nir: include nir_instr_set.h in the tarball
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30
31 static ir_rvalue *
32 convert_component(ir_rvalue *src, const glsl_type *desired_type);
33
34 bool
35 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
36 struct _mesa_glsl_parse_state *state);
37
38 static unsigned
39 process_parameters(exec_list *instructions, exec_list *actual_parameters,
40 exec_list *parameters,
41 struct _mesa_glsl_parse_state *state)
42 {
43 unsigned count = 0;
44
45 foreach_list_typed(ast_node, ast, link, parameters) {
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_in_list(const ir_variable, param, parameters) {
86 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 ralloc_strcat(&str, ")");
91 return str;
92 }
93
94 static bool
95 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
96 const ir_variable *formal, const ir_variable *actual)
97 {
98 /**
99 * From the ARB_shader_image_load_store specification:
100 *
101 * "The values of image variables qualified with coherent,
102 * volatile, restrict, readonly, or writeonly may not be passed
103 * to functions whose formal parameters lack such
104 * qualifiers. [...] It is legal to have additional qualifiers
105 * on a formal parameter, but not to have fewer."
106 */
107 if (actual->data.image_coherent && !formal->data.image_coherent) {
108 _mesa_glsl_error(loc, state,
109 "function call parameter `%s' drops "
110 "`coherent' qualifier", formal->name);
111 return false;
112 }
113
114 if (actual->data.image_volatile && !formal->data.image_volatile) {
115 _mesa_glsl_error(loc, state,
116 "function call parameter `%s' drops "
117 "`volatile' qualifier", formal->name);
118 return false;
119 }
120
121 if (actual->data.image_restrict && !formal->data.image_restrict) {
122 _mesa_glsl_error(loc, state,
123 "function call parameter `%s' drops "
124 "`restrict' qualifier", formal->name);
125 return false;
126 }
127
128 if (actual->data.image_read_only && !formal->data.image_read_only) {
129 _mesa_glsl_error(loc, state,
130 "function call parameter `%s' drops "
131 "`readonly' qualifier", formal->name);
132 return false;
133 }
134
135 if (actual->data.image_write_only && !formal->data.image_write_only) {
136 _mesa_glsl_error(loc, state,
137 "function call parameter `%s' drops "
138 "`writeonly' qualifier", formal->name);
139 return false;
140 }
141
142 return true;
143 }
144
145 static bool
146 verify_first_atomic_ssbo_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
147 ir_variable *var)
148 {
149 if (!var || !var->is_in_shader_storage_block()) {
150 _mesa_glsl_error(loc, state, "First argument to atomic function "
151 "must be a buffer variable");
152 return false;
153 }
154 return true;
155 }
156
157 static bool
158 is_atomic_ssbo_function(const char *func_name)
159 {
160 return !strcmp(func_name, "atomicAdd") ||
161 !strcmp(func_name, "atomicMin") ||
162 !strcmp(func_name, "atomicMax") ||
163 !strcmp(func_name, "atomicAnd") ||
164 !strcmp(func_name, "atomicOr") ||
165 !strcmp(func_name, "atomicXor") ||
166 !strcmp(func_name, "atomicExchange") ||
167 !strcmp(func_name, "atomicCompSwap");
168 }
169
170 /**
171 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
172 * that 'const_in' formal parameters (an extension in our IR) correspond to
173 * ir_constant actual parameters.
174 */
175 static bool
176 verify_parameter_modes(_mesa_glsl_parse_state *state,
177 ir_function_signature *sig,
178 exec_list &actual_ir_parameters,
179 exec_list &actual_ast_parameters)
180 {
181 exec_node *actual_ir_node = actual_ir_parameters.head;
182 exec_node *actual_ast_node = actual_ast_parameters.head;
183
184 foreach_in_list(const ir_variable, formal, &sig->parameters) {
185 /* The lists must be the same length. */
186 assert(!actual_ir_node->is_tail_sentinel());
187 assert(!actual_ast_node->is_tail_sentinel());
188
189 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
190 const ast_expression *const actual_ast =
191 exec_node_data(ast_expression, actual_ast_node, link);
192
193 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
194 * FIXME: 0:0(0).
195 */
196 YYLTYPE loc = actual_ast->get_location();
197
198 /* Verify that 'const_in' parameters are ir_constants. */
199 if (formal->data.mode == ir_var_const_in &&
200 actual->ir_type != ir_type_constant) {
201 _mesa_glsl_error(&loc, state,
202 "parameter `in %s' must be a constant expression",
203 formal->name);
204 return false;
205 }
206
207 /* Verify that shader_in parameters are shader inputs */
208 if (formal->data.must_be_shader_input) {
209 ir_variable *var = actual->variable_referenced();
210 if (var && var->data.mode != ir_var_shader_in) {
211 _mesa_glsl_error(&loc, state,
212 "parameter `%s` must be a shader input",
213 formal->name);
214 return false;
215 }
216
217 if (actual->ir_type == ir_type_swizzle) {
218 _mesa_glsl_error(&loc, state,
219 "parameter `%s` must not be swizzled",
220 formal->name);
221 return false;
222 }
223 }
224
225 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
226 if (formal->data.mode == ir_var_function_out
227 || formal->data.mode == ir_var_function_inout) {
228 const char *mode = NULL;
229 switch (formal->data.mode) {
230 case ir_var_function_out: mode = "out"; break;
231 case ir_var_function_inout: mode = "inout"; break;
232 default: assert(false); break;
233 }
234
235 /* This AST-based check catches errors like f(i++). The IR-based
236 * is_lvalue() is insufficient because the actual parameter at the
237 * IR-level is just a temporary value, which is an l-value.
238 */
239 if (actual_ast->non_lvalue_description != NULL) {
240 _mesa_glsl_error(&loc, state,
241 "function parameter '%s %s' references a %s",
242 mode, formal->name,
243 actual_ast->non_lvalue_description);
244 return false;
245 }
246
247 ir_variable *var = actual->variable_referenced();
248 if (var)
249 var->data.assigned = true;
250
251 if (var && var->data.read_only) {
252 _mesa_glsl_error(&loc, state,
253 "function parameter '%s %s' references the "
254 "read-only variable '%s'",
255 mode, formal->name,
256 actual->variable_referenced()->name);
257 return false;
258 } else if (!actual->is_lvalue()) {
259 /* Even though ir_binop_vector_extract is not an l-value, let it
260 * slop through. generate_call will handle it correctly.
261 */
262 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
263 if (expr == NULL
264 || expr->operation != ir_binop_vector_extract
265 || !expr->operands[0]->is_lvalue()) {
266 _mesa_glsl_error(&loc, state,
267 "function parameter '%s %s' is not an lvalue",
268 mode, formal->name);
269 return false;
270 }
271 }
272 }
273
274 if (formal->type->is_image() &&
275 actual->variable_referenced()) {
276 if (!verify_image_parameter(&loc, state, formal,
277 actual->variable_referenced()))
278 return false;
279 }
280
281 actual_ir_node = actual_ir_node->next;
282 actual_ast_node = actual_ast_node->next;
283 }
284
285 /* The first parameter of atomic functions must be a buffer variable */
286 const char *func_name = sig->function_name();
287 bool is_atomic_ssbo = is_atomic_ssbo_function(func_name);
288 if (is_atomic_ssbo) {
289 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.head;
290
291 const ast_expression *const actual_ast =
292 exec_node_data(ast_expression, actual_ast_parameters.head, link);
293 YYLTYPE loc = actual_ast->get_location();
294
295 if (!verify_first_atomic_ssbo_parameter(&loc, state,
296 actual->variable_referenced())) {
297 return false;
298 }
299 }
300
301 return true;
302 }
303
304 static void
305 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
306 exec_list *before_instructions, exec_list *after_instructions,
307 bool parameter_is_inout)
308 {
309 ir_expression *const expr = actual->as_expression();
310
311 /* If the types match exactly and the parameter is not a vector-extract,
312 * nothing needs to be done to fix the parameter.
