds of vector constructors.
561 *
562 * - Construct a vector from a single scalar by replicating that scalar to
563 * all components of the vector.
564 *
565 * - Construct a vector from an arbirary combination of vectors and
566 * scalars. The components of the constructor parameters are assigned
567 * to the vector in order until the vector is full.
568 */
569 const unsigned lhs_components = type->components();
570 if (single_scalar_parameter(parameters)) {
571 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
572 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
573 lhs_components);
574 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
575 const unsigned mask = (1U << lhs_components) - 1;
576
577 assert(rhs->type == lhs->type);
578
579 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
580 instructions->push_tail(inst);
581 } else {
582 unsigned base_component = 0;
583 foreach_list(node, parameters) {
584 ir_rvalue *param = (ir_rvalue *) node;
585 unsigned rhs_components = param->type->components();
586
587 /* Do not try to assign more components to the vector than it has!
588 */
589 if ((rhs_components + base_component) > lhs_components) {
590 rhs_components = lhs_components - base_component;
591 }
592
593 /* Generate a swizzle that puts the first element of the source at
594 * the location of the first element of the destination.
595 */
596 unsigned swiz[4] = { 0, 0, 0, 0 };
597 for (unsigned i = 0; i < rhs_components; i++)
598 swiz[i + base_component] = i;
599
600 /* Mask of fields to be written in the assignment.
601 */
602 const unsigned write_mask = ((1U << rhs_components) - 1)
603 << base_component;
604
605 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
606 ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, lhs_components);
607
608 ir_instruction *inst =
609 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
610 instructions->push_tail(inst);
611
612 /* Advance the component index by the number of components that were
613 * just assigned.
614 */
615 base_component += rhs_components;
616 }
617 }
618 return new(ctx) ir_dereference_variable(var);
619 }
620
621
622 /**
623 * Generate assignment of a portion of a vector to a portion of a matrix column
624 *
625 * \param src_base First component of the source to be used in assignment
626 * \param column Column of destination to be assiged
627 * \param row_base First component of the destination column to be assigned
628 * \param count Number of components to be assigned
629 *
630 * \note
631 * \c src_base + \c count must be less than or equal to the number of components
632 * in the source vector.
633 */
634 ir_instruction *
635 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
636 ir_rvalue *src, unsigned src_base, unsigned count,
637 void *mem_ctx)
638 {
639 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
640 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
641
642 assert(column_ref->type->components() >= (row_base + count));
643 assert(src->type->components() >= (src_base + count));
644
645 /* Generate a swizzle that puts the first element of the source at the
646 * location of the first element of the destination.
647 */
648 unsigned swiz[4] = { src_base, src_base, src_base, src_base };
649 for (unsigned i = 0; i < count; i++)
650 swiz[i + row_base] = src_base + i;
651
652 ir_rvalue *const rhs =
653 new(mem_ctx) ir_swizzle(src, swiz, column_ref->type->components());
654
655 /* Mask of fields to be written in the assignment.
656 */
657 const unsigned write_mask = ((1U << count) - 1) << row_base;
658
659 return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
660 }
661
662
663 /**
664 * Generate inline code for a matrix constructor
665 *
666 * The generated constructor code will consist of a temporary variable
667 * declaration of the same type as the constructor. A sequence of assignments
668 * from constructor parameters to the temporary will follow.
669 *
670 * \return
671 * An \c ir_dereference_variable of the temprorary generated in the constructor
672 * body.
673 */
674 ir_rvalue *
675 emit_inline_matrix_constructor(const glsl_type *type,
676 exec_list *instructions,
677 exec_list *parameters,
678 void *ctx)
679 {
680 assert(!parameters->is_empty());
681
682 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
683 instructions->push_tail(var);
684
685 /* There are three kinds of matrix constructors.
686 *
687 * - Construct a matrix from a single scalar by replicating that scalar to
688 * along the diagonal of the matrix and setting all other components to
689 * zero.
690 *
691 * - Construct a matrix from an arbirary combination of vectors and
692 * scalars. The components of the constructor parameters are assigned
693 * to the matrix in colum-major order until the matrix is full.
