glsl: Pass _mesa_glsl_parse_state into matching_signature and such.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * If a function call is generated, \c call_ir will point to it on exit.
278 * Otherwise \c call_ir will be set to \c NULL.
279 */
280 static ir_rvalue *
281 generate_call(exec_list *instructions, ir_function_signature *sig,
282 exec_list *actual_parameters,
283 ir_call **call_ir,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 exec_list post_call_conversions;
288
289 *call_ir = NULL;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(state, actual_parameters,
392 &is_exact);
393 if (is_exact)
394 goto done;
395
396 if (!state->es_shader && f->has_user_signature()) {
397 /* In desktop GL, the presence of a user-defined signature hides any
398 * built-in signatures, so we must ignore them. In contrast, in ES2
399 * user-defined signatures add new overloads, so we must proceed.
400 */
401 goto done;
402 }
403 }
404
405 /* Local shader has no exact candidates; check the built-ins. */
406 _mesa_glsl_initialize_functions(state);
407 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
408 ir_function *builtin =
409 state->builtins_to_link[i]->symbols->get_function(name);
410 if (builtin == NULL)
411 continue;
412
413 bool is_exact = false;
414 ir_function_signature *builtin_sig =
415 builtin->matching_signature(state, actual_parameters, &is_exact);
416
417 if (builtin_sig == NULL)
418 continue;
419
420 /* If the built-in signature is exact, we can stop. */
421 if (is_exact) {
422 sig = builtin_sig;
423 goto done;
424 }
425
426 if (sig == NULL) {
427 /* We found an inexact match, which is better than nothing. However,
428 * we should keep searching for an exact match.
429 */
430 sig = builtin_sig;
431 }
432 }
433
434 done:
435 if (sig != NULL) {
436 /* If the match is from a linked built-in shader, import the prototype. */
437 if (sig != local_sig) {
438 if (f == NULL) {
439 f = new(ctx) ir_function(name);
440 state->symbols->add_global_function(f);
441 emit_function(state, f);
442 }
443 f->add_signature(sig->clone_prototype(f, NULL));
444 }
445 }
446 return sig;
447 }
448
449 /**
450 * Raise a "no matching function" error, listing all possible overloads the
451 * compiler considered so developers can figure out what went wrong.
452 */
453 static void
454 no_matching_function_error(const char *name,
455 YYLTYPE *loc,
456 exec_list *actual_parameters,
457 _mesa_glsl_parse_state *state)
458 {
459 char *str = prototype_string(NULL, name, actual_parameters);
460 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
461 ralloc_free(str);
462
463 const char *prefix = "candidates are: ";
464
465 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
466 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
467 : state->symbols;
468 ir_function *f = syms->get_function(name);
469 if (f == NULL)
470 continue;
471
472 foreach_list (node, &f->signatures) {
473 ir_function_signature *sig = (ir_function_signature *) node;
474
475 str = prototype_string(sig->return_type, f->name, &sig->parameters);
476 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
477 ralloc_free(str);
478
479 prefix = " ";
480 }
481 }
482 }
483
484 /**
485 * Perform automatic type conversion of constructor parameters
486 *
487 * This implements the rules in the "Conversion and Scalar Constructors"
488 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
489 */
490 static ir_rvalue *
491 convert_component(ir_rvalue *src, const glsl_type *desired_type)
492 {
493 void *ctx = ralloc_parent(src);
494 const unsigned a = desired_type->base_type;
495 const unsigned b = src->type->base_type;
496 ir_expression *result = NULL;
497
498 if (src->type->is_error())
499 return src;
500
501 assert(a <= GLSL_TYPE_BOOL);
502 assert(b <= GLSL_TYPE_BOOL);
503
504 if (a == b)
505 return src;
506
507 switch (a) {
508 case GLSL_TYPE_UINT:
509 switch (b) {
510 case GLSL_TYPE_INT:
511 result = new(ctx) ir_expression(ir_unop_i2u, src);
512 break;
513 case GLSL_TYPE_FLOAT:
514 result = new(ctx) ir_expression(ir_unop_f2u, src);
515 break;
516 case GLSL_TYPE_BOOL:
517 result = new(ctx) ir_expression(ir_unop_i2u,
518 new(ctx) ir_expression(ir_unop_b2i, src));
519 break;
520 }
521 break;
522 case GLSL_TYPE_INT:
523 switch (b) {
524 case GLSL_TYPE_UINT:
525 result = new(ctx) ir_expression(ir_unop_u2i, src);
526 break;
527 case GLSL_TYPE_FLOAT:
528 result = new(ctx) ir_expression(ir_unop_f2i, src);
529 break;
530 case GLSL_TYPE_BOOL:
531 result = new(ctx) ir_expression(ir_unop_b2i, src);
532 break;
533 }
534 break;
535 case GLSL_TYPE_FLOAT:
536 switch (b) {
537 case GLSL_TYPE_UINT:
538 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
539 break;
540 case GLSL_TYPE_INT:
541 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
542 break;
543 case GLSL_TYPE_BOOL:
544 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
545 break;
546 }
547 break;
548 case GLSL_TYPE_BOOL:
549 switch (b) {
550 case GLSL_TYPE_UINT:
551 result = new(ctx) ir_expression(ir_unop_i2b,
552 new(ctx) ir_expression(ir_unop_u2i, src));
553 break;
554 case GLSL_TYPE_INT:
555 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
556 break;
557 case GLSL_TYPE_FLOAT:
558 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
559 break;
560 }
561 break;
562 }
563
564 assert(result != NULL);
565 assert(result->type == desired_type);
566
567 /* Try constant folding; it may fold in the conversion we just added. */
568 ir_constant *const constant = result->constant_expression_value();
569 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
570 }
571
572 /**
573 * Dereference a specific component from a scalar, vector, or matrix
574 */
575 static ir_rvalue *
576 dereference_component(ir_rvalue *src, unsigned component)
577 {
578 void *ctx = ralloc_parent(src);
579 assert(component < src->type->components());
580
581 /* If the source is a constant, just create a new constant instead of a
582 * dereference of the existing constant.
