mesa: Change "BRIAN PAUL" to "THE AUTHORS" in license text.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 _mesa_glsl_error(&loc, state,
169 "function parameter '%s %s' is not an lvalue",
170 mode, formal->name);
171 return false;
172 }
173 }
174
175 actual_ir_node = actual_ir_node->next;
176 actual_ast_node = actual_ast_node->next;
177 }
178 return true;
179 }
180
181 /**
182 * If a function call is generated, \c call_ir will point to it on exit.
183 * Otherwise \c call_ir will be set to \c NULL.
184 */
185 static ir_rvalue *
186 generate_call(exec_list *instructions, ir_function_signature *sig,
187 exec_list *actual_parameters,
188 ir_call **call_ir,
189 struct _mesa_glsl_parse_state *state)
190 {
191 void *ctx = state;
192 exec_list post_call_conversions;
193
194 *call_ir = NULL;
195
196 /* Perform implicit conversion of arguments. For out parameters, we need
197 * to place them in a temporary variable and do the conversion after the
198 * call takes place. Since we haven't emitted the call yet, we'll place
199 * the post-call conversions in a temporary exec_list, and emit them later.
200 */
201 exec_list_iterator actual_iter = actual_parameters->iterator();
202 exec_list_iterator formal_iter = sig->parameters.iterator();
203
204 while (actual_iter.has_next()) {
205 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
206 ir_variable *formal = (ir_variable *) formal_iter.get();
207
208 assert(actual != NULL);
209 assert(formal != NULL);
210
211 if (formal->type->is_numeric() || formal->type->is_boolean()) {
212 switch (formal->mode) {
213 case ir_var_const_in:
214 case ir_var_function_in: {
215 ir_rvalue *converted
216 = convert_component(actual, formal->type);
217 actual->replace_with(converted);
218 break;
219 }
220 case ir_var_function_out:
221 if (actual->type != formal->type) {
222 /* To convert an out parameter, we need to create a
223 * temporary variable to hold the value before conversion,
224 * and then perform the conversion after the function call
225 * returns.
226 *
227 * This has the effect of transforming code like this:
228 *
229 * void f(out int x);
230 * float value;
231 * f(value);
232 *
233 * Into IR that's equivalent to this:
234 *
235 * void f(out int x);
236 * float value;
237 * int out_parameter_conversion;
238 * f(out_parameter_conversion);
239 * value = float(out_parameter_conversion);
240 */
241 ir_variable *tmp =
242 new(ctx) ir_variable(formal->type,
243 "out_parameter_conversion",
244 ir_var_temporary);
245 instructions->push_tail(tmp);
246 ir_dereference_variable *deref_tmp_1
247 = new(ctx) ir_dereference_variable(tmp);
248 ir_dereference_variable *deref_tmp_2
249 = new(ctx) ir_dereference_variable(tmp);
250 ir_rvalue *converted_tmp
251 = convert_component(deref_tmp_1, actual->type);
252 ir_assignment *assignment
253 = new(ctx) ir_assignment(actual, converted_tmp);
254 post_call_conversions.push_tail(assignment);
255 actual->replace_with(deref_tmp_2);
256 }
257 break;
258 case ir_var_function_inout:
259 /* Inout parameters should never require conversion, since that
260 * would require an implicit conversion to exist both to and
261 * from the formal parameter type, and there are no
262 * bidirectional implicit conversions.
263 */
264 assert (actual->type == formal->type);
265 break;
266 default:
267 assert (!"Illegal formal parameter mode");
268 break;
269 }
270 }
271
272 actual_iter.next();
273 formal_iter.next();
274 }
275
276 /* If the function call is a constant expression, don't generate any
277 * instructions; just generate an ir_constant.
278 *
279 * Function calls were first allowed to be constant expressions in GLSL
280 * 1.20 and GLSL ES 3.00.
281 */
282 if (state->is_version(120, 300)) {
283 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
284 if (value != NULL) {
285 return value;
286 }
287 }
288
289 ir_dereference_variable *deref = NULL;
290 if (!sig->return_type->is_void()) {
291 /* Create a new temporary to hold the return value. */
292 ir_variable *var;
293
294 var = new(ctx) ir_variable(sig->return_type,
295 ralloc_asprintf(ctx, "%s_retval",
296 sig->function_name()),
297 ir_var_temporary);
298 instructions->push_tail(var);
299
300 deref = new(ctx) ir_dereference_variable(var);
301 }
302 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
303 instructions->push_tail(call);
304
305 /* Also emit any necessary out-parameter conversions. */
306 instructions->append_list(&post_call_conversions);
307
308 return deref ? deref->clone(ctx, NULL) : NULL;
309 }
310
311 /**
312 * Given a function name and parameter list, find the matching signature.
