glsl: Generate compile errors for explicit blend indices < 0 or > 1.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136 const char *mode = NULL;
137 switch (formal->mode) {
138 case ir_var_out: mode = "out"; break;
139 case ir_var_inout: mode = "inout"; break;
140 default: assert(false); break;
141 }
142
143 /* This AST-based check catches errors like f(i++). The IR-based
144 * is_lvalue() is insufficient because the actual parameter at the
145 * IR-level is just a temporary value, which is an l-value.
146 */
147 if (actual_ast->non_lvalue_description != NULL) {
148 _mesa_glsl_error(&loc, state,
149 "function parameter '%s %s' references a %s",
150 mode, formal->name,
151 actual_ast->non_lvalue_description);
152 return false;
153 }
154
155 ir_variable *var = actual->variable_referenced();
156 if (var)
157 var->assigned = true;
158
159 if (var && var->read_only) {
160 _mesa_glsl_error(&loc, state,
161 "function parameter '%s %s' references the "
162 "read-only variable '%s'",
163 mode, formal->name,
164 actual->variable_referenced()->name);
165 return false;
166 } else if (!actual->is_lvalue()) {
167 _mesa_glsl_error(&loc, state,
168 "function parameter '%s %s' is not an lvalue",
169 mode, formal->name);
170 return false;
171 }
172 }
173
174 actual_ir_node = actual_ir_node->next;
175 actual_ast_node = actual_ast_node->next;
176 }
177 return true;
178 }
179
180 /**
181 * If a function call is generated, \c call_ir will point to it on exit.
182 * Otherwise \c call_ir will be set to \c NULL.
183 */
184 static ir_rvalue *
185 generate_call(exec_list *instructions, ir_function_signature *sig,
186 YYLTYPE *loc, exec_list *actual_parameters,
187 ir_call **call_ir,
188 struct _mesa_glsl_parse_state *state)
189 {
190 void *ctx = state;
191 exec_list post_call_conversions;
192
193 *call_ir = NULL;
194
195 /* Perform implicit conversion of arguments. For out parameters, we need
196 * to place them in a temporary variable and do the conversion after the
197 * call takes place. Since we haven't emitted the call yet, we'll place
198 * the post-call conversions in a temporary exec_list, and emit them later.
199 */
200 exec_list_iterator actual_iter = actual_parameters->iterator();
201 exec_list_iterator formal_iter = sig->parameters.iterator();
202
203 while (actual_iter.has_next()) {
204 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
205 ir_variable *formal = (ir_variable *) formal_iter.get();
206
207 assert(actual != NULL);
208 assert(formal != NULL);
209
210 if (formal->type->is_numeric() || formal->type->is_boolean()) {
211 switch (formal->mode) {
212 case ir_var_const_in:
213 case ir_var_in: {
214 ir_rvalue *converted
215 = convert_component(actual, formal->type);
216 actual->replace_with(converted);
217 break;
218 }
219 case ir_var_out:
220 if (actual->type != formal->type) {
221 /* To convert an out parameter, we need to create a
222 * temporary variable to hold the value before conversion,
223 * and then perform the conversion after the function call
224 * returns.
225 *
226 * This has the effect of transforming code like this:
227 *
228 * void f(out int x);
229 * float value;
230 * f(value);
231 *
232 * Into IR that's equivalent to this:
233 *
234 * void f(out int x);
235 * float value;
236 * int out_parameter_conversion;
237 * f(out_parameter_conversion);
238 * value = float(out_parameter_conversion);
239 */
240 ir_variable *tmp =
241 new(ctx) ir_variable(formal->type,
242 "out_parameter_conversion",
243 ir_var_temporary);
244 instructions->push_tail(tmp);
245 ir_dereference_variable *deref_tmp_1
246 = new(ctx) ir_dereference_variable(tmp);
247 ir_dereference_variable *deref_tmp_2
248 = new(ctx) ir_dereference_variable(tmp);
249 ir_rvalue *converted_tmp
250 = convert_component(deref_tmp_1, actual->type);
251 ir_assignment *assignment
252 = new(ctx) ir_assignment(actual, converted_tmp);
253 post_call_conversions.push_tail(assignment);
254 actual->replace_with(deref_tmp_2);
255 }
256 break;
257 case ir_var_inout:
258 /* Inout parameters should never require conversion, since that
259 * would require an implicit conversion to exist both to and
260 * from the formal parameter type, and there are no
261 * bidirectional implicit conversions.
262 */
263 assert (actual->type == formal->type);
264 break;
265 default:
266 assert (!"Illegal formal parameter mode");
267 break;
268 }
269 }
270
271 actual_iter.next();
272 formal_iter.next();
273 }
274
275 /* If the function call is a constant expression, don't generate any
276 * instructions; just generate an ir_constant.
277 *
278 * Function calls were first allowed to be constant expressions in GLSL 1.20.