583 */
584 ir_constant *constant = src->as_constant();
585 if (constant)
586 return new(ctx) ir_constant(constant, component);
587
588 if (src->type->is_scalar()) {
589 return src;
590 } else if (src->type->is_vector()) {
591 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
592 } else {
593 assert(src->type->is_matrix());
594
595 /* Dereference a row of the matrix, then call this function again to get
596 * a specific element from that row.
597 */
598 const int c = component / src->type->column_type()->vector_elements;
599 const int r = component % src->type->column_type()->vector_elements;
600 ir_constant *const col_index = new(ctx) ir_constant(c);
601 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
602
603 col->type = src->type->column_type();
604
605 return dereference_component(col, r);
606 }
607
608 assert(!"Should not get here.");
609 return NULL;
610 }
611
612
613 static ir_rvalue *
614 process_vec_mat_constructor(exec_list *instructions,
615 const glsl_type *constructor_type,
616 YYLTYPE *loc, exec_list *parameters,
617 struct _mesa_glsl_parse_state *state)
618 {
619 void *ctx = state;
620
621 /* The ARB_shading_language_420pack spec says:
622 *
623 * "If an initializer is a list of initializers enclosed in curly braces,
624 * the variable being declared must be a vector, a matrix, an array, or a
625 * structure.
626 *
627 * int i = { 1 }; // illegal, i is not an aggregate"
628 */
629 if (constructor_type->vector_elements <= 1) {
630 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
631 "matrices, arrays, and structs");
632 return ir_rvalue::error_value(ctx);
633 }
634
635 exec_list actual_parameters;
636 const unsigned parameter_count =
637 process_parameters(instructions, &actual_parameters, parameters, state);
638
639 if (parameter_count == 0
640 || (constructor_type->is_vector() &&
641 constructor_type->vector_elements != parameter_count)
642 || (constructor_type->is_matrix() &&
643 constructor_type->matrix_columns != parameter_count)) {
644 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
645 constructor_type->is_vector() ? "vector" : "matrix",
646 constructor_type->vector_elements);
647 return ir_rvalue::error_value(ctx);
648 }
649
650 bool all_parameters_are_constant = true;
651
652 /* Type cast each parameter and, if possible, fold constants. */
653 foreach_list_safe(n, &actual_parameters) {
654 ir_rvalue *ir = (ir_rvalue *) n;
655 ir_rvalue *result = ir;
656
657 /* Apply implicit conversions (not the scalar constructor rules!). See
658 * the spec quote above. */
659 if (constructor_type->is_float()) {
660 const glsl_type *desired_type =
661 glsl_type::get_instance(GLSL_TYPE_FLOAT,
662 ir->type->vector_elements,
663 ir->type->matrix_columns);
664 if (result->type->can_implicitly_convert_to(desired_type)) {
665 /* Even though convert_component() implements the constructor
666 * conversion rules (not the implicit conversion rules), its safe
667 * to use it here because we already checked that the implicit
668 * conversion is legal.
669 */
670 result = convert_component(ir, desired_type);
671 }
672 }
673
674 if (constructor_type->is_matrix()) {
675 if (result->type != constructor_type->column_type()) {
676 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
677 "expected: %s, found %s",
678 constructor_type->column_type()->name,
679 result->type->name);
680 return ir_rvalue::error_value(ctx);
681 }
682 } else if (result->type != constructor_type->get_scalar_type()) {
683 _mesa_glsl_error(loc, state, "type error in vector constructor: "
684 "expected: %s, found %s",
685 constructor_type->get_scalar_type()->name,
686 result->type->name);
687 return ir_rvalue::error_value(ctx);
688 }
689
690 /* Attempt to convert the parameter to a constant valued expression.
691 * After doing so, track whether or not all the parameters to the
692 * constructor are trivially constant valued expressions.
693 */
694 ir_rvalue *const constant = result->constant_expression_value();
695
696 if (constant != NULL)
697 result = constant;
698 else
699 all_parameters_are_constant = false;
700
701 ir->replace_with(result);
702 }
703
704 if (all_parameters_are_constant)
705 return new(ctx) ir_constant(constructor_type, &actual_parameters);
706
707 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
708 ir_var_temporary);
709 instructions->push_tail(var);
710
711 int i = 0;
712 foreach_list(node, &actual_parameters) {
713 ir_rvalue *rhs = (ir_rvalue *) node;
714 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
715 new(ctx) ir_constant(i));
716
717 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
718 instructions->push_tail(assignment);
719
720 i++;
721 }
722
723 return new(ctx) ir_dereference_variable(var);
724 }
725
726
727 static ir_rvalue *
728 process_array_constructor(exec_list *instructions,
729 const glsl_type *constructor_type,
730 YYLTYPE *loc, exec_list *parameters,
731 struct _mesa_glsl_parse_state *state)
732 {
733 void *ctx = state;
734 /* Array constructors come in two forms: sized and unsized. Sized array
735 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
736 * variables. In this case the number of parameters must exactly match the
737 * specified size of the array.
