svgadump: Dump the new depth format names.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96
97 static ir_rvalue *
98 match_function_by_name(exec_list *instructions, const char *name,
99 YYLTYPE *loc, exec_list *actual_parameters,
100 struct _mesa_glsl_parse_state *state)
101 {
102 void *ctx = state;
103 ir_function *f = state->symbols->get_function(name);
104 ir_function_signature *sig;
105
106 sig = f ? f->matching_signature(actual_parameters) : NULL;
107
108 /* FINISHME: This doesn't handle the case where shader X contains a
109 * FINISHME: matching signature but shader X + N contains an _exact_
110 * FINISHME: matching signature.
111 */
112 if (sig == NULL
113 && (f == NULL || state->es_shader || !f->has_user_signature())
114 && state->symbols->get_type(name) == NULL
115 && (state->language_version == 110
116 || state->symbols->get_variable(name) == NULL)) {
117 /* The current shader doesn't contain a matching function or signature.
118 * Before giving up, look for the prototype in the built-in functions.
119 */
120 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
121 ir_function *builtin;
122 builtin = state->builtins_to_link[i]->symbols->get_function(name);
123 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
124 if (sig != NULL) {
125 if (f == NULL) {
126 f = new(ctx) ir_function(name);
127 state->symbols->add_global_function(f);
128 emit_function(state, f);
129 }
130
131 f->add_signature(sig->clone_prototype(f, NULL));
132 break;
133 }
134 }
135 }
136
137 exec_list post_call_conversions;
138
139 if (sig != NULL) {
140 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
141 * isn't done in ir_function::matching_signature because that function
142 * cannot generate the necessary diagnostics.
143 *
144 * Also, validate that 'const_in' formal parameters (an extension of our
145 * IR) correspond to ir_constant actual parameters.
146 *
147 * Also, perform implicit conversion of arguments. Note: to implicitly
148 * convert out parameters, we need to place them in a temporary
149 * variable, and do the conversion after the call takes place. Since we
150 * haven't emitted the call yet, we'll place the post-call conversions
151 * in a temporary exec_list, and emit them later.
152 */
153 exec_list_iterator actual_iter = actual_parameters->iterator();
154 exec_list_iterator formal_iter = sig->parameters.iterator();
155
156 while (actual_iter.has_next()) {
157 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
158 ir_variable *formal = (ir_variable *) formal_iter.get();
159
160 assert(actual != NULL);
161 assert(formal != NULL);
162
163 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
164 _mesa_glsl_error(loc, state,
165 "parameter `%s' must be a constant expression",
166 formal->name);
167 return ir_call::get_error_instruction(ctx);
168 }
169
170 if ((formal->mode == ir_var_out)
171 || (formal->mode == ir_var_inout)) {
172 const char *mode = NULL;
173 switch (formal->mode) {
174 case ir_var_out: mode = "out"; break;
175 case ir_var_inout: mode = "inout"; break;
176 default: assert(false); break;
177 }
178 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
179 * FIXME: 0:0(0).
180 */
181 if (actual->variable_referenced()
182 && actual->variable_referenced()->read_only) {
183 _mesa_glsl_error(loc, state,
184 "function parameter '%s %s' references the "
185 "read-only variable '%s'",
186 mode, formal->name,
187 actual->variable_referenced()->name);
188
189 } else if (!actual->is_lvalue()) {
190 _mesa_glsl_error(loc, state,
191 "function parameter '%s %s' is not an lvalue",
192 mode, formal->name);
193 }
194 }
195
196 if (formal->type->is_numeric() || formal->type->is_boolean()) {
197 switch (formal->mode) {
198 case ir_var_const_in:
199 case ir_var_in: {
200 ir_rvalue *converted
201 = convert_component(actual, formal->type);
202 actual->replace_with(converted);
203 break;
204 }
205 case ir_var_out:
206 if (actual->type != formal->type) {
207 /* To convert an out parameter, we need to create a
208 * temporary variable to hold the value before conversion,
209 * and then perform the conversion after the function call
210 * returns.
211 *
212 * This has the effect of transforming code like this:
213 *
214 * void f(out int x);
215 * float value;
216 * f(value);
217 *
218 * Into IR that's equivalent to this:
219 *
220 * void f(out int x);
221 * float value;
222 * int out_parameter_conversion;
223 * f(out_parameter_conversion);
224 * value = float(out_parameter_conversion);
225 */
226 ir_variable *tmp =
227 new(ctx) ir_variable(formal->type,
228 "out_parameter_conversion",
229 ir_var_temporary);
230 instructions->push_tail(tmp);
231 ir_dereference_variable *deref_tmp_1
232 = new(ctx) ir_dereference_variable(tmp);
233 ir_dereference_variable *deref_tmp_2
234 = new(ctx) ir_dereference_variable(tmp);
235 ir_rvalue *converted_tmp
236 = convert_component(deref_tmp_1, actual->type);
237 ir_assignment *assignment
238 = new(ctx) ir_assignment(actual, converted_tmp);
239 post_call_conversions.push_tail(assignment);
240 actual->replace_with(deref_tmp_2);
241 }
242 break;
243 case ir_var_inout:
244 /* Inout parameters should never require conversion, since that
245 * would require an implicit conversion to exist both to and
246 * from the formal parameter type, and there are no
247 * bidirectional implicit conversions.