279 */
280 if (state->language_version >= 120) {
281 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
282 if (value != NULL) {
283 return value;
284 }
285 }
286
287 ir_dereference_variable *deref = NULL;
288 if (!sig->return_type->is_void()) {
289 /* Create a new temporary to hold the return value. */
290 ir_variable *var;
291
292 var = new(ctx) ir_variable(sig->return_type,
293 ralloc_asprintf(ctx, "%s_retval",
294 sig->function_name()),
295 ir_var_temporary);
296 instructions->push_tail(var);
297
298 deref = new(ctx) ir_dereference_variable(var);
299 }
300 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
301 instructions->push_tail(call);
302
303 /* Also emit any necessary out-parameter conversions. */
304 instructions->append_list(&post_call_conversions);
305
306 return deref ? deref->clone(ctx, NULL) : NULL;
307 }
308
309 /**
310 * Given a function name and parameter list, find the matching signature.
311 */
312 static ir_function_signature *
313 match_function_by_name(const char *name,
314 exec_list *actual_parameters,
315 struct _mesa_glsl_parse_state *state)
316 {
317 void *ctx = state;
318 ir_function *f = state->symbols->get_function(name);
319 ir_function_signature *local_sig = NULL;
320 ir_function_signature *sig = NULL;
321
322 /* Is the function hidden by a record type constructor? */
323 if (state->symbols->get_type(name))
324 goto done; /* no match */
325
326 /* Is the function hidden by a variable (impossible in 1.10)? */
327 if (state->language_version != 110 && state->symbols->get_variable(name))
328 goto done; /* no match */
329
330 if (f != NULL) {
331 /* Look for a match in the local shader. If exact, we're done. */
332 bool is_exact = false;
333 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
334 if (is_exact)
335 goto done;
336
337 if (!state->es_shader && f->has_user_signature()) {
338 /* In desktop GL, the presence of a user-defined signature hides any
339 * built-in signatures, so we must ignore them. In contrast, in ES2
340 * user-defined signatures add new overloads, so we must proceed.
341 */
342 goto done;
343 }
344 }
345
346 /* Local shader has no exact candidates; check the built-ins. */
347 _mesa_glsl_initialize_functions(state);
348 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
349 ir_function *builtin =
350 state->builtins_to_link[i]->symbols->get_function(name);
351 if (builtin == NULL)
352 continue;
353
354 bool is_exact = false;
355 ir_function_signature *builtin_sig =
356 builtin->matching_signature(actual_parameters, &is_exact);
357
358 if (builtin_sig == NULL)
359 continue;
360
361 /* If the built-in signature is exact, we can stop. */
362 if (is_exact) {
363 sig = builtin_sig;
364 goto done;
365 }
366
367 if (sig == NULL) {
368 /* We found an inexact match, which is better than nothing. However,
369 * we should keep searching for an exact match.
370 */
371 sig = builtin_sig;
372 }
373 }
374
375 done:
376 if (sig != NULL) {
377 /* If the match is from a linked built-in shader, import the prototype. */
378 if (sig != local_sig) {
379 if (f == NULL) {
380 f = new(ctx) ir_function(name);
381 state->symbols->add_global_function(f);
382 emit_function(state, f);
383 }
384 f->add_signature(sig->clone_prototype(f, NULL));
385 }
386 }
387 return sig;
388 }
389
390 /**
391 * Raise a "no matching function" error, listing all possible overloads the
392 * compiler considered so developers can figure out what went wrong.
393 */
394 static void
395 no_matching_function_error(const char *name,
396 YYLTYPE *loc,
397 exec_list *actual_parameters,
398 _mesa_glsl_parse_state *state)
399 {
400 char *str = prototype_string(NULL, name, actual_parameters);
401 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
402 ralloc_free(str);
403
404 const char *prefix = "candidates are: ";
405
406 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
407 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
408 : state->symbols;
409 ir_function *f = syms->get_function(name);
410 if (f == NULL)
411 continue;
412
413 foreach_list (node, &f->signatures) {
414 ir_function_signature *sig = (ir_function_signature *) node;
415
416 str = prototype_string(sig->return_type, f->name, &sig->parameters);
417 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
418 ralloc_free(str);
419
420 prefix = " ";
421 }
422 }
423 }
424
425 /**
426 * Perform automatic type conversion of constructor parameters
427 *
428 * This implements the rules in the "Conversion and Scalar Constructors"
429 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
430 */
431 static ir_rvalue *
432 convert_component(ir_rvalue *src, const glsl_type *desired_type)