738 *
739 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
740 * are vec4 variables. In this case the size of the array being constructed
741 * is determined by the number of parameters.
742 *
743 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
744 *
745 * "There must be exactly the same number of arguments as the size of
746 * the array being constructed. If no size is present in the
747 * constructor, then the array is explicitly sized to the number of
748 * arguments provided. The arguments are assigned in order, starting at
749 * element 0, to the elements of the constructed array. Each argument
750 * must be the same type as the element type of the array, or be a type
751 * that can be converted to the element type of the array according to
752 * Section 4.1.10 "Implicit Conversions.""
753 */
754 exec_list actual_parameters;
755 const unsigned parameter_count =
756 process_parameters(instructions, &actual_parameters, parameters, state);
757
758 if ((parameter_count == 0)
759 || ((constructor_type->length != 0)
760 && (constructor_type->length != parameter_count))) {
761 const unsigned min_param = (constructor_type->length == 0)
762 ? 1 : constructor_type->length;
763
764 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
765 "parameter%s",
766 (constructor_type->length == 0) ? "at least" : "exactly",
767 min_param, (min_param <= 1) ? "" : "s");
768 return ir_rvalue::error_value(ctx);
769 }
770
771 if (constructor_type->length == 0) {
772 constructor_type =
773 glsl_type::get_array_instance(constructor_type->element_type(),
774 parameter_count);
775 assert(constructor_type != NULL);
776 assert(constructor_type->length == parameter_count);
777 }
778
779 bool all_parameters_are_constant = true;
780
781 /* Type cast each parameter and, if possible, fold constants. */
782 foreach_list_safe(n, &actual_parameters) {
783 ir_rvalue *ir = (ir_rvalue *) n;
784 ir_rvalue *result = ir;
785
786 /* Apply implicit conversions (not the scalar constructor rules!). See
787 * the spec quote above. */
788 if (constructor_type->element_type()->is_float()) {
789 const glsl_type *desired_type =
790 glsl_type::get_instance(GLSL_TYPE_FLOAT,
791 ir->type->vector_elements,
792 ir->type->matrix_columns);
793 if (result->type->can_implicitly_convert_to(desired_type)) {
794 /* Even though convert_component() implements the constructor
795 * conversion rules (not the implicit conversion rules), its safe
796 * to use it here because we already checked that the implicit
797 * conversion is legal.
798 */
799 result = convert_component(ir, desired_type);
800 }
801 }
802
803 if (result->type != constructor_type->element_type()) {
804 _mesa_glsl_error(loc, state, "type error in array constructor: "
805 "expected: %s, found %s",
806 constructor_type->element_type()->name,
807 result->type->name);
808 return ir_rvalue::error_value(ctx);
809 }
810
811 /* Attempt to convert the parameter to a constant valued expression.
812 * After doing so, track whether or not all the parameters to the
813 * constructor are trivially constant valued expressions.
814 */
815 ir_rvalue *const constant = result->constant_expression_value();
816
817 if (constant != NULL)
818 result = constant;
819 else
820 all_parameters_are_constant = false;
821
822 ir->replace_with(result);
823 }
824
825 if (all_parameters_are_constant)
826 return new(ctx) ir_constant(constructor_type, &actual_parameters);
827
828 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
829 ir_var_temporary);
830 instructions->push_tail(var);
831
832 int i = 0;
833 foreach_list(node, &actual_parameters) {
834 ir_rvalue *rhs = (ir_rvalue *) node;
835 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
836 new(ctx) ir_constant(i));
837
838 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
839 instructions->push_tail(assignment);
840
841 i++;
842 }
843
844 return new(ctx) ir_dereference_variable(var);
845 }
846
847
848 /**
849 * Try to convert a record constructor to a constant expression
850 */
851 static ir_constant *
852 constant_record_constructor(const glsl_type *constructor_type,
853 exec_list *parameters, void *mem_ctx)
854 {
855 foreach_list(node, parameters) {
856 ir_constant *constant = ((ir_instruction *) node)->as_constant();
857 if (constant == NULL)
858 return NULL;
859 node->replace_with(constant);
860 }
861
862 return new(mem_ctx) ir_constant(constructor_type, parameters);
863 }
864
865
866 /**
867 * Determine if a list consists of a single scalar r-value
868 */
869 bool
870 single_scalar_parameter(exec_list *parameters)
871 {
872 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
873 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
874
875 return (p->type->is_scalar() && p->next->is_tail_sentinel());
876 }
877
878
879 /**
880 * Generate inline code for a vector constructor
881 *
882 * The generated constructor code will consist of a temporary variable
883 * declaration of the same type as the constructor. A sequence of assignments
884 * from constructor parameters to the temporary will follow.
885 *
886 * \return
887 * An \c ir_dereference_variable of the temprorary generated in the constructor
888 * body.