248 */
249 assert (actual->type == formal->type);
250 break;
251 default:
252 assert (!"Illegal formal parameter mode");
253 break;
254 }
255 }
256
257 actual_iter.next();
258 formal_iter.next();
259 }
260
261 /* Always insert the call in the instruction stream, and return a deref
262 * of its return val if it returns a value, since we don't know if
263 * the rvalue is going to be assigned to anything or not.
264 *
265 * Also insert any out parameter conversions after the call.
266 */
267 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
268 ir_dereference_variable *deref;
269 if (!sig->return_type->is_void()) {
270 /* If the function call is a constant expression, don't
271 * generate the instructions to call it; just generate an
272 * ir_constant representing the constant value.
273 *
274 * Function calls can only be constant expressions starting
275 * in GLSL 1.20.
276 */
277 if (state->language_version >= 120) {
278 ir_constant *const_val = call->constant_expression_value();
279 if (const_val) {
280 return const_val;
281 }
282 }
283
284 ir_variable *var;
285
286 var = new(ctx) ir_variable(sig->return_type,
287 ralloc_asprintf(ctx, "%s_retval",
288 sig->function_name()),
289 ir_var_temporary);
290 instructions->push_tail(var);
291
292 deref = new(ctx) ir_dereference_variable(var);
293 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
294 instructions->push_tail(assign);
295
296 deref = new(ctx) ir_dereference_variable(var);
297 } else {
298 instructions->push_tail(call);
299 deref = NULL;
300 }
301 instructions->append_list(&post_call_conversions);
302 return deref;
303 } else {
304 char *str = prototype_string(NULL, name, actual_parameters);
305
306 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
307 str);
308 ralloc_free(str);
309
310 const char *prefix = "candidates are: ";
311
312 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
313 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
314 : state->symbols;
315 f = syms->get_function(name);
316 if (f == NULL)
317 continue;
318
319 foreach_list (node, &f->signatures) {
320 ir_function_signature *sig = (ir_function_signature *) node;
321
322 str = prototype_string(sig->return_type, f->name, &sig->parameters);
323 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
324 ralloc_free(str);
325
326 prefix = " ";
327 }
328
329 }
330
331 return ir_call::get_error_instruction(ctx);
332 }
333 }
334
335
336 /**
337 * Perform automatic type conversion of constructor parameters
338 *
339 * This implements the rules in the "Conversion and Scalar Constructors"
340 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
341 */
342 static ir_rvalue *
343 convert_component(ir_rvalue *src, const glsl_type *desired_type)
344 {
345 void *ctx = ralloc_parent(src);
346 const unsigned a = desired_type->base_type;
347 const unsigned b = src->type->base_type;
348 ir_expression *result = NULL;
349
350 if (src->type->is_error())
351 return src;
352
353 assert(a <= GLSL_TYPE_BOOL);
354 assert(b <= GLSL_TYPE_BOOL);
355
356 if (a == b)
357 return src;
358
359 switch (a) {
360 case GLSL_TYPE_UINT:
361 switch (b) {
362 case GLSL_TYPE_INT:
363 result = new(ctx) ir_expression(ir_unop_i2u, src);
364 break;
365 case GLSL_TYPE_FLOAT:
366 result = new(ctx) ir_expression(ir_unop_i2u,
367 new(ctx) ir_expression(ir_unop_f2i, src));
368 break;
369 case GLSL_TYPE_BOOL:
370 result = new(ctx) ir_expression(ir_unop_i2u,
371 new(ctx) ir_expression(ir_unop_b2i, src));
372 break;
373 }
374 break;
375 case GLSL_TYPE_INT:
376 switch (b) {
377 case GLSL_TYPE_UINT:
378 result = new(ctx) ir_expression(ir_unop_u2i, src);
379 break;
380 case GLSL_TYPE_FLOAT:
381 result = new(ctx) ir_expression(ir_unop_f2i, src);
382 break;
383 case GLSL_TYPE_BOOL:
384 result = new(ctx) ir_expression(ir_unop_b2i, src);
385 break;
386 }
387 break;
388 case GLSL_TYPE_FLOAT:
389 switch (b) {
390 case GLSL_TYPE_UINT:
391 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
392 break;
393 case GLSL_TYPE_INT:
394 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
395 break;
396 case GLSL_TYPE_BOOL:
397 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
398 break;
399 }
400 break;
401 case GLSL_TYPE_BOOL:
402 switch (b) {
403 case GLSL_TYPE_UINT:
404 result = new(ctx) ir_expression(ir_unop_i2b,
405 new(ctx) ir_expression(ir_unop_u2i, src));
406 break;
407 case GLSL_TYPE_INT:
408 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
409 break;
410 case GLSL_TYPE_FLOAT:
411 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
412 break;
413 }
414 break;
415 }
416
417 assert(result != NULL);
418 assert(result->type == desired_type);
419
420 /* Try constant folding; it may fold in the conversion we just added. */
421 ir_constant *const constant = result->constant_expression_value();
422 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
423 }
424
425 /**
426 * Dereference a specific component from a scalar, vector, or matrix
427 */
428 static ir_rvalue *
429 dereference_component(ir_rvalue *src, unsigned component)
430 {
431 void *ctx = ralloc_parent(src);
432 assert(component < src->type->components());
433
434 /* If the source is a constant, just create a new constant instead of a
435 * dereference of the existing constant.
