39182639f33cb5fe9f99ffb0ef3d6df9d65106a9
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * If a function call is generated, \c call_ir will point to it on exit.
278 * Otherwise \c call_ir will be set to \c NULL.
279 */
280 static ir_rvalue *
281 generate_call(exec_list *instructions, ir_function_signature *sig,
282 exec_list *actual_parameters,
283 ir_call **call_ir,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 exec_list post_call_conversions;
288
289 *call_ir = NULL;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
392 if (is_exact)
393 goto done;
394
395 if (!state->es_shader && f->has_user_signature()) {
396 /* In desktop GL, the presence of a user-defined signature hides any
397 * built-in signatures, so we must ignore them. In contrast, in ES2
398 * user-defined signatures add new overloads, so we must proceed.
399 */
400 goto done;
401 }
402 }
403
404 /* Local shader has no exact candidates; check the built-ins. */
405 _mesa_glsl_initialize_functions(state);
406 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
407 ir_function *builtin =
408 state->builtins_to_link[i]->symbols->get_function(name);
409 if (builtin == NULL)
410 continue;
411
412 bool is_exact = false;
413 ir_function_signature *builtin_sig =
414 builtin->matching_signature(actual_parameters, &is_exact);
415
416 if (builtin_sig == NULL)
417 continue;
418
419 /* If the built-in signature is exact, we can stop. */
420 if (is_exact) {
421 sig = builtin_sig;
422 goto done;
423 }
424
425 if (sig == NULL) {
426 /* We found an inexact match, which is better than nothing. However,
427 * we should keep searching for an exact match.
428 */
429 sig = builtin_sig;
430 }
431 }
432
433 done:
434 if (sig != NULL) {
435 /* If the match is from a linked built-in shader, import the prototype. */
436 if (sig != local_sig) {
437 if (f == NULL) {
438 f = new(ctx) ir_function(name);
439 state->symbols->add_global_function(f);
440 emit_function(state, f);
441 }
442 f->add_signature(sig->clone_prototype(f, NULL));
443 }
444 }
445 return sig;
446 }
447
448 /**
449 * Raise a "no matching function" error, listing all possible overloads the
450 * compiler considered so developers can figure out what went wrong.
451 */
452 static void
453 no_matching_function_error(const char *name,
454 YYLTYPE *loc,
455 exec_list *actual_parameters,
456 _mesa_glsl_parse_state *state)
457 {
458 char *str = prototype_string(NULL, name, actual_parameters);
459 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
460 ralloc_free(str);
461
462 const char *prefix = "candidates are: ";
463
464 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
465 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
466 : state->symbols;
467 ir_function *f = syms->get_function(name);
468 if (f == NULL)
469 continue;
470
471 foreach_list (node, &f->signatures) {
472 ir_function_signature *sig = (ir_function_signature *) node;
473
474 str = prototype_string(sig->return_type, f->name, &sig->parameters);
475 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
476 ralloc_free(str);
477
478 prefix = " ";
479 }
480 }
481 }
482
483 /**
484 * Perform automatic type conversion of constructor parameters
485 *
486 * This implements the rules in the "Conversion and Scalar Constructors"
487 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
488 */
489 static ir_rvalue *
490 convert_component(ir_rvalue *src, const glsl_type *desired_type)
491 {
492 void *ctx = ralloc_parent(src);
493 const unsigned a = desired_type->base_type;
494 const unsigned b = src->type->base_type;
495 ir_expression *result = NULL;
496
497 if (src->type->is_error())
498 return src;
499
500 assert(a <= GLSL_TYPE_BOOL);
501 assert(b <= GLSL_TYPE_BOOL);
502
503 if (a == b)
504 return src;
505
506 switch (a) {
507 case GLSL_TYPE_UINT:
508 switch (b) {
509 case GLSL_TYPE_INT:
510 result = new(ctx) ir_expression(ir_unop_i2u, src);
511 break;
512 case GLSL_TYPE_FLOAT:
513 result = new(ctx) ir_expression(ir_unop_f2u, src);
514 break;
515 case GLSL_TYPE_BOOL:
516 result = new(ctx) ir_expression(ir_unop_i2u,
517 new(ctx) ir_expression(ir_unop_b2i, src));
518 break;
519 }
520 break;
521 case GLSL_TYPE_INT:
522 switch (b) {
523 case GLSL_TYPE_UINT:
524 result = new(ctx) ir_expression(ir_unop_u2i, src);
525 break;
526 case GLSL_TYPE_FLOAT:
527 result = new(ctx) ir_expression(ir_unop_f2i, src);
528 break;
529 case GLSL_TYPE_BOOL:
530 result = new(ctx) ir_expression(ir_unop_b2i, src);
531 break;
532 }
533 break;
534 case GLSL_TYPE_FLOAT:
535 switch (b) {
536 case GLSL_TYPE_UINT:
537 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
538 break;
539 case GLSL_TYPE_INT:
540 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
541 break;
542 case GLSL_TYPE_BOOL:
543 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
544 break;
545 }
546 break;
547 case GLSL_TYPE_BOOL:
548 switch (b) {
549 case GLSL_TYPE_UINT:
550 result = new(ctx) ir_expression(ir_unop_i2b,
551 new(ctx) ir_expression(ir_unop_u2i, src));
552 break;
553 case GLSL_TYPE_INT:
554 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
555 break;
556 case GLSL_TYPE_FLOAT:
557 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
558 break;
559 }
560 break;
561 }
562
563 assert(result != NULL);
564 assert(result->type == desired_type);
565
566 /* Try constant folding; it may fold in the conversion we just added. */
567 ir_constant *const constant = result->constant_expression_value();
568 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
569 }
570
571 /**
572 * Dereference a specific component from a scalar, vector, or matrix
573 */
574 static ir_rvalue *
575 dereference_component(ir_rvalue *src, unsigned component)
576 {
577 void *ctx = ralloc_parent(src);
578 assert(component < src->type->components());
579
580 /* If the source is a constant, just create a new constant instead of a
581 * dereference of the existing constant.