889 */
890 ir_rvalue *
891 emit_inline_vector_constructor(const glsl_type *type,
892 exec_list *instructions,
893 exec_list *parameters,
894 void *ctx)
895 {
896 assert(!parameters->is_empty());
897
898 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
899 instructions->push_tail(var);
900
901 /* There are two kinds of vector constructors.
902 *
903 * - Construct a vector from a single scalar by replicating that scalar to
904 * all components of the vector.
905 *
906 * - Construct a vector from an arbirary combination of vectors and
907 * scalars. The components of the constructor parameters are assigned
908 * to the vector in order until the vector is full.
909 */
910 const unsigned lhs_components = type->components();
911 if (single_scalar_parameter(parameters)) {
912 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
913 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
914 lhs_components);
915 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
916 const unsigned mask = (1U << lhs_components) - 1;
917
918 assert(rhs->type == lhs->type);
919
920 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
921 instructions->push_tail(inst);
922 } else {
923 unsigned base_component = 0;
924 unsigned base_lhs_component = 0;
925 ir_constant_data data;
926 unsigned constant_mask = 0, constant_components = 0;
927
928 memset(&data, 0, sizeof(data));
929
930 foreach_list(node, parameters) {
931 ir_rvalue *param = (ir_rvalue *) node;
932 unsigned rhs_components = param->type->components();
933
934 /* Do not try to assign more components to the vector than it has!
935 */
936 if ((rhs_components + base_lhs_component) > lhs_components) {
937 rhs_components = lhs_components - base_lhs_component;
938 }
939
940 const ir_constant *const c = param->as_constant();
941 if (c != NULL) {
942 for (unsigned i = 0; i < rhs_components; i++) {
943 switch (c->type->base_type) {
944 case GLSL_TYPE_UINT:
945 data.u[i + base_component] = c->get_uint_component(i);
946 break;
947 case GLSL_TYPE_INT:
948 data.i[i + base_component] = c->get_int_component(i);
949 break;
950 case GLSL_TYPE_FLOAT:
951 data.f[i + base_component] = c->get_float_component(i);
952 break;
953 case GLSL_TYPE_BOOL:
954 data.b[i + base_component] = c->get_bool_component(i);
955 break;
956 default:
957 assert(!"Should not get here.");
958 break;
959 }
960 }
961
962 /* Mask of fields to be written in the assignment.
963 */
964 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
965 constant_components += rhs_components;
966
967 base_component += rhs_components;
968 }
969 /* Advance the component index by the number of components
970 * that were just assigned.
971 */
972 base_lhs_component += rhs_components;
973 }
974
975 if (constant_mask != 0) {
976 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
977 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
978 constant_components,
979 1);
980 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
981
982 ir_instruction *inst =
983 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
984 instructions->push_tail(inst);
985 }
986
987 base_component = 0;
988 foreach_list(node, parameters) {
989 ir_rvalue *param = (ir_rvalue *) node;
990 unsigned rhs_components = param->type->components();
991
992 /* Do not try to assign more components to the vector than it has!
993 */
994 if ((rhs_components + base_component) > lhs_components) {
995 rhs_components = lhs_components - base_component;
996 }
997
998 const ir_constant *const c = param->as_constant();
999 if (c == NULL) {
1000 /* Mask of fields to be written in the assignment.
1001 */
1002 const unsigned write_mask = ((1U << rhs_components) - 1)
1003 << base_component;
1004
1005 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1006
1007 /* Generate a swizzle so that LHS and RHS sizes match.
1008 */
1009 ir_rvalue *rhs =
1010 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1011
1012 ir_instruction *inst =
1013 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1014 instructions->push_tail(inst);
1015 }
1016
1017 /* Advance the component index by the number of components that were
1018 * just assigned.
1019 */
1020 base_component += rhs_components;
1021 }
1022 }
1023 return new(ctx) ir_dereference_variable(var);
1024 }
1025
1026
1027 /**
1028 * Generate assignment of a portion of a vector to a portion of a matrix column
1029 *
1030 * \param src_base First component of the source to be used in assignment
1031 * \param column Column of destination to be assiged
1032 * \param row_base First component of the destination column to be assigned
1033 * \param count Number of components to be assigned
1034 *
1035 * \note
1036 * \c src_base + \c count must be less than or equal to the number of components
1037 * in the source vector.
1038 */
1039 ir_instruction *
1040 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1041 ir_rvalue *src, unsigned src_base, unsigned count,
1042 void *mem_ctx)
1043 {
1044 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1045 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1046
1047 assert(column_ref->type->components() >= (row_base + count));
1048 assert(src->type->components() >= (src_base + count));
1049
1050 /* Generate a swizzle that extracts the number of components from the source
1051 * that are to be assigned to the column of the matrix.
1052 */
1053 if (count < src->type->vector_elements) {
1054 src = new(mem_ctx) ir_swizzle(src,
1055 src_base + 0, src_base + 1,
1056 src_base + 2, src_base + 3,
1057 count);
1058 }
1059
1060 /* Mask of fields to be written in the assignment.
1061 */
1062 const unsigned write_mask = ((1U << count) - 1) << row_base;
1063
1064 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1065 }
1066
1067
1068 /**
1069 * Generate inline code for a matrix constructor
1070 *
1071 * The generated constructor code will consist of a temporary variable
1072 * declaration of the same type as the constructor. A sequence of assignments
1073 * from constructor parameters to the temporary will follow.