313 */
314 static ir_function_signature *
315 match_function_by_name(const char *name,
316 exec_list *actual_parameters,
317 struct _mesa_glsl_parse_state *state)
318 {
319 void *ctx = state;
320 ir_function *f = state->symbols->get_function(name);
321 ir_function_signature *local_sig = NULL;
322 ir_function_signature *sig = NULL;
323
324 /* Is the function hidden by a record type constructor? */
325 if (state->symbols->get_type(name))
326 goto done; /* no match */
327
328 /* Is the function hidden by a variable (impossible in 1.10)? */
329 if (!state->symbols->separate_function_namespace
330 && state->symbols->get_variable(name))
331 goto done; /* no match */
332
333 if (f != NULL) {
334 /* Look for a match in the local shader. If exact, we're done. */
335 bool is_exact = false;
336 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
337 if (is_exact)
338 goto done;
339
340 if (!state->es_shader && f->has_user_signature()) {
341 /* In desktop GL, the presence of a user-defined signature hides any
342 * built-in signatures, so we must ignore them. In contrast, in ES2
343 * user-defined signatures add new overloads, so we must proceed.
344 */
345 goto done;
346 }
347 }
348
349 /* Local shader has no exact candidates; check the built-ins. */
350 _mesa_glsl_initialize_functions(state);
351 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
352 ir_function *builtin =
353 state->builtins_to_link[i]->symbols->get_function(name);
354 if (builtin == NULL)
355 continue;
356
357 bool is_exact = false;
358 ir_function_signature *builtin_sig =
359 builtin->matching_signature(actual_parameters, &is_exact);
360
361 if (builtin_sig == NULL)
362 continue;
363
364 /* If the built-in signature is exact, we can stop. */
365 if (is_exact) {
366 sig = builtin_sig;
367 goto done;
368 }
369
370 if (sig == NULL) {
371 /* We found an inexact match, which is better than nothing. However,
372 * we should keep searching for an exact match.
373 */
374 sig = builtin_sig;
375 }
376 }
377
378 done:
379 if (sig != NULL) {
380 /* If the match is from a linked built-in shader, import the prototype. */
381 if (sig != local_sig) {
382 if (f == NULL) {
383 f = new(ctx) ir_function(name);
384 state->symbols->add_global_function(f);
385 emit_function(state, f);
386 }
387 f->add_signature(sig->clone_prototype(f, NULL));
388 }
389 }
390 return sig;
391 }
392
393 /**
394 * Raise a "no matching function" error, listing all possible overloads the
395 * compiler considered so developers can figure out what went wrong.
396 */
397 static void
398 no_matching_function_error(const char *name,
399 YYLTYPE *loc,
400 exec_list *actual_parameters,
401 _mesa_glsl_parse_state *state)
402 {
403 char *str = prototype_string(NULL, name, actual_parameters);
404 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
405 ralloc_free(str);
406
407 const char *prefix = "candidates are: ";
408
409 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
410 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
411 : state->symbols;
412 ir_function *f = syms->get_function(name);
413 if (f == NULL)
414 continue;
415
416 foreach_list (node, &f->signatures) {
417 ir_function_signature *sig = (ir_function_signature *) node;
418
419 str = prototype_string(sig->return_type, f->name, &sig->parameters);
420 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
421 ralloc_free(str);
422
423 prefix = " ";
424 }
425 }
426 }
427
428 /**
429 * Perform automatic type conversion of constructor parameters
430 *
431 * This implements the rules in the "Conversion and Scalar Constructors"
432 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
433 */
434 static ir_rvalue *
435 convert_component(ir_rvalue *src, const glsl_type *desired_type)
436 {
437 void *ctx = ralloc_parent(src);
438 const unsigned a = desired_type->base_type;
439 const unsigned b = src->type->base_type;
440 ir_expression *result = NULL;
441
442 if (src->type->is_error())
443 return src;
444
445 assert(a <= GLSL_TYPE_BOOL);
446 assert(b <= GLSL_TYPE_BOOL);
447
448 if (a == b)
449 return src;
450
451 switch (a) {
452 case GLSL_TYPE_UINT:
453 switch (b) {
454 case GLSL_TYPE_INT:
455 result = new(ctx) ir_expression(ir_unop_i2u, src);
456 break;
457 case GLSL_TYPE_FLOAT:
458 result = new(ctx) ir_expression(ir_unop_f2u, src);
459 break;
460 case GLSL_TYPE_BOOL:
461 result = new(ctx) ir_expression(ir_unop_i2u,
462 new(ctx) ir_expression(ir_unop_b2i, src));
463 break;
464 }
465 break;
466 case GLSL_TYPE_INT:
467 switch (b) {
468 case GLSL_TYPE_UINT:
469 result = new(ctx) ir_expression(ir_unop_u2i, src);
470 break;
471 case GLSL_TYPE_FLOAT:
472 result = new(ctx) ir_expression(ir_unop_f2i, src);
473 break;
474 case GLSL_TYPE_BOOL:
475 result = new(ctx) ir_expression(ir_unop_b2i, src);
476 break;
477 }
478 break;
479 case GLSL_TYPE_FLOAT:
480 switch (b) {
481 case GLSL_TYPE_UINT:
482 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
483 break;
484 case GLSL_TYPE_INT:
485 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
486 break;
487 case GLSL_TYPE_BOOL:
488 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
489 break;
490 }
491 break;
492 case GLSL_TYPE_BOOL:
493 switch (b) {
494 case GLSL_TYPE_UINT:
495 result = new(ctx) ir_expression(ir_unop_i2b,
496 new(ctx) ir_expression(ir_unop_u2i, src));
497 break;
498 case GLSL_TYPE_INT:
499 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
500 break;
501 case GLSL_TYPE_FLOAT:
502 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
503 break;
504 }
505 break;
506 }
507
508 assert(result != NULL);
509 assert(result->type == desired_type);
510
511 /* Try constant folding; it may fold in the conversion we just added. */
512 ir_constant *const constant = result->constant_expression_value();
513 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
514 }
515
516 /**
517 * Dereference a specific component from a scalar, vector, or matrix
518 */
519 static ir_rvalue *
520 dereference_component(ir_rvalue *src, unsigned component)
521 {
522 void *ctx = ralloc_parent(src);
523 assert(component < src->type->components());
524
525 /* If the source is a constant, just create a new constant instead of a
526 * dereference of the existing constant.