313 */
314 if (formal_type == actual->type
315 && (expr == NULL || expr->operation != ir_binop_vector_extract))
316 return;
317
318 /* To convert an out parameter, we need to create a temporary variable to
319 * hold the value before conversion, and then perform the conversion after
320 * the function call returns.
321 *
322 * This has the effect of transforming code like this:
323 *
324 * void f(out int x);
325 * float value;
326 * f(value);
327 *
328 * Into IR that's equivalent to this:
329 *
330 * void f(out int x);
331 * float value;
332 * int out_parameter_conversion;
333 * f(out_parameter_conversion);
334 * value = float(out_parameter_conversion);
335 *
336 * If the parameter is an ir_expression of ir_binop_vector_extract,
337 * additional conversion is needed in the post-call re-write.
338 */
339 ir_variable *tmp =
340 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
341
342 before_instructions->push_tail(tmp);
343
344 /* If the parameter is an inout parameter, copy the value of the actual
345 * parameter to the new temporary. Note that no type conversion is allowed
346 * here because inout parameters must match types exactly.
347 */
348 if (parameter_is_inout) {
349 /* Inout parameters should never require conversion, since that would
350 * require an implicit conversion to exist both to and from the formal
351 * parameter type, and there are no bidirectional implicit conversions.
352 */
353 assert (actual->type == formal_type);
354
355 ir_dereference_variable *const deref_tmp_1 =
356 new(mem_ctx) ir_dereference_variable(tmp);
357 ir_assignment *const assignment =
358 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
359 before_instructions->push_tail(assignment);
360 }
361
362 /* Replace the parameter in the call with a dereference of the new
363 * temporary.
364 */
365 ir_dereference_variable *const deref_tmp_2 =
366 new(mem_ctx) ir_dereference_variable(tmp);
367 actual->replace_with(deref_tmp_2);
368
369
370 /* Copy the temporary variable to the actual parameter with optional
371 * type conversion applied.
372 */
373 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
374 if (actual->type != formal_type)
375 rhs = convert_component(rhs, actual->type);
376
377 ir_rvalue *lhs = actual;
378 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
379 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
380 expr->operands[0]->type,
381 expr->operands[0]->clone(mem_ctx, NULL),
382 rhs,
383 expr->operands[1]->clone(mem_ctx, NULL));
384 lhs = expr->operands[0]->clone(mem_ctx, NULL);
385 }
386
387 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
388 after_instructions->push_tail(assignment_2);
389 }
390
391 /**
392 * Generate a function call.
393 *
394 * For non-void functions, this returns a dereference of the temporary variable
395 * which stores the return value for the call. For void functions, this returns
396 * NULL.
397 */
398 static ir_rvalue *
399 generate_call(exec_list *instructions, ir_function_signature *sig,
400 exec_list *actual_parameters,
401 ir_variable *sub_var,
402 ir_rvalue *array_idx,
403 struct _mesa_glsl_parse_state *state)
404 {
405 void *ctx = state;
406 exec_list post_call_conversions;
407
408 /* Perform implicit conversion of arguments. For out parameters, we need
409 * to place them in a temporary variable and do the conversion after the
410 * call takes place. Since we haven't emitted the call yet, we'll place
411 * the post-call conversions in a temporary exec_list, and emit them later.
412 */
413 foreach_two_lists(formal_node, &sig->parameters,
414 actual_node, actual_parameters) {
415 ir_rvalue *actual = (ir_rvalue *) actual_node;
416 ir_variable *formal = (ir_variable *) formal_node;
417
418 if (formal->type->is_numeric() || formal->type->is_boolean()) {
419 switch (formal->data.mode) {
420 case ir_var_const_in:
421 case ir_var_function_in: {
422 ir_rvalue *converted
423 = convert_component(actual, formal->type);
424 actual->replace_with(converted);
425 break;
426 }
427 case ir_var_function_out:
428 case ir_var_function_inout:
429 fix_parameter(ctx, actual, formal->type,
430 instructions, &post_call_conversions,
431 formal->data.mode == ir_var_function_inout);
432 break;
433 default:
434 assert (!"Illegal formal parameter mode");
435 break;
436 }
437 }
438 }
439
440 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
441 *
442 * "Initializers for const declarations must be formed from literal
443 * values, other const variables (not including function call
444 * paramaters), or expressions of these.
445 *
446 * Constructors may be used in such expressions, but function calls may
447 * not."
448 *
449 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
450 *
451 * "A constant expression is one of
452 *
453 * ...
454 *
455 * - a built-in function call whose arguments are all constant
456 * expressions, with the exception of the texture lookup
457 * functions, the noise functions, and ftransform. The built-in
458 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
459 * inside an initializer with an argument that is a constant
460 * expression."
461 *
462 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
463 *
464 * "A constant expression is one of
465 *
466 * ...
467 *
468 * - a built-in function call whose arguments are all constant
469 * expressions, with the exception of the texture lookup
470 * functions."
471 *
472 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
473 *
474 * "A constant expression is one of
475 *
476 * ...
477 *
478 * - a built-in function call whose arguments are all constant
479 * expressions, with the exception of the texture lookup
480 * functions. The built-in functions dFdx, dFdy, and fwidth must
481 * return 0 when evaluated inside an initializer with an argument
482 * that is a constant expression."
483 *
484 * If the function call is a constant expression, don't generate any
485 * instructions; just generate an ir_constant.
486 */
487 if (state->is_version(120, 100)) {
488 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
489 if (value != NULL) {
490 return value;
491 }
492 }
493
494 ir_dereference_variable *deref = NULL;
495 if (!sig->return_type->is_void()) {
496 /* Create a new temporary to hold the return value. */
497 char *const name = ir_variable::temporaries_allocate_names
498 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
499 : NULL;
500
501 ir_variable *var;
502
503 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
504 instructions->push_tail(var);
505
506 ralloc_free(name);
507
508 deref = new(ctx) ir_dereference_variable(var);
509 }
510
511 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx);
512 instructions->push_tail(call);
513
514 /* Also emit any necessary out-parameter conversions. */
515 instructions->append_list(&post_call_conversions);
516
517 return deref ? deref->clone(ctx, NULL) : NULL;
518 }
519
520 /**
521 * Given a function name and parameter list, find the matching signature.
522 */
523 static ir_function_signature *
524 match_function_by_name(const char *name,
525 exec_list *actual_parameters,
526 struct _mesa_glsl_parse_state *state)
527 {
528 void *ctx = state;
529 ir_function *f = state->symbols->get_function(name);
530 ir_function_signature *local_sig = NULL;
531 ir_function_signature *sig = NULL;
532
533 /* Is the function hidden by a record type constructor? */
534 if (state->symbols->get_type(name))
535 goto done; /* no match */
536
537 /* Is the function hidden by a variable (impossible in 1.10)? */
538 if (!state->symbols->separate_function_namespace
539 && state->symbols->get_variable(name))
540 goto done; /* no match */
541
542 if (f != NULL) {
543 /* In desktop GL, the presence of a user-defined signature hides any
544 * built-in signatures, so we must ignore them. In contrast, in ES2
545 * user-defined signatures add new overloads, so we must consider them.