1074 *
1075 * \return
1076 * An \c ir_dereference_variable of the temprorary generated in the constructor
1077 * body.
1078 */
1079 ir_rvalue *
1080 emit_inline_matrix_constructor(const glsl_type *type,
1081 exec_list *instructions,
1082 exec_list *parameters,
1083 void *ctx)
1084 {
1085 assert(!parameters->is_empty());
1086
1087 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1088 instructions->push_tail(var);
1089
1090 /* There are three kinds of matrix constructors.
1091 *
1092 * - Construct a matrix from a single scalar by replicating that scalar to
1093 * along the diagonal of the matrix and setting all other components to
1094 * zero.
1095 *
1096 * - Construct a matrix from an arbirary combination of vectors and
1097 * scalars. The components of the constructor parameters are assigned
1098 * to the matrix in colum-major order until the matrix is full.
1099 *
1100 * - Construct a matrix from a single matrix. The source matrix is copied
1101 * to the upper left portion of the constructed matrix, and the remaining
1102 * elements take values from the identity matrix.
1103 */
1104 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1105 if (single_scalar_parameter(parameters)) {
1106 /* Assign the scalar to the X component of a vec4, and fill the remaining
1107 * components with zero.
1108 */
1109 ir_variable *rhs_var =
1110 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1111 ir_var_temporary);
1112 instructions->push_tail(rhs_var);
1113
1114 ir_constant_data zero;
1115 zero.f[0] = 0.0;
1116 zero.f[1] = 0.0;
1117 zero.f[2] = 0.0;
1118 zero.f[3] = 0.0;
1119
1120 ir_instruction *inst =
1121 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1122 new(ctx) ir_constant(rhs_var->type, &zero),
1123 NULL);
1124 instructions->push_tail(inst);
1125
1126 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1127
1128 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1129 instructions->push_tail(inst);
1130
1131 /* Assign the temporary vector to each column of the destination matrix
1132 * with a swizzle that puts the X component on the diagonal of the
1133 * matrix. In some cases this may mean that the X component does not
1134 * get assigned into the column at all (i.e., when the matrix has more
1135 * columns than rows).
1136 */
1137 static const unsigned rhs_swiz[4][4] = {
1138 { 0, 1, 1, 1 },
1139 { 1, 0, 1, 1 },
1140 { 1, 1, 0, 1 },
1141 { 1, 1, 1, 0 }
1142 };
1143
1144 const unsigned cols_to_init = MIN2(type->matrix_columns,
1145 type->vector_elements);
1146 for (unsigned i = 0; i < cols_to_init; i++) {
1147 ir_constant *const col_idx = new(ctx) ir_constant(i);
1148 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1149
1150 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1151 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1152 type->vector_elements);
1153
1154 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1155 instructions->push_tail(inst);
1156 }
1157
1158 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1159 ir_constant *const col_idx = new(ctx) ir_constant(i);
1160 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1161
1162 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1163 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1164 type->vector_elements);
1165
1166 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1167 instructions->push_tail(inst);
1168 }
1169 } else if (first_param->type->is_matrix()) {
1170 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1171 *
1172 * "If a matrix is constructed from a matrix, then each component
1173 * (column i, row j) in the result that has a corresponding
1174 * component (column i, row j) in the argument will be initialized
1175 * from there. All other components will be initialized to the
1176 * identity matrix. If a matrix argument is given to a matrix
1177 * constructor, it is an error to have any other arguments."
1178 */
1179 assert(first_param->next->is_tail_sentinel());
1180 ir_rvalue *const src_matrix = first_param;
1181
1182 /* If the source matrix is smaller, pre-initialize the relavent parts of
1183 * the destination matrix to the identity matrix.
1184 */
1185 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1186 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1187
1188 /* If the source matrix has fewer rows, every column of the destination
1189 * must be initialized. Otherwise only the columns in the destination
1190 * that do not exist in the source must be initialized.
1191 */
1192 unsigned col =
1193 (src_matrix->type->vector_elements < var->type->vector_elements)
1194 ? 0 : src_matrix->type->matrix_columns;
1195
1196 const glsl_type *const col_type = var->type->column_type();
1197 for (/* empty */; col < var->type->matrix_columns; col++) {
1198 ir_constant_data ident;
1199
1200 ident.f[0] = 0.0;
1201 ident.f[1] = 0.0;
1202 ident.f[2] = 0.0;
1203 ident.f[3] = 0.0;
1204
1205 ident.f[col] = 1.0;
1206
1207 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1208
1209 ir_rvalue *const lhs =
1210 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1211
1212 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1213 instructions->push_tail(inst);
1214 }
1215 }
1216
1217 /* Assign columns from the source matrix to the destination matrix.
1218 *
1219 * Since the parameter will be used in the RHS of multiple assignments,
1220 * generate a temporary and copy the paramter there.