527 */
528 ir_constant *constant = src->as_constant();
529 if (constant)
530 return new(ctx) ir_constant(constant, component);
531
532 if (src->type->is_scalar()) {
533 return src;
534 } else if (src->type->is_vector()) {
535 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
536 } else {
537 assert(src->type->is_matrix());
538
539 /* Dereference a row of the matrix, then call this function again to get
540 * a specific element from that row.
541 */
542 const int c = component / src->type->column_type()->vector_elements;
543 const int r = component % src->type->column_type()->vector_elements;
544 ir_constant *const col_index = new(ctx) ir_constant(c);
545 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
546
547 col->type = src->type->column_type();
548
549 return dereference_component(col, r);
550 }
551
552 assert(!"Should not get here.");
553 return NULL;
554 }
555
556
557 static ir_rvalue *
558 process_array_constructor(exec_list *instructions,
559 const glsl_type *constructor_type,
560 YYLTYPE *loc, exec_list *parameters,
561 struct _mesa_glsl_parse_state *state)
562 {
563 void *ctx = state;
564 /* Array constructors come in two forms: sized and unsized. Sized array
565 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
566 * variables. In this case the number of parameters must exactly match the
567 * specified size of the array.
568 *
569 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
570 * are vec4 variables. In this case the size of the array being constructed
571 * is determined by the number of parameters.
572 *
573 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
574 *
575 * "There must be exactly the same number of arguments as the size of
576 * the array being constructed. If no size is present in the
577 * constructor, then the array is explicitly sized to the number of
578 * arguments provided. The arguments are assigned in order, starting at
579 * element 0, to the elements of the constructed array. Each argument
580 * must be the same type as the element type of the array, or be a type
581 * that can be converted to the element type of the array according to
582 * Section 4.1.10 "Implicit Conversions.""
583 */
584 exec_list actual_parameters;
585 const unsigned parameter_count =
586 process_parameters(instructions, &actual_parameters, parameters, state);
587
588 if ((parameter_count == 0)
589 || ((constructor_type->length != 0)
590 && (constructor_type->length != parameter_count))) {
591 const unsigned min_param = (constructor_type->length == 0)
592 ? 1 : constructor_type->length;
593
594 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
595 "parameter%s",
596 (constructor_type->length != 0) ? "at least" : "exactly",
597 min_param, (min_param <= 1) ? "" : "s");
598 return ir_rvalue::error_value(ctx);
599 }
600
601 if (constructor_type->length == 0) {
602 constructor_type =
603 glsl_type::get_array_instance(constructor_type->element_type(),
604 parameter_count);
605 assert(constructor_type != NULL);
606 assert(constructor_type->length == parameter_count);
607 }
608
609 bool all_parameters_are_constant = true;
610
611 /* Type cast each parameter and, if possible, fold constants. */
612 foreach_list_safe(n, &actual_parameters) {
613 ir_rvalue *ir = (ir_rvalue *) n;
614 ir_rvalue *result = ir;
615
616 /* Apply implicit conversions (not the scalar constructor rules!). See
617 * the spec quote above. */
618 if (constructor_type->element_type()->is_float()) {
619 const glsl_type *desired_type =
620 glsl_type::get_instance(GLSL_TYPE_FLOAT,
621 ir->type->vector_elements,
622 ir->type->matrix_columns);
623 if (result->type->can_implicitly_convert_to(desired_type)) {
624 /* Even though convert_component() implements the constructor
625 * conversion rules (not the implicit conversion rules), its safe
626 * to use it here because we already checked that the implicit
627 * conversion is legal.
628 */
629 result = convert_component(ir, desired_type);
630 }
631 }
632
633 if (result->type != constructor_type->element_type()) {
634 _mesa_glsl_error(loc, state, "type error in array constructor: "
635 "expected: %s, found %s",
636 constructor_type->element_type()->name,
637 result->type->name);
638 }
639
640 /* Attempt to convert the parameter to a constant valued expression.
641 * After doing so, track whether or not all the parameters to the
642 * constructor are trivially constant valued expressions.
