e32a588f091f08d56cf9404751165aeee8e29bde
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30
31 static ir_rvalue *
32 convert_component(ir_rvalue *src, const glsl_type *desired_type);
33
34 bool
35 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
36 struct _mesa_glsl_parse_state *state);
37
38 static unsigned
39 process_parameters(exec_list *instructions, exec_list *actual_parameters,
40 exec_list *parameters,
41 struct _mesa_glsl_parse_state *state)
42 {
43 unsigned count = 0;
44
45 foreach_list_typed(ast_node, ast, link, parameters) {
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_in_list(const ir_variable, param, parameters) {
86 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 ralloc_strcat(&str, ")");
91 return str;
92 }
93
94 static bool
95 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
96 const ir_variable *formal, const ir_variable *actual)
97 {
98 /**
99 * From the ARB_shader_image_load_store specification:
100 *
101 * "The values of image variables qualified with coherent,
102 * volatile, restrict, readonly, or writeonly may not be passed
103 * to functions whose formal parameters lack such
104 * qualifiers. [...] It is legal to have additional qualifiers
105 * on a formal parameter, but not to have fewer."
106 */
107 if (actual->data.image_coherent && !formal->data.image_coherent) {
108 _mesa_glsl_error(loc, state,
109 "function call parameter `%s' drops "
110 "`coherent' qualifier", formal->name);
111 return false;
112 }
113
114 if (actual->data.image_volatile && !formal->data.image_volatile) {
115 _mesa_glsl_error(loc, state,
116 "function call parameter `%s' drops "
117 "`volatile' qualifier", formal->name);
118 return false;
119 }
120
121 if (actual->data.image_restrict && !formal->data.image_restrict) {
122 _mesa_glsl_error(loc, state,
123 "function call parameter `%s' drops "
124 "`restrict' qualifier", formal->name);
125 return false;
126 }
127
128 if (actual->data.image_read_only && !formal->data.image_read_only) {
129 _mesa_glsl_error(loc, state,
130 "function call parameter `%s' drops "
131 "`readonly' qualifier", formal->name);
132 return false;
133 }
134
135 if (actual->data.image_write_only && !formal->data.image_write_only) {
136 _mesa_glsl_error(loc, state,
137 "function call parameter `%s' drops "
138 "`writeonly' qualifier", formal->name);
139 return false;
140 }
141
142 return true;
143 }
144
145 static bool
146 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
147 ir_variable *var)
148 {
149 if (!var ||
150 (!var->is_in_shader_storage_block() &&
151 var->data.mode != ir_var_shader_shared)) {
152 _mesa_glsl_error(loc, state, "First argument to atomic function "
153 "must be a buffer or shared variable");
154 return false;
155 }
156 return true;
157 }
158
159 static bool
160 is_atomic_function(const char *func_name)
161 {
162 return !strcmp(func_name, "atomicAdd") ||
163 !strcmp(func_name, "atomicMin") ||
164 !strcmp(func_name, "atomicMax") ||
165 !strcmp(func_name, "atomicAnd") ||
166 !strcmp(func_name, "atomicOr") ||
167 !strcmp(func_name, "atomicXor") ||
168 !strcmp(func_name, "atomicExchange") ||
169 !strcmp(func_name, "atomicCompSwap");
170 }
171
172 /**
173 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
174 * that 'const_in' formal parameters (an extension in our IR) correspond to
175 * ir_constant actual parameters.
176 */
177 static bool
178 verify_parameter_modes(_mesa_glsl_parse_state *state,
179 ir_function_signature *sig,
180 exec_list &actual_ir_parameters,
181 exec_list &actual_ast_parameters)
182 {
183 exec_node *actual_ir_node = actual_ir_parameters.head;
184 exec_node *actual_ast_node = actual_ast_parameters.head;
185
186 foreach_in_list(const ir_variable, formal, &sig->parameters) {
187 /* The lists must be the same length. */
188 assert(!actual_ir_node->is_tail_sentinel());
189 assert(!actual_ast_node->is_tail_sentinel());
190
191 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
192 const ast_expression *const actual_ast =
193 exec_node_data(ast_expression, actual_ast_node, link);
194
195 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
196 * FIXME: 0:0(0).
197 */
198 YYLTYPE loc = actual_ast->get_location();
199
200 /* Verify that 'const_in' parameters are ir_constants. */
201 if (formal->data.mode == ir_var_const_in &&
202 actual->ir_type != ir_type_constant) {
203 _mesa_glsl_error(&loc, state,
204 "parameter `in %s' must be a constant expression",
205 formal->name);
206 return false;
207 }
208
209 /* Verify that shader_in parameters are shader inputs */
210 if (formal->data.must_be_shader_input) {
211 ir_variable *var = actual->variable_referenced();
212 if (var && var->data.mode != ir_var_shader_in) {
213 _mesa_glsl_error(&loc, state,
214 "parameter `%s` must be a shader input",
215 formal->name);
216 return false;
217 }
218
219 if (actual->ir_type == ir_type_swizzle) {
220 _mesa_glsl_error(&loc, state,
221 "parameter `%s` must not be swizzled",
222 formal->name);
223 return false;
224 }
225 }
226
227 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
228 if (formal->data.mode == ir_var_function_out
229 || formal->data.mode == ir_var_function_inout) {
230 const char *mode = NULL;
231 switch (formal->data.mode) {
232 case ir_var_function_out: mode = "out"; break;
233 case ir_var_function_inout: mode = "inout"; break;
234 default: assert(false); break;
235 }
236
237 /* This AST-based check catches errors like f(i++). The IR-based
238 * is_lvalue() is insufficient because the actual parameter at the
239 * IR-level is just a temporary value, which is an l-value.
240 */
241 if (actual_ast->non_lvalue_description != NULL) {
242 _mesa_glsl_error(&loc, state,
243 "function parameter '%s %s' references a %s",
244 mode, formal->name,
245 actual_ast->non_lvalue_description);
246 return false;
247 }
248
249 ir_variable *var = actual->variable_referenced();
250 if (var)
251 var->data.assigned = true;
252
253 if (var && var->data.read_only) {
254 _mesa_glsl_error(&loc, state,
255 "function parameter '%s %s' references the "
256 "read-only variable '%s'",
257 mode, formal->name,
258 actual->variable_referenced()->name);
259 return false;
260 } else if (!actual->is_lvalue()) {
261 _mesa_glsl_error(&loc, state,
262 "function parameter '%s %s' is not an lvalue",
263 mode, formal->name);
264 return false;
265 }
266 }
267
268 if (formal->type->is_image() &&
269 actual->variable_referenced()) {
270 if (!verify_image_parameter(&loc, state, formal,
271 actual->variable_referenced()))
272 return false;
273 }
274
275 actual_ir_node = actual_ir_node->next;
276 actual_ast_node = actual_ast_node->next;
277 }
278
279 /* The first parameter of atomic functions must be a buffer variable */
280 const char *func_name = sig->function_name();
281 bool is_atomic = is_atomic_function(func_name);
282 if (is_atomic) {
283 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.head;
284
285 const ast_expression *const actual_ast =
286 exec_node_data(ast_expression, actual_ast_parameters.head, link);
287 YYLTYPE loc = actual_ast->get_location();
288
289 if (!verify_first_atomic_parameter(&loc, state,
290 actual->variable_referenced())) {
291 return false;
292 }
293 }
294
295 return true;
296 }
297
298 static void
299 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
300 exec_list *before_instructions, exec_list *after_instructions,
301 bool parameter_is_inout)
302 {
303 ir_expression *const expr = actual->as_expression();
304
305 /* If the types match exactly and the parameter is not a vector-extract,
306 * nothing needs to be done to fix the parameter.
307 */
308 if (formal_type == actual->type
309 && (expr == NULL || expr->operation != ir_binop_vector_extract))
310 return;
311
312 /* To convert an out parameter, we need to create a temporary variable to
313 * hold the value before conversion, and then perform the conversion after
314 * the function call returns.