1221 */
1222 ir_variable *const rhs_var =
1223 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1224 ir_var_temporary);
1225 instructions->push_tail(rhs_var);
1226
1227 ir_dereference *const rhs_var_ref =
1228 new(ctx) ir_dereference_variable(rhs_var);
1229 ir_instruction *const inst =
1230 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1231 instructions->push_tail(inst);
1232
1233 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1234 var->type->vector_elements);
1235 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1236 var->type->matrix_columns);
1237
1238 unsigned swiz[4] = { 0, 0, 0, 0 };
1239 for (unsigned i = 1; i < last_row; i++)
1240 swiz[i] = i;
1241
1242 const unsigned write_mask = (1U << last_row) - 1;
1243
1244 for (unsigned i = 0; i < last_col; i++) {
1245 ir_dereference *const lhs =
1246 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1247 ir_rvalue *const rhs_col =
1248 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1249
1250 /* If one matrix has columns that are smaller than the columns of the
1251 * other matrix, wrap the column access of the larger with a swizzle
1252 * so that the LHS and RHS of the assignment have the same size (and
1253 * therefore have the same type).
1254 *
1255 * It would be perfectly valid to unconditionally generate the
1256 * swizzles, this this will typically result in a more compact IR tree.
1257 */
1258 ir_rvalue *rhs;
1259 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1260 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1261 } else {
1262 rhs = rhs_col;
1263 }
1264
1265 ir_instruction *inst =
1266 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1267 instructions->push_tail(inst);
1268 }
1269 } else {
1270 const unsigned cols = type->matrix_columns;
1271 const unsigned rows = type->vector_elements;
1272 unsigned col_idx = 0;
1273 unsigned row_idx = 0;
1274
1275 foreach_list (node, parameters) {
1276 ir_rvalue *const rhs = (ir_rvalue *) node;
1277 const unsigned components_remaining_this_column = rows - row_idx;
1278 unsigned rhs_components = rhs->type->components();
1279 unsigned rhs_base = 0;
1280
1281 /* Since the parameter might be used in the RHS of two assignments,
1282 * generate a temporary and copy the paramter there.
1283 */
1284 ir_variable *rhs_var =
1285 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1286 instructions->push_tail(rhs_var);
1287
1288 ir_dereference *rhs_var_ref =
1289 new(ctx) ir_dereference_variable(rhs_var);
1290 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1291 instructions->push_tail(inst);
1292
1293 /* Assign the current parameter to as many components of the matrix
1294 * as it will fill.
1295 *
1296 * NOTE: A single vector parameter can span two matrix columns. A
1297 * single vec4, for example, can completely fill a mat2.
1298 */
1299 if (rhs_components >= components_remaining_this_column) {
1300 const unsigned count = MIN2(rhs_components,
1301 components_remaining_this_column);
1302
1303 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1304
1305 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1306 row_idx,
1307 rhs_var_ref, 0,
1308 count, ctx);
1309 instructions->push_tail(inst);
1310
1311 rhs_base = count;
1312
1313 col_idx++;
1314 row_idx = 0;
1315 }
1316
1317 /* If there is data left in the parameter and components left to be
1318 * set in the destination, emit another assignment. It is possible
1319 * that the assignment could be of a vec4 to the last element of the
1320 * matrix. In this case col_idx==cols, but there is still data
1321 * left in the source parameter. Obviously, don't emit an assignment
1322 * to data outside the destination matrix.
1323 */
1324 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1325 const unsigned count = rhs_components - rhs_base;
1326
1327 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1328
1329 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1330 row_idx,
1331 rhs_var_ref,
1332 rhs_base,
1333 count, ctx);
1334 instructions->push_tail(inst);
1335
1336 row_idx += count;
1337 }
1338 }
1339 }
1340
1341 return new(ctx) ir_dereference_variable(var);
1342 }
1343
1344
1345 ir_rvalue *
1346 emit_inline_record_constructor(const glsl_type *type,
1347 exec_list *instructions,
1348 exec_list *parameters,
1349 void *mem_ctx)
1350 {
1351 ir_variable *const var =
1352 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1353 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1354
1355 instructions->push_tail(var);
1356
1357 exec_node *node = parameters->head;
1358 for (unsigned i = 0; i < type->length; i++) {
1359 assert(!node->is_tail_sentinel());
1360
1361 ir_dereference *const lhs =
1362 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1363 type->fields.structure[i].name);
1364
1365 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1366 assert(rhs != NULL);
1367
1368 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1369
1370 instructions->push_tail(assign);
1371 node = node->next;
1372 }
1373
1374 return d;
1375 }
1376
1377
1378 static ir_rvalue *
1379 process_record_constructor(exec_list *instructions,
1380 const glsl_type *constructor_type,
1381 YYLTYPE *loc, exec_list *parameters,
1382 struct _mesa_glsl_parse_state *state)
1383 {
1384 void *ctx = state;
1385 exec_list actual_parameters;
1386
1387 process_parameters(instructions, &actual_parameters,
1388 parameters, state);
1389
1390 exec_node *node = actual_parameters.head;
1391 for (unsigned i = 0; i < constructor_type->length; i++) {
1392 ir_rvalue *ir = (ir_rvalue *) node;
1393
1394 if (node->is_tail_sentinel()) {
1395 _mesa_glsl_error(loc, state,
1396 "insufficient parameters to constructor for `%s'",
1397 constructor_type->name);
1398 return ir_rvalue::error_value(ctx);
1399 }
1400
1401 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1402 ir, state)) {
1403 node->replace_with(ir);
1404 } else {
1405 _mesa_glsl_error(loc, state,
1406 "parameter type mismatch in constructor for `%s.%s' "
1407 "(%s vs %s)",
1408 constructor_type->name,
1409 constructor_type->fields.structure[i].name,
1410 ir->type->name,
1411 constructor_type->fields.structure[i].type->name);
1412 return ir_rvalue::error_value(ctx);;
1413 }
1414
1415 node = node->next;
1416 }
1417
1418 if (!node->is_tail_sentinel()) {
1419 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1420 "for `%s'", constructor_type->name);
1421 return ir_rvalue::error_value(ctx);
1422 }
1423
1424 ir_rvalue *const constant =
1425 constant_record_constructor(constructor_type, &actual_parameters,
1426 state);
1427
1428 return (constant != NULL)
1429 ? constant
1430 : emit_inline_record_constructor(constructor_type, instructions,
1431 &actual_parameters, state);
1432 }
1433
1434
1435 ir_rvalue *
1436 ast_function_expression::hir(exec_list *instructions,
1437 struct _mesa_glsl_parse_state *state)
1438 {
1439 void *ctx = state;
1440 /* There are three sorts of function calls.