643 */
644 ir_rvalue *const constant = result->constant_expression_value();
645
646 if (constant != NULL)
647 result = constant;
648 else
649 all_parameters_are_constant = false;
650
651 ir->replace_with(result);
652 }
653
654 if (all_parameters_are_constant)
655 return new(ctx) ir_constant(constructor_type, &actual_parameters);
656
657 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
658 ir_var_temporary);
659 instructions->push_tail(var);
660
661 int i = 0;
662 foreach_list(node, &actual_parameters) {
663 ir_rvalue *rhs = (ir_rvalue *) node;
664 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
665 new(ctx) ir_constant(i));
666
667 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
668 instructions->push_tail(assignment);
669
670 i++;
671 }
672
673 return new(ctx) ir_dereference_variable(var);
674 }
675
676
677 /**
678 * Try to convert a record constructor to a constant expression
679 */
680 static ir_constant *
681 constant_record_constructor(const glsl_type *constructor_type,
682 exec_list *parameters, void *mem_ctx)
683 {
684 foreach_list(node, parameters) {
685 ir_constant *constant = ((ir_instruction *) node)->as_constant();
686 if (constant == NULL)
687 return NULL;
688 node->replace_with(constant);
689 }
690
691 return new(mem_ctx) ir_constant(constructor_type, parameters);
692 }
693
694
695 /**
696 * Determine if a list consists of a single scalar r-value
697 */
698 bool
699 single_scalar_parameter(exec_list *parameters)
700 {
701 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
702 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
703
704 return (p->type->is_scalar() && p->next->is_tail_sentinel());
705 }
706
707
708 /**
709 * Generate inline code for a vector constructor
710 *
711 * The generated constructor code will consist of a temporary variable
712 * declaration of the same type as the constructor. A sequence of assignments
713 * from constructor parameters to the temporary will follow.
714 *
715 * \return
716 * An \c ir_dereference_variable of the temprorary generated in the constructor
717 * body.
718 */
719 ir_rvalue *
720 emit_inline_vector_constructor(const glsl_type *type,
721 exec_list *instructions,
722 exec_list *parameters,
723 void *ctx)
724 {
725 assert(!parameters->is_empty());
726
727 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
728 instructions->push_tail(var);
729
730 /* There are two kinds of vector constructors.
731 *
732 * - Construct a vector from a single scalar by replicating that scalar to
733 * all components of the vector.
734 *
735 * - Construct a vector from an arbirary combination of vectors and
736 * scalars. The components of the constructor parameters are assigned
737 * to the vector in order until the vector is full.
738 */
739 const unsigned lhs_components = type->components();
740 if (single_scalar_parameter(parameters)) {
741 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
742 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
743 lhs_components);
744 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
745 const unsigned mask = (1U << lhs_components) - 1;
746
747 assert(rhs->type == lhs->type);
748
749 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
750 instructions->push_tail(inst);
751 } else {
752 unsigned base_component = 0;
753 unsigned base_lhs_component = 0;
754 ir_constant_data data;
755 unsigned constant_mask = 0, constant_components = 0;
756
757 memset(&data, 0, sizeof(data));
758
759 foreach_list(node, parameters) {
760 ir_rvalue *param = (ir_rvalue *) node;
761 unsigned rhs_components = param->type->components();
762
763 /* Do not try to assign more components to the vector than it has!
764 */
765 if ((rhs_components + base_lhs_component) > lhs_components) {
766 rhs_components = lhs_components - base_lhs_component;
767 }
768
769 const ir_constant *const c = param->as_constant();
770 if (c != NULL) {
771 for (unsigned i = 0; i < rhs_components; i++) {
772 switch (c->type->base_type) {
773 case GLSL_TYPE_UINT:
774 data.u[i + base_component] = c->get_uint_component(i);
775 break;
776 case GLSL_TYPE_INT:
777 data.i[i + base_component] = c->get_int_component(i);
778 break;
779 case GLSL_TYPE_FLOAT:
780 data.f[i + base_component] = c->get_float_component(i);
781 break;
782 case GLSL_TYPE_BOOL:
783 data.b[i + base_component] = c->get_bool_component(i);
784 break;
785 default:
786 assert(!"Should not get here.");
787 break;
788 }
789 }
790
791 /* Mask of fields to be written in the assignment.
792 */
793 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
794 constant_components += rhs_components;
795
796 base_component += rhs_components;
797 }
798 /* Advance the component index by the number of components
799 * that were just assigned.
800 */
801 base_lhs_component += rhs_components;
802 }
803
804 if (constant_mask != 0) {
805 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
806 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
807 constant_components,
808 1);
809 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
810
811 ir_instruction *inst =
812 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
813 instructions->push_tail(inst);
814 }
815
816 base_component = 0;
817 foreach_list(node, parameters) {
818 ir_rvalue *param = (ir_rvalue *) node;
819 unsigned rhs_components = param->type->components();
820
821 /* Do not try to assign more components to the vector than it has!
822 */
823 if ((rhs_components + base_component) > lhs_components) {
824 rhs_components = lhs_components - base_component;
825 }
826
827 const ir_constant *const c = param->as_constant();
828 if (c == NULL) {
829 /* Mask of fields to be written in the assignment.
830 */
831 const unsigned write_mask = ((1U << rhs_components) - 1)
832 << base_component;
833
834 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
835
836 /* Generate a swizzle so that LHS and RHS sizes match.
837 */
838 ir_rvalue *rhs =
839 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
840
841 ir_instruction *inst =
842 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
843 instructions->push_tail(inst);
844 }
845
846 /* Advance the component index by the number of components that were
847 * just assigned.