436 */
437 ir_constant *constant = src->as_constant();
438 if (constant)
439 return new(ctx) ir_constant(constant, component);
440
441 if (src->type->is_scalar()) {
442 return src;
443 } else if (src->type->is_vector()) {
444 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
445 } else {
446 assert(src->type->is_matrix());
447
448 /* Dereference a row of the matrix, then call this function again to get
449 * a specific element from that row.
450 */
451 const int c = component / src->type->column_type()->vector_elements;
452 const int r = component % src->type->column_type()->vector_elements;
453 ir_constant *const col_index = new(ctx) ir_constant(c);
454 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
455
456 col->type = src->type->column_type();
457
458 return dereference_component(col, r);
459 }
460
461 assert(!"Should not get here.");
462 return NULL;
463 }
464
465
466 static ir_rvalue *
467 process_array_constructor(exec_list *instructions,
468 const glsl_type *constructor_type,
469 YYLTYPE *loc, exec_list *parameters,
470 struct _mesa_glsl_parse_state *state)
471 {
472 void *ctx = state;
473 /* Array constructors come in two forms: sized and unsized. Sized array
474 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
475 * variables. In this case the number of parameters must exactly match the
476 * specified size of the array.
477 *
478 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
479 * are vec4 variables. In this case the size of the array being constructed
480 * is determined by the number of parameters.
481 *
482 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
483 *
484 * "There must be exactly the same number of arguments as the size of
485 * the array being constructed. If no size is present in the
486 * constructor, then the array is explicitly sized to the number of
487 * arguments provided. The arguments are assigned in order, starting at
488 * element 0, to the elements of the constructed array. Each argument
489 * must be the same type as the element type of the array, or be a type
490 * that can be converted to the element type of the array according to
491 * Section 4.1.10 "Implicit Conversions.""
492 */
493 exec_list actual_parameters;
494 const unsigned parameter_count =
495 process_parameters(instructions, &actual_parameters, parameters, state);
496
497 if ((parameter_count == 0)
498 || ((constructor_type->length != 0)
499 && (constructor_type->length != parameter_count))) {
500 const unsigned min_param = (constructor_type->length == 0)
501 ? 1 : constructor_type->length;
502
503 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
504 "parameter%s",
505 (constructor_type->length != 0) ? "at least" : "exactly",
506 min_param, (min_param <= 1) ? "" : "s");
507 return ir_call::get_error_instruction(ctx);
508 }
509
510 if (constructor_type->length == 0) {
511 constructor_type =
512 glsl_type::get_array_instance(constructor_type->element_type(),
513 parameter_count);
514 assert(constructor_type != NULL);
515 assert(constructor_type->length == parameter_count);
516 }
517
518 bool all_parameters_are_constant = true;
519
520 /* Type cast each parameter and, if possible, fold constants. */
521 foreach_list_safe(n, &actual_parameters) {
522 ir_rvalue *ir = (ir_rvalue *) n;
523 ir_rvalue *result = ir;
524
525 /* Apply implicit conversions (not the scalar constructor rules!). See
526 * the spec quote above. */
527 if (constructor_type->element_type()->is_float()) {
528 const glsl_type *desired_type =
529 glsl_type::get_instance(GLSL_TYPE_FLOAT,
530 ir->type->vector_elements,
531 ir->type->matrix_columns);
532 if (result->type->can_implicitly_convert_to(desired_type)) {
533 /* Even though convert_component() implements the constructor
534 * conversion rules (not the implicit conversion rules), its safe
535 * to use it here because we already checked that the implicit
536 * conversion is legal.
537 */
538 result = convert_component(ir, desired_type);
539 }
540 }
541
542 if (result->type != constructor_type->element_type()) {
543 _mesa_glsl_error(loc, state, "type error in array constructor: "
544 "expected: %s, found %s",
545 constructor_type->element_type()->name,
546 result->type->name);
547 }
548
549 /* Attempt to convert the parameter to a constant valued expression.
550 * After doing so, track whether or not all the parameters to the
551 * constructor are trivially constant valued expressions.