546 */
547 bool allow_builtins = state->es_shader || !f->has_user_signature();
548
549 /* Look for a match in the local shader. If exact, we're done. */
550 bool is_exact = false;
551 sig = local_sig = f->matching_signature(state, actual_parameters,
552 allow_builtins, &is_exact);
553 if (is_exact)
554 goto done;
555
556 if (!allow_builtins)
557 goto done;
558 }
559
560 /* Local shader has no exact candidates; check the built-ins. */
561 _mesa_glsl_initialize_builtin_functions();
562 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
563
564 done:
565 if (sig != NULL) {
566 /* If the match is from a linked built-in shader, import the prototype. */
567 if (sig != local_sig) {
568 if (f == NULL) {
569 f = new(ctx) ir_function(name);
570 state->symbols->add_global_function(f);
571 emit_function(state, f);
572 }
573 f->add_signature(sig->clone_prototype(f, NULL));
574 }
575 }
576 return sig;
577 }
578
579 static ir_function_signature *
580 match_subroutine_by_name(const char *name,
581 exec_list *actual_parameters,
582 struct _mesa_glsl_parse_state *state,
583 ir_variable **var_r)
584 {
585 void *ctx = state;
586 ir_function_signature *sig = NULL;
587 ir_function *f, *found = NULL;
588 const char *new_name;
589 ir_variable *var;
590 bool is_exact = false;
591
592 new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name);
593 var = state->symbols->get_variable(new_name);
594 if (!var)
595 return NULL;
596
597 for (int i = 0; i < state->num_subroutine_types; i++) {
598 f = state->subroutine_types[i];
599 if (strcmp(f->name, var->type->without_array()->name))
600 continue;
601 found = f;
602 break;
603 }
604
605 if (!found)
606 return NULL;
607 *var_r = var;
608 sig = found->matching_signature(state, actual_parameters,
609 false, &is_exact);
610 return sig;
611 }
612
613 static void
614 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
615 ir_function *f)
616 {
617 if (f == NULL)
618 return;
619
620 foreach_in_list(ir_function_signature, sig, &f->signatures) {
621 if (sig->is_builtin() && !sig->is_builtin_available(state))
622 continue;
623
624 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
625 _mesa_glsl_error(loc, state, " %s", str);
626 ralloc_free(str);
627 }
628 }
629
630 /**
631 * Raise a "no matching function" error, listing all possible overloads the
632 * compiler considered so developers can figure out what went wrong.
633 */
634 static void
635 no_matching_function_error(const char *name,
636 YYLTYPE *loc,
637 exec_list *actual_parameters,
638 _mesa_glsl_parse_state *state)
639 {
640 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
641
642 if (state->symbols->get_function(name) == NULL
643 && (!state->uses_builtin_functions
644 || sh->symbols->get_function(name) == NULL)) {
645 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
646 } else {
647 char *str = prototype_string(NULL, name, actual_parameters);
648 _mesa_glsl_error(loc, state,
649 "no matching function for call to `%s'; candidates are:",
650 str);
651 ralloc_free(str);
652
653 print_function_prototypes(state, loc, state->symbols->get_function(name));
654
655 if (state->uses_builtin_functions) {
656 print_function_prototypes(state, loc, sh->symbols->get_function(name));
657 }
658 }
659 }
660
661 /**
662 * Perform automatic type conversion of constructor parameters
663 *
664 * This implements the rules in the "Conversion and Scalar Constructors"
665 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
666 */
667 static ir_rvalue *
668 convert_component(ir_rvalue *src, const glsl_type *desired_type)
669 {
670 void *ctx = ralloc_parent(src);
671 const unsigned a = desired_type->base_type;
672 const unsigned b = src->type->base_type;
673 ir_expression *result = NULL;
674
675 if (src->type->is_error())
676 return src;
677
678 assert(a <= GLSL_TYPE_BOOL);
679 assert(b <= GLSL_TYPE_BOOL);
680
681 if (a == b)
682 return src;
683
684 switch (a) {
685 case GLSL_TYPE_UINT:
686 switch (b) {
687 case GLSL_TYPE_INT:
688 result = new(ctx) ir_expression(ir_unop_i2u, src);
689 break;
690 case GLSL_TYPE_FLOAT:
691 result = new(ctx) ir_expression(ir_unop_f2u, src);
692 break;
693 case GLSL_TYPE_BOOL:
694 result = new(ctx) ir_expression(ir_unop_i2u,
695 new(ctx) ir_expression(ir_unop_b2i, src));
696 break;
697 case GLSL_TYPE_DOUBLE:
698 result = new(ctx) ir_expression(ir_unop_d2u, src);
699 break;
700 }
701 break;
702 case GLSL_TYPE_INT:
703 switch (b) {
704 case GLSL_TYPE_UINT:
705 result = new(ctx) ir_expression(ir_unop_u2i, src);
706 break;
707 case GLSL_TYPE_FLOAT:
708 result = new(ctx) ir_expression(ir_unop_f2i, src);
709 break;
710 case GLSL_TYPE_BOOL:
711 result = new(ctx) ir_expression(ir_unop_b2i, src);
712 break;
713 case GLSL_TYPE_DOUBLE:
714 result = new(ctx) ir_expression(ir_unop_d2i, src);
715 break;
716 }
717 break;
718 case GLSL_TYPE_FLOAT:
719 switch (b) {
720 case GLSL_TYPE_UINT:
721 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
722 break;
723 case GLSL_TYPE_INT:
724 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
725 break;
726 case GLSL_TYPE_BOOL:
727 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
728 break;
729 case GLSL_TYPE_DOUBLE:
730 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
731 break;
732 }
733 break;
734 case GLSL_TYPE_BOOL:
735 switch (b) {
736 case GLSL_TYPE_UINT:
737 result = new(ctx) ir_expression(ir_unop_i2b,
738 new(ctx) ir_expression(ir_unop_u2i, src));
739 break;
740 case GLSL_TYPE_INT:
741 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
742 break;
743 case GLSL_TYPE_FLOAT:
744 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
745 break;
746 case GLSL_TYPE_DOUBLE:
747 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
748 break;
749 }
750 break;
751 case GLSL_TYPE_DOUBLE:
752 switch (b) {
753 case GLSL_TYPE_INT:
754 result = new(ctx) ir_expression(ir_unop_i2d, src);
755 break;
756 case GLSL_TYPE_UINT:
757 result = new(ctx) ir_expression(ir_unop_u2d, src);
758 break;
759 case GLSL_TYPE_BOOL:
760 result = new(ctx) ir_expression(ir_unop_f2d,
761 new(ctx) ir_expression(ir_unop_b2f, src));
762 break;
763 case GLSL_TYPE_FLOAT:
764 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
765 break;
766 }
767 }
768
769 assert(result != NULL);
770 assert(result->type == desired_type);
771
772 /* Try constant folding; it may fold in the conversion we just added. */
773 ir_constant *const constant = result->constant_expression_value();
774 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
775 }
776
777 /**
778 * Dereference a specific component from a scalar, vector, or matrix
779 */
780 static ir_rvalue *
781 dereference_component(ir_rvalue *src, unsigned component)
782 {
783 void *ctx = ralloc_parent(src);
784 assert(component < src->type->components());
785
786 /* If the source is a constant, just create a new constant instead of a
787 * dereference of the existing constant.
788 */
789 ir_constant *constant = src->as_constant();
790 if (constant)
791 return new(ctx) ir_constant(constant, component);
792
793 if (src->type->is_scalar()) {
794 return src;
795 } else if (src->type->is_vector()) {
796 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
797 } else {
798 assert(src->type->is_matrix());
799
800 /* Dereference a row of the matrix, then call this function again to get
801 * a specific element from that row.
802 */
803 const int c = component / src->type->column_type()->vector_elements;
804 const int r = component % src->type->column_type()->vector_elements;
805 ir_constant *const col_index = new(ctx) ir_constant(c);
806 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
807
808 col->type = src->type->column_type();
809
810 return dereference_component(col, r);
811 }
812
813 assert(!"Should not get here.");
814 return NULL;
815 }
816
817
818 static ir_rvalue *
819 process_vec_mat_constructor(exec_list *instructions,
820 const glsl_type *constructor_type,
821 YYLTYPE *loc, exec_list *parameters,
822 struct _mesa_glsl_parse_state *state)
823 {
824 void *ctx = state;
825
826 /* The ARB_shading_language_420pack spec says:
827 *
828 * "If an initializer is a list of initializers enclosed in curly braces,
829 * the variable being declared must be a vector, a matrix, an array, or a
830 * structure.