848 */
849 base_component += rhs_components;
850 }
851 }
852 return new(ctx) ir_dereference_variable(var);
853 }
854
855
856 /**
857 * Generate assignment of a portion of a vector to a portion of a matrix column
858 *
859 * \param src_base First component of the source to be used in assignment
860 * \param column Column of destination to be assiged
861 * \param row_base First component of the destination column to be assigned
862 * \param count Number of components to be assigned
863 *
864 * \note
865 * \c src_base + \c count must be less than or equal to the number of components
866 * in the source vector.
867 */
868 ir_instruction *
869 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
870 ir_rvalue *src, unsigned src_base, unsigned count,
871 void *mem_ctx)
872 {
873 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
874 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
875
876 assert(column_ref->type->components() >= (row_base + count));
877 assert(src->type->components() >= (src_base + count));
878
879 /* Generate a swizzle that extracts the number of components from the source
880 * that are to be assigned to the column of the matrix.
881 */
882 if (count < src->type->vector_elements) {
883 src = new(mem_ctx) ir_swizzle(src,
884 src_base + 0, src_base + 1,
885 src_base + 2, src_base + 3,
886 count);
887 }
888
889 /* Mask of fields to be written in the assignment.
890 */
891 const unsigned write_mask = ((1U << count) - 1) << row_base;
892
893 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
894 }
895
896
897 /**
898 * Generate inline code for a matrix constructor
899 *
900 * The generated constructor code will consist of a temporary variable
901 * declaration of the same type as the constructor. A sequence of assignments
902 * from constructor parameters to the temporary will follow.
903 *
904 * \return
905 * An \c ir_dereference_variable of the temprorary generated in the constructor
906 * body.
907 */
908 ir_rvalue *
909 emit_inline_matrix_constructor(const glsl_type *type,
910 exec_list *instructions,
911 exec_list *parameters,
912 void *ctx)
913 {
914 assert(!parameters->is_empty());
915
916 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
917 instructions->push_tail(var);
918
919 /* There are three kinds of matrix constructors.
920 *
921 * - Construct a matrix from a single scalar by replicating that scalar to
922 * along the diagonal of the matrix and setting all other components to
923 * zero.
924 *
925 * - Construct a matrix from an arbirary combination of vectors and
926 * scalars. The components of the constructor parameters are assigned
927 * to the matrix in colum-major order until the matrix is full.
928 *
929 * - Construct a matrix from a single matrix. The source matrix is copied
930 * to the upper left portion of the constructed matrix, and the remaining
931 * elements take values from the identity matrix.
932 */
933 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
934 if (single_scalar_parameter(parameters)) {
935 /* Assign the scalar to the X component of a vec4, and fill the remaining
936 * components with zero.
937 */
938 ir_variable *rhs_var =
939 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
940 ir_var_temporary);
941 instructions->push_tail(rhs_var);
942
943 ir_constant_data zero;
944 zero.f[0] = 0.0;
945 zero.f[1] = 0.0;
946 zero.f[2] = 0.0;
947 zero.f[3] = 0.0;
948
949 ir_instruction *inst =
950 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
951 new(ctx) ir_constant(rhs_var->type, &zero),
952 NULL);
953 instructions->push_tail(inst);
954
955 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
956
957 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
958 instructions->push_tail(inst);
959
960 /* Assign the temporary vector to each column of the destination matrix
961 * with a swizzle that puts the X component on the diagonal of the
962 * matrix. In some cases this may mean that the X component does not
963 * get assigned into the column at all (i.e., when the matrix has more
964 * columns than rows).
965 */
966 static const unsigned rhs_swiz[4][4] = {
967 { 0, 1, 1, 1 },
968 { 1, 0, 1, 1 },
969 { 1, 1, 0, 1 },
970 { 1, 1, 1, 0 }
971 };
972
973 const unsigned cols_to_init = MIN2(type->matrix_columns,
974 type->vector_elements);
975 for (unsigned i = 0; i < cols_to_init; i++) {
976 ir_constant *const col_idx = new(ctx) ir_constant(i);
977 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
978
979 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
980 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
981 type->vector_elements);
982
983 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
984 instructions->push_tail(inst);
985 }
986
987 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
988 ir_constant *const col_idx = new(ctx) ir_constant(i);
989 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
990
991 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
992 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
993 type->vector_elements);
994
995 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
996 instructions->push_tail(inst);
997 }
998 } else if (first_param->type->is_matrix()) {
999 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1000 *
1001 * "If a matrix is constructed from a matrix, then each component
1002 * (column i, row j) in the result that has a corresponding
1003 * component (column i, row j) in the argument will be initialized
1004 * from there. All other components will be initialized to the
1005 * identity matrix. If a matrix argument is given to a matrix
1006 * constructor, it is an error to have any other arguments."
1007 */
1008 assert(first_param->next->is_tail_sentinel());
1009 ir_rvalue *const src_matrix = first_param;
1010
1011 /* If the source matrix is smaller, pre-initialize the relavent parts of
1012 * the destination matrix to the identity matrix.
1013 */
1014 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1015 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1016
1017 /* If the source matrix has fewer rows, every column of the destination
1018 * must be initialized. Otherwise only the columns in the destination
1019 * that do not exist in the source must be initialized.