552 */
553 ir_rvalue *const constant = result->constant_expression_value();
554
555 if (constant != NULL)
556 result = constant;
557 else
558 all_parameters_are_constant = false;
559
560 ir->replace_with(result);
561 }
562
563 if (all_parameters_are_constant)
564 return new(ctx) ir_constant(constructor_type, &actual_parameters);
565
566 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
567 ir_var_temporary);
568 instructions->push_tail(var);
569
570 int i = 0;
571 foreach_list(node, &actual_parameters) {
572 ir_rvalue *rhs = (ir_rvalue *) node;
573 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
574 new(ctx) ir_constant(i));
575
576 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
577 instructions->push_tail(assignment);
578
579 i++;
580 }
581
582 return new(ctx) ir_dereference_variable(var);
583 }
584
585
586 /**
587 * Try to convert a record constructor to a constant expression
588 */
589 static ir_constant *
590 constant_record_constructor(const glsl_type *constructor_type,
591 exec_list *parameters, void *mem_ctx)
592 {
593 foreach_list(node, parameters) {
594 ir_constant *constant = ((ir_instruction *) node)->as_constant();
595 if (constant == NULL)
596 return NULL;
597 node->replace_with(constant);
598 }
599
600 return new(mem_ctx) ir_constant(constructor_type, parameters);
601 }
602
603
604 /**
605 * Determine if a list consists of a single scalar r-value
606 */
607 bool
608 single_scalar_parameter(exec_list *parameters)
609 {
610 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
611 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
612
613 return (p->type->is_scalar() && p->next->is_tail_sentinel());
614 }
615
616
617 /**
618 * Generate inline code for a vector constructor
619 *
620 * The generated constructor code will consist of a temporary variable
621 * declaration of the same type as the constructor. A sequence of assignments
622 * from constructor parameters to the temporary will follow.
623 *
624 * \return
625 * An \c ir_dereference_variable of the temprorary generated in the constructor
626 * body.
627 */
628 ir_rvalue *
629 emit_inline_vector_constructor(const glsl_type *type,
630 exec_list *instructions,
631 exec_list *parameters,
632 void *ctx)
633 {
634 assert(!parameters->is_empty());
635
636 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
637 instructions->push_tail(var);
638
639 /* There are two kinds of vector constructors.
640 *
641 * - Construct a vector from a single scalar by replicating that scalar to
642 * all components of the vector.
643 *
644 * - Construct a vector from an arbirary combination of vectors and
645 * scalars. The components of the constructor parameters are assigned
646 * to the vector in order until the vector is full.
647 */
648 const unsigned lhs_components = type->components();
649 if (single_scalar_parameter(parameters)) {
650 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
651 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
652 lhs_components);
653 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
654 const unsigned mask = (1U << lhs_components) - 1;
655
656 assert(rhs->type == lhs->type);
657
658 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
659 instructions->push_tail(inst);
660 } else {
661 unsigned base_component = 0;
662 unsigned base_lhs_component = 0;
663 ir_constant_data data;
664 unsigned constant_mask = 0, constant_components = 0;
665
666 memset(&data, 0, sizeof(data));
667
668 foreach_list(node, parameters) {
669 ir_rvalue *param = (ir_rvalue *) node;
670 unsigned rhs_components = param->type->components();
671
672 /* Do not try to assign more components to the vector than it has!
673 */
674 if ((rhs_components + base_lhs_component) > lhs_components) {
675 rhs_components = lhs_components - base_lhs_component;
676 }
677
678 const ir_constant *const c = param->as_constant();
679 if (c != NULL) {
680 for (unsigned i = 0; i < rhs_components; i++) {
681 switch (c->type->base_type) {
682 case GLSL_TYPE_UINT:
683 data.u[i + base_component] = c->get_uint_component(i);
684 break;
685 case GLSL_TYPE_INT:
686 data.i[i + base_component] = c->get_int_component(i);
687 break;
688 case GLSL_TYPE_FLOAT:
689 data.f[i + base_component] = c->get_float_component(i);
690 break;
691 case GLSL_TYPE_BOOL:
692 data.b[i + base_component] = c->get_bool_component(i);
693 break;
694 default:
695 assert(!"Should not get here.");
696 break;
697 }
698 }
699
700 /* Mask of fields to be written in the assignment.
701 */
702 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
703 constant_components += rhs_components;
704
705 base_component += rhs_components;
706 }
707 /* Advance the component index by the number of components
708 * that were just assigned.
709 */
710 base_lhs_component += rhs_components;
711 }
712
713 if (constant_mask != 0) {
714 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
715 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
716 constant_components,
717 1);
718 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
719
720 ir_instruction *inst =
721 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
722 instructions->push_tail(inst);
723 }
724
725 base_component = 0;
726 foreach_list(node, parameters) {
727 ir_rvalue *param = (ir_rvalue *) node;
728 unsigned rhs_components = param->type->components();
729
730 /* Do not try to assign more components to the vector than it has!
731 */
732 if ((rhs_components + base_component) > lhs_components) {
733 rhs_components = lhs_components - base_component;
734 }
735
736 const ir_constant *const c = param->as_constant();
737 if (c == NULL) {
738 /* Mask of fields to be written in the assignment.
739 */
740 const unsigned write_mask = ((1U << rhs_components) - 1)
741 << base_component;
742
743 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
744
745 /* Generate a swizzle so that LHS and RHS sizes match.
746 */
747 ir_rvalue *rhs =
748 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
749
750 ir_instruction *inst =
751 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
752 instructions->push_tail(inst);
753 }
754
755 /* Advance the component index by the number of components that were
756 * just assigned.