694 *
695 * - Construct a matrix from a single matrix. The source matrix is copied
696 * to the upper left portion of the constructed matrix, and the remaining
697 * elements take values from the identity matrix.
698 */
699 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
700 if (single_scalar_parameter(parameters)) {
701 /* Assign the scalar to the X component of a vec4, and fill the remaining
702 * components with zero.
703 */
704 ir_variable *rhs_var =
705 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
706 ir_var_temporary);
707 instructions->push_tail(rhs_var);
708
709 ir_constant_data zero;
710 zero.f[0] = 0.0;
711 zero.f[1] = 0.0;
712 zero.f[2] = 0.0;
713 zero.f[3] = 0.0;
714
715 ir_instruction *inst =
716 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
717 new(ctx) ir_constant(rhs_var->type, &zero),
718 NULL);
719 instructions->push_tail(inst);
720
721 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
722
723 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
724 instructions->push_tail(inst);
725
726 /* Assign the temporary vector to each column of the destination matrix
727 * with a swizzle that puts the X component on the diagonal of the
728 * matrix. In some cases this may mean that the X component does not
729 * get assigned into the column at all (i.e., when the matrix has more
730 * columns than rows).
731 */
732 static const unsigned rhs_swiz[4][4] = {
733 { 0, 1, 1, 1 },
734 { 1, 0, 1, 1 },
735 { 1, 1, 0, 1 },
736 { 1, 1, 1, 0 }
737 };
738
739 const unsigned cols_to_init = min(type->matrix_columns,
740 type->vector_elements);
741 for (unsigned i = 0; i < cols_to_init; i++) {
742 ir_constant *const col_idx = new(ctx) ir_constant(i);
743 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
744
745 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
746 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
747 type->vector_elements);
748
749 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
750 instructions->push_tail(inst);
751 }
752
753 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
754 ir_constant *const col_idx = new(ctx) ir_constant(i);
755 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
756
757 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
758 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
759 type->vector_elements);
760
761 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
762 instructions->push_tail(inst);
763 }
764 } else if (first_param->type->is_matrix()) {
765 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
766 *
767 * "If a matrix is constructed from a matrix, then each component
768 * (column i, row j) in the result that has a corresponding
769 * component (column i, row j) in the argument will be initialized
770 * from there. All other components will be initialized to the
771 * identity matrix. If a matrix argument is given to a matrix
772 * constructor, it is an error to have any other arguments."
773 */
774 assert(first_param->next->is_tail_sentinel());
775 ir_rvalue *const src_matrix = first_param;
776
777 /* If the source matrix is smaller, pre-initialize the relavent parts of
778 * the destination matrix to the identity matrix.
779 */
780 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
781 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
782
783 /* If the source matrix has fewer rows, every column of the destination
784 * must be initialized. Otherwise only the columns in the destination
785 * that do not exist in the source must be initialized.
786 */
787 unsigned col =
788 (src_matrix->type->vector_elements < var->type->vector_elements)
789 ? 0 : src_matrix->type->matrix_columns;
790
791 const glsl_type *const col_type = var->type->column_type();
792 for (/* empty */; col < var->type->matrix_columns; col++) {
793 ir_constant_data ident;
794
795 ident.f[0] = 0.0;
796 ident.f[1] = 0.0;
797 ident.f[2] = 0.0;
798 ident.f[3] = 0.0;
799
800 ident.f[col] = 1.0;
801
802 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
803
804 ir_rvalue *const lhs =
805 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
806
807 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
808 instructions->push_tail(inst);
809 }
810 }
811
812 /* Assign columns from the source matrix to the destination matrix.
813 *
814 * Since the parameter will be used in the RHS of multiple assignments,
815 * generate a temporary and copy the paramter there.