433 {
434 void *ctx = ralloc_parent(src);
435 const unsigned a = desired_type->base_type;
436 const unsigned b = src->type->base_type;
437 ir_expression *result = NULL;
438
439 if (src->type->is_error())
440 return src;
441
442 assert(a <= GLSL_TYPE_BOOL);
443 assert(b <= GLSL_TYPE_BOOL);
444
445 if (a == b)
446 return src;
447
448 switch (a) {
449 case GLSL_TYPE_UINT:
450 switch (b) {
451 case GLSL_TYPE_INT:
452 result = new(ctx) ir_expression(ir_unop_i2u, src);
453 break;
454 case GLSL_TYPE_FLOAT:
455 result = new(ctx) ir_expression(ir_unop_f2u, src);
456 break;
457 case GLSL_TYPE_BOOL:
458 result = new(ctx) ir_expression(ir_unop_i2u,
459 new(ctx) ir_expression(ir_unop_b2i, src));
460 break;
461 }
462 break;
463 case GLSL_TYPE_INT:
464 switch (b) {
465 case GLSL_TYPE_UINT:
466 result = new(ctx) ir_expression(ir_unop_u2i, src);
467 break;
468 case GLSL_TYPE_FLOAT:
469 result = new(ctx) ir_expression(ir_unop_f2i, src);
470 break;
471 case GLSL_TYPE_BOOL:
472 result = new(ctx) ir_expression(ir_unop_b2i, src);
473 break;
474 }
475 break;
476 case GLSL_TYPE_FLOAT:
477 switch (b) {
478 case GLSL_TYPE_UINT:
479 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
480 break;
481 case GLSL_TYPE_INT:
482 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
483 break;
484 case GLSL_TYPE_BOOL:
485 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
486 break;
487 }
488 break;
489 case GLSL_TYPE_BOOL:
490 switch (b) {
491 case GLSL_TYPE_UINT:
492 result = new(ctx) ir_expression(ir_unop_i2b,
493 new(ctx) ir_expression(ir_unop_u2i, src));
494 break;
495 case GLSL_TYPE_INT:
496 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
497 break;
498 case GLSL_TYPE_FLOAT:
499 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
500 break;
501 }
502 break;
503 }
504
505 assert(result != NULL);
506 assert(result->type == desired_type);
507
508 /* Try constant folding; it may fold in the conversion we just added. */
509 ir_constant *const constant = result->constant_expression_value();
510 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
511 }
512
513 /**
514 * Dereference a specific component from a scalar, vector, or matrix
515 */
516 static ir_rvalue *
517 dereference_component(ir_rvalue *src, unsigned component)
518 {
519 void *ctx = ralloc_parent(src);
520 assert(component < src->type->components());
521
522 /* If the source is a constant, just create a new constant instead of a
523 * dereference of the existing constant.
524 */
525 ir_constant *constant = src->as_constant();
526 if (constant)
527 return new(ctx) ir_constant(constant, component);
528
529 if (src->type->is_scalar()) {
530 return src;
531 } else if (src->type->is_vector()) {
532 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
533 } else {
534 assert(src->type->is_matrix());
535
536 /* Dereference a row of the matrix, then call this function again to get
537 * a specific element from that row.
538 */
539 const int c = component / src->type->column_type()->vector_elements;
540 const int r = component % src->type->column_type()->vector_elements;
541 ir_constant *const col_index = new(ctx) ir_constant(c);
542 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
543
544 col->type = src->type->column_type();
545
546 return dereference_component(col, r);
547 }
548
549 assert(!"Should not get here.");
550 return NULL;
551 }
552
553
554 static ir_rvalue *
555 process_array_constructor(exec_list *instructions,
556 const glsl_type *constructor_type,
557 YYLTYPE *loc, exec_list *parameters,
558 struct _mesa_glsl_parse_state *state)
559 {
560 void *ctx = state;
561 /* Array constructors come in two forms: sized and unsized. Sized array
562 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
563 * variables. In this case the number of parameters must exactly match the
564 * specified size of the array.
565 *
566 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
567 * are vec4 variables. In this case the size of the array being constructed
568 * is determined by the number of parameters.
569 *
570 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
571 *
572 * "There must be exactly the same number of arguments as the size of
573 * the array being constructed. If no size is present in the
574 * constructor, then the array is explicitly sized to the number of
575 * arguments provided. The arguments are assigned in order, starting at
576 * element 0, to the elements of the constructed array. Each argument
577 * must be the same type as the element type of the array, or be a type
578 * that can be converted to the element type of the array according to
579 * Section 4.1.10 "Implicit Conversions.""