757 */
758 base_component += rhs_components;
759 }
760 }
761 return new(ctx) ir_dereference_variable(var);
762 }
763
764
765 /**
766 * Generate assignment of a portion of a vector to a portion of a matrix column
767 *
768 * \param src_base First component of the source to be used in assignment
769 * \param column Column of destination to be assiged
770 * \param row_base First component of the destination column to be assigned
771 * \param count Number of components to be assigned
772 *
773 * \note
774 * \c src_base + \c count must be less than or equal to the number of components
775 * in the source vector.
776 */
777 ir_instruction *
778 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
779 ir_rvalue *src, unsigned src_base, unsigned count,
780 void *mem_ctx)
781 {
782 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
783 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
784
785 assert(column_ref->type->components() >= (row_base + count));
786 assert(src->type->components() >= (src_base + count));
787
788 /* Generate a swizzle that extracts the number of components from the source
789 * that are to be assigned to the column of the matrix.
790 */
791 if (count < src->type->vector_elements) {
792 src = new(mem_ctx) ir_swizzle(src,
793 src_base + 0, src_base + 1,
794 src_base + 2, src_base + 3,
795 count);
796 }
797
798 /* Mask of fields to be written in the assignment.
799 */
800 const unsigned write_mask = ((1U << count) - 1) << row_base;
801
802 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
803 }
804
805
806 /**
807 * Generate inline code for a matrix constructor
808 *
809 * The generated constructor code will consist of a temporary variable
810 * declaration of the same type as the constructor. A sequence of assignments
811 * from constructor parameters to the temporary will follow.
812 *
813 * \return
814 * An \c ir_dereference_variable of the temprorary generated in the constructor
815 * body.
816 */
817 ir_rvalue *
818 emit_inline_matrix_constructor(const glsl_type *type,
819 exec_list *instructions,
820 exec_list *parameters,
821 void *ctx)
822 {
823 assert(!parameters->is_empty());
824
825 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
826 instructions->push_tail(var);
827
828 /* There are three kinds of matrix constructors.
829 *
830 * - Construct a matrix from a single scalar by replicating that scalar to
831 * along the diagonal of the matrix and setting all other components to
832 * zero.
833 *
834 * - Construct a matrix from an arbirary combination of vectors and
835 * scalars. The components of the constructor parameters are assigned
836 * to the matrix in colum-major order until the matrix is full.
837 *
838 * - Construct a matrix from a single matrix. The source matrix is copied
839 * to the upper left portion of the constructed matrix, and the remaining
840 * elements take values from the identity matrix.
841 */
842 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
843 if (single_scalar_parameter(parameters)) {
844 /* Assign the scalar to the X component of a vec4, and fill the remaining
845 * components with zero.
846 */
847 ir_variable *rhs_var =
848 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
849 ir_var_temporary);
850 instructions->push_tail(rhs_var);
851
852 ir_constant_data zero;
853 zero.f[0] = 0.0;
854 zero.f[1] = 0.0;
855 zero.f[2] = 0.0;
856 zero.f[3] = 0.0;
857
858 ir_instruction *inst =
859 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
860 new(ctx) ir_constant(rhs_var->type, &zero),
861 NULL);
862 instructions->push_tail(inst);
863
864 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
865
866 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
867 instructions->push_tail(inst);
868
869 /* Assign the temporary vector to each column of the destination matrix
870 * with a swizzle that puts the X component on the diagonal of the
871 * matrix. In some cases this may mean that the X component does not
872 * get assigned into the column at all (i.e., when the matrix has more
873 * columns than rows).
874 */
875 static const unsigned rhs_swiz[4][4] = {
876 { 0, 1, 1, 1 },
877 { 1, 0, 1, 1 },
878 { 1, 1, 0, 1 },
879 { 1, 1, 1, 0 }
880 };
881
882 const unsigned cols_to_init = MIN2(type->matrix_columns,
883 type->vector_elements);
884 for (unsigned i = 0; i < cols_to_init; i++) {
885 ir_constant *const col_idx = new(ctx) ir_constant(i);
886 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
887
888 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
889 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
890 type->vector_elements);
891
892 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
893 instructions->push_tail(inst);
894 }
895
896 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
897 ir_constant *const col_idx = new(ctx) ir_constant(i);
898 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
899
900 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
901 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
902 type->vector_elements);
903
904 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
905 instructions->push_tail(inst);
906 }
907 } else if (first_param->type->is_matrix()) {
908 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
909 *
910 * "If a matrix is constructed from a matrix, then each component
911 * (column i, row j) in the result that has a corresponding
912 * component (column i, row j) in the argument will be initialized
913 * from there. All other components will be initialized to the
914 * identity matrix. If a matrix argument is given to a matrix
915 * constructor, it is an error to have any other arguments."
916 */
917 assert(first_param->next->is_tail_sentinel());
918 ir_rvalue *const src_matrix = first_param;
919
920 /* If the source matrix is smaller, pre-initialize the relavent parts of
921 * the destination matrix to the identity matrix.