831 *
832 * int i = { 1 }; // illegal, i is not an aggregate"
833 */
834 if (constructor_type->vector_elements <= 1) {
835 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
836 "matrices, arrays, and structs");
837 return ir_rvalue::error_value(ctx);
838 }
839
840 exec_list actual_parameters;
841 const unsigned parameter_count =
842 process_parameters(instructions, &actual_parameters, parameters, state);
843
844 if (parameter_count == 0
845 || (constructor_type->is_vector() &&
846 constructor_type->vector_elements != parameter_count)
847 || (constructor_type->is_matrix() &&
848 constructor_type->matrix_columns != parameter_count)) {
849 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
850 constructor_type->is_vector() ? "vector" : "matrix",
851 constructor_type->vector_elements);
852 return ir_rvalue::error_value(ctx);
853 }
854
855 bool all_parameters_are_constant = true;
856
857 /* Type cast each parameter and, if possible, fold constants. */
858 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
859 ir_rvalue *result = ir;
860
861 /* Apply implicit conversions (not the scalar constructor rules!). See
862 * the spec quote above. */
863 if (constructor_type->base_type != result->type->base_type) {
864 const glsl_type *desired_type =
865 glsl_type::get_instance(constructor_type->base_type,
866 ir->type->vector_elements,
867 ir->type->matrix_columns);
868 if (result->type->can_implicitly_convert_to(desired_type, state)) {
869 /* Even though convert_component() implements the constructor
870 * conversion rules (not the implicit conversion rules), its safe
871 * to use it here because we already checked that the implicit
872 * conversion is legal.
873 */
874 result = convert_component(ir, desired_type);
875 }
876 }
877
878 if (constructor_type->is_matrix()) {
879 if (result->type != constructor_type->column_type()) {
880 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
881 "expected: %s, found %s",
882 constructor_type->column_type()->name,
883 result->type->name);
884 return ir_rvalue::error_value(ctx);
885 }
886 } else if (result->type != constructor_type->get_scalar_type()) {
887 _mesa_glsl_error(loc, state, "type error in vector constructor: "
888 "expected: %s, found %s",
889 constructor_type->get_scalar_type()->name,
890 result->type->name);
891 return ir_rvalue::error_value(ctx);
892 }
893
894 /* Attempt to convert the parameter to a constant valued expression.
895 * After doing so, track whether or not all the parameters to the
896 * constructor are trivially constant valued expressions.
897 */
898 ir_rvalue *const constant = result->constant_expression_value();
899
900 if (constant != NULL)
901 result = constant;
902 else
903 all_parameters_are_constant = false;
904
905 ir->replace_with(result);
906 }
907
908 if (all_parameters_are_constant)
909 return new(ctx) ir_constant(constructor_type, &actual_parameters);
910
911 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
912 ir_var_temporary);
913 instructions->push_tail(var);
914
915 int i = 0;
916
917 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
918 ir_instruction *assignment = NULL;
919
920 if (var->type->is_matrix()) {
921 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
922 new(ctx) ir_constant(i));
923 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
924 } else {
925 /* use writemask rather than index for vector */
926 assert(var->type->is_vector());
927 assert(i < 4);
928 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
929 assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
930 }
931
932 instructions->push_tail(assignment);
933
934 i++;
935 }
936
937 return new(ctx) ir_dereference_variable(var);
938 }
939
940
941 static ir_rvalue *
942 process_array_constructor(exec_list *instructions,
943 const glsl_type *constructor_type,
944 YYLTYPE *loc, exec_list *parameters,
945 struct _mesa_glsl_parse_state *state)
946 {
947 void *ctx = state;
948 /* Array constructors come in two forms: sized and unsized. Sized array
949 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
950 * variables. In this case the number of parameters must exactly match the
951 * specified size of the array.
952 *
953 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
954 * are vec4 variables. In this case the size of the array being constructed
955 * is determined by the number of parameters.
956 *
957 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
958 *
959 * "There must be exactly the same number of arguments as the size of
960 * the array being constructed. If no size is present in the
961 * constructor, then the array is explicitly sized to the number of
962 * arguments provided. The arguments are assigned in order, starting at
963 * element 0, to the elements of the constructed array. Each argument
964 * must be the same type as the element type of the array, or be a type
965 * that can be converted to the element type of the array according to
966 * Section 4.1.10 "Implicit Conversions.""
967 */
968 exec_list actual_parameters;
969 const unsigned parameter_count =
970 process_parameters(instructions, &actual_parameters, parameters, state);
971 bool is_unsized_array = constructor_type->is_unsized_array();
972
973 if ((parameter_count == 0) ||
974 (!is_unsized_array && (constructor_type->length != parameter_count))) {
975 const unsigned min_param = is_unsized_array
976 ? 1 : constructor_type->length;
977
978 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
979 "parameter%s",
980 is_unsized_array ? "at least" : "exactly",
981 min_param, (min_param <= 1) ? "" : "s");
982 return ir_rvalue::error_value(ctx);
983 }
984
985 if (is_unsized_array) {
986 constructor_type =
987 glsl_type::get_array_instance(constructor_type->fields.array,
988 parameter_count);
989 assert(constructor_type != NULL);
990 assert(constructor_type->length == parameter_count);
991 }
992
993 bool all_parameters_are_constant = true;
994 const glsl_type *element_type = constructor_type->fields.array;
995
996 /* Type cast each parameter and, if possible, fold constants. */
997 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
998 ir_rvalue *result = ir;
999
1000 const glsl_base_type element_base_type =
1001 constructor_type->fields.array->base_type;
1002
1003 /* Apply implicit conversions (not the scalar constructor rules!). See
1004 * the spec quote above. */
1005 if (element_base_type != result->type->base_type) {
1006 const glsl_type *desired_type =
1007 glsl_type::get_instance(element_base_type,
1008 ir->type->vector_elements,
1009 ir->type->matrix_columns);
1010
1011 if (result->type->can_implicitly_convert_to(desired_type, state)) {
1012 /* Even though convert_component() implements the constructor
1013 * conversion rules (not the implicit conversion rules), its safe
1014 * to use it here because we already checked that the implicit
1015 * conversion is legal.
1016 */
1017 result = convert_component(ir, desired_type);
1018 }
1019 }
1020
1021 if (constructor_type->fields.array->is_unsized_array()) {
1022 /* As the inner parameters of the constructor are created without
1023 * knowledge of each other we need to check to make sure unsized
1024 * parameters of unsized constructors all end up with the same size.
1025 *
1026 * e.g we make sure to fail for a constructor like this:
1027 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1028 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1029 * vec4[](vec4(0.0), vec4(1.0)));
1030 */
1031 if (element_type->is_unsized_array()) {
1032 /* This is the first parameter so just get the type */
1033 element_type = result->type;
1034 } else if (element_type != result->type) {
1035 _mesa_glsl_error(loc, state, "type error in array constructor: "
1036 "expected: %s, found %s",
1037 element_type->name,
1038 result->type->name);
1039 return ir_rvalue::error_value(ctx);
1040 }
1041 } else if (result->type != constructor_type->fields.array) {
1042 _mesa_glsl_error(loc, state, "type error in array constructor: "
1043 "expected: %s, found %s",
1044 constructor_type->fields.array->name,
1045 result->type->name);
1046 return ir_rvalue::error_value(ctx);
1047 } else {
1048 element_type = result->type;
1049 }
1050
1051 /* Attempt to convert the parameter to a constant valued expression.
1052 * After doing so, track whether or not all the parameters to the
1053 * constructor are trivially constant valued expressions.