1441 *
1442 * 1. constructors - The first subexpression is an ast_type_specifier.
1443 * 2. methods - Only the .length() method of array types.
1444 * 3. functions - Calls to regular old functions.
1445 *
1446 * Method calls are actually detected when the ast_field_selection
1447 * expression is handled.
1448 */
1449 if (is_constructor()) {
1450 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1451 YYLTYPE loc = type->get_location();
1452 const char *name;
1453
1454 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1455
1456 /* constructor_type can be NULL if a variable with the same name as the
1457 * structure has come into scope.
1458 */
1459 if (constructor_type == NULL) {
1460 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1461 "may be shadowed by a variable with the same name)",
1462 type->type_name);
1463 return ir_rvalue::error_value(ctx);
1464 }
1465
1466
1467 /* Constructors for samplers are illegal.
1468 */
1469 if (constructor_type->is_sampler()) {
1470 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1471 constructor_type->name);
1472 return ir_rvalue::error_value(ctx);
1473 }
1474
1475 if (constructor_type->is_array()) {
1476 if (!state->check_version(120, 300, &loc,
1477 "array constructors forbidden")) {
1478 return ir_rvalue::error_value(ctx);
1479 }
1480
1481 return process_array_constructor(instructions, constructor_type,
1482 & loc, &this->expressions, state);
1483 }
1484
1485
1486 /* There are two kinds of constructor calls. Constructors for arrays and
1487 * structures must have the exact number of arguments with matching types
1488 * in the correct order. These constructors follow essentially the same
1489 * type matching rules as functions.
1490 *
1491 * Constructors for built-in language types, such as mat4 and vec2, are
1492 * free form. The only requirements are that the parameters must provide
1493 * enough values of the correct scalar type and that no arguments are
1494 * given past the last used argument.
1495 *
1496 * When using the C-style initializer syntax from GLSL 4.20, constructors
1497 * must have the exact number of arguments with matching types in the
1498 * correct order.
1499 */
1500 if (constructor_type->is_record()) {
1501 return process_record_constructor(instructions, constructor_type,
1502 &loc, &this->expressions,
1503 state);
1504 }
1505
1506 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1507 return ir_rvalue::error_value(ctx);
1508
1509 /* Total number of components of the type being constructed. */
1510 const unsigned type_components = constructor_type->components();
1511
1512 /* Number of components from parameters that have actually been
1513 * consumed. This is used to perform several kinds of error checking.
1514 */
1515 unsigned components_used = 0;
1516
1517 unsigned matrix_parameters = 0;
1518 unsigned nonmatrix_parameters = 0;
1519 exec_list actual_parameters;
1520
1521 foreach_list (n, &this->expressions) {
1522 ast_node *ast = exec_node_data(ast_node, n, link);
1523 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1524
1525 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1526 *
1527 * "It is an error to provide extra arguments beyond this
1528 * last used argument."
1529 */
1530 if (components_used >= type_components) {
1531 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1532 "constructor",
1533 constructor_type->name);
1534 return ir_rvalue::error_value(ctx);
1535 }
1536
1537 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1538 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1539 "non-numeric data type",
1540 constructor_type->name);
1541 return ir_rvalue::error_value(ctx);
1542 }
1543
1544 /* Count the number of matrix and nonmatrix parameters. This
1545 * is used below to enforce some of the constructor rules.
1546 */
1547 if (result->type->is_matrix())
1548 matrix_parameters++;
1549 else
1550 nonmatrix_parameters++;
1551
1552 actual_parameters.push_tail(result);
1553 components_used += result->type->components();
1554 }
1555
1556 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1557 *
1558 * "It is an error to construct matrices from other matrices. This
1559 * is reserved for future use."
1560 */
1561 if (matrix_parameters > 0
1562 && constructor_type->is_matrix()
1563 && !state->check_version(120, 100, &loc,
1564 "cannot construct `%s' from a matrix",
1565 constructor_type->name)) {
1566 return ir_rvalue::error_value(ctx);
1567 }
1568
1569 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1570 *
1571 * "If a matrix argument is given to a matrix constructor, it is
1572 * an error to have any other arguments."
