glsl: Use ir_rvalue to represent generic error_type values.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136 const char *mode = NULL;
137 switch (formal->mode) {
138 case ir_var_out: mode = "out"; break;
139 case ir_var_inout: mode = "inout"; break;
140 default: assert(false); break;
141 }
142
143 /* This AST-based check catches errors like f(i++). The IR-based
144 * is_lvalue() is insufficient because the actual parameter at the
145 * IR-level is just a temporary value, which is an l-value.
146 */
147 if (actual_ast->non_lvalue_description != NULL) {
148 _mesa_glsl_error(&loc, state,
149 "function parameter '%s %s' references a %s",
150 mode, formal->name,
151 actual_ast->non_lvalue_description);
152 return false;
153 }
154
155 if (actual->variable_referenced()
156 && actual->variable_referenced()->read_only) {
157 _mesa_glsl_error(&loc, state,
158 "function parameter '%s %s' references the "
159 "read-only variable '%s'",
160 mode, formal->name,
161 actual->variable_referenced()->name);
162 return false;
163 } else if (!actual->is_lvalue()) {
164 _mesa_glsl_error(&loc, state,
165 "function parameter '%s %s' is not an lvalue",
166 mode, formal->name);
167 return false;
168 }
169 }
170
171 actual_ir_node = actual_ir_node->next;
172 actual_ast_node = actual_ast_node->next;
173 }
174 return true;
175 }
176
177 /**
178 * If a function call is generated, \c call_ir will point to it on exit.
179 * Otherwise \c call_ir will be set to \c NULL.
180 */
181 static ir_rvalue *
182 generate_call(exec_list *instructions, ir_function_signature *sig,
183 YYLTYPE *loc, exec_list *actual_parameters,
184 ir_call **call_ir,
185 struct _mesa_glsl_parse_state *state)
186 {
187 void *ctx = state;
188 exec_list post_call_conversions;
189
190 *call_ir = NULL;
191
192 /* Perform implicit conversion of arguments. For out parameters, we need
193 * to place them in a temporary variable and do the conversion after the
194 * call takes place. Since we haven't emitted the call yet, we'll place
195 * the post-call conversions in a temporary exec_list, and emit them later.
196 */
197 exec_list_iterator actual_iter = actual_parameters->iterator();
198 exec_list_iterator formal_iter = sig->parameters.iterator();
199
200 while (actual_iter.has_next()) {
201 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
202 ir_variable *formal = (ir_variable *) formal_iter.get();
203
204 assert(actual != NULL);
205 assert(formal != NULL);
206
207 if (formal->type->is_numeric() || formal->type->is_boolean()) {
208 switch (formal->mode) {
209 case ir_var_const_in:
210 case ir_var_in: {
211 ir_rvalue *converted
212 = convert_component(actual, formal->type);
213 actual->replace_with(converted);
214 break;
215 }
216 case ir_var_out:
217 if (actual->type != formal->type) {
218 /* To convert an out parameter, we need to create a
219 * temporary variable to hold the value before conversion,
220 * and then perform the conversion after the function call
221 * returns.
222 *
223 * This has the effect of transforming code like this:
224 *
225 * void f(out int x);
226 * float value;
227 * f(value);
228 *
229 * Into IR that's equivalent to this:
230 *
231 * void f(out int x);
232 * float value;
233 * int out_parameter_conversion;
234 * f(out_parameter_conversion);
235 * value = float(out_parameter_conversion);
236 */
237 ir_variable *tmp =
238 new(ctx) ir_variable(formal->type,
239 "out_parameter_conversion",
240 ir_var_temporary);
241 instructions->push_tail(tmp);
242 ir_dereference_variable *deref_tmp_1
243 = new(ctx) ir_dereference_variable(tmp);
244 ir_dereference_variable *deref_tmp_2
245 = new(ctx) ir_dereference_variable(tmp);
246 ir_rvalue *converted_tmp
247 = convert_component(deref_tmp_1, actual->type);
248 ir_assignment *assignment
249 = new(ctx) ir_assignment(actual, converted_tmp);
250 post_call_conversions.push_tail(assignment);
251 actual->replace_with(deref_tmp_2);
252 }
253 break;
254 case ir_var_inout:
255 /* Inout parameters should never require conversion, since that
256 * would require an implicit conversion to exist both to and
257 * from the formal parameter type, and there are no
258 * bidirectional implicit conversions.
259 */
260 assert (actual->type == formal->type);
261 break;
262 default:
263 assert (!"Illegal formal parameter mode");
264 break;
265 }
266 }
267
268 actual_iter.next();
269 formal_iter.next();
270 }
271
272 /* Always insert the call in the instruction stream, and return a deref
273 * of its return val if it returns a value, since we don't know if
274 * the rvalue is going to be assigned to anything or not.
275 *
276 * Also insert any out parameter conversions after the call.
277 */
278 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
279 ir_dereference_variable *deref;
280 if (!sig->return_type->is_void()) {
281 /* If the function call is a constant expression, don't
282 * generate the instructions to call it; just generate an
283 * ir_constant representing the constant value.
284 *
285 * Function calls can only be constant expressions starting
286 * in GLSL 1.20.