582 */
583 ir_constant *constant = src->as_constant();
584 if (constant)
585 return new(ctx) ir_constant(constant, component);
586
587 if (src->type->is_scalar()) {
588 return src;
589 } else if (src->type->is_vector()) {
590 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
591 } else {
592 assert(src->type->is_matrix());
593
594 /* Dereference a row of the matrix, then call this function again to get
595 * a specific element from that row.
596 */
597 const int c = component / src->type->column_type()->vector_elements;
598 const int r = component % src->type->column_type()->vector_elements;
599 ir_constant *const col_index = new(ctx) ir_constant(c);
600 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
601
602 col->type = src->type->column_type();
603
604 return dereference_component(col, r);
605 }
606
607 assert(!"Should not get here.");
608 return NULL;
609 }
610
611
612 static ir_rvalue *
613 process_vec_mat_constructor(exec_list *instructions,
614 const glsl_type *constructor_type,
615 YYLTYPE *loc, exec_list *parameters,
616 struct _mesa_glsl_parse_state *state)
617 {
618 void *ctx = state;
619
620 /* The ARB_shading_language_420pack spec says:
621 *
622 * "If an initializer is a list of initializers enclosed in curly braces,
623 * the variable being declared must be a vector, a matrix, an array, or a
624 * structure.
625 *
626 * int i = { 1 }; // illegal, i is not an aggregate"
627 */
628 if (constructor_type->vector_elements <= 1) {
629 _mesa_glsl_error(loc, state, "Aggregates can only initialize vectors, "
630 "matrices, arrays, and structs");
631 return ir_rvalue::error_value(ctx);
632 }
633
634 exec_list actual_parameters;
635 const unsigned parameter_count =
636 process_parameters(instructions, &actual_parameters, parameters, state);
637
638 if (parameter_count == 0
639 || (constructor_type->is_vector() &&
640 constructor_type->vector_elements != parameter_count)
641 || (constructor_type->is_matrix() &&
642 constructor_type->matrix_columns != parameter_count)) {
643 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
644 constructor_type->is_vector() ? "vector" : "matrix",
645 constructor_type->vector_elements);
646 return ir_rvalue::error_value(ctx);
647 }
648
649 bool all_parameters_are_constant = true;
650
651 /* Type cast each parameter and, if possible, fold constants. */
652 foreach_list_safe(n, &actual_parameters) {
653 ir_rvalue *ir = (ir_rvalue *) n;
654 ir_rvalue *result = ir;
655
656 /* Apply implicit conversions (not the scalar constructor rules!). See
657 * the spec quote above. */
658 if (constructor_type->is_float()) {
659 const glsl_type *desired_type =
660 glsl_type::get_instance(GLSL_TYPE_FLOAT,
661 ir->type->vector_elements,
662 ir->type->matrix_columns);
663 if (result->type->can_implicitly_convert_to(desired_type)) {
664 /* Even though convert_component() implements the constructor
665 * conversion rules (not the implicit conversion rules), its safe
666 * to use it here because we already checked that the implicit
667 * conversion is legal.
668 */
669 result = convert_component(ir, desired_type);
670 }
671 }
672
673 if (constructor_type->is_matrix()) {
674 if (result->type != constructor_type->column_type()) {
675 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
676 "expected: %s, found %s",
677 constructor_type->column_type()->name,
678 result->type->name);
679 return ir_rvalue::error_value(ctx);
680 }
681 } else if (result->type != constructor_type->get_scalar_type()) {
682 _mesa_glsl_error(loc, state, "type error in vector constructor: "
683 "expected: %s, found %s",
684 constructor_type->get_scalar_type()->name,
685 result->type->name);
686 return ir_rvalue::error_value(ctx);
687 }
688
689 /* Attempt to convert the parameter to a constant valued expression.
690 * After doing so, track whether or not all the parameters to the
691 * constructor are trivially constant valued expressions.
692 */
693 ir_rvalue *const constant = result->constant_expression_value();
694
695 if (constant != NULL)
696 result = constant;
697 else
698 all_parameters_are_constant = false;
699
700 ir->replace_with(result);
701 }
702
703 if (all_parameters_are_constant)
704 return new(ctx) ir_constant(constructor_type, &actual_parameters);
705
706 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
707 ir_var_temporary);
708 instructions->push_tail(var);
709
710 int i = 0;
711 foreach_list(node, &actual_parameters) {
712 ir_rvalue *rhs = (ir_rvalue *) node;
713 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
714 new(ctx) ir_constant(i));
715
716 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
717 instructions->push_tail(assignment);
718
719 i++;
720 }
721
722 return new(ctx) ir_dereference_variable(var);
723 }
724
725
726 static ir_rvalue *
727 process_array_constructor(exec_list *instructions,
728 const glsl_type *constructor_type,
729 YYLTYPE *loc, exec_list *parameters,
730 struct _mesa_glsl_parse_state *state)
731 {
732 void *ctx = state;
733 /* Array constructors come in two forms: sized and unsized. Sized array
734 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
735 * variables. In this case the number of parameters must exactly match the
736 * specified size of the array.