580 */
581 exec_list actual_parameters;
582 const unsigned parameter_count =
583 process_parameters(instructions, &actual_parameters, parameters, state);
584
585 if ((parameter_count == 0)
586 || ((constructor_type->length != 0)
587 && (constructor_type->length != parameter_count))) {
588 const unsigned min_param = (constructor_type->length == 0)
589 ? 1 : constructor_type->length;
590
591 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
592 "parameter%s",
593 (constructor_type->length != 0) ? "at least" : "exactly",
594 min_param, (min_param <= 1) ? "" : "s");
595 return ir_rvalue::error_value(ctx);
596 }
597
598 if (constructor_type->length == 0) {
599 constructor_type =
600 glsl_type::get_array_instance(constructor_type->element_type(),
601 parameter_count);
602 assert(constructor_type != NULL);
603 assert(constructor_type->length == parameter_count);
604 }
605
606 bool all_parameters_are_constant = true;
607
608 /* Type cast each parameter and, if possible, fold constants. */
609 foreach_list_safe(n, &actual_parameters) {
610 ir_rvalue *ir = (ir_rvalue *) n;
611 ir_rvalue *result = ir;
612
613 /* Apply implicit conversions (not the scalar constructor rules!). See
614 * the spec quote above. */
615 if (constructor_type->element_type()->is_float()) {
616 const glsl_type *desired_type =
617 glsl_type::get_instance(GLSL_TYPE_FLOAT,
618 ir->type->vector_elements,
619 ir->type->matrix_columns);
620 if (result->type->can_implicitly_convert_to(desired_type)) {
621 /* Even though convert_component() implements the constructor
622 * conversion rules (not the implicit conversion rules), its safe
623 * to use it here because we already checked that the implicit
624 * conversion is legal.
625 */
626 result = convert_component(ir, desired_type);
627 }
628 }
629
630 if (result->type != constructor_type->element_type()) {
631 _mesa_glsl_error(loc, state, "type error in array constructor: "
632 "expected: %s, found %s",
633 constructor_type->element_type()->name,
634 result->type->name);
635 }
636
637 /* Attempt to convert the parameter to a constant valued expression.
638 * After doing so, track whether or not all the parameters to the
639 * constructor are trivially constant valued expressions.
640 */
641 ir_rvalue *const constant = result->constant_expression_value();
642
643 if (constant != NULL)
644 result = constant;
645 else
646 all_parameters_are_constant = false;
647
648 ir->replace_with(result);
649 }
650
651 if (all_parameters_are_constant)
652 return new(ctx) ir_constant(constructor_type, &actual_parameters);
653
654 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
655 ir_var_temporary);
656 instructions->push_tail(var);
657
658 int i = 0;
659 foreach_list(node, &actual_parameters) {
660 ir_rvalue *rhs = (ir_rvalue *) node;
661 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
662 new(ctx) ir_constant(i));
663
664 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
665 instructions->push_tail(assignment);
666
667 i++;
668 }
669
670 return new(ctx) ir_dereference_variable(var);
671 }
672
673
674 /**
675 * Try to convert a record constructor to a constant expression
676 */
677 static ir_constant *
678 constant_record_constructor(const glsl_type *constructor_type,
679 exec_list *parameters, void *mem_ctx)
680 {
681 foreach_list(node, parameters) {
682 ir_constant *constant = ((ir_instruction *) node)->as_constant();
683 if (constant == NULL)
684 return NULL;
685 node->replace_with(constant);
686 }
687
688 return new(mem_ctx) ir_constant(constructor_type, parameters);
689 }
690
691
692 /**
693 * Determine if a list consists of a single scalar r-value
694 */
695 bool
696 single_scalar_parameter(exec_list *parameters)
697 {
698 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
699 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
700
701 return (p->type->is_scalar() && p->next->is_tail_sentinel());
702 }
703
704
705 /**
706 * Generate inline code for a vector constructor
707 *
708 * The generated constructor code will consist of a temporary variable
709 * declaration of the same type as the constructor. A sequence of assignments
710 * from constructor parameters to the temporary will follow.
711 *
712 * \return
713 * An \c ir_dereference_variable of the temprorary generated in the constructor
714 * body.
715 */
716 ir_rvalue *
717 emit_inline_vector_constructor(const glsl_type *type,
718 exec_list *instructions,
719 exec_list *parameters,
720 void *ctx)
721 {
722 assert(!parameters->is_empty());
723
724 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
725 instructions->push_tail(var);
726
727 /* There are two kinds of vector constructors.
728 *
729 * - Construct a vector from a single scalar by replicating that scalar to
730 * all components of the vector.
731 *
732 * - Construct a vector from an arbirary combination of vectors and
733 * scalars. The components of the constructor parameters are assigned
734 * to the vector in order until the vector is full.
735 */
736 const unsigned lhs_components = type->components();
737 if (single_scalar_parameter(parameters)) {
738 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
739 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
740 lhs_components);
741 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
742 const unsigned mask = (1U << lhs_components) - 1;
743
744 assert(rhs->type == lhs->type);
745
746 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
747 instructions->push_tail(inst);
748 } else {
749 unsigned base_component = 0;
750 unsigned base_lhs_component = 0;
751 ir_constant_data data;
752 unsigned constant_mask = 0, constant_components = 0;
753
754 memset(&data, 0, sizeof(data));
755
756 foreach_list(node, parameters) {
757 ir_rvalue *param = (ir_rvalue *) node;
758 unsigned rhs_components = param->type->components();
759
760 /* Do not try to assign more components to the vector than it has!