287 */
288 if (state->language_version >= 120) {
289 ir_constant *const_val = call->constant_expression_value();
290 if (const_val) {
291 return const_val;
292 }
293 }
294
295 ir_variable *var;
296
297 var = new(ctx) ir_variable(sig->return_type,
298 ralloc_asprintf(ctx, "%s_retval",
299 sig->function_name()),
300 ir_var_temporary);
301 instructions->push_tail(var);
302
303 deref = new(ctx) ir_dereference_variable(var);
304 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
305 instructions->push_tail(assign);
306 *call_ir = call;
307
308 deref = new(ctx) ir_dereference_variable(var);
309 } else {
310 instructions->push_tail(call);
311 *call_ir = call;
312 deref = NULL;
313 }
314 instructions->append_list(&post_call_conversions);
315 return deref;
316 }
317
318 /**
319 * Given a function name and parameter list, find the matching signature.
320 */
321 static ir_function_signature *
322 match_function_by_name(const char *name,
323 exec_list *actual_parameters,
324 struct _mesa_glsl_parse_state *state)
325 {
326 void *ctx = state;
327 ir_function *f = state->symbols->get_function(name);
328 ir_function_signature *local_sig = NULL;
329 ir_function_signature *sig = NULL;
330
331 /* Is the function hidden by a record type constructor? */
332 if (state->symbols->get_type(name))
333 goto done; /* no match */
334
335 /* Is the function hidden by a variable (impossible in 1.10)? */
336 if (state->language_version != 110 && state->symbols->get_variable(name))
337 goto done; /* no match */
338
339 if (f != NULL) {
340 /* Look for a match in the local shader. If exact, we're done. */
341 bool is_exact = false;
342 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
343 if (is_exact)
344 goto done;
345
346 if (!state->es_shader && f->has_user_signature()) {
347 /* In desktop GL, the presence of a user-defined signature hides any
348 * built-in signatures, so we must ignore them. In contrast, in ES2
349 * user-defined signatures add new overloads, so we must proceed.
350 */
351 goto done;
352 }
353 }
354
355 /* Local shader has no exact candidates; check the built-ins. */
356 _mesa_glsl_initialize_functions(state);
357 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
358 ir_function *builtin =
359 state->builtins_to_link[i]->symbols->get_function(name);
360 if (builtin == NULL)
361 continue;
362
363 bool is_exact = false;
364 ir_function_signature *builtin_sig =
365 builtin->matching_signature(actual_parameters, &is_exact);
366
367 if (builtin_sig == NULL)
368 continue;
369
370 /* If the built-in signature is exact, we can stop. */
371 if (is_exact) {
372 sig = builtin_sig;
373 goto done;
374 }
375
376 if (sig == NULL) {
377 /* We found an inexact match, which is better than nothing. However,
378 * we should keep searching for an exact match.
379 */
380 sig = builtin_sig;
381 }
382 }
383
384 done:
385 if (sig != NULL) {
386 /* If the match is from a linked built-in shader, import the prototype. */
387 if (sig != local_sig) {
388 if (f == NULL) {
389 f = new(ctx) ir_function(name);
390 state->symbols->add_global_function(f);
391 emit_function(state, f);
392 }
393 f->add_signature(sig->clone_prototype(f, NULL));
394 }
395 }
396 return sig;
397 }
398
399 /**
400 * Raise a "no matching function" error, listing all possible overloads the
401 * compiler considered so developers can figure out what went wrong.
402 */
403 static void
404 no_matching_function_error(const char *name,
405 YYLTYPE *loc,
406 exec_list *actual_parameters,
407 _mesa_glsl_parse_state *state)
408 {
409 char *str = prototype_string(NULL, name, actual_parameters);
410 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
411 ralloc_free(str);
412
413 const char *prefix = "candidates are: ";
414
415 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
416 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
417 : state->symbols;
418 ir_function *f = syms->get_function(name);
419 if (f == NULL)
420 continue;
421
422 foreach_list (node, &f->signatures) {
423 ir_function_signature *sig = (ir_function_signature *) node;
424
425 str = prototype_string(sig->return_type, f->name, &sig->parameters);
426 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
427 ralloc_free(str);
428
429 prefix = " ";
430 }
431 }
432 }
433
434 /**
435 * Perform automatic type conversion of constructor parameters
436 *
437 * This implements the rules in the "Conversion and Scalar Constructors"
438 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
439 */
440 static ir_rvalue *
441 convert_component(ir_rvalue *src, const glsl_type *desired_type)
442 {
443 void *ctx = ralloc_parent(src);
444 const unsigned a = desired_type->base_type;
445 const unsigned b = src->type->base_type;
446 ir_expression *result = NULL;
447
448 if (src->type->is_error())
449 return src;
450
451 assert(a <= GLSL_TYPE_BOOL);
452 assert(b <= GLSL_TYPE_BOOL);
453
454 if (a == b)
455 return src;
456
457 switch (a) {
458 case GLSL_TYPE_UINT:
459 switch (b) {
460 case GLSL_TYPE_INT:
461 result = new(ctx) ir_expression(ir_unop_i2u, src);
462 break;
463 case GLSL_TYPE_FLOAT:
464 result = new(ctx) ir_expression(ir_unop_i2u,
465 new(ctx) ir_expression(ir_unop_f2i, src));
466 break;
467 case GLSL_TYPE_BOOL:
468 result = new(ctx) ir_expression(ir_unop_i2u,
469 new(ctx) ir_expression(ir_unop_b2i, src));
470 break;
471 }
472 break;
473 case GLSL_TYPE_INT:
474 switch (b) {
475 case GLSL_TYPE_UINT:
476 result = new(ctx) ir_expression(ir_unop_u2i, src);
477 break;
478 case GLSL_TYPE_FLOAT:
479 result = new(ctx) ir_expression(ir_unop_f2i, src);
480 break;
481 case GLSL_TYPE_BOOL:
482 result = new(ctx) ir_expression(ir_unop_b2i, src);
483 break;
484 }
485 break;
486 case GLSL_TYPE_FLOAT:
487 switch (b) {
488 case GLSL_TYPE_UINT:
489 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
490 break;
491 case GLSL_TYPE_INT:
492 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
493 break;
494 case GLSL_TYPE_BOOL:
495 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
496 break;
497 }
498 break;
499 case GLSL_TYPE_BOOL:
500 switch (b) {
501 case GLSL_TYPE_UINT:
502 result = new(ctx) ir_expression(ir_unop_i2b,
503 new(ctx) ir_expression(ir_unop_u2i, src));
504 break;
505 case GLSL_TYPE_INT:
506 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
507 break;
508 case GLSL_TYPE_FLOAT:
509 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
510 break;
511 }
512 break;
513 }
514
515 assert(result != NULL);
516 assert(result->type == desired_type);
517
518 /* Try constant folding; it may fold in the conversion we just added. */
519 ir_constant *const constant = result->constant_expression_value();
520 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
521 }
522
523 /**
524 * Dereference a specific component from a scalar, vector, or matrix
525 */
526 static ir_rvalue *
527 dereference_component(ir_rvalue *src, unsigned component)
528 {
529 void *ctx = ralloc_parent(src);
530 assert(component < src->type->components());
531
532 /* If the source is a constant, just create a new constant instead of a
533 * dereference of the existing constant.
534 */
535 ir_constant *constant = src->as_constant();
536 if (constant)
537 return new(ctx) ir_constant(constant, component);
538
539 if (src->type->is_scalar()) {
540 return src;
541 } else if (src->type->is_vector()) {
542 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
543 } else {
544 assert(src->type->is_matrix());
545
546 /* Dereference a row of the matrix, then call this function again to get
547 * a specific element from that row.
548 */
549 const int c = component / src->type->column_type()->vector_elements;
550 const int r = component % src->type->column_type()->vector_elements;
551 ir_constant *const col_index = new(ctx) ir_constant(c);
552 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
553
554 col->type = src->type->column_type();
555
556 return dereference_component(col, r);
557 }
558
559 assert(!"Should not get here.");
560 return NULL;
561 }
562
563
564 static ir_rvalue *
565 process_array_constructor(exec_list *instructions,
566 const glsl_type *constructor_type,
567 YYLTYPE *loc, exec_list *parameters,
568 struct _mesa_glsl_parse_state *state)
569 {
570 void *ctx = state;
571 /* Array constructors come in two forms: sized and unsized. Sized array
572 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
573 * variables. In this case the number of parameters must exactly match the
574 * specified size of the array.
575 *
576 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
577 * are vec4 variables. In this case the size of the array being constructed
578 * is determined by the number of parameters.
579 *
580 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
581 *
582 * "There must be exactly the same number of arguments as the size of
583 * the array being constructed. If no size is present in the
584 * constructor, then the array is explicitly sized to the number of
585 * arguments provided. The arguments are assigned in order, starting at
586 * element 0, to the elements of the constructed array. Each argument
587 * must be the same type as the element type of the array, or be a type
588 * that can be converted to the element type of the array according to
589 * Section 4.1.10 "Implicit Conversions.""
590 */
591 exec_list actual_parameters;
592 const unsigned parameter_count =
593 process_parameters(instructions, &actual_parameters, parameters, state);
594
595 if ((parameter_count == 0)
596 || ((constructor_type->length != 0)
597 && (constructor_type->length != parameter_count))) {
598 const unsigned min_param = (constructor_type->length == 0)
599 ? 1 : constructor_type->length;
600
601 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
602 "parameter%s",
603 (constructor_type->length != 0) ? "at least" : "exactly",
604 min_param, (min_param <= 1) ? "" : "s");
605 return ir_rvalue::error_value(ctx);
606 }
607
608 if (constructor_type->length == 0) {
609 constructor_type =
610 glsl_type::get_array_instance(constructor_type->element_type(),
611 parameter_count);
612 assert(constructor_type != NULL);
613 assert(constructor_type->length == parameter_count);
614 }
615
616 bool all_parameters_are_constant = true;
617
618 /* Type cast each parameter and, if possible, fold constants. */
619 foreach_list_safe(n, &actual_parameters) {
620 ir_rvalue *ir = (ir_rvalue *) n;
621 ir_rvalue *result = ir;
622
623 /* Apply implicit conversions (not the scalar constructor rules!). See
624 * the spec quote above. */
625 if (constructor_type->element_type()->is_float()) {
626 const glsl_type *desired_type =
627 glsl_type::get_instance(GLSL_TYPE_FLOAT,
628 ir->type->vector_elements,
629 ir->type->matrix_columns);
630 if (result->type->can_implicitly_convert_to(desired_type)) {
631 /* Even though convert_component() implements the constructor
632 * conversion rules (not the implicit conversion rules), its safe
633 * to use it here because we already checked that the implicit
634 * conversion is legal.