816 */
817 ir_variable *const rhs_var =
818 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
819 ir_var_temporary);
820 instructions->push_tail(rhs_var);
821
822 ir_dereference *const rhs_var_ref =
823 new(ctx) ir_dereference_variable(rhs_var);
824 ir_instruction *const inst =
825 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
826 instructions->push_tail(inst);
827
828
829 unsigned swiz[4] = { 0, 0, 0, 0 };
830 for (unsigned i = 1; i < src_matrix->type->vector_elements; i++)
831 swiz[i] = i;
832
833 const unsigned last_col = min(src_matrix->type->matrix_columns,
834 var->type->matrix_columns);
835 const unsigned write_mask = (1U << var->type->vector_elements) - 1;
836
837 for (unsigned i = 0; i < last_col; i++) {
838 ir_dereference *const lhs =
839 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
840 ir_rvalue *const rhs_col =
841 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
842
843 /* If one matrix has columns that are smaller than the columns of the
844 * other matrix, wrap the column access of the larger with a swizzle
845 * so that the LHS and RHS of the assignment have the same size (and
846 * therefore have the same type).
847 *
848 * It would be perfectly valid to unconditionally generate the
849 * swizzles, this this will typically result in a more compact IR tree.
850 */
851 ir_rvalue *rhs;
852 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
853 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
854 lhs->type->vector_elements);
855 } else {
856 rhs = rhs_col;
857 }
858
859 assert(lhs->type == rhs->type);
860
861 ir_instruction *inst =
862 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
863 instructions->push_tail(inst);
864 }
865 } else {
866 const unsigned rows = type->matrix_columns;
867 const unsigned cols = type->vector_elements;
868 unsigned col_idx = 0;
869 unsigned row_idx = 0;
870
871 foreach_list (node, parameters) {
872 ir_rvalue *const rhs = (ir_rvalue *) node;
873 const unsigned components_remaining_this_column = rows - row_idx;
874 unsigned rhs_components = rhs->type->components();
875 unsigned rhs_base = 0;
876
877 /* Since the parameter might be used in the RHS of two assignments,
878 * generate a temporary and copy the paramter there.
879 */
880 ir_variable *rhs_var =
881 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
882 instructions->push_tail(rhs_var);
883
884 ir_dereference *rhs_var_ref =
885 new(ctx) ir_dereference_variable(rhs_var);
886 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
887 instructions->push_tail(inst);
888
889 /* Assign the current parameter to as many components of the matrix
890 * as it will fill.
891 *
892 * NOTE: A single vector parameter can span two matrix columns. A
893 * single vec4, for example, can completely fill a mat2.
894 */
895 if (rhs_components >= components_remaining_this_column) {
896 const unsigned count = min(rhs_components,
897 components_remaining_this_column);
898
899 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
900
901 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
902 row_idx,
903 rhs_var_ref, 0,
904 count, ctx);
905 instructions->push_tail(inst);
906
907 rhs_base = count;
908
909 col_idx++;
910 row_idx = 0;
911 }
912
913 /* If there is data left in the parameter and components left to be
914 * set in the destination, emit another assignment. It is possible
915 * that the assignment could be of a vec4 to the last element of the
916 * matrix. In this case col_idx==cols, but there is still data
917 * left in the source parameter. Obviously, don't emit an assignment
918 * to data outside the destination matrix.
919 */
920 if ((col_idx < cols) && (rhs_base < rhs_components)) {
921 const unsigned count = rhs_components - rhs_base;
922
923 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
924
925 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
926 row_idx,
927 rhs_var_ref,
928 rhs_base,
929 count, ctx);
930 instructions->push_tail(inst);
931
932 row_idx += count;
933 }
934 }
935 }
936
937 return new(ctx) ir_dereference_variable(var);
938 }
939
940
941 ir_rvalue *
942 ast_function_expression::hir(exec_list *instructions,
943 struct _mesa_glsl_parse_state *state)
944 {
945 void *ctx = state;
946 /* There are three sorts of function calls.
947 *
948 * 1. constructors - The first subexpression is an ast_type_specifier.
949 * 2. methods - Only the .length() method of array types.
950 * 3. functions - Calls to regular old functions.
951 *
952 * Method calls are actually detected when the ast_field_selection
953 * expression is handled.
954 */
955 if (is_constructor()) {
956 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
957 YYLTYPE loc = type->get_location();
958 const char *name;
959
960 const glsl_type *const constructor_type = type->glsl_type(& name, state);
961
962
963 /* Constructors for samplers are illegal.