922 */
923 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
924 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
925
926 /* If the source matrix has fewer rows, every column of the destination
927 * must be initialized. Otherwise only the columns in the destination
928 * that do not exist in the source must be initialized.
929 */
930 unsigned col =
931 (src_matrix->type->vector_elements < var->type->vector_elements)
932 ? 0 : src_matrix->type->matrix_columns;
933
934 const glsl_type *const col_type = var->type->column_type();
935 for (/* empty */; col < var->type->matrix_columns; col++) {
936 ir_constant_data ident;
937
938 ident.f[0] = 0.0;
939 ident.f[1] = 0.0;
940 ident.f[2] = 0.0;
941 ident.f[3] = 0.0;
942
943 ident.f[col] = 1.0;
944
945 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
946
947 ir_rvalue *const lhs =
948 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
949
950 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
951 instructions->push_tail(inst);
952 }
953 }
954
955 /* Assign columns from the source matrix to the destination matrix.
956 *
957 * Since the parameter will be used in the RHS of multiple assignments,
958 * generate a temporary and copy the paramter there.
959 */
960 ir_variable *const rhs_var =
961 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
962 ir_var_temporary);
963 instructions->push_tail(rhs_var);
964
965 ir_dereference *const rhs_var_ref =
966 new(ctx) ir_dereference_variable(rhs_var);
967 ir_instruction *const inst =
968 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
969 instructions->push_tail(inst);
970
971 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
972 var->type->vector_elements);
973 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
974 var->type->matrix_columns);
975
976 unsigned swiz[4] = { 0, 0, 0, 0 };
977 for (unsigned i = 1; i < last_row; i++)
978 swiz[i] = i;
979
980 const unsigned write_mask = (1U << last_row) - 1;
981
982 for (unsigned i = 0; i < last_col; i++) {
983 ir_dereference *const lhs =
984 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
985 ir_rvalue *const rhs_col =
986 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
987
988 /* If one matrix has columns that are smaller than the columns of the
989 * other matrix, wrap the column access of the larger with a swizzle
990 * so that the LHS and RHS of the assignment have the same size (and
991 * therefore have the same type).
992 *
993 * It would be perfectly valid to unconditionally generate the
994 * swizzles, this this will typically result in a more compact IR tree.
995 */
996 ir_rvalue *rhs;
997 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
998 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
999 } else {
1000 rhs = rhs_col;
1001 }
1002
1003 ir_instruction *inst =
1004 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1005 instructions->push_tail(inst);
1006 }
1007 } else {
1008 const unsigned cols = type->matrix_columns;
1009 const unsigned rows = type->vector_elements;
1010 unsigned col_idx = 0;
1011 unsigned row_idx = 0;
1012
1013 foreach_list (node, parameters) {
1014 ir_rvalue *const rhs = (ir_rvalue *) node;
1015 const unsigned components_remaining_this_column = rows - row_idx;
1016 unsigned rhs_components = rhs->type->components();
1017 unsigned rhs_base = 0;
1018
1019 /* Since the parameter might be used in the RHS of two assignments,
1020 * generate a temporary and copy the paramter there.
1021 */
1022 ir_variable *rhs_var =
1023 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1024 instructions->push_tail(rhs_var);
1025
1026 ir_dereference *rhs_var_ref =
1027 new(ctx) ir_dereference_variable(rhs_var);
1028 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1029 instructions->push_tail(inst);
1030
1031 /* Assign the current parameter to as many components of the matrix
1032 * as it will fill.
1033 *
1034 * NOTE: A single vector parameter can span two matrix columns. A
1035 * single vec4, for example, can completely fill a mat2.
1036 */
1037 if (rhs_components >= components_remaining_this_column) {
1038 const unsigned count = MIN2(rhs_components,
1039 components_remaining_this_column);
1040
1041 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1042
1043 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1044 row_idx,
1045 rhs_var_ref, 0,
1046 count, ctx);
1047 instructions->push_tail(inst);
1048
1049 rhs_base = count;
1050
1051 col_idx++;
1052 row_idx = 0;
1053 }
1054
1055 /* If there is data left in the parameter and components left to be
1056 * set in the destination, emit another assignment. It is possible
1057 * that the assignment could be of a vec4 to the last element of the
1058 * matrix. In this case col_idx==cols, but there is still data
1059 * left in the source parameter. Obviously, don't emit an assignment
1060 * to data outside the destination matrix.