635 */
636 result = convert_component(ir, desired_type);
637 }
638 }
639
640 if (result->type != constructor_type->element_type()) {
641 _mesa_glsl_error(loc, state, "type error in array constructor: "
642 "expected: %s, found %s",
643 constructor_type->element_type()->name,
644 result->type->name);
645 }
646
647 /* Attempt to convert the parameter to a constant valued expression.
648 * After doing so, track whether or not all the parameters to the
649 * constructor are trivially constant valued expressions.
650 */
651 ir_rvalue *const constant = result->constant_expression_value();
652
653 if (constant != NULL)
654 result = constant;
655 else
656 all_parameters_are_constant = false;
657
658 ir->replace_with(result);
659 }
660
661 if (all_parameters_are_constant)
662 return new(ctx) ir_constant(constructor_type, &actual_parameters);
663
664 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
665 ir_var_temporary);
666 instructions->push_tail(var);
667
668 int i = 0;
669 foreach_list(node, &actual_parameters) {
670 ir_rvalue *rhs = (ir_rvalue *) node;
671 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
672 new(ctx) ir_constant(i));
673
674 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
675 instructions->push_tail(assignment);
676
677 i++;
678 }
679
680 return new(ctx) ir_dereference_variable(var);
681 }
682
683
684 /**
685 * Try to convert a record constructor to a constant expression
686 */
687 static ir_constant *
688 constant_record_constructor(const glsl_type *constructor_type,
689 exec_list *parameters, void *mem_ctx)
690 {
691 foreach_list(node, parameters) {
692 ir_constant *constant = ((ir_instruction *) node)->as_constant();
693 if (constant == NULL)
694 return NULL;
695 node->replace_with(constant);
696 }
697
698 return new(mem_ctx) ir_constant(constructor_type, parameters);
699 }
700
701
702 /**
703 * Determine if a list consists of a single scalar r-value
704 */
705 bool
706 single_scalar_parameter(exec_list *parameters)
707 {
708 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
709 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
710
711 return (p->type->is_scalar() && p->next->is_tail_sentinel());
712 }
713
714
715 /**
716 * Generate inline code for a vector constructor
717 *
718 * The generated constructor code will consist of a temporary variable
719 * declaration of the same type as the constructor. A sequence of assignments
720 * from constructor parameters to the temporary will follow.
721 *
722 * \return
723 * An \c ir_dereference_variable of the temprorary generated in the constructor
724 * body.
725 */
726 ir_rvalue *
727 emit_inline_vector_constructor(const glsl_type *type,
728 exec_list *instructions,
729 exec_list *parameters,
730 void *ctx)
731 {
732 assert(!parameters->is_empty());
733
734 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
735 instructions->push_tail(var);
736
737 /* There are two kinds of vector constructors.
738 *
739 * - Construct a vector from a single scalar by replicating that scalar to
740 * all components of the vector.
741 *
742 * - Construct a vector from an arbirary combination of vectors and
743 * scalars. The components of the constructor parameters are assigned
744 * to the vector in order until the vector is full.
745 */
746 const unsigned lhs_components = type->components();
747 if (single_scalar_parameter(parameters)) {
748 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
749 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
750 lhs_components);
751 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
752 const unsigned mask = (1U << lhs_components) - 1;
753
754 assert(rhs->type == lhs->type);
755
756 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
757 instructions->push_tail(inst);
758 } else {
759 unsigned base_component = 0;
760 unsigned base_lhs_component = 0;
761 ir_constant_data data;
762 unsigned constant_mask = 0, constant_components = 0;
763
764 memset(&data, 0, sizeof(data));
765
766 foreach_list(node, parameters) {
767 ir_rvalue *param = (ir_rvalue *) node;
768 unsigned rhs_components = param->type->components();
769
770 /* Do not try to assign more components to the vector than it has!
771 */
772 if ((rhs_components + base_lhs_component) > lhs_components) {
773 rhs_components = lhs_components - base_lhs_component;
774 }
775
776 const ir_constant *const c = param->as_constant();
777 if (c != NULL) {
778 for (unsigned i = 0; i < rhs_components; i++) {
779 switch (c->type->base_type) {
780 case GLSL_TYPE_UINT:
781 data.u[i + base_component] = c->get_uint_component(i);
782 break;
783 case GLSL_TYPE_INT:
784 data.i[i + base_component] = c->get_int_component(i);
785 break;
786 case GLSL_TYPE_FLOAT:
787 data.f[i + base_component] = c->get_float_component(i);
788 break;
789 case GLSL_TYPE_BOOL:
790 data.b[i + base_component] = c->get_bool_component(i);
791 break;
792 default:
793 assert(!"Should not get here.");
794 break;
795 }
796 }
797
798 /* Mask of fields to be written in the assignment.
799 */
800 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
801 constant_components += rhs_components;
802
803 base_component += rhs_components;
804 }
805 /* Advance the component index by the number of components
806 * that were just assigned.
807 */
808 base_lhs_component += rhs_components;
809 }
810
811 if (constant_mask != 0) {
812 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
813 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
814 constant_components,
815 1);
816 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
817
818 ir_instruction *inst =
819 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
820 instructions->push_tail(inst);
821 }
822
823 base_component = 0;
824 foreach_list(node, parameters) {
825 ir_rvalue *param = (ir_rvalue *) node;
826 unsigned rhs_components = param->type->components();
827
828 /* Do not try to assign more components to the vector than it has!