737 *
738 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
739 * are vec4 variables. In this case the size of the array being constructed
740 * is determined by the number of parameters.
741 *
742 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
743 *
744 * "There must be exactly the same number of arguments as the size of
745 * the array being constructed. If no size is present in the
746 * constructor, then the array is explicitly sized to the number of
747 * arguments provided. The arguments are assigned in order, starting at
748 * element 0, to the elements of the constructed array. Each argument
749 * must be the same type as the element type of the array, or be a type
750 * that can be converted to the element type of the array according to
751 * Section 4.1.10 "Implicit Conversions.""
752 */
753 exec_list actual_parameters;
754 const unsigned parameter_count =
755 process_parameters(instructions, &actual_parameters, parameters, state);
756
757 if ((parameter_count == 0)
758 || ((constructor_type->length != 0)
759 && (constructor_type->length != parameter_count))) {
760 const unsigned min_param = (constructor_type->length == 0)
761 ? 1 : constructor_type->length;
762
763 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
764 "parameter%s",
765 (constructor_type->length == 0) ? "at least" : "exactly",
766 min_param, (min_param <= 1) ? "" : "s");
767 return ir_rvalue::error_value(ctx);
768 }
769
770 if (constructor_type->length == 0) {
771 constructor_type =
772 glsl_type::get_array_instance(constructor_type->element_type(),
773 parameter_count);
774 assert(constructor_type != NULL);
775 assert(constructor_type->length == parameter_count);
776 }
777
778 bool all_parameters_are_constant = true;
779
780 /* Type cast each parameter and, if possible, fold constants. */
781 foreach_list_safe(n, &actual_parameters) {
782 ir_rvalue *ir = (ir_rvalue *) n;
783 ir_rvalue *result = ir;
784
785 /* Apply implicit conversions (not the scalar constructor rules!). See
786 * the spec quote above. */
787 if (constructor_type->element_type()->is_float()) {
788 const glsl_type *desired_type =
789 glsl_type::get_instance(GLSL_TYPE_FLOAT,
790 ir->type->vector_elements,
791 ir->type->matrix_columns);
792 if (result->type->can_implicitly_convert_to(desired_type)) {
793 /* Even though convert_component() implements the constructor
794 * conversion rules (not the implicit conversion rules), its safe
795 * to use it here because we already checked that the implicit
796 * conversion is legal.
797 */
798 result = convert_component(ir, desired_type);
799 }
800 }
801
802 if (result->type != constructor_type->element_type()) {
803 _mesa_glsl_error(loc, state, "type error in array constructor: "
804 "expected: %s, found %s",
805 constructor_type->element_type()->name,
806 result->type->name);
807 return ir_rvalue::error_value(ctx);
808 }
809
810 /* Attempt to convert the parameter to a constant valued expression.
811 * After doing so, track whether or not all the parameters to the
812 * constructor are trivially constant valued expressions.
813 */
814 ir_rvalue *const constant = result->constant_expression_value();
815
816 if (constant != NULL)
817 result = constant;
818 else
819 all_parameters_are_constant = false;
820
821 ir->replace_with(result);
822 }
823
824 if (all_parameters_are_constant)
825 return new(ctx) ir_constant(constructor_type, &actual_parameters);
826
827 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
828 ir_var_temporary);
829 instructions->push_tail(var);
830
831 int i = 0;
832 foreach_list(node, &actual_parameters) {
833 ir_rvalue *rhs = (ir_rvalue *) node;
834 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
835 new(ctx) ir_constant(i));
836
837 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
838 instructions->push_tail(assignment);
839
840 i++;
841 }
842
843 return new(ctx) ir_dereference_variable(var);
844 }
845
846
847 /**
848 * Try to convert a record constructor to a constant expression
849 */
850 static ir_constant *
851 constant_record_constructor(const glsl_type *constructor_type,
852 exec_list *parameters, void *mem_ctx)
853 {
854 foreach_list(node, parameters) {
855 ir_constant *constant = ((ir_instruction *) node)->as_constant();
856 if (constant == NULL)
857 return NULL;
858 node->replace_with(constant);
859 }
860
861 return new(mem_ctx) ir_constant(constructor_type, parameters);
862 }
863
864
865 /**
866 * Determine if a list consists of a single scalar r-value
867 */
868 bool
869 single_scalar_parameter(exec_list *parameters)
870 {
871 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
872 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
873
874 return (p->type->is_scalar() && p->next->is_tail_sentinel());
875 }
876
877
878 /**
879 * Generate inline code for a vector constructor
880 *
881 * The generated constructor code will consist of a temporary variable
882 * declaration of the same type as the constructor. A sequence of assignments
883 * from constructor parameters to the temporary will follow.
884 *
885 * \return
886 * An \c ir_dereference_variable of the temprorary generated in the constructor
887 * body.