1054 */
1055 ir_rvalue *const constant = result->constant_expression_value();
1056
1057 if (constant != NULL)
1058 result = constant;
1059 else
1060 all_parameters_are_constant = false;
1061
1062 ir->replace_with(result);
1063 }
1064
1065 if (constructor_type->fields.array->is_unsized_array()) {
1066 constructor_type =
1067 glsl_type::get_array_instance(element_type,
1068 parameter_count);
1069 assert(constructor_type != NULL);
1070 assert(constructor_type->length == parameter_count);
1071 }
1072
1073 if (all_parameters_are_constant)
1074 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1075
1076 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1077 ir_var_temporary);
1078 instructions->push_tail(var);
1079
1080 int i = 0;
1081 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1082 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1083 new(ctx) ir_constant(i));
1084
1085 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1086 instructions->push_tail(assignment);
1087
1088 i++;
1089 }
1090
1091 return new(ctx) ir_dereference_variable(var);
1092 }
1093
1094
1095 /**
1096 * Try to convert a record constructor to a constant expression
1097 */
1098 static ir_constant *
1099 constant_record_constructor(const glsl_type *constructor_type,
1100 exec_list *parameters, void *mem_ctx)
1101 {
1102 foreach_in_list(ir_instruction, node, parameters) {
1103 ir_constant *constant = node->as_constant();
1104 if (constant == NULL)
1105 return NULL;
1106 node->replace_with(constant);
1107 }
1108
1109 return new(mem_ctx) ir_constant(constructor_type, parameters);
1110 }
1111
1112
1113 /**
1114 * Determine if a list consists of a single scalar r-value
1115 */
1116 bool
1117 single_scalar_parameter(exec_list *parameters)
1118 {
1119 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
1120 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1121
1122 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1123 }
1124
1125
1126 /**
1127 * Generate inline code for a vector constructor
1128 *
1129 * The generated constructor code will consist of a temporary variable
1130 * declaration of the same type as the constructor. A sequence of assignments
1131 * from constructor parameters to the temporary will follow.
1132 *
1133 * \return
1134 * An \c ir_dereference_variable of the temprorary generated in the constructor
1135 * body.
1136 */
1137 ir_rvalue *
1138 emit_inline_vector_constructor(const glsl_type *type,
1139 exec_list *instructions,
1140 exec_list *parameters,
1141 void *ctx)
1142 {
1143 assert(!parameters->is_empty());
1144
1145 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1146 instructions->push_tail(var);
1147
1148 /* There are three kinds of vector constructors.
1149 *
1150 * - Construct a vector from a single scalar by replicating that scalar to
1151 * all components of the vector.
1152 *
1153 * - Construct a vector from at least a matrix. This case should already
1154 * have been taken care of in ast_function_expression::hir by breaking
1155 * down the matrix into a series of column vectors.
1156 *
1157 * - Construct a vector from an arbirary combination of vectors and
1158 * scalars. The components of the constructor parameters are assigned
1159 * to the vector in order until the vector is full.
1160 */
1161 const unsigned lhs_components = type->components();
1162 if (single_scalar_parameter(parameters)) {
1163 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
1164 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1165 lhs_components);
1166 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1167 const unsigned mask = (1U << lhs_components) - 1;
1168
1169 assert(rhs->type == lhs->type);
1170
1171 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1172 instructions->push_tail(inst);
1173 } else {
1174 unsigned base_component = 0;
1175 unsigned base_lhs_component = 0;
1176 ir_constant_data data;
1177 unsigned constant_mask = 0, constant_components = 0;
1178
1179 memset(&data, 0, sizeof(data));
1180
1181 foreach_in_list(ir_rvalue, param, parameters) {
1182 unsigned rhs_components = param->type->components();
1183
1184 /* Do not try to assign more components to the vector than it has!
1185 */
1186 if ((rhs_components + base_lhs_component) > lhs_components) {
1187 rhs_components = lhs_components - base_lhs_component;
1188 }
1189
1190 const ir_constant *const c = param->as_constant();
1191 if (c != NULL) {
1192 for (unsigned i = 0; i < rhs_components; i++) {
1193 switch (c->type->base_type) {
1194 case GLSL_TYPE_UINT:
1195 data.u[i + base_component] = c->get_uint_component(i);
1196 break;
1197 case GLSL_TYPE_INT:
1198 data.i[i + base_component] = c->get_int_component(i);
1199 break;
1200 case GLSL_TYPE_FLOAT:
1201 data.f[i + base_component] = c->get_float_component(i);
1202 break;
1203 case GLSL_TYPE_DOUBLE:
1204 data.d[i + base_component] = c->get_double_component(i);
1205 break;
1206 case GLSL_TYPE_BOOL:
1207 data.b[i + base_component] = c->get_bool_component(i);
1208 break;
1209 default:
1210 assert(!"Should not get here.");
1211 break;
1212 }
1213 }
1214
1215 /* Mask of fields to be written in the assignment.
1216 */
1217 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1218 constant_components += rhs_components;
1219
1220 base_component += rhs_components;
1221 }
1222 /* Advance the component index by the number of components
1223 * that were just assigned.
1224 */
1225 base_lhs_component += rhs_components;
1226 }
1227
1228 if (constant_mask != 0) {
1229 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1230 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
1231 constant_components,
1232 1);
1233 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1234
1235 ir_instruction *inst =
1236 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1237 instructions->push_tail(inst);
1238 }
1239
1240 base_component = 0;
1241 foreach_in_list(ir_rvalue, param, parameters) {
1242 unsigned rhs_components = param->type->components();
1243
1244 /* Do not try to assign more components to the vector than it has!
1245 */
1246 if ((rhs_components + base_component) > lhs_components) {
1247 rhs_components = lhs_components - base_component;
1248 }
1249
1250 /* If we do not have any components left to copy, break out of the
1251 * loop. This can happen when initializing a vec4 with a mat3 as the
1252 * mat3 would have been broken into a series of column vectors.
1253 */
1254 if (rhs_components == 0) {
1255 break;
1256 }
1257
1258 const ir_constant *const c = param->as_constant();
1259 if (c == NULL) {
1260 /* Mask of fields to be written in the assignment.
1261 */
1262 const unsigned write_mask = ((1U << rhs_components) - 1)
1263 << base_component;
1264
1265 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1266
1267 /* Generate a swizzle so that LHS and RHS sizes match.
1268 */
1269 ir_rvalue *rhs =
1270 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1271
1272 ir_instruction *inst =
1273 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1274 instructions->push_tail(inst);
1275 }
1276
1277 /* Advance the component index by the number of components that were
1278 * just assigned.
1279 */
1280 base_component += rhs_components;
1281 }
1282 }
1283 return new(ctx) ir_dereference_variable(var);
1284 }
1285
1286
1287 /**
1288 * Generate assignment of a portion of a vector to a portion of a matrix column
1289 *
1290 * \param src_base First component of the source to be used in assignment
1291 * \param column Column of destination to be assiged
1292 * \param row_base First component of the destination column to be assigned
1293 * \param count Number of components to be assigned
1294 *
1295 * \note
1296 * \c src_base + \c count must be less than or equal to the number of components
1297 * in the source vector.
1298 */
1299 ir_instruction *
1300 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1301 ir_rvalue *src, unsigned src_base, unsigned count,
1302 void *mem_ctx)
1303 {
1304 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1305 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1306
1307 assert(column_ref->type->components() >= (row_base + count));
1308 assert(src->type->components() >= (src_base + count));
1309
1310 /* Generate a swizzle that extracts the number of components from the source
1311 * that are to be assigned to the column of the matrix.
1312 */
1313 if (count < src->type->vector_elements) {
1314 src = new(mem_ctx) ir_swizzle(src,
1315 src_base + 0, src_base + 1,
1316 src_base + 2, src_base + 3,
1317 count);
1318 }
1319
1320 /* Mask of fields to be written in the assignment.
1321 */
1322 const unsigned write_mask = ((1U << count) - 1) << row_base;
1323
1324 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1325 }
1326
1327
1328 /**
1329 * Generate inline code for a matrix constructor
1330 *
1331 * The generated constructor code will consist of a temporary variable
1332 * declaration of the same type as the constructor. A sequence of assignments
1333 * from constructor parameters to the temporary will follow.