829 */
830 if ((rhs_components + base_component) > lhs_components) {
831 rhs_components = lhs_components - base_component;
832 }
833
834 const ir_constant *const c = param->as_constant();
835 if (c == NULL) {
836 /* Mask of fields to be written in the assignment.
837 */
838 const unsigned write_mask = ((1U << rhs_components) - 1)
839 << base_component;
840
841 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
842
843 /* Generate a swizzle so that LHS and RHS sizes match.
844 */
845 ir_rvalue *rhs =
846 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
847
848 ir_instruction *inst =
849 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
850 instructions->push_tail(inst);
851 }
852
853 /* Advance the component index by the number of components that were
854 * just assigned.
855 */
856 base_component += rhs_components;
857 }
858 }
859 return new(ctx) ir_dereference_variable(var);
860 }
861
862
863 /**
864 * Generate assignment of a portion of a vector to a portion of a matrix column
865 *
866 * \param src_base First component of the source to be used in assignment
867 * \param column Column of destination to be assiged
868 * \param row_base First component of the destination column to be assigned
869 * \param count Number of components to be assigned
870 *
871 * \note
872 * \c src_base + \c count must be less than or equal to the number of components
873 * in the source vector.
874 */
875 ir_instruction *
876 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
877 ir_rvalue *src, unsigned src_base, unsigned count,
878 void *mem_ctx)
879 {
880 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
881 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
882
883 assert(column_ref->type->components() >= (row_base + count));
884 assert(src->type->components() >= (src_base + count));
885
886 /* Generate a swizzle that extracts the number of components from the source
887 * that are to be assigned to the column of the matrix.
888 */
889 if (count < src->type->vector_elements) {
890 src = new(mem_ctx) ir_swizzle(src,
891 src_base + 0, src_base + 1,
892 src_base + 2, src_base + 3,
893 count);
894 }
895
896 /* Mask of fields to be written in the assignment.
897 */
898 const unsigned write_mask = ((1U << count) - 1) << row_base;
899
900 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
901 }
902
903
904 /**
905 * Generate inline code for a matrix constructor
906 *
907 * The generated constructor code will consist of a temporary variable
908 * declaration of the same type as the constructor. A sequence of assignments
909 * from constructor parameters to the temporary will follow.
910 *
911 * \return
912 * An \c ir_dereference_variable of the temprorary generated in the constructor
913 * body.
914 */
915 ir_rvalue *
916 emit_inline_matrix_constructor(const glsl_type *type,
917 exec_list *instructions,
918 exec_list *parameters,
919 void *ctx)
920 {
921 assert(!parameters->is_empty());
922
923 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
924 instructions->push_tail(var);
925
926 /* There are three kinds of matrix constructors.
927 *
928 * - Construct a matrix from a single scalar by replicating that scalar to
929 * along the diagonal of the matrix and setting all other components to
930 * zero.
931 *
932 * - Construct a matrix from an arbirary combination of vectors and
933 * scalars. The components of the constructor parameters are assigned
934 * to the matrix in colum-major order until the matrix is full.
935 *
936 * - Construct a matrix from a single matrix. The source matrix is copied
937 * to the upper left portion of the constructed matrix, and the remaining
938 * elements take values from the identity matrix.
939 */
940 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
941 if (single_scalar_parameter(parameters)) {
942 /* Assign the scalar to the X component of a vec4, and fill the remaining
943 * components with zero.
944 */
945 ir_variable *rhs_var =
946 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
947 ir_var_temporary);
948 instructions->push_tail(rhs_var);
949
950 ir_constant_data zero;
951 zero.f[0] = 0.0;
952 zero.f[1] = 0.0;
953 zero.f[2] = 0.0;
954 zero.f[3] = 0.0;
955
956 ir_instruction *inst =
957 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
958 new(ctx) ir_constant(rhs_var->type, &zero),
959 NULL);
960 instructions->push_tail(inst);
961
962 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
963
964 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
965 instructions->push_tail(inst);
966
967 /* Assign the temporary vector to each column of the destination matrix
968 * with a swizzle that puts the X component on the diagonal of the
969 * matrix. In some cases this may mean that the X component does not
970 * get assigned into the column at all (i.e., when the matrix has more
971 * columns than rows).
972 */
973 static const unsigned rhs_swiz[4][4] = {
974 { 0, 1, 1, 1 },
975 { 1, 0, 1, 1 },
976 { 1, 1, 0, 1 },
977 { 1, 1, 1, 0 }
978 };
979
980 const unsigned cols_to_init = MIN2(type->matrix_columns,
981 type->vector_elements);
982 for (unsigned i = 0; i < cols_to_init; i++) {
983 ir_constant *const col_idx = new(ctx) ir_constant(i);
984 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
985
986 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
987 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
988 type->vector_elements);
989
990 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
991 instructions->push_tail(inst);
992 }
993
994 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
995 ir_constant *const col_idx = new(ctx) ir_constant(i);
996 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
997
998 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
999 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1000 type->vector_elements);
1001
1002 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1003 instructions->push_tail(inst);
1004 }
1005 } else if (first_param->type->is_matrix()) {
1006 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1007 *
1008 * "If a matrix is constructed from a matrix, then each component
1009 * (column i, row j) in the result that has a corresponding
1010 * component (column i, row j) in the argument will be initialized
1011 * from there. All other components will be initialized to the
1012 * identity matrix. If a matrix argument is given to a matrix
1013 * constructor, it is an error to have any other arguments."