315 *
316 * This has the effect of transforming code like this:
317 *
318 * void f(out int x);
319 * float value;
320 * f(value);
321 *
322 * Into IR that's equivalent to this:
323 *
324 * void f(out int x);
325 * float value;
326 * int out_parameter_conversion;
327 * f(out_parameter_conversion);
328 * value = float(out_parameter_conversion);
329 *
330 * If the parameter is an ir_expression of ir_binop_vector_extract,
331 * additional conversion is needed in the post-call re-write.
332 */
333 ir_variable *tmp =
334 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
335
336 before_instructions->push_tail(tmp);
337
338 /* If the parameter is an inout parameter, copy the value of the actual
339 * parameter to the new temporary. Note that no type conversion is allowed
340 * here because inout parameters must match types exactly.
341 */
342 if (parameter_is_inout) {
343 /* Inout parameters should never require conversion, since that would
344 * require an implicit conversion to exist both to and from the formal
345 * parameter type, and there are no bidirectional implicit conversions.
346 */
347 assert (actual->type == formal_type);
348
349 ir_dereference_variable *const deref_tmp_1 =
350 new(mem_ctx) ir_dereference_variable(tmp);
351 ir_assignment *const assignment =
352 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
353 before_instructions->push_tail(assignment);
354 }
355
356 /* Replace the parameter in the call with a dereference of the new
357 * temporary.
358 */
359 ir_dereference_variable *const deref_tmp_2 =
360 new(mem_ctx) ir_dereference_variable(tmp);
361 actual->replace_with(deref_tmp_2);
362
363
364 /* Copy the temporary variable to the actual parameter with optional
365 * type conversion applied.
366 */
367 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
368 if (actual->type != formal_type)
369 rhs = convert_component(rhs, actual->type);
370
371 ir_rvalue *lhs = actual;
372 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
373 lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, NULL),
374 expr->operands[1]->clone(mem_ctx, NULL));
375 }
376
377 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
378 after_instructions->push_tail(assignment_2);
379 }
380
381 /**
382 * Generate a function call.
383 *
384 * For non-void functions, this returns a dereference of the temporary variable
385 * which stores the return value for the call. For void functions, this returns
386 * NULL.
387 */
388 static ir_rvalue *
389 generate_call(exec_list *instructions, ir_function_signature *sig,
390 exec_list *actual_parameters,
391 ir_variable *sub_var,
392 ir_rvalue *array_idx,
393 struct _mesa_glsl_parse_state *state)
394 {
395 void *ctx = state;
396 exec_list post_call_conversions;
397
398 /* Perform implicit conversion of arguments. For out parameters, we need
399 * to place them in a temporary variable and do the conversion after the
400 * call takes place. Since we haven't emitted the call yet, we'll place
401 * the post-call conversions in a temporary exec_list, and emit them later.
402 */
403 foreach_two_lists(formal_node, &sig->parameters,
404 actual_node, actual_parameters) {
405 ir_rvalue *actual = (ir_rvalue *) actual_node;
406 ir_variable *formal = (ir_variable *) formal_node;
407
408 if (formal->type->is_numeric() || formal->type->is_boolean()) {
409 switch (formal->data.mode) {
410 case ir_var_const_in:
411 case ir_var_function_in: {
412 ir_rvalue *converted
413 = convert_component(actual, formal->type);
414 actual->replace_with(converted);
415 break;
416 }
417 case ir_var_function_out:
418 case ir_var_function_inout:
419 fix_parameter(ctx, actual, formal->type,
420 instructions, &post_call_conversions,
421 formal->data.mode == ir_var_function_inout);
422 break;
423 default:
424 assert (!"Illegal formal parameter mode");
425 break;
426 }
427 }
428 }
429
430 /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
431 *
432 * "Initializers for const declarations must be formed from literal
433 * values, other const variables (not including function call
434 * paramaters), or expressions of these.
435 *
436 * Constructors may be used in such expressions, but function calls may
437 * not."
438 *
439 * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
440 *
441 * "A constant expression is one of
442 *
443 * ...
444 *
445 * - a built-in function call whose arguments are all constant
446 * expressions, with the exception of the texture lookup
447 * functions, the noise functions, and ftransform. The built-in
448 * functions dFdx, dFdy, and fwidth must return 0 when evaluated
449 * inside an initializer with an argument that is a constant
450 * expression."
451 *
452 * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
453 *
454 * "A constant expression is one of
455 *
456 * ...
457 *
458 * - a built-in function call whose arguments are all constant
459 * expressions, with the exception of the texture lookup
460 * functions."
461 *
462 * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
463 *
464 * "A constant expression is one of
465 *
466 * ...
467 *
468 * - a built-in function call whose arguments are all constant
469 * expressions, with the exception of the texture lookup
470 * functions. The built-in functions dFdx, dFdy, and fwidth must
471 * return 0 when evaluated inside an initializer with an argument
472 * that is a constant expression."
473 *
474 * If the function call is a constant expression, don't generate any
475 * instructions; just generate an ir_constant.
476 */
477 if (state->is_version(120, 100)) {
478 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
479 if (value != NULL) {
480 return value;
481 }
482 }
483
484 ir_dereference_variable *deref = NULL;
485 if (!sig->return_type->is_void()) {
486 /* Create a new temporary to hold the return value. */
487 char *const name = ir_variable::temporaries_allocate_names
488 ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
489 : NULL;
490
491 ir_variable *var;
492
493 var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
494 instructions->push_tail(var);
495
496 ralloc_free(name);
497
498 deref = new(ctx) ir_dereference_variable(var);
499 }
500
501 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx);
502 instructions->push_tail(call);
503
504 /* Also emit any necessary out-parameter conversions. */
505 instructions->append_list(&post_call_conversions);
506
507 return deref ? deref->clone(ctx, NULL) : NULL;
508 }
509
510 /**
511 * Given a function name and parameter list, find the matching signature.
512 */
513 static ir_function_signature *
514 match_function_by_name(const char *name,
515 exec_list *actual_parameters,
516 struct _mesa_glsl_parse_state *state)
517 {
518 void *ctx = state;
519 ir_function *f = state->symbols->get_function(name);
520 ir_function_signature *local_sig = NULL;
521 ir_function_signature *sig = NULL;
522
523 /* Is the function hidden by a record type constructor? */
524 if (state->symbols->get_type(name))
525 goto done; /* no match */
526
527 /* Is the function hidden by a variable (impossible in 1.10)? */
528 if (!state->symbols->separate_function_namespace
529 && state->symbols->get_variable(name))
530 goto done; /* no match */
531
532 if (f != NULL) {
533 /* In desktop GL, the presence of a user-defined signature hides any
534 * built-in signatures, so we must ignore them. In contrast, in ES2
535 * user-defined signatures add new overloads, so we must consider them.