761 */
762 if ((rhs_components + base_lhs_component) > lhs_components) {
763 rhs_components = lhs_components - base_lhs_component;
764 }
765
766 const ir_constant *const c = param->as_constant();
767 if (c != NULL) {
768 for (unsigned i = 0; i < rhs_components; i++) {
769 switch (c->type->base_type) {
770 case GLSL_TYPE_UINT:
771 data.u[i + base_component] = c->get_uint_component(i);
772 break;
773 case GLSL_TYPE_INT:
774 data.i[i + base_component] = c->get_int_component(i);
775 break;
776 case GLSL_TYPE_FLOAT:
777 data.f[i + base_component] = c->get_float_component(i);
778 break;
779 case GLSL_TYPE_BOOL:
780 data.b[i + base_component] = c->get_bool_component(i);
781 break;
782 default:
783 assert(!"Should not get here.");
784 break;
785 }
786 }
787
788 /* Mask of fields to be written in the assignment.
789 */
790 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
791 constant_components += rhs_components;
792
793 base_component += rhs_components;
794 }
795 /* Advance the component index by the number of components
796 * that were just assigned.
797 */
798 base_lhs_component += rhs_components;
799 }
800
801 if (constant_mask != 0) {
802 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
803 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
804 constant_components,
805 1);
806 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
807
808 ir_instruction *inst =
809 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
810 instructions->push_tail(inst);
811 }
812
813 base_component = 0;
814 foreach_list(node, parameters) {
815 ir_rvalue *param = (ir_rvalue *) node;
816 unsigned rhs_components = param->type->components();
817
818 /* Do not try to assign more components to the vector than it has!
819 */
820 if ((rhs_components + base_component) > lhs_components) {
821 rhs_components = lhs_components - base_component;
822 }
823
824 const ir_constant *const c = param->as_constant();
825 if (c == NULL) {
826 /* Mask of fields to be written in the assignment.
827 */
828 const unsigned write_mask = ((1U << rhs_components) - 1)
829 << base_component;
830
831 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
832
833 /* Generate a swizzle so that LHS and RHS sizes match.
834 */
835 ir_rvalue *rhs =
836 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
837
838 ir_instruction *inst =
839 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
840 instructions->push_tail(inst);
841 }
842
843 /* Advance the component index by the number of components that were
844 * just assigned.
845 */
846 base_component += rhs_components;
847 }
848 }
849 return new(ctx) ir_dereference_variable(var);
850 }
851
852
853 /**
854 * Generate assignment of a portion of a vector to a portion of a matrix column
855 *
856 * \param src_base First component of the source to be used in assignment
857 * \param column Column of destination to be assiged
858 * \param row_base First component of the destination column to be assigned
859 * \param count Number of components to be assigned
860 *
861 * \note
862 * \c src_base + \c count must be less than or equal to the number of components
863 * in the source vector.
864 */
865 ir_instruction *
866 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
867 ir_rvalue *src, unsigned src_base, unsigned count,
868 void *mem_ctx)
869 {
870 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
871 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
872
873 assert(column_ref->type->components() >= (row_base + count));
874 assert(src->type->components() >= (src_base + count));
875
876 /* Generate a swizzle that extracts the number of components from the source
877 * that are to be assigned to the column of the matrix.
878 */
879 if (count < src->type->vector_elements) {
880 src = new(mem_ctx) ir_swizzle(src,
881 src_base + 0, src_base + 1,
882 src_base + 2, src_base + 3,
883 count);
884 }
885
886 /* Mask of fields to be written in the assignment.
887 */
888 const unsigned write_mask = ((1U << count) - 1) << row_base;
889
890 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
891 }
892
893
894 /**
895 * Generate inline code for a matrix constructor
896 *
897 * The generated constructor code will consist of a temporary variable
898 * declaration of the same type as the constructor. A sequence of assignments
899 * from constructor parameters to the temporary will follow.
900 *
901 * \return
902 * An \c ir_dereference_variable of the temprorary generated in the constructor
903 * body.
904 */
905 ir_rvalue *
906 emit_inline_matrix_constructor(const glsl_type *type,
907 exec_list *instructions,
908 exec_list *parameters,
909 void *ctx)
910 {
911 assert(!parameters->is_empty());
912
913 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
914 instructions->push_tail(var);
915
916 /* There are three kinds of matrix constructors.
917 *
918 * - Construct a matrix from a single scalar by replicating that scalar to
919 * along the diagonal of the matrix and setting all other components to
920 * zero.
921 *
922 * - Construct a matrix from an arbirary combination of vectors and
923 * scalars. The components of the constructor parameters are assigned
924 * to the matrix in colum-major order until the matrix is full.
925 *
926 * - Construct a matrix from a single matrix. The source matrix is copied
927 * to the upper left portion of the constructed matrix, and the remaining
928 * elements take values from the identity matrix.
929 */
930 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
931 if (single_scalar_parameter(parameters)) {
932 /* Assign the scalar to the X component of a vec4, and fill the remaining
933 * components with zero.