1014 */
1015 assert(first_param->next->is_tail_sentinel());
1016 ir_rvalue *const src_matrix = first_param;
1017
1018 /* If the source matrix is smaller, pre-initialize the relavent parts of
1019 * the destination matrix to the identity matrix.
1020 */
1021 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1022 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1023
1024 /* If the source matrix has fewer rows, every column of the destination
1025 * must be initialized. Otherwise only the columns in the destination
1026 * that do not exist in the source must be initialized.
1027 */
1028 unsigned col =
1029 (src_matrix->type->vector_elements < var->type->vector_elements)
1030 ? 0 : src_matrix->type->matrix_columns;
1031
1032 const glsl_type *const col_type = var->type->column_type();
1033 for (/* empty */; col < var->type->matrix_columns; col++) {
1034 ir_constant_data ident;
1035
1036 ident.f[0] = 0.0;
1037 ident.f[1] = 0.0;
1038 ident.f[2] = 0.0;
1039 ident.f[3] = 0.0;
1040
1041 ident.f[col] = 1.0;
1042
1043 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1044
1045 ir_rvalue *const lhs =
1046 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1047
1048 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1049 instructions->push_tail(inst);
1050 }
1051 }
1052
1053 /* Assign columns from the source matrix to the destination matrix.
1054 *
1055 * Since the parameter will be used in the RHS of multiple assignments,
1056 * generate a temporary and copy the paramter there.
1057 */
1058 ir_variable *const rhs_var =
1059 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1060 ir_var_temporary);
1061 instructions->push_tail(rhs_var);
1062
1063 ir_dereference *const rhs_var_ref =
1064 new(ctx) ir_dereference_variable(rhs_var);
1065 ir_instruction *const inst =
1066 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1067 instructions->push_tail(inst);
1068
1069 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1070 var->type->vector_elements);
1071 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1072 var->type->matrix_columns);
1073
1074 unsigned swiz[4] = { 0, 0, 0, 0 };
1075 for (unsigned i = 1; i < last_row; i++)
1076 swiz[i] = i;
1077
1078 const unsigned write_mask = (1U << last_row) - 1;
1079
1080 for (unsigned i = 0; i < last_col; i++) {
1081 ir_dereference *const lhs =
1082 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1083 ir_rvalue *const rhs_col =
1084 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1085
1086 /* If one matrix has columns that are smaller than the columns of the
1087 * other matrix, wrap the column access of the larger with a swizzle
1088 * so that the LHS and RHS of the assignment have the same size (and
1089 * therefore have the same type).
1090 *
1091 * It would be perfectly valid to unconditionally generate the
1092 * swizzles, this this will typically result in a more compact IR tree.
1093 */
1094 ir_rvalue *rhs;
1095 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1096 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1097 } else {
1098 rhs = rhs_col;
1099 }
1100
1101 ir_instruction *inst =
1102 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1103 instructions->push_tail(inst);
1104 }
1105 } else {
1106 const unsigned cols = type->matrix_columns;
1107 const unsigned rows = type->vector_elements;
1108 unsigned col_idx = 0;
1109 unsigned row_idx = 0;
1110
1111 foreach_list (node, parameters) {
1112 ir_rvalue *const rhs = (ir_rvalue *) node;
1113 const unsigned components_remaining_this_column = rows - row_idx;
1114 unsigned rhs_components = rhs->type->components();
1115 unsigned rhs_base = 0;
1116
1117 /* Since the parameter might be used in the RHS of two assignments,
1118 * generate a temporary and copy the paramter there.
1119 */
1120 ir_variable *rhs_var =
1121 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1122 instructions->push_tail(rhs_var);
1123
1124 ir_dereference *rhs_var_ref =
1125 new(ctx) ir_dereference_variable(rhs_var);
1126 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1127 instructions->push_tail(inst);
1128
1129 /* Assign the current parameter to as many components of the matrix
1130 * as it will fill.
1131 *
1132 * NOTE: A single vector parameter can span two matrix columns. A
1133 * single vec4, for example, can completely fill a mat2.
1134 */
1135 if (rhs_components >= components_remaining_this_column) {
1136 const unsigned count = MIN2(rhs_components,
1137 components_remaining_this_column);
1138
1139 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1140
1141 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1142 row_idx,
1143 rhs_var_ref, 0,
1144 count, ctx);
1145 instructions->push_tail(inst);
1146
1147 rhs_base = count;
1148
1149 col_idx++;
1150 row_idx = 0;
1151 }
1152
1153 /* If there is data left in the parameter and components left to be
1154 * set in the destination, emit another assignment. It is possible
1155 * that the assignment could be of a vec4 to the last element of the
1156 * matrix. In this case col_idx==cols, but there is still data
1157 * left in the source parameter. Obviously, don't emit an assignment
1158 * to data outside the destination matrix.