536 */
537 bool allow_builtins = state->es_shader || !f->has_user_signature();
538
539 /* Look for a match in the local shader. If exact, we're done. */
540 bool is_exact = false;
541 sig = local_sig = f->matching_signature(state, actual_parameters,
542 allow_builtins, &is_exact);
543 if (is_exact)
544 goto done;
545
546 if (!allow_builtins)
547 goto done;
548 }
549
550 /* Local shader has no exact candidates; check the built-ins. */
551 _mesa_glsl_initialize_builtin_functions();
552 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
553
554 done:
555 if (sig != NULL) {
556 /* If the match is from a linked built-in shader, import the prototype. */
557 if (sig != local_sig) {
558 if (f == NULL) {
559 f = new(ctx) ir_function(name);
560 state->symbols->add_global_function(f);
561 emit_function(state, f);
562 }
563 f->add_signature(sig->clone_prototype(f, NULL));
564 }
565 }
566 return sig;
567 }
568
569 static ir_function_signature *
570 match_subroutine_by_name(const char *name,
571 exec_list *actual_parameters,
572 struct _mesa_glsl_parse_state *state,
573 ir_variable **var_r)
574 {
575 void *ctx = state;
576 ir_function_signature *sig = NULL;
577 ir_function *f, *found = NULL;
578 const char *new_name;
579 ir_variable *var;
580 bool is_exact = false;
581
582 new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name);
583 var = state->symbols->get_variable(new_name);
584 if (!var)
585 return NULL;
586
587 for (int i = 0; i < state->num_subroutine_types; i++) {
588 f = state->subroutine_types[i];
589 if (strcmp(f->name, var->type->without_array()->name))
590 continue;
591 found = f;
592 break;
593 }
594
595 if (!found)
596 return NULL;
597 *var_r = var;
598 sig = found->matching_signature(state, actual_parameters,
599 false, &is_exact);
600 return sig;
601 }
602
603 static ir_rvalue *
604 generate_array_index(void *mem_ctx, exec_list *instructions,
605 struct _mesa_glsl_parse_state *state, YYLTYPE loc,
606 const ast_expression *array, ast_expression *idx,
607 const char **function_name, exec_list *actual_parameters)
608 {
609 if (array->oper == ast_array_index) {
610 /* This handles arrays of arrays */
611 ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
612 state, loc,
613 array->subexpressions[0],
614 array->subexpressions[1],
615 function_name, actual_parameters);
616 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
617
618 YYLTYPE index_loc = idx->get_location();
619 return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
620 outer_array_idx, loc,
621 index_loc);
622 } else {
623 ir_variable *sub_var = NULL;
624 *function_name = array->primary_expression.identifier;
625
626 match_subroutine_by_name(*function_name, actual_parameters,
627 state, &sub_var);
628
629 ir_rvalue *outer_array_idx = idx->hir(instructions, state);
630 return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
631 }
632 }
633
634 static void
635 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
636 ir_function *f)
637 {
638 if (f == NULL)
639 return;
640
641 foreach_in_list(ir_function_signature, sig, &f->signatures) {
642 if (sig->is_builtin() && !sig->is_builtin_available(state))
643 continue;
644
645 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
646 _mesa_glsl_error(loc, state, " %s", str);
647 ralloc_free(str);
648 }
649 }
650
651 /**
652 * Raise a "no matching function" error, listing all possible overloads the
653 * compiler considered so developers can figure out what went wrong.
654 */
655 static void
656 no_matching_function_error(const char *name,
657 YYLTYPE *loc,
658 exec_list *actual_parameters,
659 _mesa_glsl_parse_state *state)
660 {
661 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
662
663 if (state->symbols->get_function(name) == NULL
664 && (!state->uses_builtin_functions
665 || sh->symbols->get_function(name) == NULL)) {
666 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
667 } else {
668 char *str = prototype_string(NULL, name, actual_parameters);
669 _mesa_glsl_error(loc, state,
670 "no matching function for call to `%s'; candidates are:",
671 str);
672 ralloc_free(str);
673
674 print_function_prototypes(state, loc, state->symbols->get_function(name));
675
676 if (state->uses_builtin_functions) {
677 print_function_prototypes(state, loc, sh->symbols->get_function(name));
678 }
679 }
680 }
681
682 /**
683 * Perform automatic type conversion of constructor parameters
684 *
685 * This implements the rules in the "Conversion and Scalar Constructors"
686 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
687 */
688 static ir_rvalue *
689 convert_component(ir_rvalue *src, const glsl_type *desired_type)
690 {
691 void *ctx = ralloc_parent(src);
692 const unsigned a = desired_type->base_type;
693 const unsigned b = src->type->base_type;
694 ir_expression *result = NULL;
695
696 if (src->type->is_error())
697 return src;
698
699 assert(a <= GLSL_TYPE_BOOL);
700 assert(b <= GLSL_TYPE_BOOL);
701
702 if (a == b)
703 return src;
704
705 switch (a) {
706 case GLSL_TYPE_UINT:
707 switch (b) {
708 case GLSL_TYPE_INT:
709 result = new(ctx) ir_expression(ir_unop_i2u, src);
710 break;
711 case GLSL_TYPE_FLOAT:
712 result = new(ctx) ir_expression(ir_unop_f2u, src);
713 break;
714 case GLSL_TYPE_BOOL:
715 result = new(ctx) ir_expression(ir_unop_i2u,
716 new(ctx) ir_expression(ir_unop_b2i, src));
717 break;
718 case GLSL_TYPE_DOUBLE:
719 result = new(ctx) ir_expression(ir_unop_d2u, src);
720 break;
721 }
722 break;
723 case GLSL_TYPE_INT:
724 switch (b) {
725 case GLSL_TYPE_UINT:
726 result = new(ctx) ir_expression(ir_unop_u2i, src);
727 break;
728 case GLSL_TYPE_FLOAT:
729 result = new(ctx) ir_expression(ir_unop_f2i, src);
730 break;
731 case GLSL_TYPE_BOOL:
732 result = new(ctx) ir_expression(ir_unop_b2i, src);
733 break;
734 case GLSL_TYPE_DOUBLE:
735 result = new(ctx) ir_expression(ir_unop_d2i, src);
736 break;
737 }
738 break;
739 case GLSL_TYPE_FLOAT:
740 switch (b) {
741 case GLSL_TYPE_UINT:
742 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
743 break;
744 case GLSL_TYPE_INT:
745 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
746 break;
747 case GLSL_TYPE_BOOL:
748 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
749 break;
750 case GLSL_TYPE_DOUBLE:
751 result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
752 break;
753 }
754 break;
755 case GLSL_TYPE_BOOL:
756 switch (b) {
757 case GLSL_TYPE_UINT:
758 result = new(ctx) ir_expression(ir_unop_i2b,
759 new(ctx) ir_expression(ir_unop_u2i, src));
760 break;
761 case GLSL_TYPE_INT:
762 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
763 break;
764 case GLSL_TYPE_FLOAT:
765 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
766 break;
767 case GLSL_TYPE_DOUBLE:
768 result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
769 break;
770 }
771 break;
772 case GLSL_TYPE_DOUBLE:
773 switch (b) {
774 case GLSL_TYPE_INT:
775 result = new(ctx) ir_expression(ir_unop_i2d, src);
776 break;
777 case GLSL_TYPE_UINT:
778 result = new(ctx) ir_expression(ir_unop_u2d, src);
779 break;
780 case GLSL_TYPE_BOOL:
781 result = new(ctx) ir_expression(ir_unop_f2d,
782 new(ctx) ir_expression(ir_unop_b2f, src));
783 break;
784 case GLSL_TYPE_FLOAT:
785 result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
786 break;
787 }
788 }
789
790 assert(result != NULL);
791 assert(result->type == desired_type);
792
793 /* Try constant folding; it may fold in the conversion we just added. */
794 ir_constant *const constant = result->constant_expression_value();
795 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
796 }
797
798 /**
799 * Dereference a specific component from a scalar, vector, or matrix
800 */
801 static ir_rvalue *
802 dereference_component(ir_rvalue *src, unsigned component)
803 {
804 void *ctx = ralloc_parent(src);
805 assert(component < src->type->components());
806
807 /* If the source is a constant, just create a new constant instead of a
808 * dereference of the existing constant.
809 */
810 ir_constant *constant = src->as_constant();
811 if (constant)
812 return new(ctx) ir_constant(constant, component);
813
814 if (src->type->is_scalar()) {
815 return src;
816 } else if (src->type->is_vector()) {
817 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
818 } else {
819 assert(src->type->is_matrix());
820
821 /* Dereference a row of the matrix, then call this function again to get
822 * a specific element from that row.
823 */
824 const int c = component / src->type->column_type()->vector_elements;
825 const int r = component % src->type->column_type()->vector_elements;
826 ir_constant *const col_index = new(ctx) ir_constant(c);
827 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
828
829 col->type = src->type->column_type();
830
831 return dereference_component(col, r);
832 }
833
834 assert(!"Should not get here.");
835 return NULL;
836 }
837
838
839 static ir_rvalue *
840 process_vec_mat_constructor(exec_list *instructions,
841 const glsl_type *constructor_type,
842 YYLTYPE *loc, exec_list *parameters,
843 struct _mesa_glsl_parse_state *state)
844 {
845 void *ctx = state;
846
847 /* The ARB_shading_language_420pack spec says:
848 *
849 * "If an initializer is a list of initializers enclosed in curly braces,
850 * the variable being declared must be a vector, a matrix, an array, or a
851 * structure.