1334 *
1335 * \return
1336 * An \c ir_dereference_variable of the temprorary generated in the constructor
1337 * body.
1338 */
1339 ir_rvalue *
1340 emit_inline_matrix_constructor(const glsl_type *type,
1341 exec_list *instructions,
1342 exec_list *parameters,
1343 void *ctx)
1344 {
1345 assert(!parameters->is_empty());
1346
1347 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1348 instructions->push_tail(var);
1349
1350 /* There are three kinds of matrix constructors.
1351 *
1352 * - Construct a matrix from a single scalar by replicating that scalar to
1353 * along the diagonal of the matrix and setting all other components to
1354 * zero.
1355 *
1356 * - Construct a matrix from an arbirary combination of vectors and
1357 * scalars. The components of the constructor parameters are assigned
1358 * to the matrix in column-major order until the matrix is full.
1359 *
1360 * - Construct a matrix from a single matrix. The source matrix is copied
1361 * to the upper left portion of the constructed matrix, and the remaining
1362 * elements take values from the identity matrix.
1363 */
1364 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1365 if (single_scalar_parameter(parameters)) {
1366 /* Assign the scalar to the X component of a vec4, and fill the remaining
1367 * components with zero.
1368 */
1369 glsl_base_type param_base_type = first_param->type->base_type;
1370 assert(param_base_type == GLSL_TYPE_FLOAT ||
1371 param_base_type == GLSL_TYPE_DOUBLE);
1372 ir_variable *rhs_var =
1373 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1374 "mat_ctor_vec",
1375 ir_var_temporary);
1376 instructions->push_tail(rhs_var);
1377
1378 ir_constant_data zero;
1379 for (unsigned i = 0; i < 4; i++)
1380 if (param_base_type == GLSL_TYPE_FLOAT)
1381 zero.f[i] = 0.0;
1382 else
1383 zero.d[i] = 0.0;
1384
1385 ir_instruction *inst =
1386 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1387 new(ctx) ir_constant(rhs_var->type, &zero),
1388 NULL);
1389 instructions->push_tail(inst);
1390
1391 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1392
1393 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1394 instructions->push_tail(inst);
1395
1396 /* Assign the temporary vector to each column of the destination matrix
1397 * with a swizzle that puts the X component on the diagonal of the
1398 * matrix. In some cases this may mean that the X component does not
1399 * get assigned into the column at all (i.e., when the matrix has more
1400 * columns than rows).
1401 */
1402 static const unsigned rhs_swiz[4][4] = {
1403 { 0, 1, 1, 1 },
1404 { 1, 0, 1, 1 },
1405 { 1, 1, 0, 1 },
1406 { 1, 1, 1, 0 }
1407 };
1408
1409 const unsigned cols_to_init = MIN2(type->matrix_columns,
1410 type->vector_elements);
1411 for (unsigned i = 0; i < cols_to_init; i++) {
1412 ir_constant *const col_idx = new(ctx) ir_constant(i);
1413 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1414
1415 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1416 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1417 type->vector_elements);
1418
1419 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1420 instructions->push_tail(inst);
1421 }
1422
1423 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1424 ir_constant *const col_idx = new(ctx) ir_constant(i);
1425 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1426
1427 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1428 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1429 type->vector_elements);
1430
1431 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1432 instructions->push_tail(inst);
1433 }
1434 } else if (first_param->type->is_matrix()) {
1435 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1436 *
1437 * "If a matrix is constructed from a matrix, then each component
1438 * (column i, row j) in the result that has a corresponding
1439 * component (column i, row j) in the argument will be initialized
1440 * from there. All other components will be initialized to the
1441 * identity matrix. If a matrix argument is given to a matrix
1442 * constructor, it is an error to have any other arguments."
1443 */
1444 assert(first_param->next->is_tail_sentinel());
1445 ir_rvalue *const src_matrix = first_param;
1446
1447 /* If the source matrix is smaller, pre-initialize the relavent parts of
1448 * the destination matrix to the identity matrix.
1449 */
1450 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1451 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1452
1453 /* If the source matrix has fewer rows, every column of the destination
1454 * must be initialized. Otherwise only the columns in the destination
1455 * that do not exist in the source must be initialized.
1456 */
1457 unsigned col =
1458 (src_matrix->type->vector_elements < var->type->vector_elements)
1459 ? 0 : src_matrix->type->matrix_columns;
1460
1461 const glsl_type *const col_type = var->type->column_type();
1462 for (/* empty */; col < var->type->matrix_columns; col++) {
1463 ir_constant_data ident;
1464
1465 ident.f[0] = 0.0;
1466 ident.f[1] = 0.0;
1467 ident.f[2] = 0.0;
1468 ident.f[3] = 0.0;
1469
1470 ident.f[col] = 1.0;
1471
1472 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1473
1474 ir_rvalue *const lhs =
1475 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1476
1477 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1478 instructions->push_tail(inst);
1479 }
1480 }
1481
1482 /* Assign columns from the source matrix to the destination matrix.
1483 *
1484 * Since the parameter will be used in the RHS of multiple assignments,
1485 * generate a temporary and copy the paramter there.
1486 */
1487 ir_variable *const rhs_var =
1488 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1489 ir_var_temporary);
1490 instructions->push_tail(rhs_var);
1491
1492 ir_dereference *const rhs_var_ref =
1493 new(ctx) ir_dereference_variable(rhs_var);
1494 ir_instruction *const inst =
1495 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1496 instructions->push_tail(inst);
1497
1498 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1499 var->type->vector_elements);
1500 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1501 var->type->matrix_columns);
1502
1503 unsigned swiz[4] = { 0, 0, 0, 0 };
1504 for (unsigned i = 1; i < last_row; i++)
1505 swiz[i] = i;
1506
1507 const unsigned write_mask = (1U << last_row) - 1;
1508
1509 for (unsigned i = 0; i < last_col; i++) {
1510 ir_dereference *const lhs =
1511 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1512 ir_rvalue *const rhs_col =
1513 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1514
1515 /* If one matrix has columns that are smaller than the columns of the
1516 * other matrix, wrap the column access of the larger with a swizzle
1517 * so that the LHS and RHS of the assignment have the same size (and
1518 * therefore have the same type).
1519 *
1520 * It would be perfectly valid to unconditionally generate the
1521 * swizzles, this this will typically result in a more compact IR tree.
1522 */
1523 ir_rvalue *rhs;
1524 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1525 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1526 } else {
1527 rhs = rhs_col;
1528 }
1529
1530 ir_instruction *inst =
1531 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1532 instructions->push_tail(inst);
1533 }
1534 } else {
1535 const unsigned cols = type->matrix_columns;
1536 const unsigned rows = type->vector_elements;
1537 unsigned remaining_slots = rows * cols;
1538 unsigned col_idx = 0;
1539 unsigned row_idx = 0;
1540
1541 foreach_in_list(ir_rvalue, rhs, parameters) {
1542 unsigned rhs_components = rhs->type->components();
1543 unsigned rhs_base = 0;
1544
1545 if (remaining_slots == 0)
1546 break;
1547
1548 /* Since the parameter might be used in the RHS of two assignments,
1549 * generate a temporary and copy the paramter there.
1550 */
1551 ir_variable *rhs_var =
1552 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1553 instructions->push_tail(rhs_var);
1554
1555 ir_dereference *rhs_var_ref =
1556 new(ctx) ir_dereference_variable(rhs_var);
1557 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1558 instructions->push_tail(inst);
1559
1560 do {
1561 /* Assign the current parameter to as many components of the matrix
1562 * as it will fill.
1563 *
1564 * NOTE: A single vector parameter can span two matrix columns. A
1565 * single vec4, for example, can completely fill a mat2.