1159 */
1160 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1161 const unsigned count = rhs_components - rhs_base;
1162
1163 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1164
1165 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1166 row_idx,
1167 rhs_var_ref,
1168 rhs_base,
1169 count, ctx);
1170 instructions->push_tail(inst);
1171
1172 row_idx += count;
1173 }
1174 }
1175 }
1176
1177 return new(ctx) ir_dereference_variable(var);
1178 }
1179
1180
1181 ir_rvalue *
1182 emit_inline_record_constructor(const glsl_type *type,
1183 exec_list *instructions,
1184 exec_list *parameters,
1185 void *mem_ctx)
1186 {
1187 ir_variable *const var =
1188 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1189 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1190
1191 instructions->push_tail(var);
1192
1193 exec_node *node = parameters->head;
1194 for (unsigned i = 0; i < type->length; i++) {
1195 assert(!node->is_tail_sentinel());
1196
1197 ir_dereference *const lhs =
1198 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1199 type->fields.structure[i].name);
1200
1201 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1202 assert(rhs != NULL);
1203
1204 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1205
1206 instructions->push_tail(assign);
1207 node = node->next;
1208 }
1209
1210 return d;
1211 }
1212
1213
1214 ir_rvalue *
1215 ast_function_expression::hir(exec_list *instructions,
1216 struct _mesa_glsl_parse_state *state)
1217 {
1218 void *ctx = state;
1219 /* There are three sorts of function calls.
1220 *
1221 * 1. constructors - The first subexpression is an ast_type_specifier.
1222 * 2. methods - Only the .length() method of array types.
1223 * 3. functions - Calls to regular old functions.
1224 *
1225 * Method calls are actually detected when the ast_field_selection
1226 * expression is handled.
1227 */
1228 if (is_constructor()) {
1229 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1230 YYLTYPE loc = type->get_location();
1231 const char *name;
1232
1233 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1234
1235 /* constructor_type can be NULL if a variable with the same name as the
1236 * structure has come into scope.
1237 */
1238 if (constructor_type == NULL) {
1239 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1240 "may be shadowed by a variable with the same name)",
1241 type->type_name);
1242 return ir_rvalue::error_value(ctx);
1243 }
1244
1245
1246 /* Constructors for samplers are illegal.
1247 */
1248 if (constructor_type->is_sampler()) {
1249 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1250 constructor_type->name);
1251 return ir_rvalue::error_value(ctx);
1252 }
1253
1254 if (constructor_type->is_array()) {
1255 if (state->language_version <= 110) {
1256 _mesa_glsl_error(& loc, state,
1257 "array constructors forbidden in GLSL 1.10");
1258 return ir_rvalue::error_value(ctx);
1259 }
1260
1261 return process_array_constructor(instructions, constructor_type,
1262 & loc, &this->expressions, state);
1263 }
1264
1265
1266 /* There are two kinds of constructor call. Constructors for built-in
1267 * language types, such as mat4 and vec2, are free form. The only
1268 * requirement is that the parameters must provide enough values of the
1269 * correct scalar type. Constructors for arrays and structures must
1270 * have the exact number of parameters with matching types in the
1271 * correct order. These constructors follow essentially the same type
1272 * matching rules as functions.
1273 */
1274 if (constructor_type->is_record()) {
1275 exec_list actual_parameters;
1276
1277 process_parameters(instructions, &actual_parameters,
1278 &this->expressions, state);
1279
1280 exec_node *node = actual_parameters.head;
1281 for (unsigned i = 0; i < constructor_type->length; i++) {
1282 ir_rvalue *ir = (ir_rvalue *) node;
1283
1284 if (node->is_tail_sentinel()) {
1285 _mesa_glsl_error(&loc, state,
1286 "insufficient parameters to constructor "
1287 "for `%s'",
1288 constructor_type->name);
1289 return ir_rvalue::error_value(ctx);
1290 }
1291
1292 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1293 ir, state)) {
1294 node->replace_with(ir);
1295 } else {
1296 _mesa_glsl_error(&loc, state,
1297 "parameter type mismatch in constructor "
1298 "for `%s.%s' (%s vs %s)",
1299 constructor_type->name,
1300 constructor_type->fields.structure[i].name,
1301 ir->type->name,
1302 constructor_type->fields.structure[i].type->name);
1303 return ir_rvalue::error_value(ctx);;
1304 }
1305
1306 node = node->next;
1307 }
1308
1309 if (!node->is_tail_sentinel()) {
1310 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1311 "for `%s'", constructor_type->name);
1312 return ir_rvalue::error_value(ctx);
1313 }
1314
1315 ir_rvalue *const constant =
1316 constant_record_constructor(constructor_type, &actual_parameters,
1317 state);
1318
1319 return (constant != NULL)
1320 ? constant
1321 : emit_inline_record_constructor(constructor_type, instructions,
1322 &actual_parameters, state);
1323 }
1324
1325 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1326 return ir_rvalue::error_value(ctx);
1327
1328 /* Total number of components of the type being constructed. */
1329 const unsigned type_components = constructor_type->components();
1330
1331 /* Number of components from parameters that have actually been
1332 * consumed. This is used to perform several kinds of error checking.
1333 */
1334 unsigned components_used = 0;
1335
1336 unsigned matrix_parameters = 0;
1337 unsigned nonmatrix_parameters = 0;
1338 exec_list actual_parameters;
1339
1340 foreach_list (n, &this->expressions) {
1341 ast_node *ast = exec_node_data(ast_node, n, link);
1342 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1343
1344 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1345 *
1346 * "It is an error to provide extra arguments beyond this
1347 * last used argument."