1020 */
1021 unsigned col =
1022 (src_matrix->type->vector_elements < var->type->vector_elements)
1023 ? 0 : src_matrix->type->matrix_columns;
1024
1025 const glsl_type *const col_type = var->type->column_type();
1026 for (/* empty */; col < var->type->matrix_columns; col++) {
1027 ir_constant_data ident;
1028
1029 ident.f[0] = 0.0;
1030 ident.f[1] = 0.0;
1031 ident.f[2] = 0.0;
1032 ident.f[3] = 0.0;
1033
1034 ident.f[col] = 1.0;
1035
1036 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1037
1038 ir_rvalue *const lhs =
1039 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1040
1041 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1042 instructions->push_tail(inst);
1043 }
1044 }
1045
1046 /* Assign columns from the source matrix to the destination matrix.
1047 *
1048 * Since the parameter will be used in the RHS of multiple assignments,
1049 * generate a temporary and copy the paramter there.
1050 */
1051 ir_variable *const rhs_var =
1052 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1053 ir_var_temporary);
1054 instructions->push_tail(rhs_var);
1055
1056 ir_dereference *const rhs_var_ref =
1057 new(ctx) ir_dereference_variable(rhs_var);
1058 ir_instruction *const inst =
1059 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1060 instructions->push_tail(inst);
1061
1062 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1063 var->type->vector_elements);
1064 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1065 var->type->matrix_columns);
1066
1067 unsigned swiz[4] = { 0, 0, 0, 0 };
1068 for (unsigned i = 1; i < last_row; i++)
1069 swiz[i] = i;
1070
1071 const unsigned write_mask = (1U << last_row) - 1;
1072
1073 for (unsigned i = 0; i < last_col; i++) {
1074 ir_dereference *const lhs =
1075 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1076 ir_rvalue *const rhs_col =
1077 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1078
1079 /* If one matrix has columns that are smaller than the columns of the
1080 * other matrix, wrap the column access of the larger with a swizzle
1081 * so that the LHS and RHS of the assignment have the same size (and
1082 * therefore have the same type).
1083 *
1084 * It would be perfectly valid to unconditionally generate the
1085 * swizzles, this this will typically result in a more compact IR tree.
1086 */
1087 ir_rvalue *rhs;
1088 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1089 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1090 } else {
1091 rhs = rhs_col;
1092 }
1093
1094 ir_instruction *inst =
1095 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1096 instructions->push_tail(inst);
1097 }
1098 } else {
1099 const unsigned cols = type->matrix_columns;
1100 const unsigned rows = type->vector_elements;
1101 unsigned col_idx = 0;
1102 unsigned row_idx = 0;
1103
1104 foreach_list (node, parameters) {
1105 ir_rvalue *const rhs = (ir_rvalue *) node;
1106 const unsigned components_remaining_this_column = rows - row_idx;
1107 unsigned rhs_components = rhs->type->components();
1108 unsigned rhs_base = 0;
1109
1110 /* Since the parameter might be used in the RHS of two assignments,
1111 * generate a temporary and copy the paramter there.
1112 */
1113 ir_variable *rhs_var =
1114 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1115 instructions->push_tail(rhs_var);
1116
1117 ir_dereference *rhs_var_ref =
1118 new(ctx) ir_dereference_variable(rhs_var);
1119 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1120 instructions->push_tail(inst);
1121
1122 /* Assign the current parameter to as many components of the matrix
1123 * as it will fill.
1124 *
1125 * NOTE: A single vector parameter can span two matrix columns. A
1126 * single vec4, for example, can completely fill a mat2.
1127 */
1128 if (rhs_components >= components_remaining_this_column) {
1129 const unsigned count = MIN2(rhs_components,
1130 components_remaining_this_column);
1131
1132 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1133
1134 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1135 row_idx,
1136 rhs_var_ref, 0,
1137 count, ctx);
1138 instructions->push_tail(inst);
1139
1140 rhs_base = count;
1141
1142 col_idx++;
1143 row_idx = 0;
1144 }
1145
1146 /* If there is data left in the parameter and components left to be
1147 * set in the destination, emit another assignment. It is possible
1148 * that the assignment could be of a vec4 to the last element of the
1149 * matrix. In this case col_idx==cols, but there is still data
1150 * left in the source parameter. Obviously, don't emit an assignment
1151 * to data outside the destination matrix.
1152 */
1153 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1154 const unsigned count = rhs_components - rhs_base;
1155
1156 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1157
1158 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1159 row_idx,
1160 rhs_var_ref,
1161 rhs_base,
1162 count, ctx);
1163 instructions->push_tail(inst);
1164
1165 row_idx += count;
1166 }
1167 }
1168 }
1169
1170 return new(ctx) ir_dereference_variable(var);
1171 }
1172
1173
1174 ir_rvalue *
1175 emit_inline_record_constructor(const glsl_type *type,
1176 exec_list *instructions,
1177 exec_list *parameters,
1178 void *mem_ctx)
1179 {
1180 ir_variable *const var =
1181 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1182 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1183
1184 instructions->push_tail(var);
1185
1186 exec_node *node = parameters->head;
1187 for (unsigned i = 0; i < type->length; i++) {
1188 assert(!node->is_tail_sentinel());
1189
1190 ir_dereference *const lhs =
1191 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1192 type->fields.structure[i].name);
1193
1194 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1195 assert(rhs != NULL);
1196
1197 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1198
1199 instructions->push_tail(assign);
1200 node = node->next;
1201 }
1202
1203 return d;
1204 }
1205
1206
1207 ir_rvalue *
1208 ast_function_expression::hir(exec_list *instructions,
1209 struct _mesa_glsl_parse_state *state)
1210 {
1211 void *ctx = state;
1212 /* There are three sorts of function calls.