888 */
889 ir_rvalue *
890 emit_inline_vector_constructor(const glsl_type *type,
891 exec_list *instructions,
892 exec_list *parameters,
893 void *ctx)
894 {
895 assert(!parameters->is_empty());
896
897 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
898 instructions->push_tail(var);
899
900 /* There are two kinds of vector constructors.
901 *
902 * - Construct a vector from a single scalar by replicating that scalar to
903 * all components of the vector.
904 *
905 * - Construct a vector from an arbirary combination of vectors and
906 * scalars. The components of the constructor parameters are assigned
907 * to the vector in order until the vector is full.
908 */
909 const unsigned lhs_components = type->components();
910 if (single_scalar_parameter(parameters)) {
911 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
912 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
913 lhs_components);
914 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
915 const unsigned mask = (1U << lhs_components) - 1;
916
917 assert(rhs->type == lhs->type);
918
919 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
920 instructions->push_tail(inst);
921 } else {
922 unsigned base_component = 0;
923 unsigned base_lhs_component = 0;
924 ir_constant_data data;
925 unsigned constant_mask = 0, constant_components = 0;
926
927 memset(&data, 0, sizeof(data));
928
929 foreach_list(node, parameters) {
930 ir_rvalue *param = (ir_rvalue *) node;
931 unsigned rhs_components = param->type->components();
932
933 /* Do not try to assign more components to the vector than it has!
934 */
935 if ((rhs_components + base_lhs_component) > lhs_components) {
936 rhs_components = lhs_components - base_lhs_component;
937 }
938
939 const ir_constant *const c = param->as_constant();
940 if (c != NULL) {
941 for (unsigned i = 0; i < rhs_components; i++) {
942 switch (c->type->base_type) {
943 case GLSL_TYPE_UINT:
944 data.u[i + base_component] = c->get_uint_component(i);
945 break;
946 case GLSL_TYPE_INT:
947 data.i[i + base_component] = c->get_int_component(i);
948 break;
949 case GLSL_TYPE_FLOAT:
950 data.f[i + base_component] = c->get_float_component(i);
951 break;
952 case GLSL_TYPE_BOOL:
953 data.b[i + base_component] = c->get_bool_component(i);
954 break;
955 default:
956 assert(!"Should not get here.");
957 break;
958 }
959 }
960
961 /* Mask of fields to be written in the assignment.
962 */
963 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
964 constant_components += rhs_components;
965
966 base_component += rhs_components;
967 }
968 /* Advance the component index by the number of components
969 * that were just assigned.
970 */
971 base_lhs_component += rhs_components;
972 }
973
974 if (constant_mask != 0) {
975 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
976 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
977 constant_components,
978 1);
979 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
980
981 ir_instruction *inst =
982 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
983 instructions->push_tail(inst);
984 }
985
986 base_component = 0;
987 foreach_list(node, parameters) {
988 ir_rvalue *param = (ir_rvalue *) node;
989 unsigned rhs_components = param->type->components();
990
991 /* Do not try to assign more components to the vector than it has!
992 */
993 if ((rhs_components + base_component) > lhs_components) {
994 rhs_components = lhs_components - base_component;
995 }
996
997 const ir_constant *const c = param->as_constant();
998 if (c == NULL) {
999 /* Mask of fields to be written in the assignment.
1000 */
1001 const unsigned write_mask = ((1U << rhs_components) - 1)
1002 << base_component;
1003
1004 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1005
1006 /* Generate a swizzle so that LHS and RHS sizes match.
1007 */
1008 ir_rvalue *rhs =
1009 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1010
1011 ir_instruction *inst =
1012 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1013 instructions->push_tail(inst);
1014 }
1015
1016 /* Advance the component index by the number of components that were
1017 * just assigned.
1018 */
1019 base_component += rhs_components;
1020 }
1021 }
1022 return new(ctx) ir_dereference_variable(var);
1023 }
1024
1025
1026 /**
1027 * Generate assignment of a portion of a vector to a portion of a matrix column
1028 *
1029 * \param src_base First component of the source to be used in assignment
1030 * \param column Column of destination to be assiged
1031 * \param row_base First component of the destination column to be assigned
1032 * \param count Number of components to be assigned
1033 *
1034 * \note
1035 * \c src_base + \c count must be less than or equal to the number of components
1036 * in the source vector.
1037 */
1038 ir_instruction *
1039 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1040 ir_rvalue *src, unsigned src_base, unsigned count,
1041 void *mem_ctx)
1042 {
1043 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1044 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1045
1046 assert(column_ref->type->components() >= (row_base + count));
1047 assert(src->type->components() >= (src_base + count));
1048
1049 /* Generate a swizzle that extracts the number of components from the source
1050 * that are to be assigned to the column of the matrix.
1051 */
1052 if (count < src->type->vector_elements) {
1053 src = new(mem_ctx) ir_swizzle(src,
1054 src_base + 0, src_base + 1,
1055 src_base + 2, src_base + 3,
1056 count);
1057 }
1058
1059 /* Mask of fields to be written in the assignment.
1060 */
1061 const unsigned write_mask = ((1U << count) - 1) << row_base;
1062
1063 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1064 }
1065
1066
1067 /**
1068 * Generate inline code for a matrix constructor
1069 *
1070 * The generated constructor code will consist of a temporary variable
1071 * declaration of the same type as the constructor. A sequence of assignments
1072 * from constructor parameters to the temporary will follow.