852 *
853 * int i = { 1 }; // illegal, i is not an aggregate"
854 */
855 if (constructor_type->vector_elements <= 1) {
856 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
857 "matrices, arrays, and structs");
858 return ir_rvalue::error_value(ctx);
859 }
860
861 exec_list actual_parameters;
862 const unsigned parameter_count =
863 process_parameters(instructions, &actual_parameters, parameters, state);
864
865 if (parameter_count == 0
866 || (constructor_type->is_vector() &&
867 constructor_type->vector_elements != parameter_count)
868 || (constructor_type->is_matrix() &&
869 constructor_type->matrix_columns != parameter_count)) {
870 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
871 constructor_type->is_vector() ? "vector" : "matrix",
872 constructor_type->vector_elements);
873 return ir_rvalue::error_value(ctx);
874 }
875
876 bool all_parameters_are_constant = true;
877
878 /* Type cast each parameter and, if possible, fold constants. */
879 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
880 ir_rvalue *result = ir;
881
882 /* Apply implicit conversions (not the scalar constructor rules!). See
883 * the spec quote above. */
884 if (constructor_type->base_type != result->type->base_type) {
885 const glsl_type *desired_type =
886 glsl_type::get_instance(constructor_type->base_type,
887 ir->type->vector_elements,
888 ir->type->matrix_columns);
889 if (result->type->can_implicitly_convert_to(desired_type, state)) {
890 /* Even though convert_component() implements the constructor
891 * conversion rules (not the implicit conversion rules), its safe
892 * to use it here because we already checked that the implicit
893 * conversion is legal.
894 */
895 result = convert_component(ir, desired_type);
896 }
897 }
898
899 if (constructor_type->is_matrix()) {
900 if (result->type != constructor_type->column_type()) {
901 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
902 "expected: %s, found %s",
903 constructor_type->column_type()->name,
904 result->type->name);
905 return ir_rvalue::error_value(ctx);
906 }
907 } else if (result->type != constructor_type->get_scalar_type()) {
908 _mesa_glsl_error(loc, state, "type error in vector constructor: "
909 "expected: %s, found %s",
910 constructor_type->get_scalar_type()->name,
911 result->type->name);
912 return ir_rvalue::error_value(ctx);
913 }
914
915 /* Attempt to convert the parameter to a constant valued expression.
916 * After doing so, track whether or not all the parameters to the
917 * constructor are trivially constant valued expressions.
918 */
919 ir_rvalue *const constant = result->constant_expression_value();
920
921 if (constant != NULL)
922 result = constant;
923 else
924 all_parameters_are_constant = false;
925
926 ir->replace_with(result);
927 }
928
929 if (all_parameters_are_constant)
930 return new(ctx) ir_constant(constructor_type, &actual_parameters);
931
932 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
933 ir_var_temporary);
934 instructions->push_tail(var);
935
936 int i = 0;
937
938 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
939 ir_instruction *assignment = NULL;
940
941 if (var->type->is_matrix()) {
942 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
943 new(ctx) ir_constant(i));
944 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
945 } else {
946 /* use writemask rather than index for vector */
947 assert(var->type->is_vector());
948 assert(i < 4);
949 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
950 assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
951 }
952
953 instructions->push_tail(assignment);
954
955 i++;
956 }
957
958 return new(ctx) ir_dereference_variable(var);
959 }
960
961
962 static ir_rvalue *
963 process_array_constructor(exec_list *instructions,
964 const glsl_type *constructor_type,
965 YYLTYPE *loc, exec_list *parameters,
966 struct _mesa_glsl_parse_state *state)
967 {
968 void *ctx = state;
969 /* Array constructors come in two forms: sized and unsized. Sized array
970 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
971 * variables. In this case the number of parameters must exactly match the
972 * specified size of the array.
973 *
974 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
975 * are vec4 variables. In this case the size of the array being constructed
976 * is determined by the number of parameters.
977 *
978 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
979 *
980 * "There must be exactly the same number of arguments as the size of
981 * the array being constructed. If no size is present in the
982 * constructor, then the array is explicitly sized to the number of
983 * arguments provided. The arguments are assigned in order, starting at
984 * element 0, to the elements of the constructed array. Each argument
985 * must be the same type as the element type of the array, or be a type
986 * that can be converted to the element type of the array according to
987 * Section 4.1.10 "Implicit Conversions.""
988 */
989 exec_list actual_parameters;
990 const unsigned parameter_count =
991 process_parameters(instructions, &actual_parameters, parameters, state);
992 bool is_unsized_array = constructor_type->is_unsized_array();
993
994 if ((parameter_count == 0) ||
995 (!is_unsized_array && (constructor_type->length != parameter_count))) {
996 const unsigned min_param = is_unsized_array
997 ? 1 : constructor_type->length;
998
999 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1000 "parameter%s",
1001 is_unsized_array ? "at least" : "exactly",
1002 min_param, (min_param <= 1) ? "" : "s");
1003 return ir_rvalue::error_value(ctx);
1004 }
1005
1006 if (is_unsized_array) {
1007 constructor_type =
1008 glsl_type::get_array_instance(constructor_type->fields.array,
1009 parameter_count);
1010 assert(constructor_type != NULL);
1011 assert(constructor_type->length == parameter_count);
1012 }
1013
1014 bool all_parameters_are_constant = true;
1015 const glsl_type *element_type = constructor_type->fields.array;
1016
1017 /* Type cast each parameter and, if possible, fold constants. */
1018 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1019 ir_rvalue *result = ir;
1020
1021 const glsl_base_type element_base_type =
1022 constructor_type->fields.array->base_type;
1023
1024 /* Apply implicit conversions (not the scalar constructor rules!). See
1025 * the spec quote above. */
1026 if (element_base_type != result->type->base_type) {
1027 const glsl_type *desired_type =
1028 glsl_type::get_instance(element_base_type,
1029 ir->type->vector_elements,
1030 ir->type->matrix_columns);
1031
1032 if (result->type->can_implicitly_convert_to(desired_type, state)) {
1033 /* Even though convert_component() implements the constructor
1034 * conversion rules (not the implicit conversion rules), its safe
1035 * to use it here because we already checked that the implicit
1036 * conversion is legal.
1037 */
1038 result = convert_component(ir, desired_type);
1039 }
1040 }
1041
1042 if (constructor_type->fields.array->is_unsized_array()) {
1043 /* As the inner parameters of the constructor are created without
1044 * knowledge of each other we need to check to make sure unsized
1045 * parameters of unsized constructors all end up with the same size.
1046 *
1047 * e.g we make sure to fail for a constructor like this:
1048 * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1049 * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1050 * vec4[](vec4(0.0), vec4(1.0)));
1051 */
1052 if (element_type->is_unsized_array()) {
1053 /* This is the first parameter so just get the type */
1054 element_type = result->type;
1055 } else if (element_type != result->type) {
1056 _mesa_glsl_error(loc, state, "type error in array constructor: "
1057 "expected: %s, found %s",
1058 element_type->name,
1059 result->type->name);
1060 return ir_rvalue::error_value(ctx);
1061 }
1062 } else if (result->type != constructor_type->fields.array) {
1063 _mesa_glsl_error(loc, state, "type error in array constructor: "
1064 "expected: %s, found %s",
1065 constructor_type->fields.array->name,
1066 result->type->name);
1067 return ir_rvalue::error_value(ctx);
1068 } else {
1069 element_type = result->type;
1070 }
1071
1072 /* Attempt to convert the parameter to a constant valued expression.
1073 * After doing so, track whether or not all the parameters to the
1074 * constructor are trivially constant valued expressions.