934 */
935 ir_variable *rhs_var =
936 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
937 ir_var_temporary);
938 instructions->push_tail(rhs_var);
939
940 ir_constant_data zero;
941 zero.f[0] = 0.0;
942 zero.f[1] = 0.0;
943 zero.f[2] = 0.0;
944 zero.f[3] = 0.0;
945
946 ir_instruction *inst =
947 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
948 new(ctx) ir_constant(rhs_var->type, &zero),
949 NULL);
950 instructions->push_tail(inst);
951
952 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
953
954 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
955 instructions->push_tail(inst);
956
957 /* Assign the temporary vector to each column of the destination matrix
958 * with a swizzle that puts the X component on the diagonal of the
959 * matrix. In some cases this may mean that the X component does not
960 * get assigned into the column at all (i.e., when the matrix has more
961 * columns than rows).
962 */
963 static const unsigned rhs_swiz[4][4] = {
964 { 0, 1, 1, 1 },
965 { 1, 0, 1, 1 },
966 { 1, 1, 0, 1 },
967 { 1, 1, 1, 0 }
968 };
969
970 const unsigned cols_to_init = MIN2(type->matrix_columns,
971 type->vector_elements);
972 for (unsigned i = 0; i < cols_to_init; i++) {
973 ir_constant *const col_idx = new(ctx) ir_constant(i);
974 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
975
976 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
977 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
978 type->vector_elements);
979
980 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
981 instructions->push_tail(inst);
982 }
983
984 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
985 ir_constant *const col_idx = new(ctx) ir_constant(i);
986 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
987
988 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
989 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
990 type->vector_elements);
991
992 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
993 instructions->push_tail(inst);
994 }
995 } else if (first_param->type->is_matrix()) {
996 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
997 *
998 * "If a matrix is constructed from a matrix, then each component
999 * (column i, row j) in the result that has a corresponding
1000 * component (column i, row j) in the argument will be initialized
1001 * from there. All other components will be initialized to the
1002 * identity matrix. If a matrix argument is given to a matrix
1003 * constructor, it is an error to have any other arguments."
1004 */
1005 assert(first_param->next->is_tail_sentinel());
1006 ir_rvalue *const src_matrix = first_param;
1007
1008 /* If the source matrix is smaller, pre-initialize the relavent parts of
1009 * the destination matrix to the identity matrix.
1010 */
1011 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1012 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1013
1014 /* If the source matrix has fewer rows, every column of the destination
1015 * must be initialized. Otherwise only the columns in the destination
1016 * that do not exist in the source must be initialized.
1017 */
1018 unsigned col =
1019 (src_matrix->type->vector_elements < var->type->vector_elements)
1020 ? 0 : src_matrix->type->matrix_columns;
1021
1022 const glsl_type *const col_type = var->type->column_type();
1023 for (/* empty */; col < var->type->matrix_columns; col++) {
1024 ir_constant_data ident;
1025
1026 ident.f[0] = 0.0;
1027 ident.f[1] = 0.0;
1028 ident.f[2] = 0.0;
1029 ident.f[3] = 0.0;
1030
1031 ident.f[col] = 1.0;
1032
1033 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1034
1035 ir_rvalue *const lhs =
1036 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1037
1038 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1039 instructions->push_tail(inst);
1040 }
1041 }
1042
1043 /* Assign columns from the source matrix to the destination matrix.
1044 *
1045 * Since the parameter will be used in the RHS of multiple assignments,
1046 * generate a temporary and copy the paramter there.
1047 */
1048 ir_variable *const rhs_var =
1049 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1050 ir_var_temporary);
1051 instructions->push_tail(rhs_var);
1052
1053 ir_dereference *const rhs_var_ref =
1054 new(ctx) ir_dereference_variable(rhs_var);
1055 ir_instruction *const inst =
1056 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1057 instructions->push_tail(inst);
1058
1059 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1060 var->type->vector_elements);
1061 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1062 var->type->matrix_columns);
1063
1064 unsigned swiz[4] = { 0, 0, 0, 0 };
1065 for (unsigned i = 1; i < last_row; i++)
1066 swiz[i] = i;
1067
1068 const unsigned write_mask = (1U << last_row) - 1;
1069
1070 for (unsigned i = 0; i < last_col; i++) {
1071 ir_dereference *const lhs =
1072 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1073 ir_rvalue *const rhs_col =
1074 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1075
1076 /* If one matrix has columns that are smaller than the columns of the
1077 * other matrix, wrap the column access of the larger with a swizzle
1078 * so that the LHS and RHS of the assignment have the same size (and
1079 * therefore have the same type).
1080 *
1081 * It would be perfectly valid to unconditionally generate the
1082 * swizzles, this this will typically result in a more compact IR tree.