1073 *
1074 * \return
1075 * An \c ir_dereference_variable of the temprorary generated in the constructor
1076 * body.
1077 */
1078 ir_rvalue *
1079 emit_inline_matrix_constructor(const glsl_type *type,
1080 exec_list *instructions,
1081 exec_list *parameters,
1082 void *ctx)
1083 {
1084 assert(!parameters->is_empty());
1085
1086 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1087 instructions->push_tail(var);
1088
1089 /* There are three kinds of matrix constructors.
1090 *
1091 * - Construct a matrix from a single scalar by replicating that scalar to
1092 * along the diagonal of the matrix and setting all other components to
1093 * zero.
1094 *
1095 * - Construct a matrix from an arbirary combination of vectors and
1096 * scalars. The components of the constructor parameters are assigned
1097 * to the matrix in colum-major order until the matrix is full.
1098 *
1099 * - Construct a matrix from a single matrix. The source matrix is copied
1100 * to the upper left portion of the constructed matrix, and the remaining
1101 * elements take values from the identity matrix.
1102 */
1103 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1104 if (single_scalar_parameter(parameters)) {
1105 /* Assign the scalar to the X component of a vec4, and fill the remaining
1106 * components with zero.
1107 */
1108 ir_variable *rhs_var =
1109 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1110 ir_var_temporary);
1111 instructions->push_tail(rhs_var);
1112
1113 ir_constant_data zero;
1114 zero.f[0] = 0.0;
1115 zero.f[1] = 0.0;
1116 zero.f[2] = 0.0;
1117 zero.f[3] = 0.0;
1118
1119 ir_instruction *inst =
1120 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1121 new(ctx) ir_constant(rhs_var->type, &zero),
1122 NULL);
1123 instructions->push_tail(inst);
1124
1125 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1126
1127 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1128 instructions->push_tail(inst);
1129
1130 /* Assign the temporary vector to each column of the destination matrix
1131 * with a swizzle that puts the X component on the diagonal of the
1132 * matrix. In some cases this may mean that the X component does not
1133 * get assigned into the column at all (i.e., when the matrix has more
1134 * columns than rows).
1135 */
1136 static const unsigned rhs_swiz[4][4] = {
1137 { 0, 1, 1, 1 },
1138 { 1, 0, 1, 1 },
1139 { 1, 1, 0, 1 },
1140 { 1, 1, 1, 0 }
1141 };
1142
1143 const unsigned cols_to_init = MIN2(type->matrix_columns,
1144 type->vector_elements);
1145 for (unsigned i = 0; i < cols_to_init; i++) {
1146 ir_constant *const col_idx = new(ctx) ir_constant(i);
1147 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1148
1149 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1150 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1151 type->vector_elements);
1152
1153 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1154 instructions->push_tail(inst);
1155 }
1156
1157 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1158 ir_constant *const col_idx = new(ctx) ir_constant(i);
1159 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1160
1161 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1162 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1163 type->vector_elements);
1164
1165 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1166 instructions->push_tail(inst);
1167 }
1168 } else if (first_param->type->is_matrix()) {
1169 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1170 *
1171 * "If a matrix is constructed from a matrix, then each component
1172 * (column i, row j) in the result that has a corresponding
1173 * component (column i, row j) in the argument will be initialized
1174 * from there. All other components will be initialized to the
1175 * identity matrix. If a matrix argument is given to a matrix
1176 * constructor, it is an error to have any other arguments."
1177 */
1178 assert(first_param->next->is_tail_sentinel());
1179 ir_rvalue *const src_matrix = first_param;
1180
1181 /* If the source matrix is smaller, pre-initialize the relavent parts of
1182 * the destination matrix to the identity matrix.
1183 */
1184 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1185 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1186
1187 /* If the source matrix has fewer rows, every column of the destination
1188 * must be initialized. Otherwise only the columns in the destination
1189 * that do not exist in the source must be initialized.
1190 */
1191 unsigned col =
1192 (src_matrix->type->vector_elements < var->type->vector_elements)
1193 ? 0 : src_matrix->type->matrix_columns;
1194
1195 const glsl_type *const col_type = var->type->column_type();
1196 for (/* empty */; col < var->type->matrix_columns; col++) {
1197 ir_constant_data ident;
1198
1199 ident.f[0] = 0.0;
1200 ident.f[1] = 0.0;
1201 ident.f[2] = 0.0;
1202 ident.f[3] = 0.0;
1203
1204 ident.f[col] = 1.0;
1205
1206 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1207
1208 ir_rvalue *const lhs =
1209 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1210
1211 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1212 instructions->push_tail(inst);
1213 }
1214 }
1215
1216 /* Assign columns from the source matrix to the destination matrix.
1217 *
1218 * Since the parameter will be used in the RHS of multiple assignments,
1219 * generate a temporary and copy the paramter there.