1075 */
1076 ir_rvalue *const constant = result->constant_expression_value();
1077
1078 if (constant != NULL)
1079 result = constant;
1080 else
1081 all_parameters_are_constant = false;
1082
1083 ir->replace_with(result);
1084 }
1085
1086 if (constructor_type->fields.array->is_unsized_array()) {
1087 constructor_type =
1088 glsl_type::get_array_instance(element_type,
1089 parameter_count);
1090 assert(constructor_type != NULL);
1091 assert(constructor_type->length == parameter_count);
1092 }
1093
1094 if (all_parameters_are_constant)
1095 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1096
1097 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1098 ir_var_temporary);
1099 instructions->push_tail(var);
1100
1101 int i = 0;
1102 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1103 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1104 new(ctx) ir_constant(i));
1105
1106 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
1107 instructions->push_tail(assignment);
1108
1109 i++;
1110 }
1111
1112 return new(ctx) ir_dereference_variable(var);
1113 }
1114
1115
1116 /**
1117 * Try to convert a record constructor to a constant expression
1118 */
1119 static ir_constant *
1120 constant_record_constructor(const glsl_type *constructor_type,
1121 exec_list *parameters, void *mem_ctx)
1122 {
1123 foreach_in_list(ir_instruction, node, parameters) {
1124 ir_constant *constant = node->as_constant();
1125 if (constant == NULL)
1126 return NULL;
1127 node->replace_with(constant);
1128 }
1129
1130 return new(mem_ctx) ir_constant(constructor_type, parameters);
1131 }
1132
1133
1134 /**
1135 * Determine if a list consists of a single scalar r-value
1136 */
1137 bool
1138 single_scalar_parameter(exec_list *parameters)
1139 {
1140 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
1141 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1142
1143 return (p->type->is_scalar() && p->next->is_tail_sentinel());
1144 }
1145
1146
1147 /**
1148 * Generate inline code for a vector constructor
1149 *
1150 * The generated constructor code will consist of a temporary variable
1151 * declaration of the same type as the constructor. A sequence of assignments
1152 * from constructor parameters to the temporary will follow.
1153 *
1154 * \return
1155 * An \c ir_dereference_variable of the temprorary generated in the constructor
1156 * body.
1157 */
1158 ir_rvalue *
1159 emit_inline_vector_constructor(const glsl_type *type,
1160 exec_list *instructions,
1161 exec_list *parameters,
1162 void *ctx)
1163 {
1164 assert(!parameters->is_empty());
1165
1166 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1167 instructions->push_tail(var);
1168
1169 /* There are three kinds of vector constructors.
1170 *
1171 * - Construct a vector from a single scalar by replicating that scalar to
1172 * all components of the vector.
1173 *
1174 * - Construct a vector from at least a matrix. This case should already
1175 * have been taken care of in ast_function_expression::hir by breaking
1176 * down the matrix into a series of column vectors.
1177 *
1178 * - Construct a vector from an arbirary combination of vectors and
1179 * scalars. The components of the constructor parameters are assigned
1180 * to the vector in order until the vector is full.
1181 */
1182 const unsigned lhs_components = type->components();
1183 if (single_scalar_parameter(parameters)) {
1184 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
1185 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1186 lhs_components);
1187 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1188 const unsigned mask = (1U << lhs_components) - 1;
1189
1190 assert(rhs->type == lhs->type);
1191
1192 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1193 instructions->push_tail(inst);
1194 } else {
1195 unsigned base_component = 0;
1196 unsigned base_lhs_component = 0;
1197 ir_constant_data data;
1198 unsigned constant_mask = 0, constant_components = 0;
1199
1200 memset(&data, 0, sizeof(data));
1201
1202 foreach_in_list(ir_rvalue, param, parameters) {
1203 unsigned rhs_components = param->type->components();
1204
1205 /* Do not try to assign more components to the vector than it has!
1206 */
1207 if ((rhs_components + base_lhs_component) > lhs_components) {
1208 rhs_components = lhs_components - base_lhs_component;
1209 }
1210
1211 const ir_constant *const c = param->as_constant();
1212 if (c != NULL) {
1213 for (unsigned i = 0; i < rhs_components; i++) {
1214 switch (c->type->base_type) {
1215 case GLSL_TYPE_UINT:
1216 data.u[i + base_component] = c->get_uint_component(i);
1217 break;
1218 case GLSL_TYPE_INT:
1219 data.i[i + base_component] = c->get_int_component(i);
1220 break;
1221 case GLSL_TYPE_FLOAT:
1222 data.f[i + base_component] = c->get_float_component(i);
1223 break;
1224 case GLSL_TYPE_DOUBLE:
1225 data.d[i + base_component] = c->get_double_component(i);
1226 break;
1227 case GLSL_TYPE_BOOL:
1228 data.b[i + base_component] = c->get_bool_component(i);
1229 break;
1230 default:
1231 assert(!"Should not get here.");
1232 break;
1233 }
1234 }
1235
1236 /* Mask of fields to be written in the assignment.
1237 */
1238 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1239 constant_components += rhs_components;
1240
1241 base_component += rhs_components;
1242 }
1243 /* Advance the component index by the number of components
1244 * that were just assigned.
1245 */
1246 base_lhs_component += rhs_components;
1247 }
1248
1249 if (constant_mask != 0) {
1250 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1251 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
1252 constant_components,
1253 1);
1254 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1255
1256 ir_instruction *inst =
1257 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1258 instructions->push_tail(inst);
1259 }
1260
1261 base_component = 0;
1262 foreach_in_list(ir_rvalue, param, parameters) {
1263 unsigned rhs_components = param->type->components();
1264
1265 /* Do not try to assign more components to the vector than it has!
1266 */
1267 if ((rhs_components + base_component) > lhs_components) {
1268 rhs_components = lhs_components - base_component;
1269 }
1270
1271 /* If we do not have any components left to copy, break out of the
1272 * loop. This can happen when initializing a vec4 with a mat3 as the
1273 * mat3 would have been broken into a series of column vectors.
1274 */
1275 if (rhs_components == 0) {
1276 break;
1277 }
1278
1279 const ir_constant *const c = param->as_constant();
1280 if (c == NULL) {
1281 /* Mask of fields to be written in the assignment.
1282 */
1283 const unsigned write_mask = ((1U << rhs_components) - 1)
1284 << base_component;
1285
1286 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1287
1288 /* Generate a swizzle so that LHS and RHS sizes match.
1289 */
1290 ir_rvalue *rhs =
1291 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1292
1293 ir_instruction *inst =
1294 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1295 instructions->push_tail(inst);
1296 }
1297
1298 /* Advance the component index by the number of components that were
1299 * just assigned.
1300 */
1301 base_component += rhs_components;
1302 }
1303 }
1304 return new(ctx) ir_dereference_variable(var);
1305 }
1306
1307
1308 /**
1309 * Generate assignment of a portion of a vector to a portion of a matrix column
1310 *
1311 * \param src_base First component of the source to be used in assignment
1312 * \param column Column of destination to be assiged
1313 * \param row_base First component of the destination column to be assigned
1314 * \param count Number of components to be assigned
1315 *
1316 * \note
1317 * \c src_base + \c count must be less than or equal to the number of components
1318 * in the source vector.
1319 */
1320 ir_instruction *
1321 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1322 ir_rvalue *src, unsigned src_base, unsigned count,
1323 void *mem_ctx)
1324 {
1325 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1326 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1327
1328 assert(column_ref->type->components() >= (row_base + count));
1329 assert(src->type->components() >= (src_base + count));
1330
1331 /* Generate a swizzle that extracts the number of components from the source
1332 * that are to be assigned to the column of the matrix.
1333 */
1334 if (count < src->type->vector_elements) {
1335 src = new(mem_ctx) ir_swizzle(src,
1336 src_base + 0, src_base + 1,
1337 src_base + 2, src_base + 3,
1338 count);
1339 }
1340
1341 /* Mask of fields to be written in the assignment.
1342 */
1343 const unsigned write_mask = ((1U << count) - 1) << row_base;
1344
1345 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1346 }
1347
1348
1349 /**
1350 * Generate inline code for a matrix constructor
1351 *
1352 * The generated constructor code will consist of a temporary variable
1353 * declaration of the same type as the constructor. A sequence of assignments
1354 * from constructor parameters to the temporary will follow.