1573 */
1574 if ((matrix_parameters > 0)
1575 && ((matrix_parameters + nonmatrix_parameters) > 1)
1576 && constructor_type->is_matrix()) {
1577 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1578 "matrix must be only parameter",
1579 constructor_type->name);
1580 return ir_rvalue::error_value(ctx);
1581 }
1582
1583 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1584 *
1585 * "In these cases, there must be enough components provided in the
1586 * arguments to provide an initializer for every component in the
1587 * constructed value."
1588 */
1589 if (components_used < type_components && components_used != 1
1590 && matrix_parameters == 0) {
1591 _mesa_glsl_error(& loc, state, "too few components to construct "
1592 "`%s'",
1593 constructor_type->name);
1594 return ir_rvalue::error_value(ctx);
1595 }
1596
1597 /* Later, we cast each parameter to the same base type as the
1598 * constructor. Since there are no non-floating point matrices, we
1599 * need to break them up into a series of column vectors.
1600 */
1601 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1602 foreach_list_safe(n, &actual_parameters) {
1603 ir_rvalue *matrix = (ir_rvalue *) n;
1604
1605 if (!matrix->type->is_matrix())
1606 continue;
1607
1608 /* Create a temporary containing the matrix. */
1609 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1610 ir_var_temporary);
1611 instructions->push_tail(var);
1612 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1613 ir_dereference_variable(var), matrix, NULL));
1614 var->constant_value = matrix->constant_expression_value();
1615
1616 /* Replace the matrix with dereferences of its columns. */
1617 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1618 matrix->insert_before(new (ctx) ir_dereference_array(var,
1619 new(ctx) ir_constant(i)));
1620 }
1621 matrix->remove();
1622 }
1623 }
1624
1625 bool all_parameters_are_constant = true;
1626
1627 /* Type cast each parameter and, if possible, fold constants.*/
1628 foreach_list_safe(n, &actual_parameters) {
1629 ir_rvalue *ir = (ir_rvalue *) n;
1630
1631 const glsl_type *desired_type =
1632 glsl_type::get_instance(constructor_type->base_type,
1633 ir->type->vector_elements,
1634 ir->type->matrix_columns);
1635 ir_rvalue *result = convert_component(ir, desired_type);
1636
1637 /* Attempt to convert the parameter to a constant valued expression.
1638 * After doing so, track whether or not all the parameters to the
1639 * constructor are trivially constant valued expressions.
1640 */
1641 ir_rvalue *const constant = result->constant_expression_value();
1642
1643 if (constant != NULL)
1644 result = constant;
1645 else
1646 all_parameters_are_constant = false;
1647
1648 if (result != ir) {
1649 ir->replace_with(result);
1650 }
1651 }
1652
1653 /* If all of the parameters are trivially constant, create a
1654 * constant representing the complete collection of parameters.
1655 */
1656 if (all_parameters_are_constant) {
1657 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1658 } else if (constructor_type->is_scalar()) {
1659 return dereference_component((ir_rvalue *) actual_parameters.head,
1660 0);
1661 } else if (constructor_type->is_vector()) {
1662 return emit_inline_vector_constructor(constructor_type,
1663 instructions,
1664 &actual_parameters,
1665 ctx);
1666 } else {
1667 assert(constructor_type->is_matrix());
1668 return emit_inline_matrix_constructor(constructor_type,
1669 instructions,
1670 &actual_parameters,
1671 ctx);
1672 }
1673 } else {
1674 const ast_expression *id = subexpressions[0];
1675 const char *func_name = id->primary_expression.identifier;
1676 YYLTYPE loc = id->get_location();
1677 exec_list actual_parameters;
1678
1679 process_parameters(instructions, &actual_parameters, &this->expressions,
1680 state);
1681
1682 ir_function_signature *sig =
1683 match_function_by_name(func_name, &actual_parameters, state);
1684
1685 ir_call *call = NULL;
1686 ir_rvalue *value = NULL;
1687 if (sig == NULL) {
1688 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1689 value = ir_rvalue::error_value(ctx);
1690 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1691 /* an error has already been emitted */
1692 value = ir_rvalue::error_value(ctx);
1693 } else {
1694 value = generate_call(instructions, sig, &actual_parameters,
1695 &call, state);
1696 }
1697
1698 return value;
1699 }
1700
1701 return ir_rvalue::error_value(ctx);
1702 }
1703
1704 ir_rvalue *
1705 ast_aggregate_initializer::hir(exec_list *instructions,
1706 struct _mesa_glsl_parse_state *state)
1707 {
1708 void *ctx = state;
1709 YYLTYPE loc = this->get_location();
1710 const char *name;
1711
1712 if (!this->constructor_type) {
1713 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1714 return ir_rvalue::error_value(ctx);
1715 }
1716 const glsl_type *const constructor_type =
1717 this->constructor_type->glsl_type(&name, state);
1718
1719 if (!state->ARB_shading_language_420pack_enable) {
1720 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1721 "GL_ARB_shading_language_420pack extension");
1722 return ir_rvalue::error_value(ctx);
1723 }
1724
1725 if (this->constructor_type->is_array) {
1726 return process_array_constructor(instructions, constructor_type, &loc,
1727 &this->expressions, state);
1728 }
1729
1730 if (this->constructor_type->structure) {
1731 return process_record_constructor(instructions, constructor_type, &loc,
1732 &this->expressions, state);
1733 }
1734
1735 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1736 &this->expressions, state);
1737 }