1348 */
1349 if (components_used >= type_components) {
1350 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1351 "constructor",
1352 constructor_type->name);
1353 return ir_rvalue::error_value(ctx);
1354 }
1355
1356 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1357 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1358 "non-numeric data type",
1359 constructor_type->name);
1360 return ir_rvalue::error_value(ctx);
1361 }
1362
1363 /* Count the number of matrix and nonmatrix parameters. This
1364 * is used below to enforce some of the constructor rules.
1365 */
1366 if (result->type->is_matrix())
1367 matrix_parameters++;
1368 else
1369 nonmatrix_parameters++;
1370
1371 actual_parameters.push_tail(result);
1372 components_used += result->type->components();
1373 }
1374
1375 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1376 *
1377 * "It is an error to construct matrices from other matrices. This
1378 * is reserved for future use."
1379 */
1380 if (state->language_version == 110 && matrix_parameters > 0
1381 && constructor_type->is_matrix()) {
1382 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1383 "matrix in GLSL 1.10",
1384 constructor_type->name);
1385 return ir_rvalue::error_value(ctx);
1386 }
1387
1388 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1389 *
1390 * "If a matrix argument is given to a matrix constructor, it is
1391 * an error to have any other arguments."
1392 */
1393 if ((matrix_parameters > 0)
1394 && ((matrix_parameters + nonmatrix_parameters) > 1)
1395 && constructor_type->is_matrix()) {
1396 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1397 "matrix must be only parameter",
1398 constructor_type->name);
1399 return ir_rvalue::error_value(ctx);
1400 }
1401
1402 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1403 *
1404 * "In these cases, there must be enough components provided in the
1405 * arguments to provide an initializer for every component in the
1406 * constructed value."
1407 */
1408 if (components_used < type_components && components_used != 1
1409 && matrix_parameters == 0) {
1410 _mesa_glsl_error(& loc, state, "too few components to construct "
1411 "`%s'",
1412 constructor_type->name);
1413 return ir_rvalue::error_value(ctx);
1414 }
1415
1416 /* Later, we cast each parameter to the same base type as the
1417 * constructor. Since there are no non-floating point matrices, we
1418 * need to break them up into a series of column vectors.
1419 */
1420 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1421 foreach_list_safe(n, &actual_parameters) {
1422 ir_rvalue *matrix = (ir_rvalue *) n;
1423
1424 if (!matrix->type->is_matrix())
1425 continue;
1426
1427 /* Create a temporary containing the matrix. */
1428 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1429 ir_var_temporary);
1430 instructions->push_tail(var);
1431 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1432 ir_dereference_variable(var), matrix, NULL));
1433 var->constant_value = matrix->constant_expression_value();
1434
1435 /* Replace the matrix with dereferences of its columns. */
1436 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1437 matrix->insert_before(new (ctx) ir_dereference_array(var,
1438 new(ctx) ir_constant(i)));
1439 }
1440 matrix->remove();
1441 }
1442 }
1443
1444 bool all_parameters_are_constant = true;
1445
1446 /* Type cast each parameter and, if possible, fold constants.*/
1447 foreach_list_safe(n, &actual_parameters) {
1448 ir_rvalue *ir = (ir_rvalue *) n;
1449
1450 const glsl_type *desired_type =
1451 glsl_type::get_instance(constructor_type->base_type,
1452 ir->type->vector_elements,
1453 ir->type->matrix_columns);
1454 ir_rvalue *result = convert_component(ir, desired_type);
1455
1456 /* Attempt to convert the parameter to a constant valued expression.
1457 * After doing so, track whether or not all the parameters to the
1458 * constructor are trivially constant valued expressions.
1459 */
1460 ir_rvalue *const constant = result->constant_expression_value();
1461
1462 if (constant != NULL)
1463 result = constant;
1464 else
1465 all_parameters_are_constant = false;
1466
1467 if (result != ir) {
1468 ir->replace_with(result);
1469 }
1470 }
1471
1472 /* If all of the parameters are trivially constant, create a
1473 * constant representing the complete collection of parameters.
1474 */
1475 if (all_parameters_are_constant) {
1476 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1477 } else if (constructor_type->is_scalar()) {
1478 return dereference_component((ir_rvalue *) actual_parameters.head,
1479 0);
1480 } else if (constructor_type->is_vector()) {
1481 return emit_inline_vector_constructor(constructor_type,
1482 instructions,
1483 &actual_parameters,
1484 ctx);
1485 } else {
1486 assert(constructor_type->is_matrix());
1487 return emit_inline_matrix_constructor(constructor_type,
1488 instructions,
1489 &actual_parameters,
1490 ctx);
1491 }
1492 } else {
1493 const ast_expression *id = subexpressions[0];
1494 const char *func_name = id->primary_expression.identifier;
1495 YYLTYPE loc = id->get_location();
1496 exec_list actual_parameters;
1497
1498 process_parameters(instructions, &actual_parameters, &this->expressions,
1499 state);
1500
1501 ir_function_signature *sig =
1502 match_function_by_name(func_name, &actual_parameters, state);
1503
1504 ir_call *call = NULL;
1505 ir_rvalue *value = NULL;
1506 if (sig == NULL) {
1507 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1508 value = ir_rvalue::error_value(ctx);
1509 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1510 /* an error has already been emitted */
1511 value = ir_rvalue::error_value(ctx);
1512 } else {
1513 value = generate_call(instructions, sig, &loc, &actual_parameters,
1514 &call, state);
1515 }
1516
1517 return value;
1518 }
1519
1520 return ir_rvalue::error_value(ctx);
1521 }