1213 *
1214 * 1. constructors - The first subexpression is an ast_type_specifier.
1215 * 2. methods - Only the .length() method of array types.
1216 * 3. functions - Calls to regular old functions.
1217 *
1218 * Method calls are actually detected when the ast_field_selection
1219 * expression is handled.
1220 */
1221 if (is_constructor()) {
1222 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1223 YYLTYPE loc = type->get_location();
1224 const char *name;
1225
1226 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1227
1228 /* constructor_type can be NULL if a variable with the same name as the
1229 * structure has come into scope.
1230 */
1231 if (constructor_type == NULL) {
1232 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1233 "may be shadowed by a variable with the same name)",
1234 type->type_name);
1235 return ir_rvalue::error_value(ctx);
1236 }
1237
1238
1239 /* Constructors for samplers are illegal.
1240 */
1241 if (constructor_type->is_sampler()) {
1242 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1243 constructor_type->name);
1244 return ir_rvalue::error_value(ctx);
1245 }
1246
1247 if (constructor_type->is_array()) {
1248 if (!state->check_version(120, 300, &loc,
1249 "array constructors forbidden")) {
1250 return ir_rvalue::error_value(ctx);
1251 }
1252
1253 return process_array_constructor(instructions, constructor_type,
1254 & loc, &this->expressions, state);
1255 }
1256
1257
1258 /* There are two kinds of constructor call. Constructors for built-in
1259 * language types, such as mat4 and vec2, are free form. The only
1260 * requirement is that the parameters must provide enough values of the
1261 * correct scalar type. Constructors for arrays and structures must
1262 * have the exact number of parameters with matching types in the
1263 * correct order. These constructors follow essentially the same type
1264 * matching rules as functions.
1265 */
1266 if (constructor_type->is_record()) {
1267 exec_list actual_parameters;
1268
1269 process_parameters(instructions, &actual_parameters,
1270 &this->expressions, state);
1271
1272 exec_node *node = actual_parameters.head;
1273 for (unsigned i = 0; i < constructor_type->length; i++) {
1274 ir_rvalue *ir = (ir_rvalue *) node;
1275
1276 if (node->is_tail_sentinel()) {
1277 _mesa_glsl_error(&loc, state,
1278 "insufficient parameters to constructor "
1279 "for `%s'",
1280 constructor_type->name);
1281 return ir_rvalue::error_value(ctx);
1282 }
1283
1284 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1285 ir, state)) {
1286 node->replace_with(ir);
1287 } else {
1288 _mesa_glsl_error(&loc, state,
1289 "parameter type mismatch in constructor "
1290 "for `%s.%s' (%s vs %s)",
1291 constructor_type->name,
1292 constructor_type->fields.structure[i].name,
1293 ir->type->name,
1294 constructor_type->fields.structure[i].type->name);
1295 return ir_rvalue::error_value(ctx);;
1296 }
1297
1298 node = node->next;
1299 }
1300
1301 if (!node->is_tail_sentinel()) {
1302 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1303 "for `%s'", constructor_type->name);
1304 return ir_rvalue::error_value(ctx);
1305 }
1306
1307 ir_rvalue *const constant =
1308 constant_record_constructor(constructor_type, &actual_parameters,
1309 state);
1310
1311 return (constant != NULL)
1312 ? constant
1313 : emit_inline_record_constructor(constructor_type, instructions,
1314 &actual_parameters, state);
1315 }
1316
1317 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1318 return ir_rvalue::error_value(ctx);
1319
1320 /* Total number of components of the type being constructed. */
1321 const unsigned type_components = constructor_type->components();
1322
1323 /* Number of components from parameters that have actually been
1324 * consumed. This is used to perform several kinds of error checking.
1325 */
1326 unsigned components_used = 0;
1327
1328 unsigned matrix_parameters = 0;
1329 unsigned nonmatrix_parameters = 0;
1330 exec_list actual_parameters;
1331
1332 foreach_list (n, &this->expressions) {
1333 ast_node *ast = exec_node_data(ast_node, n, link);
1334 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1335
1336 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1337 *
1338 * "It is an error to provide extra arguments beyond this
1339 * last used argument."
1340 */
1341 if (components_used >= type_components) {
1342 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1343 "constructor",
1344 constructor_type->name);
1345 return ir_rvalue::error_value(ctx);
1346 }
1347
1348 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1349 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1350 "non-numeric data type",
1351 constructor_type->name);
1352 return ir_rvalue::error_value(ctx);
1353 }
1354
1355 /* Count the number of matrix and nonmatrix parameters. This
1356 * is used below to enforce some of the constructor rules.