1566 */
1567 unsigned count = MIN2(rows - row_idx,
1568 rhs_components - rhs_base);
1569
1570 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1571 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1572 row_idx,
1573 rhs_var_ref,
1574 rhs_base,
1575 count, ctx);
1576 instructions->push_tail(inst);
1577 rhs_base += count;
1578 row_idx += count;
1579 remaining_slots -= count;
1580
1581 /* Sometimes, there is still data left in the parameters and
1582 * components left to be set in the destination but in other
1583 * column.
1584 */
1585 if (row_idx >= rows) {
1586 row_idx = 0;
1587 col_idx++;
1588 }
1589 } while(remaining_slots > 0 && rhs_base < rhs_components);
1590 }
1591 }
1592
1593 return new(ctx) ir_dereference_variable(var);
1594 }
1595
1596
1597 ir_rvalue *
1598 emit_inline_record_constructor(const glsl_type *type,
1599 exec_list *instructions,
1600 exec_list *parameters,
1601 void *mem_ctx)
1602 {
1603 ir_variable *const var =
1604 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1605 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1606
1607 instructions->push_tail(var);
1608
1609 exec_node *node = parameters->head;
1610 for (unsigned i = 0; i < type->length; i++) {
1611 assert(!node->is_tail_sentinel());
1612
1613 ir_dereference *const lhs =
1614 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1615 type->fields.structure[i].name);
1616
1617 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1618 assert(rhs != NULL);
1619
1620 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1621
1622 instructions->push_tail(assign);
1623 node = node->next;
1624 }
1625
1626 return d;
1627 }
1628
1629
1630 static ir_rvalue *
1631 process_record_constructor(exec_list *instructions,
1632 const glsl_type *constructor_type,
1633 YYLTYPE *loc, exec_list *parameters,
1634 struct _mesa_glsl_parse_state *state)
1635 {
1636 void *ctx = state;
1637 exec_list actual_parameters;
1638
1639 process_parameters(instructions, &actual_parameters,
1640 parameters, state);
1641
1642 exec_node *node = actual_parameters.head;
1643 for (unsigned i = 0; i < constructor_type->length; i++) {
1644 ir_rvalue *ir = (ir_rvalue *) node;
1645
1646 if (node->is_tail_sentinel()) {
1647 _mesa_glsl_error(loc, state,
1648 "insufficient parameters to constructor for `%s'",
1649 constructor_type->name);
1650 return ir_rvalue::error_value(ctx);
1651 }
1652
1653 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1654 ir, state)) {
1655 node->replace_with(ir);
1656 } else {
1657 _mesa_glsl_error(loc, state,
1658 "parameter type mismatch in constructor for `%s.%s' "
1659 "(%s vs %s)",
1660 constructor_type->name,
1661 constructor_type->fields.structure[i].name,
1662 ir->type->name,
1663 constructor_type->fields.structure[i].type->name);
1664 return ir_rvalue::error_value(ctx);;
1665 }
1666
1667 node = node->next;
1668 }
1669
1670 if (!node->is_tail_sentinel()) {
1671 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1672 "for `%s'", constructor_type->name);
1673 return ir_rvalue::error_value(ctx);
1674 }
1675
1676 ir_rvalue *const constant =
1677 constant_record_constructor(constructor_type, &actual_parameters,
1678 state);
1679
1680 return (constant != NULL)
1681 ? constant
1682 : emit_inline_record_constructor(constructor_type, instructions,
1683 &actual_parameters, state);
1684 }
1685
1686 ir_rvalue *
1687 ast_function_expression::handle_method(exec_list *instructions,
1688 struct _mesa_glsl_parse_state *state)
1689 {
1690 const ast_expression *field = subexpressions[0];
1691 ir_rvalue *op;
1692 ir_rvalue *result;
1693 void *ctx = state;
1694 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1695 YYLTYPE loc = get_location();
1696 state->check_version(120, 300, &loc, "methods not supported");
1697
1698 const char *method;
1699 method = field->primary_expression.identifier;
1700
1701 op = field->subexpressions[0]->hir(instructions, state);
1702 if (strcmp(method, "length") == 0) {
1703 if (!this->expressions.is_empty()) {
1704 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1705 goto fail;
1706 }
1707
1708 if (op->type->is_array()) {
1709 if (op->type->is_unsized_array()) {
1710 if (!state->has_shader_storage_buffer_objects()) {
1711 _mesa_glsl_error(&loc, state, "length called on unsized array"
1712 " only available with "
1713 "ARB_shader_storage_buffer_object");
1714 }
1715 /* Calculate length of an unsized array in run-time */
1716 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op);
1717 } else {
1718 result = new(ctx) ir_constant(op->type->array_size());
1719 }
1720 } else if (op->type->is_vector()) {
1721 if (state->ARB_shading_language_420pack_enable) {
1722 /* .length() returns int. */
1723 result = new(ctx) ir_constant((int) op->type->vector_elements);
1724 } else {
1725 _mesa_glsl_error(&loc, state, "length method on matrix only available"
1726 "with ARB_shading_language_420pack");
1727 goto fail;
1728 }
1729 } else if (op->type->is_matrix()) {
1730 if (state->ARB_shading_language_420pack_enable) {
1731 /* .length() returns int. */
1732 result = new(ctx) ir_constant((int) op->type->matrix_columns);
1733 } else {
1734 _mesa_glsl_error(&loc, state, "length method on matrix only available"
1735 "with ARB_shading_language_420pack");
1736 goto fail;
1737 }
1738 } else {
1739 _mesa_glsl_error(&loc, state, "length called on scalar.");
1740 goto fail;
1741 }
1742 } else {
1743 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1744 goto fail;
1745 }
1746 return result;
1747 fail:
1748 return ir_rvalue::error_value(ctx);
1749 }
1750
1751 ir_rvalue *
1752 ast_function_expression::hir(exec_list *instructions,
1753 struct _mesa_glsl_parse_state *state)
1754 {
1755 void *ctx = state;
1756 /* There are three sorts of function calls.
1757 *
1758 * 1. constructors - The first subexpression is an ast_type_specifier.
1759 * 2. methods - Only the .length() method of array types.
1760 * 3. functions - Calls to regular old functions.
1761 *
1762 */
1763 if (is_constructor()) {
1764 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1765 YYLTYPE loc = type->get_location();
1766 const char *name;
1767
1768 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1769
1770 /* constructor_type can be NULL if a variable with the same name as the
1771 * structure has come into scope.
1772 */
1773 if (constructor_type == NULL) {
1774 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1775 "may be shadowed by a variable with the same name)",
1776 type->type_name);
1777 return ir_rvalue::error_value(ctx);
1778 }
1779
1780
1781 /* Constructors for opaque types are illegal.
1782 */
1783 if (constructor_type->contains_opaque()) {
1784 _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1785 constructor_type->name);
1786 return ir_rvalue::error_value(ctx);
1787 }
1788
1789 if (constructor_type->is_array()) {
1790 if (!state->check_version(120, 300, &loc,
1791 "array constructors forbidden")) {
1792 return ir_rvalue::error_value(ctx);
1793 }
1794
1795 return process_array_constructor(instructions, constructor_type,
1796 & loc, &this->expressions, state);
1797 }
1798
1799
1800 /* There are two kinds of constructor calls. Constructors for arrays and
1801 * structures must have the exact number of arguments with matching types
1802 * in the correct order. These constructors follow essentially the same
1803 * type matching rules as functions.
1804 *
1805 * Constructors for built-in language types, such as mat4 and vec2, are
1806 * free form. The only requirements are that the parameters must provide
1807 * enough values of the correct scalar type and that no arguments are
1808 * given past the last used argument.
1809 *
1810 * When using the C-style initializer syntax from GLSL 4.20, constructors
1811 * must have the exact number of arguments with matching types in the
1812 * correct order.
1813 */
1814 if (constructor_type->is_record()) {
1815 return process_record_constructor(instructions, constructor_type,
1816 &loc, &this->expressions,
1817 state);
1818 }
1819
1820 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1821 return ir_rvalue::error_value(ctx);
1822
1823 /* Total number of components of the type being constructed. */
1824 const unsigned type_components = constructor_type->components();
1825
1826 /* Number of components from parameters that have actually been
1827 * consumed. This is used to perform several kinds of error checking.