1355 *
1356 * \return
1357 * An \c ir_dereference_variable of the temprorary generated in the constructor
1358 * body.
1359 */
1360 ir_rvalue *
1361 emit_inline_matrix_constructor(const glsl_type *type,
1362 exec_list *instructions,
1363 exec_list *parameters,
1364 void *ctx)
1365 {
1366 assert(!parameters->is_empty());
1367
1368 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1369 instructions->push_tail(var);
1370
1371 /* There are three kinds of matrix constructors.
1372 *
1373 * - Construct a matrix from a single scalar by replicating that scalar to
1374 * along the diagonal of the matrix and setting all other components to
1375 * zero.
1376 *
1377 * - Construct a matrix from an arbirary combination of vectors and
1378 * scalars. The components of the constructor parameters are assigned
1379 * to the matrix in column-major order until the matrix is full.
1380 *
1381 * - Construct a matrix from a single matrix. The source matrix is copied
1382 * to the upper left portion of the constructed matrix, and the remaining
1383 * elements take values from the identity matrix.
1384 */
1385 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1386 if (single_scalar_parameter(parameters)) {
1387 /* Assign the scalar to the X component of a vec4, and fill the remaining
1388 * components with zero.
1389 */
1390 glsl_base_type param_base_type = first_param->type->base_type;
1391 assert(param_base_type == GLSL_TYPE_FLOAT ||
1392 param_base_type == GLSL_TYPE_DOUBLE);
1393 ir_variable *rhs_var =
1394 new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1395 "mat_ctor_vec",
1396 ir_var_temporary);
1397 instructions->push_tail(rhs_var);
1398
1399 ir_constant_data zero;
1400 for (unsigned i = 0; i < 4; i++)
1401 if (param_base_type == GLSL_TYPE_FLOAT)
1402 zero.f[i] = 0.0;
1403 else
1404 zero.d[i] = 0.0;
1405
1406 ir_instruction *inst =
1407 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1408 new(ctx) ir_constant(rhs_var->type, &zero),
1409 NULL);
1410 instructions->push_tail(inst);
1411
1412 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1413
1414 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1415 instructions->push_tail(inst);
1416
1417 /* Assign the temporary vector to each column of the destination matrix
1418 * with a swizzle that puts the X component on the diagonal of the
1419 * matrix. In some cases this may mean that the X component does not
1420 * get assigned into the column at all (i.e., when the matrix has more
1421 * columns than rows).
1422 */
1423 static const unsigned rhs_swiz[4][4] = {
1424 { 0, 1, 1, 1 },
1425 { 1, 0, 1, 1 },
1426 { 1, 1, 0, 1 },
1427 { 1, 1, 1, 0 }
1428 };
1429
1430 const unsigned cols_to_init = MIN2(type->matrix_columns,
1431 type->vector_elements);
1432 for (unsigned i = 0; i < cols_to_init; i++) {
1433 ir_constant *const col_idx = new(ctx) ir_constant(i);
1434 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1435
1436 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1437 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1438 type->vector_elements);
1439
1440 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1441 instructions->push_tail(inst);
1442 }
1443
1444 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1445 ir_constant *const col_idx = new(ctx) ir_constant(i);
1446 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1447
1448 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1449 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1450 type->vector_elements);
1451
1452 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1453 instructions->push_tail(inst);
1454 }
1455 } else if (first_param->type->is_matrix()) {
1456 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1457 *
1458 * "If a matrix is constructed from a matrix, then each component
1459 * (column i, row j) in the result that has a corresponding
1460 * component (column i, row j) in the argument will be initialized
1461 * from there. All other components will be initialized to the
1462 * identity matrix. If a matrix argument is given to a matrix
1463 * constructor, it is an error to have any other arguments."
1464 */
1465 assert(first_param->next->is_tail_sentinel());
1466 ir_rvalue *const src_matrix = first_param;
1467
1468 /* If the source matrix is smaller, pre-initialize the relavent parts of
1469 * the destination matrix to the identity matrix.
1470 */
1471 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1472 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1473
1474 /* If the source matrix has fewer rows, every column of the destination
1475 * must be initialized. Otherwise only the columns in the destination
1476 * that do not exist in the source must be initialized.
1477 */
1478 unsigned col =
1479 (src_matrix->type->vector_elements < var->type->vector_elements)
1480 ? 0 : src_matrix->type->matrix_columns;
1481
1482 const glsl_type *const col_type = var->type->column_type();
1483 for (/* empty */; col < var->type->matrix_columns; col++) {
1484 ir_constant_data ident;
1485
1486 ident.f[0] = 0.0;
1487 ident.f[1] = 0.0;
1488 ident.f[2] = 0.0;
1489 ident.f[3] = 0.0;
1490
1491 ident.f[col] = 1.0;
1492
1493 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1494
1495 ir_rvalue *const lhs =
1496 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1497
1498 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1499 instructions->push_tail(inst);
1500 }
1501 }
1502
1503 /* Assign columns from the source matrix to the destination matrix.
1504 *
1505 * Since the parameter will be used in the RHS of multiple assignments,
1506 * generate a temporary and copy the paramter there.
1507 */
1508 ir_variable *const rhs_var =
1509 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1510 ir_var_temporary);
1511 instructions->push_tail(rhs_var);
1512
1513 ir_dereference *const rhs_var_ref =
1514 new(ctx) ir_dereference_variable(rhs_var);
1515 ir_instruction *const inst =
1516 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1517 instructions->push_tail(inst);
1518
1519 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1520 var->type->vector_elements);
1521 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1522 var->type->matrix_columns);
1523
1524 unsigned swiz[4] = { 0, 0, 0, 0 };
1525 for (unsigned i = 1; i < last_row; i++)
1526 swiz[i] = i;
1527
1528 const unsigned write_mask = (1U << last_row) - 1;
1529
1530 for (unsigned i = 0; i < last_col; i++) {
1531 ir_dereference *const lhs =
1532 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1533 ir_rvalue *const rhs_col =
1534 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1535
1536 /* If one matrix has columns that are smaller than the columns of the
1537 * other matrix, wrap the column access of the larger with a swizzle
1538 * so that the LHS and RHS of the assignment have the same size (and
1539 * therefore have the same type).
1540 *
1541 * It would be perfectly valid to unconditionally generate the
1542 * swizzles, this this will typically result in a more compact IR tree.
1543 */
1544 ir_rvalue *rhs;
1545 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1546 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1547 } else {
1548 rhs = rhs_col;
1549 }
1550
1551 ir_instruction *inst =
1552 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1553 instructions->push_tail(inst);
1554 }
1555 } else {
1556 const unsigned cols = type->matrix_columns;
1557 const unsigned rows = type->vector_elements;
1558 unsigned remaining_slots = rows * cols;
1559 unsigned col_idx = 0;
1560 unsigned row_idx = 0;
1561
1562 foreach_in_list(ir_rvalue, rhs, parameters) {
1563 unsigned rhs_components = rhs->type->components();
1564 unsigned rhs_base = 0;
1565
1566 if (remaining_slots == 0)
1567 break;
1568
1569 /* Since the parameter might be used in the RHS of two assignments,
1570 * generate a temporary and copy the paramter there.
1571 */
1572 ir_variable *rhs_var =
1573 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1574 instructions->push_tail(rhs_var);
1575
1576 ir_dereference *rhs_var_ref =
1577 new(ctx) ir_dereference_variable(rhs_var);
1578 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1579 instructions->push_tail(inst);
1580
1581 do {
1582 /* Assign the current parameter to as many components of the matrix
1583 * as it will fill.
1584 *
1585 * NOTE: A single vector parameter can span two matrix columns. A
1586 * single vec4, for example, can completely fill a mat2.