1061 */
1062 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1063 const unsigned count = rhs_components - rhs_base;
1064
1065 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1066
1067 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1068 row_idx,
1069 rhs_var_ref,
1070 rhs_base,
1071 count, ctx);
1072 instructions->push_tail(inst);
1073
1074 row_idx += count;
1075 }
1076 }
1077 }
1078
1079 return new(ctx) ir_dereference_variable(var);
1080 }
1081
1082
1083 ir_rvalue *
1084 emit_inline_record_constructor(const glsl_type *type,
1085 exec_list *instructions,
1086 exec_list *parameters,
1087 void *mem_ctx)
1088 {
1089 ir_variable *const var =
1090 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1091 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1092
1093 instructions->push_tail(var);
1094
1095 exec_node *node = parameters->head;
1096 for (unsigned i = 0; i < type->length; i++) {
1097 assert(!node->is_tail_sentinel());
1098
1099 ir_dereference *const lhs =
1100 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1101 type->fields.structure[i].name);
1102
1103 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1104 assert(rhs != NULL);
1105
1106 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1107
1108 instructions->push_tail(assign);
1109 node = node->next;
1110 }
1111
1112 return d;
1113 }
1114
1115
1116 ir_rvalue *
1117 ast_function_expression::hir(exec_list *instructions,
1118 struct _mesa_glsl_parse_state *state)
1119 {
1120 void *ctx = state;
1121 /* There are three sorts of function calls.
1122 *
1123 * 1. constructors - The first subexpression is an ast_type_specifier.
1124 * 2. methods - Only the .length() method of array types.
1125 * 3. functions - Calls to regular old functions.
1126 *
1127 * Method calls are actually detected when the ast_field_selection
1128 * expression is handled.
1129 */
1130 if (is_constructor()) {
1131 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1132 YYLTYPE loc = type->get_location();
1133 const char *name;
1134
1135 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1136
1137 /* constructor_type can be NULL if a variable with the same name as the
1138 * structure has come into scope.
1139 */
1140 if (constructor_type == NULL) {
1141 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1142 "may be shadowed by a variable with the same name)",
1143 type->type_name);
1144 return ir_call::get_error_instruction(ctx);
1145 }
1146
1147
1148 /* Constructors for samplers are illegal.
1149 */
1150 if (constructor_type->is_sampler()) {
1151 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1152 constructor_type->name);
1153 return ir_call::get_error_instruction(ctx);
1154 }
1155
1156 if (constructor_type->is_array()) {
1157 if (state->language_version <= 110) {
1158 _mesa_glsl_error(& loc, state,
1159 "array constructors forbidden in GLSL 1.10");
1160 return ir_call::get_error_instruction(ctx);
1161 }
1162
1163 return process_array_constructor(instructions, constructor_type,
1164 & loc, &this->expressions, state);
1165 }
1166
1167
1168 /* There are two kinds of constructor call. Constructors for built-in
1169 * language types, such as mat4 and vec2, are free form. The only
1170 * requirement is that the parameters must provide enough values of the
1171 * correct scalar type. Constructors for arrays and structures must
1172 * have the exact number of parameters with matching types in the
1173 * correct order. These constructors follow essentially the same type
1174 * matching rules as functions.
1175 */
1176 if (constructor_type->is_record()) {
1177 exec_list actual_parameters;
1178
1179 process_parameters(instructions, &actual_parameters,
1180 &this->expressions, state);
1181
1182 exec_node *node = actual_parameters.head;
1183 for (unsigned i = 0; i < constructor_type->length; i++) {
1184 ir_rvalue *ir = (ir_rvalue *) node;
1185
1186 if (node->is_tail_sentinel()) {
1187 _mesa_glsl_error(&loc, state,
1188 "insufficient parameters to constructor "
1189 "for `%s'",
1190 constructor_type->name);
1191 return ir_call::get_error_instruction(ctx);
1192 }
1193
1194 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1195 ir, state)) {
1196 node->replace_with(ir);
1197 } else {
1198 _mesa_glsl_error(&loc, state,
1199 "parameter type mismatch in constructor "
1200 "for `%s.%s' (%s vs %s)",
1201 constructor_type->name,
1202 constructor_type->fields.structure[i].name,
1203 ir->type->name,
1204 constructor_type->fields.structure[i].type->name);
1205 return ir_call::get_error_instruction(ctx);;
1206 }
1207
1208 node = node->next;
1209 }
1210
1211 if (!node->is_tail_sentinel()) {
1212 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1213 "for `%s'", constructor_type->name);
1214 return ir_call::get_error_instruction(ctx);
1215 }
1216
1217 ir_rvalue *const constant =
1218 constant_record_constructor(constructor_type, &actual_parameters,
1219 state);
1220
1221 return (constant != NULL)
1222 ? constant
1223 : emit_inline_record_constructor(constructor_type, instructions,
1224 &actual_parameters, state);
1225 }
1226
1227 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1228 return ir_call::get_error_instruction(ctx);
1229
1230 /* Total number of components of the type being constructed. */
1231 const unsigned type_components = constructor_type->components();
1232
1233 /* Number of components from parameters that have actually been
1234 * consumed. This is used to perform several kinds of error checking.
1235 */
1236 unsigned components_used = 0;
1237
1238 unsigned matrix_parameters = 0;
1239 unsigned nonmatrix_parameters = 0;
1240 exec_list actual_parameters;
1241
1242 foreach_list (n, &this->expressions) {
1243 ast_node *ast = exec_node_data(ast_node, n, link);
1244 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1245
1246 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1247 *
1248 * "It is an error to provide extra arguments beyond this
1249 * last used argument."