1828 */
1829 unsigned components_used = 0;
1830
1831 unsigned matrix_parameters = 0;
1832 unsigned nonmatrix_parameters = 0;
1833 exec_list actual_parameters;
1834
1835 foreach_list_typed(ast_node, ast, link, &this->expressions) {
1836 ir_rvalue *result = ast->hir(instructions, state);
1837
1838 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1839 *
1840 * "It is an error to provide extra arguments beyond this
1841 * last used argument."
1842 */
1843 if (components_used >= type_components) {
1844 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1845 "constructor",
1846 constructor_type->name);
1847 return ir_rvalue::error_value(ctx);
1848 }
1849
1850 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1851 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1852 "non-numeric data type",
1853 constructor_type->name);
1854 return ir_rvalue::error_value(ctx);
1855 }
1856
1857 /* Count the number of matrix and nonmatrix parameters. This
1858 * is used below to enforce some of the constructor rules.
1859 */
1860 if (result->type->is_matrix())
1861 matrix_parameters++;
1862 else
1863 nonmatrix_parameters++;
1864
1865 actual_parameters.push_tail(result);
1866 components_used += result->type->components();
1867 }
1868
1869 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1870 *
1871 * "It is an error to construct matrices from other matrices. This
1872 * is reserved for future use."
1873 */
1874 if (matrix_parameters > 0
1875 && constructor_type->is_matrix()
1876 && !state->check_version(120, 100, &loc,
1877 "cannot construct `%s' from a matrix",
1878 constructor_type->name)) {
1879 return ir_rvalue::error_value(ctx);
1880 }
1881
1882 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1883 *
1884 * "If a matrix argument is given to a matrix constructor, it is
1885 * an error to have any other arguments."
1886 */
1887 if ((matrix_parameters > 0)
1888 && ((matrix_parameters + nonmatrix_parameters) > 1)
1889 && constructor_type->is_matrix()) {
1890 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1891 "matrix must be only parameter",
1892 constructor_type->name);
1893 return ir_rvalue::error_value(ctx);
1894 }
1895
1896 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1897 *
1898 * "In these cases, there must be enough components provided in the
1899 * arguments to provide an initializer for every component in the
1900 * constructed value."
1901 */
1902 if (components_used < type_components && components_used != 1
1903 && matrix_parameters == 0) {
1904 _mesa_glsl_error(& loc, state, "too few components to construct "
1905 "`%s'",
1906 constructor_type->name);
1907 return ir_rvalue::error_value(ctx);
1908 }
1909
1910 /* Matrices can never be consumed as is by any constructor but matrix
1911 * constructors. If the constructor type is not matrix, always break the
1912 * matrix up into a series of column vectors.
1913 */
1914 if (!constructor_type->is_matrix()) {
1915 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
1916 if (!matrix->type->is_matrix())
1917 continue;
1918
1919 /* Create a temporary containing the matrix. */
1920 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1921 ir_var_temporary);
1922 instructions->push_tail(var);
1923 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1924 ir_dereference_variable(var), matrix, NULL));
1925 var->constant_value = matrix->constant_expression_value();
1926
1927 /* Replace the matrix with dereferences of its columns. */
1928 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1929 matrix->insert_before(new (ctx) ir_dereference_array(var,
1930 new(ctx) ir_constant(i)));
1931 }
1932 matrix->remove();
1933 }
1934 }
1935
1936 bool all_parameters_are_constant = true;
1937
1938 /* Type cast each parameter and, if possible, fold constants.*/
1939 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1940 const glsl_type *desired_type =
1941 glsl_type::get_instance(constructor_type->base_type,
1942 ir->type->vector_elements,
1943 ir->type->matrix_columns);
1944 ir_rvalue *result = convert_component(ir, desired_type);
1945
1946 /* Attempt to convert the parameter to a constant valued expression.
1947 * After doing so, track whether or not all the parameters to the
1948 * constructor are trivially constant valued expressions.
1949 */
1950 ir_rvalue *const constant = result->constant_expression_value();
1951
1952 if (constant != NULL)
1953 result = constant;
1954 else
1955 all_parameters_are_constant = false;
1956
1957 if (result != ir) {
1958 ir->replace_with(result);
1959 }
1960 }
1961
1962 /* If all of the parameters are trivially constant, create a
1963 * constant representing the complete collection of parameters.
1964 */
1965 if (all_parameters_are_constant) {
1966 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1967 } else if (constructor_type->is_scalar()) {
1968 return dereference_component((ir_rvalue *) actual_parameters.head,
1969 0);
1970 } else if (constructor_type->is_vector()) {
1971 return emit_inline_vector_constructor(constructor_type,
1972 instructions,
1973 &actual_parameters,
1974 ctx);
1975 } else {
1976 assert(constructor_type->is_matrix());
1977 return emit_inline_matrix_constructor(constructor_type,
1978 instructions,
1979 &actual_parameters,
1980 ctx);
1981 }
1982 } else if (subexpressions[0]->oper == ast_field_selection) {
1983 return handle_method(instructions, state);
1984 } else {
1985 const ast_expression *id = subexpressions[0];
1986 const char *func_name;
1987 YYLTYPE loc = get_location();
1988 exec_list actual_parameters;
1989 ir_variable *sub_var = NULL;
1990 ir_rvalue *array_idx = NULL;
1991
1992 if (id->oper == ast_array_index) {
1993 func_name = id->subexpressions[0]->primary_expression.identifier;
1994 array_idx = id->subexpressions[1]->hir(instructions, state);
1995 } else {
1996 func_name = id->primary_expression.identifier;
1997 }
1998
1999 process_parameters(instructions, &actual_parameters, &this->expressions,
2000 state);
2001
2002 ir_function_signature *sig =
2003 match_function_by_name(func_name, &actual_parameters, state);
2004
2005 ir_rvalue *value = NULL;
2006 if (sig == NULL) {
2007 sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var);
2008 }
2009
2010 if (sig == NULL) {
2011 no_matching_function_error(func_name, &loc, &actual_parameters, state);
2012 value = ir_rvalue::error_value(ctx);
2013 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
2014 /* an error has already been emitted */
2015 value = ir_rvalue::error_value(ctx);
2016 } else {
2017 value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state);
2018 if (!value) {
2019 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2020 "void_var",
2021 ir_var_temporary);
2022 instructions->push_tail(tmp);
2023 value = new(ctx) ir_dereference_variable(tmp);
2024 }
2025 }
2026
2027 return value;
2028 }
2029
2030 unreachable("not reached");
2031 }
2032
2033 bool
2034 ast_function_expression::has_sequence_subexpression() const
2035 {
2036 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2037 if (ast->has_sequence_subexpression())
2038 return true;
2039 }
2040
2041 return false;
2042 }
2043
2044 ir_rvalue *
2045 ast_aggregate_initializer::hir(exec_list *instructions,
2046 struct _mesa_glsl_parse_state *state)
2047 {
2048 void *ctx = state;
2049 YYLTYPE loc = this->get_location();
2050
2051 if (!this->constructor_type) {
2052 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2053 return ir_rvalue::error_value(ctx);
2054 }
2055 const glsl_type *const constructor_type = this->constructor_type;
2056
2057 if (!state->ARB_shading_language_420pack_enable) {
2058 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2059 "GL_ARB_shading_language_420pack extension");
2060 return ir_rvalue::error_value(ctx);
2061 }
2062
2063 if (constructor_type->is_array()) {
2064 return process_array_constructor(instructions, constructor_type, &loc,
2065 &this->expressions, state);
2066 }
2067
2068 if (constructor_type->is_record()) {
2069 return process_record_constructor(instructions, constructor_type, &loc,
2070 &this->expressions, state);
2071 }
2072
2073 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2074 &this->expressions, state);
2075 }