1587 */
1588 unsigned count = MIN2(rows - row_idx,
1589 rhs_components - rhs_base);
1590
1591 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1592 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1593 row_idx,
1594 rhs_var_ref,
1595 rhs_base,
1596 count, ctx);
1597 instructions->push_tail(inst);
1598 rhs_base += count;
1599 row_idx += count;
1600 remaining_slots -= count;
1601
1602 /* Sometimes, there is still data left in the parameters and
1603 * components left to be set in the destination but in other
1604 * column.
1605 */
1606 if (row_idx >= rows) {
1607 row_idx = 0;
1608 col_idx++;
1609 }
1610 } while(remaining_slots > 0 && rhs_base < rhs_components);
1611 }
1612 }
1613
1614 return new(ctx) ir_dereference_variable(var);
1615 }
1616
1617
1618 ir_rvalue *
1619 emit_inline_record_constructor(const glsl_type *type,
1620 exec_list *instructions,
1621 exec_list *parameters,
1622 void *mem_ctx)
1623 {
1624 ir_variable *const var =
1625 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1626 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1627
1628 instructions->push_tail(var);
1629
1630 exec_node *node = parameters->head;
1631 for (unsigned i = 0; i < type->length; i++) {
1632 assert(!node->is_tail_sentinel());
1633
1634 ir_dereference *const lhs =
1635 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1636 type->fields.structure[i].name);
1637
1638 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1639 assert(rhs != NULL);
1640
1641 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1642
1643 instructions->push_tail(assign);
1644 node = node->next;
1645 }
1646
1647 return d;
1648 }
1649
1650
1651 static ir_rvalue *
1652 process_record_constructor(exec_list *instructions,
1653 const glsl_type *constructor_type,
1654 YYLTYPE *loc, exec_list *parameters,
1655 struct _mesa_glsl_parse_state *state)
1656 {
1657 void *ctx = state;
1658 exec_list actual_parameters;
1659
1660 process_parameters(instructions, &actual_parameters,
1661 parameters, state);
1662
1663 exec_node *node = actual_parameters.head;
1664 for (unsigned i = 0; i < constructor_type->length; i++) {
1665 ir_rvalue *ir = (ir_rvalue *) node;
1666
1667 if (node->is_tail_sentinel()) {
1668 _mesa_glsl_error(loc, state,
1669 "insufficient parameters to constructor for `%s'",
1670 constructor_type->name);
1671 return ir_rvalue::error_value(ctx);
1672 }
1673
1674 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1675 ir, state)) {
1676 node->replace_with(ir);
1677 } else {
1678 _mesa_glsl_error(loc, state,
1679 "parameter type mismatch in constructor for `%s.%s' "
1680 "(%s vs %s)",
1681 constructor_type->name,
1682 constructor_type->fields.structure[i].name,
1683 ir->type->name,
1684 constructor_type->fields.structure[i].type->name);
1685 return ir_rvalue::error_value(ctx);;
1686 }
1687
1688 node = node->next;
1689 }
1690
1691 if (!node->is_tail_sentinel()) {
1692 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1693 "for `%s'", constructor_type->name);
1694 return ir_rvalue::error_value(ctx);
1695 }
1696
1697 ir_rvalue *const constant =
1698 constant_record_constructor(constructor_type, &actual_parameters,
1699 state);
1700
1701 return (constant != NULL)
1702 ? constant
1703 : emit_inline_record_constructor(constructor_type, instructions,
1704 &actual_parameters, state);
1705 }
1706
1707 ir_rvalue *
1708 ast_function_expression::handle_method(exec_list *instructions,
1709 struct _mesa_glsl_parse_state *state)
1710 {
1711 const ast_expression *field = subexpressions[0];
1712 ir_rvalue *op;
1713 ir_rvalue *result;
1714 void *ctx = state;
1715 /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1716 YYLTYPE loc = get_location();
1717 state->check_version(120, 300, &loc, "methods not supported");
1718
1719 const char *method;
1720 method = field->primary_expression.identifier;
1721
1722 op = field->subexpressions[0]->hir(instructions, state);
1723 if (strcmp(method, "length") == 0) {
1724 if (!this->expressions.is_empty()) {
1725 _mesa_glsl_error(&loc, state, "length method takes no arguments");
1726 goto fail;
1727 }
1728
1729 if (op->type->is_array()) {
1730 if (op->type->is_unsized_array()) {
1731 if (!state->has_shader_storage_buffer_objects()) {
1732 _mesa_glsl_error(&loc, state, "length called on unsized array"
1733 " only available with "
1734 "ARB_shader_storage_buffer_object");
1735 }
1736 /* Calculate length of an unsized array in run-time */
1737 result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op);
1738 } else {
1739 result = new(ctx) ir_constant(op->type->array_size());
1740 }
1741 } else if (op->type->is_vector()) {
1742 if (state->has_420pack()) {
1743 /* .length() returns int. */
1744 result = new(ctx) ir_constant((int) op->type->vector_elements);
1745 } else {
1746 _mesa_glsl_error(&loc, state, "length method on matrix only available"
1747 "with ARB_shading_language_420pack");
1748 goto fail;
1749 }
1750 } else if (op->type->is_matrix()) {
1751 if (state->has_420pack()) {
1752 /* .length() returns int. */
1753 result = new(ctx) ir_constant((int) op->type->matrix_columns);
1754 } else {
1755 _mesa_glsl_error(&loc, state, "length method on matrix only available"
1756 "with ARB_shading_language_420pack");
1757 goto fail;
1758 }
1759 } else {
1760 _mesa_glsl_error(&loc, state, "length called on scalar.");
1761 goto fail;
1762 }
1763 } else {
1764 _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1765 goto fail;
1766 }
1767 return result;
1768 fail:
1769 return ir_rvalue::error_value(ctx);
1770 }
1771
1772 ir_rvalue *
1773 ast_function_expression::hir(exec_list *instructions,
1774 struct _mesa_glsl_parse_state *state)
1775 {
1776 void *ctx = state;
1777 /* There are three sorts of function calls.
1778 *
1779 * 1. constructors - The first subexpression is an ast_type_specifier.
1780 * 2. methods - Only the .length() method of array types.
1781 * 3. functions - Calls to regular old functions.
1782 *
1783 */
1784 if (is_constructor()) {
1785 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1786 YYLTYPE loc = type->get_location();
1787 const char *name;
1788
1789 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1790
1791 /* constructor_type can be NULL if a variable with the same name as the
1792 * structure has come into scope.
1793 */
1794 if (constructor_type == NULL) {
1795 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1796 "may be shadowed by a variable with the same name)",
1797 type->type_name);
1798 return ir_rvalue::error_value(ctx);
1799 }
1800
1801
1802 /* Constructors for opaque types are illegal.
1803 */
1804 if (constructor_type->contains_opaque()) {
1805 _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
1806 constructor_type->name);
1807 return ir_rvalue::error_value(ctx);
1808 }
1809
1810 if (constructor_type->is_array()) {
1811 if (!state->check_version(120, 300, &loc,
1812 "array constructors forbidden")) {
1813 return ir_rvalue::error_value(ctx);
1814 }
1815
1816 return process_array_constructor(instructions, constructor_type,
1817 & loc, &this->expressions, state);
1818 }
1819
1820
1821 /* There are two kinds of constructor calls. Constructors for arrays and
1822 * structures must have the exact number of arguments with matching types
1823 * in the correct order. These constructors follow essentially the same
1824 * type matching rules as functions.
1825 *
1826 * Constructors for built-in language types, such as mat4 and vec2, are
1827 * free form. The only requirements are that the parameters must provide
1828 * enough values of the correct scalar type and that no arguments are
1829 * given past the last used argument.
1830 *
1831 * When using the C-style initializer syntax from GLSL 4.20, constructors
1832 * must have the exact number of arguments with matching types in the
1833 * correct order.
1834 */
1835 if (constructor_type->is_record()) {
1836 return process_record_constructor(instructions, constructor_type,
1837 &loc, &this->expressions,
1838 state);
1839 }
1840
1841 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1842 return ir_rvalue::error_value(ctx);
1843
1844 /* Total number of components of the type being constructed. */
1845 const unsigned type_components = constructor_type->components();
1846
1847 /* Number of components from parameters that have actually been
1848 * consumed. This is used to perform several kinds of error checking.