1220 */
1221 ir_variable *const rhs_var =
1222 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1223 ir_var_temporary);
1224 instructions->push_tail(rhs_var);
1225
1226 ir_dereference *const rhs_var_ref =
1227 new(ctx) ir_dereference_variable(rhs_var);
1228 ir_instruction *const inst =
1229 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1230 instructions->push_tail(inst);
1231
1232 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1233 var->type->vector_elements);
1234 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1235 var->type->matrix_columns);
1236
1237 unsigned swiz[4] = { 0, 0, 0, 0 };
1238 for (unsigned i = 1; i < last_row; i++)
1239 swiz[i] = i;
1240
1241 const unsigned write_mask = (1U << last_row) - 1;
1242
1243 for (unsigned i = 0; i < last_col; i++) {
1244 ir_dereference *const lhs =
1245 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1246 ir_rvalue *const rhs_col =
1247 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1248
1249 /* If one matrix has columns that are smaller than the columns of the
1250 * other matrix, wrap the column access of the larger with a swizzle
1251 * so that the LHS and RHS of the assignment have the same size (and
1252 * therefore have the same type).
1253 *
1254 * It would be perfectly valid to unconditionally generate the
1255 * swizzles, this this will typically result in a more compact IR tree.
1256 */
1257 ir_rvalue *rhs;
1258 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1259 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1260 } else {
1261 rhs = rhs_col;
1262 }
1263
1264 ir_instruction *inst =
1265 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1266 instructions->push_tail(inst);
1267 }
1268 } else {
1269 const unsigned cols = type->matrix_columns;
1270 const unsigned rows = type->vector_elements;
1271 unsigned col_idx = 0;
1272 unsigned row_idx = 0;
1273
1274 foreach_list (node, parameters) {
1275 ir_rvalue *const rhs = (ir_rvalue *) node;
1276 const unsigned components_remaining_this_column = rows - row_idx;
1277 unsigned rhs_components = rhs->type->components();
1278 unsigned rhs_base = 0;
1279
1280 /* Since the parameter might be used in the RHS of two assignments,
1281 * generate a temporary and copy the paramter there.
1282 */
1283 ir_variable *rhs_var =
1284 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1285 instructions->push_tail(rhs_var);
1286
1287 ir_dereference *rhs_var_ref =
1288 new(ctx) ir_dereference_variable(rhs_var);
1289 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1290 instructions->push_tail(inst);
1291
1292 /* Assign the current parameter to as many components of the matrix
1293 * as it will fill.
1294 *
1295 * NOTE: A single vector parameter can span two matrix columns. A
1296 * single vec4, for example, can completely fill a mat2.
1297 */
1298 if (rhs_components >= components_remaining_this_column) {
1299 const unsigned count = MIN2(rhs_components,
1300 components_remaining_this_column);
1301
1302 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1303
1304 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1305 row_idx,
1306 rhs_var_ref, 0,
1307 count, ctx);
1308 instructions->push_tail(inst);
1309
1310 rhs_base = count;
1311
1312 col_idx++;
1313 row_idx = 0;
1314 }
1315
1316 /* If there is data left in the parameter and components left to be
1317 * set in the destination, emit another assignment. It is possible
1318 * that the assignment could be of a vec4 to the last element of the
1319 * matrix. In this case col_idx==cols, but there is still data
1320 * left in the source parameter. Obviously, don't emit an assignment
1321 * to data outside the destination matrix.
1322 */
1323 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1324 const unsigned count = rhs_components - rhs_base;
1325
1326 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1327
1328 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1329 row_idx,
1330 rhs_var_ref,
1331 rhs_base,
1332 count, ctx);
1333 instructions->push_tail(inst);
1334
1335 row_idx += count;
1336 }
1337 }
1338 }
1339
1340 return new(ctx) ir_dereference_variable(var);
1341 }
1342
1343
1344 ir_rvalue *
1345 emit_inline_record_constructor(const glsl_type *type,
1346 exec_list *instructions,
1347 exec_list *parameters,
1348 void *mem_ctx)
1349 {
1350 ir_variable *const var =
1351 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1352 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1353
1354 instructions->push_tail(var);
1355
1356 exec_node *node = parameters->head;
1357 for (unsigned i = 0; i < type->length; i++) {
1358 assert(!node->is_tail_sentinel());
1359
1360 ir_dereference *const lhs =
1361 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1362 type->fields.structure[i].name);
1363
1364 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1365 assert(rhs != NULL);
1366
1367 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1368
1369 instructions->push_tail(assign);
1370 node = node->next;
1371 }
1372
1373 return d;
1374 }
1375
1376
1377 static ir_rvalue *
1378 process_record_constructor(exec_list *instructions,
1379 const glsl_type *constructor_type,
1380 YYLTYPE *loc, exec_list *parameters,
1381 struct _mesa_glsl_parse_state *state)
1382 {
1383 void *ctx = state;
1384 exec_list actual_parameters;
1385
1386 process_parameters(instructions, &actual_parameters,
1387 parameters, state);
1388
1389 exec_node *node = actual_parameters.head;
1390 for (unsigned i = 0; i < constructor_type->length; i++) {
1391 ir_rvalue *ir = (ir_rvalue *) node;
1392
1393 if (node->is_tail_sentinel()) {
1394 _mesa_glsl_error(loc, state,
1395 "insufficient parameters to constructor for `%s'",
1396 constructor_type->name);
1397 return ir_rvalue::error_value(ctx);
1398 }
1399
1400 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1401 ir, state)) {
1402 node->replace_with(ir);
1403 } else {
1404 _mesa_glsl_error(loc, state,
1405 "parameter type mismatch in constructor for `%s.%s' "
1406 "(%s vs %s)",
1407 constructor_type->name,
1408 constructor_type->fields.structure[i].name,
1409 ir->type->name,
1410 constructor_type->fields.structure[i].type->name);
1411 return ir_rvalue::error_value(ctx);;
1412 }
1413
1414 node = node->next;
1415 }
1416
1417 if (!node->is_tail_sentinel()) {
1418 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1419 "for `%s'", constructor_type->name);
1420 return ir_rvalue::error_value(ctx);
1421 }
1422
1423 ir_rvalue *const constant =
1424 constant_record_constructor(constructor_type, &actual_parameters,
1425 state);
1426
1427 return (constant != NULL)
1428 ? constant
1429 : emit_inline_record_constructor(constructor_type, instructions,
1430 &actual_parameters, state);
1431 }
1432
1433
1434 ir_rvalue *
1435 ast_function_expression::hir(exec_list *instructions,
1436 struct _mesa_glsl_parse_state *state)
1437 {
1438 void *ctx = state;
1439 /* There are three sorts of function calls.