1357 */
1358 if (result->type->is_matrix())
1359 matrix_parameters++;
1360 else
1361 nonmatrix_parameters++;
1362
1363 actual_parameters.push_tail(result);
1364 components_used += result->type->components();
1365 }
1366
1367 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1368 *
1369 * "It is an error to construct matrices from other matrices. This
1370 * is reserved for future use."
1371 */
1372 if (matrix_parameters > 0
1373 && constructor_type->is_matrix()
1374 && !state->check_version(120, 100, &loc,
1375 "cannot construct `%s' from a matrix",
1376 constructor_type->name)) {
1377 return ir_rvalue::error_value(ctx);
1378 }
1379
1380 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1381 *
1382 * "If a matrix argument is given to a matrix constructor, it is
1383 * an error to have any other arguments."
1384 */
1385 if ((matrix_parameters > 0)
1386 && ((matrix_parameters + nonmatrix_parameters) > 1)
1387 && constructor_type->is_matrix()) {
1388 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1389 "matrix must be only parameter",
1390 constructor_type->name);
1391 return ir_rvalue::error_value(ctx);
1392 }
1393
1394 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1395 *
1396 * "In these cases, there must be enough components provided in the
1397 * arguments to provide an initializer for every component in the
1398 * constructed value."
1399 */
1400 if (components_used < type_components && components_used != 1
1401 && matrix_parameters == 0) {
1402 _mesa_glsl_error(& loc, state, "too few components to construct "
1403 "`%s'",
1404 constructor_type->name);
1405 return ir_rvalue::error_value(ctx);
1406 }
1407
1408 /* Later, we cast each parameter to the same base type as the
1409 * constructor. Since there are no non-floating point matrices, we
1410 * need to break them up into a series of column vectors.
1411 */
1412 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1413 foreach_list_safe(n, &actual_parameters) {
1414 ir_rvalue *matrix = (ir_rvalue *) n;
1415
1416 if (!matrix->type->is_matrix())
1417 continue;
1418
1419 /* Create a temporary containing the matrix. */
1420 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1421 ir_var_temporary);
1422 instructions->push_tail(var);
1423 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1424 ir_dereference_variable(var), matrix, NULL));
1425 var->constant_value = matrix->constant_expression_value();
1426
1427 /* Replace the matrix with dereferences of its columns. */
1428 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1429 matrix->insert_before(new (ctx) ir_dereference_array(var,
1430 new(ctx) ir_constant(i)));
1431 }
1432 matrix->remove();
1433 }
1434 }
1435
1436 bool all_parameters_are_constant = true;
1437
1438 /* Type cast each parameter and, if possible, fold constants.*/
1439 foreach_list_safe(n, &actual_parameters) {
1440 ir_rvalue *ir = (ir_rvalue *) n;
1441
1442 const glsl_type *desired_type =
1443 glsl_type::get_instance(constructor_type->base_type,
1444 ir->type->vector_elements,
1445 ir->type->matrix_columns);
1446 ir_rvalue *result = convert_component(ir, desired_type);
1447
1448 /* Attempt to convert the parameter to a constant valued expression.
1449 * After doing so, track whether or not all the parameters to the
1450 * constructor are trivially constant valued expressions.
1451 */
1452 ir_rvalue *const constant = result->constant_expression_value();
1453
1454 if (constant != NULL)
1455 result = constant;
1456 else
1457 all_parameters_are_constant = false;
1458
1459 if (result != ir) {
1460 ir->replace_with(result);
1461 }
1462 }
1463
1464 /* If all of the parameters are trivially constant, create a
1465 * constant representing the complete collection of parameters.
1466 */
1467 if (all_parameters_are_constant) {
1468 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1469 } else if (constructor_type->is_scalar()) {
1470 return dereference_component((ir_rvalue *) actual_parameters.head,
1471 0);
1472 } else if (constructor_type->is_vector()) {
1473 return emit_inline_vector_constructor(constructor_type,
1474 instructions,
1475 &actual_parameters,
1476 ctx);
1477 } else {
1478 assert(constructor_type->is_matrix());
1479 return emit_inline_matrix_constructor(constructor_type,
1480 instructions,
1481 &actual_parameters,
1482 ctx);
1483 }
1484 } else {
1485 const ast_expression *id = subexpressions[0];
1486 const char *func_name = id->primary_expression.identifier;
1487 YYLTYPE loc = id->get_location();
1488 exec_list actual_parameters;
1489
1490 process_parameters(instructions, &actual_parameters, &this->expressions,
1491 state);
1492
1493 ir_function_signature *sig =
1494 match_function_by_name(func_name, &actual_parameters, state);
1495
1496 ir_call *call = NULL;
1497 ir_rvalue *value = NULL;
1498 if (sig == NULL) {
1499 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1500 value = ir_rvalue::error_value(ctx);
1501 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1502 /* an error has already been emitted */
1503 value = ir_rvalue::error_value(ctx);
1504 } else {
1505 value = generate_call(instructions, sig, &actual_parameters,
1506 &call, state);
1507 }
1508
1509 return value;
1510 }
1511
1512 return ir_rvalue::error_value(ctx);
1513 }