1849 */
1850 unsigned components_used = 0;
1851
1852 unsigned matrix_parameters = 0;
1853 unsigned nonmatrix_parameters = 0;
1854 exec_list actual_parameters;
1855
1856 foreach_list_typed(ast_node, ast, link, &this->expressions) {
1857 ir_rvalue *result = ast->hir(instructions, state);
1858
1859 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1860 *
1861 * "It is an error to provide extra arguments beyond this
1862 * last used argument."
1863 */
1864 if (components_used >= type_components) {
1865 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1866 "constructor",
1867 constructor_type->name);
1868 return ir_rvalue::error_value(ctx);
1869 }
1870
1871 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1872 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1873 "non-numeric data type",
1874 constructor_type->name);
1875 return ir_rvalue::error_value(ctx);
1876 }
1877
1878 /* Count the number of matrix and nonmatrix parameters. This
1879 * is used below to enforce some of the constructor rules.
1880 */
1881 if (result->type->is_matrix())
1882 matrix_parameters++;
1883 else
1884 nonmatrix_parameters++;
1885
1886 actual_parameters.push_tail(result);
1887 components_used += result->type->components();
1888 }
1889
1890 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1891 *
1892 * "It is an error to construct matrices from other matrices. This
1893 * is reserved for future use."
1894 */
1895 if (matrix_parameters > 0
1896 && constructor_type->is_matrix()
1897 && !state->check_version(120, 100, &loc,
1898 "cannot construct `%s' from a matrix",
1899 constructor_type->name)) {
1900 return ir_rvalue::error_value(ctx);
1901 }
1902
1903 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1904 *
1905 * "If a matrix argument is given to a matrix constructor, it is
1906 * an error to have any other arguments."
1907 */
1908 if ((matrix_parameters > 0)
1909 && ((matrix_parameters + nonmatrix_parameters) > 1)
1910 && constructor_type->is_matrix()) {
1911 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1912 "matrix must be only parameter",
1913 constructor_type->name);
1914 return ir_rvalue::error_value(ctx);
1915 }
1916
1917 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1918 *
1919 * "In these cases, there must be enough components provided in the
1920 * arguments to provide an initializer for every component in the
1921 * constructed value."
1922 */
1923 if (components_used < type_components && components_used != 1
1924 && matrix_parameters == 0) {
1925 _mesa_glsl_error(& loc, state, "too few components to construct "
1926 "`%s'",
1927 constructor_type->name);
1928 return ir_rvalue::error_value(ctx);
1929 }
1930
1931 /* Matrices can never be consumed as is by any constructor but matrix
1932 * constructors. If the constructor type is not matrix, always break the
1933 * matrix up into a series of column vectors.
1934 */
1935 if (!constructor_type->is_matrix()) {
1936 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
1937 if (!matrix->type->is_matrix())
1938 continue;
1939
1940 /* Create a temporary containing the matrix. */
1941 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1942 ir_var_temporary);
1943 instructions->push_tail(var);
1944 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1945 ir_dereference_variable(var), matrix, NULL));
1946 var->constant_value = matrix->constant_expression_value();
1947
1948 /* Replace the matrix with dereferences of its columns. */
1949 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1950 matrix->insert_before(new (ctx) ir_dereference_array(var,
1951 new(ctx) ir_constant(i)));
1952 }
1953 matrix->remove();
1954 }
1955 }
1956
1957 bool all_parameters_are_constant = true;
1958
1959 /* Type cast each parameter and, if possible, fold constants.*/
1960 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1961 const glsl_type *desired_type =
1962 glsl_type::get_instance(constructor_type->base_type,
1963 ir->type->vector_elements,
1964 ir->type->matrix_columns);
1965 ir_rvalue *result = convert_component(ir, desired_type);
1966
1967 /* Attempt to convert the parameter to a constant valued expression.
1968 * After doing so, track whether or not all the parameters to the
1969 * constructor are trivially constant valued expressions.
1970 */
1971 ir_rvalue *const constant = result->constant_expression_value();
1972
1973 if (constant != NULL)
1974 result = constant;
1975 else
1976 all_parameters_are_constant = false;
1977
1978 if (result != ir) {
1979 ir->replace_with(result);
1980 }
1981 }
1982
1983 /* If all of the parameters are trivially constant, create a
1984 * constant representing the complete collection of parameters.
1985 */
1986 if (all_parameters_are_constant) {
1987 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1988 } else if (constructor_type->is_scalar()) {
1989 return dereference_component((ir_rvalue *) actual_parameters.head,
1990 0);
1991 } else if (constructor_type->is_vector()) {
1992 return emit_inline_vector_constructor(constructor_type,
1993 instructions,
1994 &actual_parameters,
1995 ctx);
1996 } else {
1997 assert(constructor_type->is_matrix());
1998 return emit_inline_matrix_constructor(constructor_type,
1999 instructions,
2000 &actual_parameters,
2001 ctx);
2002 }
2003 } else if (subexpressions[0]->oper == ast_field_selection) {
2004 return handle_method(instructions, state);
2005 } else {
2006 const ast_expression *id = subexpressions[0];
2007 const char *func_name;
2008 YYLTYPE loc = get_location();
2009 exec_list actual_parameters;
2010 ir_variable *sub_var = NULL;
2011 ir_rvalue *array_idx = NULL;
2012
2013 process_parameters(instructions, &actual_parameters, &this->expressions,
2014 state);
2015
2016 if (id->oper == ast_array_index) {
2017 array_idx = generate_array_index(ctx, instructions, state, loc,
2018 id->subexpressions[0],
2019 id->subexpressions[1], &func_name,
2020 &actual_parameters);
2021 } else {
2022 func_name = id->primary_expression.identifier;
2023 }
2024
2025 ir_function_signature *sig =
2026 match_function_by_name(func_name, &actual_parameters, state);
2027
2028 ir_rvalue *value = NULL;
2029 if (sig == NULL) {
2030 sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var);
2031 }
2032
2033 if (sig == NULL) {
2034 no_matching_function_error(func_name, &loc, &actual_parameters, state);
2035 value = ir_rvalue::error_value(ctx);
2036 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
2037 /* an error has already been emitted */
2038 value = ir_rvalue::error_value(ctx);
2039 } else {
2040 value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state);
2041 if (!value) {
2042 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2043 "void_var",
2044 ir_var_temporary);
2045 instructions->push_tail(tmp);
2046 value = new(ctx) ir_dereference_variable(tmp);
2047 }
2048 }
2049
2050 return value;
2051 }
2052
2053 unreachable("not reached");
2054 }
2055
2056 bool
2057 ast_function_expression::has_sequence_subexpression() const
2058 {
2059 foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2060 if (ast->has_sequence_subexpression())
2061 return true;
2062 }
2063
2064 return false;
2065 }
2066
2067 ir_rvalue *
2068 ast_aggregate_initializer::hir(exec_list *instructions,
2069 struct _mesa_glsl_parse_state *state)
2070 {
2071 void *ctx = state;
2072 YYLTYPE loc = this->get_location();
2073
2074 if (!this->constructor_type) {
2075 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2076 return ir_rvalue::error_value(ctx);
2077 }
2078 const glsl_type *const constructor_type = this->constructor_type;
2079
2080 if (!state->has_420pack()) {
2081 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2082 "GL_ARB_shading_language_420pack extension");
2083 return ir_rvalue::error_value(ctx);
2084 }
2085
2086 if (constructor_type->is_array()) {
2087 return process_array_constructor(instructions, constructor_type, &loc,
2088 &this->expressions, state);
2089 }
2090
2091 if (constructor_type->is_record()) {
2092 return process_record_constructor(instructions, constructor_type, &loc,
2093 &this->expressions, state);
2094 }
2095
2096 return process_vec_mat_constructor(instructions, constructor_type, &loc,
2097 &this->expressions, state);
2098 }