1083 */
1084 ir_rvalue *rhs;
1085 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1086 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1087 } else {
1088 rhs = rhs_col;
1089 }
1090
1091 ir_instruction *inst =
1092 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1093 instructions->push_tail(inst);
1094 }
1095 } else {
1096 const unsigned cols = type->matrix_columns;
1097 const unsigned rows = type->vector_elements;
1098 unsigned col_idx = 0;
1099 unsigned row_idx = 0;
1100
1101 foreach_list (node, parameters) {
1102 ir_rvalue *const rhs = (ir_rvalue *) node;
1103 const unsigned components_remaining_this_column = rows - row_idx;
1104 unsigned rhs_components = rhs->type->components();
1105 unsigned rhs_base = 0;
1106
1107 /* Since the parameter might be used in the RHS of two assignments,
1108 * generate a temporary and copy the paramter there.
1109 */
1110 ir_variable *rhs_var =
1111 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1112 instructions->push_tail(rhs_var);
1113
1114 ir_dereference *rhs_var_ref =
1115 new(ctx) ir_dereference_variable(rhs_var);
1116 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1117 instructions->push_tail(inst);
1118
1119 /* Assign the current parameter to as many components of the matrix
1120 * as it will fill.
1121 *
1122 * NOTE: A single vector parameter can span two matrix columns. A
1123 * single vec4, for example, can completely fill a mat2.
1124 */
1125 if (rhs_components >= components_remaining_this_column) {
1126 const unsigned count = MIN2(rhs_components,
1127 components_remaining_this_column);
1128
1129 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1130
1131 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1132 row_idx,
1133 rhs_var_ref, 0,
1134 count, ctx);
1135 instructions->push_tail(inst);
1136
1137 rhs_base = count;
1138
1139 col_idx++;
1140 row_idx = 0;
1141 }
1142
1143 /* If there is data left in the parameter and components left to be
1144 * set in the destination, emit another assignment. It is possible
1145 * that the assignment could be of a vec4 to the last element of the
1146 * matrix. In this case col_idx==cols, but there is still data
1147 * left in the source parameter. Obviously, don't emit an assignment
1148 * to data outside the destination matrix.
1149 */
1150 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1151 const unsigned count = rhs_components - rhs_base;
1152
1153 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1154
1155 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1156 row_idx,
1157 rhs_var_ref,
1158 rhs_base,
1159 count, ctx);
1160 instructions->push_tail(inst);
1161
1162 row_idx += count;
1163 }
1164 }
1165 }
1166
1167 return new(ctx) ir_dereference_variable(var);
1168 }
1169
1170
1171 ir_rvalue *
1172 emit_inline_record_constructor(const glsl_type *type,
1173 exec_list *instructions,
1174 exec_list *parameters,
1175 void *mem_ctx)
1176 {
1177 ir_variable *const var =
1178 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1179 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1180
1181 instructions->push_tail(var);
1182
1183 exec_node *node = parameters->head;
1184 for (unsigned i = 0; i < type->length; i++) {
1185 assert(!node->is_tail_sentinel());
1186
1187 ir_dereference *const lhs =
1188 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1189 type->fields.structure[i].name);
1190
1191 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1192 assert(rhs != NULL);
1193
1194 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1195
1196 instructions->push_tail(assign);
1197 node = node->next;
1198 }
1199
1200 return d;
1201 }
1202
1203
1204 ir_rvalue *
1205 ast_function_expression::hir(exec_list *instructions,
1206 struct _mesa_glsl_parse_state *state)
1207 {
1208 void *ctx = state;
1209 /* There are three sorts of function calls.
1210 *
1211 * 1. constructors - The first subexpression is an ast_type_specifier.
1212 * 2. methods - Only the .length() method of array types.
1213 * 3. functions - Calls to regular old functions.
1214 *
1215 * Method calls are actually detected when the ast_field_selection
1216 * expression is handled.
1217 */
1218 if (is_constructor()) {
1219 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1220 YYLTYPE loc = type->get_location();
1221 const char *name;
1222
1223 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1224
1225 /* constructor_type can be NULL if a variable with the same name as the
1226 * structure has come into scope.
1227 */
1228 if (constructor_type == NULL) {
1229 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1230 "may be shadowed by a variable with the same name)",
1231 type->type_name);
1232 return ir_rvalue::error_value(ctx);
1233 }
1234
1235
1236 /* Constructors for samplers are illegal.
1237 */
1238 if (constructor_type->is_sampler()) {
1239 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1240 constructor_type->name);
1241 return ir_rvalue::error_value(ctx);
1242 }
1243
1244 if (constructor_type->is_array()) {
1245 if (state->language_version <= 110) {
1246 _mesa_glsl_error(& loc, state,
1247 "array constructors forbidden in GLSL 1.10");
1248 return ir_rvalue::error_value(ctx);
1249 }
1250
1251 return process_array_constructor(instructions, constructor_type,
1252 & loc, &this->expressions, state);
1253 }
1254
1255
1256 /* There are two kinds of constructor call. Constructors for built-in
1257 * language types, such as mat4 and vec2, are free form. The only
1258 * requirement is that the parameters must provide enough values of the
1259 * correct scalar type. Constructors for arrays and structures must
1260 * have the exact number of parameters with matching types in the
1261 * correct order. These constructors follow essentially the same type
1262 * matching rules as functions.