1440 *
1441 * 1. constructors - The first subexpression is an ast_type_specifier.
1442 * 2. methods - Only the .length() method of array types.
1443 * 3. functions - Calls to regular old functions.
1444 *
1445 * Method calls are actually detected when the ast_field_selection
1446 * expression is handled.
1447 */
1448 if (is_constructor()) {
1449 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1450 YYLTYPE loc = type->get_location();
1451 const char *name;
1452
1453 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1454
1455 /* constructor_type can be NULL if a variable with the same name as the
1456 * structure has come into scope.
1457 */
1458 if (constructor_type == NULL) {
1459 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1460 "may be shadowed by a variable with the same name)",
1461 type->type_name);
1462 return ir_rvalue::error_value(ctx);
1463 }
1464
1465
1466 /* Constructors for samplers are illegal.
1467 */
1468 if (constructor_type->is_sampler()) {
1469 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1470 constructor_type->name);
1471 return ir_rvalue::error_value(ctx);
1472 }
1473
1474 if (constructor_type->is_array()) {
1475 if (!state->check_version(120, 300, &loc,
1476 "array constructors forbidden")) {
1477 return ir_rvalue::error_value(ctx);
1478 }
1479
1480 return process_array_constructor(instructions, constructor_type,
1481 & loc, &this->expressions, state);
1482 }
1483
1484
1485 /* There are two kinds of constructor calls. Constructors for arrays and
1486 * structures must have the exact number of arguments with matching types
1487 * in the correct order. These constructors follow essentially the same
1488 * type matching rules as functions.
1489 *
1490 * Constructors for built-in language types, such as mat4 and vec2, are
1491 * free form. The only requirements are that the parameters must provide
1492 * enough values of the correct scalar type and that no arguments are
1493 * given past the last used argument.
1494 *
1495 * When using the C-style initializer syntax from GLSL 4.20, constructors
1496 * must have the exact number of arguments with matching types in the
1497 * correct order.
1498 */
1499 if (constructor_type->is_record()) {
1500 return process_record_constructor(instructions, constructor_type,
1501 &loc, &this->expressions,
1502 state);
1503 }
1504
1505 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1506 return ir_rvalue::error_value(ctx);
1507
1508 /* Total number of components of the type being constructed. */
1509 const unsigned type_components = constructor_type->components();
1510
1511 /* Number of components from parameters that have actually been
1512 * consumed. This is used to perform several kinds of error checking.
1513 */
1514 unsigned components_used = 0;
1515
1516 unsigned matrix_parameters = 0;
1517 unsigned nonmatrix_parameters = 0;
1518 exec_list actual_parameters;
1519
1520 foreach_list (n, &this->expressions) {
1521 ast_node *ast = exec_node_data(ast_node, n, link);
1522 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1523
1524 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1525 *
1526 * "It is an error to provide extra arguments beyond this
1527 * last used argument."
1528 */
1529 if (components_used >= type_components) {
1530 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1531 "constructor",
1532 constructor_type->name);
1533 return ir_rvalue::error_value(ctx);
1534 }
1535
1536 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1537 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1538 "non-numeric data type",
1539 constructor_type->name);
1540 return ir_rvalue::error_value(ctx);
1541 }
1542
1543 /* Count the number of matrix and nonmatrix parameters. This
1544 * is used below to enforce some of the constructor rules.
1545 */
1546 if (result->type->is_matrix())
1547 matrix_parameters++;
1548 else
1549 nonmatrix_parameters++;
1550
1551 actual_parameters.push_tail(result);
1552 components_used += result->type->components();
1553 }
1554
1555 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1556 *
1557 * "It is an error to construct matrices from other matrices. This
1558 * is reserved for future use."
1559 */
1560 if (matrix_parameters > 0
1561 && constructor_type->is_matrix()
1562 && !state->check_version(120, 100, &loc,
1563 "cannot construct `%s' from a matrix",
1564 constructor_type->name)) {
1565 return ir_rvalue::error_value(ctx);
1566 }
1567
1568 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1569 *
1570 * "If a matrix argument is given to a matrix constructor, it is
1571 * an error to have any other arguments."