964 */
965 if (constructor_type->is_sampler()) {
966 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
967 constructor_type->name);
968 return ir_call::get_error_instruction(ctx);
969 }
970
971 if (constructor_type->is_array()) {
972 if (state->language_version <= 110) {
973 _mesa_glsl_error(& loc, state,
974 "array constructors forbidden in GLSL 1.10");
975 return ir_call::get_error_instruction(ctx);
976 }
977
978 return process_array_constructor(instructions, constructor_type,
979 & loc, &this->expressions, state);
980 }
981
982 /* There are two kinds of constructor call. Constructors for built-in
983 * language types, such as mat4 and vec2, are free form. The only
984 * requirement is that the parameters must provide enough values of the
985 * correct scalar type. Constructors for arrays and structures must
986 * have the exact number of parameters with matching types in the
987 * correct order. These constructors follow essentially the same type
988 * matching rules as functions.
989 */
990 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
991 return ir_call::get_error_instruction(ctx);
992
993 /* Total number of components of the type being constructed. */
994 const unsigned type_components = constructor_type->components();
995
996 /* Number of components from parameters that have actually been
997 * consumed. This is used to perform several kinds of error checking.
998 */
999 unsigned components_used = 0;
1000
1001 unsigned matrix_parameters = 0;
1002 unsigned nonmatrix_parameters = 0;
1003 exec_list actual_parameters;
1004
1005 foreach_list (n, &this->expressions) {
1006 ast_node *ast = exec_node_data(ast_node, n, link);
1007 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1008
1009 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1010 *
1011 * "It is an error to provide extra arguments beyond this
1012 * last used argument."
1013 */
1014 if (components_used >= type_components) {
1015 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1016 "constructor",
1017 constructor_type->name);
1018 return ir_call::get_error_instruction(ctx);
1019 }
1020
1021 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1022 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1023 "non-numeric data type",
1024 constructor_type->name);
1025 return ir_call::get_error_instruction(ctx);
1026 }
1027
1028 /* Count the number of matrix and nonmatrix parameters. This
1029 * is used below to enforce some of the constructor rules.
1030 */
1031 if (result->type->is_matrix())
1032 matrix_parameters++;
1033 else
1034 nonmatrix_parameters++;
1035
1036 actual_parameters.push_tail(result);
1037 components_used += result->type->components();
1038 }
1039
1040 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1041 *
1042 * "It is an error to construct matrices from other matrices. This
1043 * is reserved for future use."
1044 */
1045 if ((state->language_version <= 110) && (matrix_parameters > 0)
1046 && constructor_type->is_matrix()) {
1047 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1048 "matrix in GLSL 1.10",
1049 constructor_type->name);
1050 return ir_call::get_error_instruction(ctx);
1051 }
1052
1053 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1054 *
1055 * "If a matrix argument is given to a matrix constructor, it is
1056 * an error to have any other arguments."
1057 */
1058 if ((matrix_parameters > 0)
1059 && ((matrix_parameters + nonmatrix_parameters) > 1)
1060 && constructor_type->is_matrix()) {
1061 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1062 "matrix must be only parameter",
1063 constructor_type->name);
1064 return ir_call::get_error_instruction(ctx);
1065 }
1066
1067 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1068 *
1069 * "In these cases, there must be enough components provided in the
1070 * arguments to provide an initializer for every component in the
1071 * constructed value."
1072 */
1073 if ((components_used < type_components) && (components_used != 1)) {
1074 _mesa_glsl_error(& loc, state, "too few components to construct "
1075 "`%s'",
1076 constructor_type->name);
1077 return ir_call::get_error_instruction(ctx);
1078 }
1079
1080 /* Later, we cast each parameter to the same base type as the
1081 * constructor. Since there are no non-floating point matrices, we
1082 * need to break them up into a series of column vectors.