1250 */
1251 if (components_used >= type_components) {
1252 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1253 "constructor",
1254 constructor_type->name);
1255 return ir_call::get_error_instruction(ctx);
1256 }
1257
1258 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1259 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1260 "non-numeric data type",
1261 constructor_type->name);
1262 return ir_call::get_error_instruction(ctx);
1263 }
1264
1265 /* Count the number of matrix and nonmatrix parameters. This
1266 * is used below to enforce some of the constructor rules.
1267 */
1268 if (result->type->is_matrix())
1269 matrix_parameters++;
1270 else
1271 nonmatrix_parameters++;
1272
1273 actual_parameters.push_tail(result);
1274 components_used += result->type->components();
1275 }
1276
1277 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1278 *
1279 * "It is an error to construct matrices from other matrices. This
1280 * is reserved for future use."
1281 */
1282 if (state->language_version == 110 && matrix_parameters > 0
1283 && constructor_type->is_matrix()) {
1284 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1285 "matrix in GLSL 1.10",
1286 constructor_type->name);
1287 return ir_call::get_error_instruction(ctx);
1288 }
1289
1290 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1291 *
1292 * "If a matrix argument is given to a matrix constructor, it is
1293 * an error to have any other arguments."
1294 */
1295 if ((matrix_parameters > 0)
1296 && ((matrix_parameters + nonmatrix_parameters) > 1)
1297 && constructor_type->is_matrix()) {
1298 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1299 "matrix must be only parameter",
1300 constructor_type->name);
1301 return ir_call::get_error_instruction(ctx);
1302 }
1303
1304 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1305 *
1306 * "In these cases, there must be enough components provided in the
1307 * arguments to provide an initializer for every component in the
1308 * constructed value."
1309 */
1310 if (components_used < type_components && components_used != 1
1311 && matrix_parameters == 0) {
1312 _mesa_glsl_error(& loc, state, "too few components to construct "
1313 "`%s'",
1314 constructor_type->name);
1315 return ir_call::get_error_instruction(ctx);
1316 }
1317
1318 /* Later, we cast each parameter to the same base type as the
1319 * constructor. Since there are no non-floating point matrices, we
1320 * need to break them up into a series of column vectors.
1321 */
1322 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1323 foreach_list_safe(n, &actual_parameters) {
1324 ir_rvalue *matrix = (ir_rvalue *) n;
1325
1326 if (!matrix->type->is_matrix())
1327 continue;
1328
1329 /* Create a temporary containing the matrix. */
1330 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1331 ir_var_temporary);
1332 instructions->push_tail(var);
1333 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1334 ir_dereference_variable(var), matrix, NULL));
1335 var->constant_value = matrix->constant_expression_value();
1336
1337 /* Replace the matrix with dereferences of its columns. */
1338 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1339 matrix->insert_before(new (ctx) ir_dereference_array(var,
1340 new(ctx) ir_constant(i)));
1341 }
1342 matrix->remove();
1343 }
1344 }
1345
1346 bool all_parameters_are_constant = true;
1347
1348 /* Type cast each parameter and, if possible, fold constants.*/
1349 foreach_list_safe(n, &actual_parameters) {
1350 ir_rvalue *ir = (ir_rvalue *) n;
1351
1352 const glsl_type *desired_type =
1353 glsl_type::get_instance(constructor_type->base_type,
1354 ir->type->vector_elements,
1355 ir->type->matrix_columns);
1356 ir_rvalue *result = convert_component(ir, desired_type);
1357
1358 /* Attempt to convert the parameter to a constant valued expression.
1359 * After doing so, track whether or not all the parameters to the
1360 * constructor are trivially constant valued expressions.
1361 */
1362 ir_rvalue *const constant = result->constant_expression_value();
1363
1364 if (constant != NULL)
1365 result = constant;
1366 else
1367 all_parameters_are_constant = false;
1368
1369 if (result != ir) {
1370 ir->replace_with(result);
1371 }
1372 }
1373
1374 /* If all of the parameters are trivially constant, create a
1375 * constant representing the complete collection of parameters.
1376 */
1377 if (all_parameters_are_constant) {
1378 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1379 } else if (constructor_type->is_scalar()) {
1380 return dereference_component((ir_rvalue *) actual_parameters.head,
1381 0);
1382 } else if (constructor_type->is_vector()) {
1383 return emit_inline_vector_constructor(constructor_type,
1384 instructions,
1385 &actual_parameters,
1386 ctx);
1387 } else {
1388 assert(constructor_type->is_matrix());
1389 return emit_inline_matrix_constructor(constructor_type,
1390 instructions,
1391 &actual_parameters,
1392 ctx);
1393 }
1394 } else {
1395 const ast_expression *id = subexpressions[0];
1396 YYLTYPE loc = id->get_location();
1397 exec_list actual_parameters;
1398
1399 process_parameters(instructions, &actual_parameters, &this->expressions,
1400 state);
1401
1402 return match_function_by_name(instructions,
1403 id->primary_expression.identifier, & loc,
1404 &actual_parameters, state);
1405 }
1406
1407 return ir_call::get_error_instruction(ctx);
1408 }