1572 */
1573 if ((matrix_parameters > 0)
1574 && ((matrix_parameters + nonmatrix_parameters) > 1)
1575 && constructor_type->is_matrix()) {
1576 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1577 "matrix must be only parameter",
1578 constructor_type->name);
1579 return ir_rvalue::error_value(ctx);
1580 }
1581
1582 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1583 *
1584 * "In these cases, there must be enough components provided in the
1585 * arguments to provide an initializer for every component in the
1586 * constructed value."
1587 */
1588 if (components_used < type_components && components_used != 1
1589 && matrix_parameters == 0) {
1590 _mesa_glsl_error(& loc, state, "too few components to construct "
1591 "`%s'",
1592 constructor_type->name);
1593 return ir_rvalue::error_value(ctx);
1594 }
1595
1596 /* Later, we cast each parameter to the same base type as the
1597 * constructor. Since there are no non-floating point matrices, we
1598 * need to break them up into a series of column vectors.
1599 */
1600 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1601 foreach_list_safe(n, &actual_parameters) {
1602 ir_rvalue *matrix = (ir_rvalue *) n;
1603
1604 if (!matrix->type->is_matrix())
1605 continue;
1606
1607 /* Create a temporary containing the matrix. */
1608 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1609 ir_var_temporary);
1610 instructions->push_tail(var);
1611 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1612 ir_dereference_variable(var), matrix, NULL));
1613 var->constant_value = matrix->constant_expression_value();
1614
1615 /* Replace the matrix with dereferences of its columns. */
1616 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1617 matrix->insert_before(new (ctx) ir_dereference_array(var,
1618 new(ctx) ir_constant(i)));
1619 }
1620 matrix->remove();
1621 }
1622 }
1623
1624 bool all_parameters_are_constant = true;
1625
1626 /* Type cast each parameter and, if possible, fold constants.*/
1627 foreach_list_safe(n, &actual_parameters) {
1628 ir_rvalue *ir = (ir_rvalue *) n;
1629
1630 const glsl_type *desired_type =
1631 glsl_type::get_instance(constructor_type->base_type,
1632 ir->type->vector_elements,
1633 ir->type->matrix_columns);
1634 ir_rvalue *result = convert_component(ir, desired_type);
1635
1636 /* Attempt to convert the parameter to a constant valued expression.
1637 * After doing so, track whether or not all the parameters to the
1638 * constructor are trivially constant valued expressions.
1639 */
1640 ir_rvalue *const constant = result->constant_expression_value();
1641
1642 if (constant != NULL)
1643 result = constant;
1644 else
1645 all_parameters_are_constant = false;
1646
1647 if (result != ir) {
1648 ir->replace_with(result);
1649 }
1650 }
1651
1652 /* If all of the parameters are trivially constant, create a
1653 * constant representing the complete collection of parameters.
1654 */
1655 if (all_parameters_are_constant) {
1656 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1657 } else if (constructor_type->is_scalar()) {
1658 return dereference_component((ir_rvalue *) actual_parameters.head,
1659 0);
1660 } else if (constructor_type->is_vector()) {
1661 return emit_inline_vector_constructor(constructor_type,
1662 instructions,
1663 &actual_parameters,
1664 ctx);
1665 } else {
1666 assert(constructor_type->is_matrix());
1667 return emit_inline_matrix_constructor(constructor_type,
1668 instructions,
1669 &actual_parameters,
1670 ctx);
1671 }
1672 } else {
1673 const ast_expression *id = subexpressions[0];
1674 const char *func_name = id->primary_expression.identifier;
1675 YYLTYPE loc = id->get_location();
1676 exec_list actual_parameters;
1677
1678 process_parameters(instructions, &actual_parameters, &this->expressions,
1679 state);
1680
1681 ir_function_signature *sig =
1682 match_function_by_name(func_name, &actual_parameters, state);
1683
1684 ir_call *call = NULL;
1685 ir_rvalue *value = NULL;
1686 if (sig == NULL) {
1687 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1688 value = ir_rvalue::error_value(ctx);
1689 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1690 /* an error has already been emitted */
1691 value = ir_rvalue::error_value(ctx);
1692 } else {
1693 value = generate_call(instructions, sig, &actual_parameters,
1694 &call, state);
1695 }
1696
1697 return value;
1698 }
1699
1700 return ir_rvalue::error_value(ctx);
1701 }
1702
1703 ir_rvalue *
1704 ast_aggregate_initializer::hir(exec_list *instructions,
1705 struct _mesa_glsl_parse_state *state)
1706 {
1707 void *ctx = state;
1708 YYLTYPE loc = this->get_location();
1709 const char *name;
1710 const glsl_type *const constructor_type =
1711 this->constructor_type->glsl_type(&name, state);
1712
1713 if (!state->ARB_shading_language_420pack_enable) {
1714 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1715 "GL_ARB_shading_language_420pack extension");
1716 return ir_rvalue::error_value(ctx);
1717 }
1718
1719 if (this->constructor_type->is_array) {
1720 return process_array_constructor(instructions, constructor_type, &loc,
1721 &this->expressions, state);
1722 }
1723
1724 if (this->constructor_type->structure) {
1725 return process_record_constructor(instructions, constructor_type, &loc,
1726 &this->expressions, state);
1727 }
1728
1729 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1730 &this->expressions, state);
1731 }