1083 */
1084 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1085 foreach_list_safe(n, &actual_parameters) {
1086 ir_rvalue *matrix = (ir_rvalue *) n;
1087
1088 if (!matrix->type->is_matrix())
1089 continue;
1090
1091 /* Create a temporary containing the matrix. */
1092 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1093 ir_var_temporary);
1094 instructions->push_tail(var);
1095 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1096 ir_dereference_variable(var), matrix, NULL));
1097 var->constant_value = matrix->constant_expression_value();
1098
1099 /* Replace the matrix with dereferences of its columns. */
1100 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1101 matrix->insert_before(new (ctx) ir_dereference_array(var,
1102 new(ctx) ir_constant(i)));
1103 }
1104 matrix->remove();
1105 }
1106 }
1107
1108 bool all_parameters_are_constant = true;
1109
1110 /* Type cast each parameter and, if possible, fold constants.*/
1111 foreach_list_safe(n, &actual_parameters) {
1112 ir_rvalue *ir = (ir_rvalue *) n;
1113
1114 const glsl_type *desired_type =
1115 glsl_type::get_instance(constructor_type->base_type,
1116 ir->type->vector_elements,
1117 ir->type->matrix_columns);
1118 ir_rvalue *result = convert_component(ir, desired_type);
1119
1120 /* Attempt to convert the parameter to a constant valued expression.
1121 * After doing so, track whether or not all the parameters to the
1122 * constructor are trivially constant valued expressions.
1123 */
1124 ir_rvalue *const constant = result->constant_expression_value();
1125
1126 if (constant != NULL)
1127 result = constant;
1128 else
1129 all_parameters_are_constant = false;
1130
1131 if (result != ir) {
1132 ir->replace_with(result);
1133 }
1134 }
1135
1136 /* If all of the parameters are trivially constant, create a
1137 * constant representing the complete collection of parameters.
1138 */
1139 if (all_parameters_are_constant) {
1140 if (components_used >= type_components)
1141 return new(ctx) ir_constant(constructor_type,
1142 & actual_parameters);
1143
1144 /* The above case must handle all scalar constructors.
1145 */
1146 assert(constructor_type->is_vector()
1147 || constructor_type->is_matrix());
1148
1149 /* Constructors with exactly one component are special for
1150 * vectors and matrices. For vectors it causes all elements of
1151 * the vector to be filled with the value. For matrices it
1152 * causes the matrix to be filled with 0 and the diagonal to be
1153 * filled with the value.
1154 */
1155 ir_constant_data data;
1156 ir_constant *const initializer =
1157 (ir_constant *) actual_parameters.head;
1158 if (constructor_type->is_matrix())
1159 generate_constructor_matrix(constructor_type, initializer,
1160 &data);
1161 else
1162 generate_constructor_vector(constructor_type, initializer,
1163 &data);
1164
1165 return new(ctx) ir_constant(constructor_type, &data);
1166 } else if (constructor_type->is_scalar()) {
1167 return dereference_component((ir_rvalue *) actual_parameters.head,
1168 0);
1169 } else if (constructor_type->is_vector()) {
1170 return emit_inline_vector_constructor(constructor_type,
1171 instructions,
1172 &actual_parameters,
1173 ctx);
1174 } else {
1175 assert(constructor_type->is_matrix());
1176 return emit_inline_matrix_constructor(constructor_type,
1177 instructions,
1178 &actual_parameters,
1179 ctx);
1180 }
1181 } else {
1182 const ast_expression *id = subexpressions[0];
1183 YYLTYPE loc = id->get_location();
1184 exec_list actual_parameters;
1185
1186 process_parameters(instructions, &actual_parameters, &this->expressions,
1187 state);
1188
1189 const glsl_type *const type =
1190 state->symbols->get_type(id->primary_expression.identifier);
1191
1192 if ((type != NULL) && type->is_record()) {
1193 ir_constant *constant =
1194 constant_record_constructor(type, &loc, &actual_parameters, state);
1195
1196 if (constant != NULL)
1197 return constant;
1198 }
1199
1200 return match_function_by_name(instructions,
1201 id->primary_expression.identifier, & loc,
1202 &actual_parameters, state);
1203 }
1204
1205 return ir_call::get_error_instruction(ctx);
1206 }