1263 */
1264 if (constructor_type->is_record()) {
1265 exec_list actual_parameters;
1266
1267 process_parameters(instructions, &actual_parameters,
1268 &this->expressions, state);
1269
1270 exec_node *node = actual_parameters.head;
1271 for (unsigned i = 0; i < constructor_type->length; i++) {
1272 ir_rvalue *ir = (ir_rvalue *) node;
1273
1274 if (node->is_tail_sentinel()) {
1275 _mesa_glsl_error(&loc, state,
1276 "insufficient parameters to constructor "
1277 "for `%s'",
1278 constructor_type->name);
1279 return ir_rvalue::error_value(ctx);
1280 }
1281
1282 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1283 ir, state)) {
1284 node->replace_with(ir);
1285 } else {
1286 _mesa_glsl_error(&loc, state,
1287 "parameter type mismatch in constructor "
1288 "for `%s.%s' (%s vs %s)",
1289 constructor_type->name,
1290 constructor_type->fields.structure[i].name,
1291 ir->type->name,
1292 constructor_type->fields.structure[i].type->name);
1293 return ir_rvalue::error_value(ctx);;
1294 }
1295
1296 node = node->next;
1297 }
1298
1299 if (!node->is_tail_sentinel()) {
1300 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1301 "for `%s'", constructor_type->name);
1302 return ir_rvalue::error_value(ctx);
1303 }
1304
1305 ir_rvalue *const constant =
1306 constant_record_constructor(constructor_type, &actual_parameters,
1307 state);
1308
1309 return (constant != NULL)
1310 ? constant
1311 : emit_inline_record_constructor(constructor_type, instructions,
1312 &actual_parameters, state);
1313 }
1314
1315 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1316 return ir_rvalue::error_value(ctx);
1317
1318 /* Total number of components of the type being constructed. */
1319 const unsigned type_components = constructor_type->components();
1320
1321 /* Number of components from parameters that have actually been
1322 * consumed. This is used to perform several kinds of error checking.
1323 */
1324 unsigned components_used = 0;
1325
1326 unsigned matrix_parameters = 0;
1327 unsigned nonmatrix_parameters = 0;
1328 exec_list actual_parameters;
1329
1330 foreach_list (n, &this->expressions) {
1331 ast_node *ast = exec_node_data(ast_node, n, link);
1332 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1333
1334 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1335 *
1336 * "It is an error to provide extra arguments beyond this
1337 * last used argument."
1338 */
1339 if (components_used >= type_components) {
1340 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1341 "constructor",
1342 constructor_type->name);
1343 return ir_rvalue::error_value(ctx);
1344 }
1345
1346 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1347 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1348 "non-numeric data type",
1349 constructor_type->name);
1350 return ir_rvalue::error_value(ctx);
1351 }
1352
1353 /* Count the number of matrix and nonmatrix parameters. This
1354 * is used below to enforce some of the constructor rules.
1355 */
1356 if (result->type->is_matrix())
1357 matrix_parameters++;
1358 else
1359 nonmatrix_parameters++;
1360
1361 actual_parameters.push_tail(result);
1362 components_used += result->type->components();
1363 }
1364
1365 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1366 *
1367 * "It is an error to construct matrices from other matrices. This
1368 * is reserved for future use."
1369 */
1370 if (state->language_version == 110 && matrix_parameters > 0
1371 && constructor_type->is_matrix()) {
1372 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1373 "matrix in GLSL 1.10",
1374 constructor_type->name);
1375 return ir_rvalue::error_value(ctx);
1376 }
1377
1378 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1379 *
1380 * "If a matrix argument is given to a matrix constructor, it is
1381 * an error to have any other arguments."
1382 */
1383 if ((matrix_parameters > 0)
1384 && ((matrix_parameters + nonmatrix_parameters) > 1)
1385 && constructor_type->is_matrix()) {
1386 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1387 "matrix must be only parameter",
1388 constructor_type->name);
1389 return ir_rvalue::error_value(ctx);
1390 }
1391
1392 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1393 *
1394 * "In these cases, there must be enough components provided in the
1395 * arguments to provide an initializer for every component in the
1396 * constructed value."
1397 */
1398 if (components_used < type_components && components_used != 1
1399 && matrix_parameters == 0) {
1400 _mesa_glsl_error(& loc, state, "too few components to construct "
1401 "`%s'",
1402 constructor_type->name);
1403 return ir_rvalue::error_value(ctx);
1404 }
1405
1406 /* Later, we cast each parameter to the same base type as the
1407 * constructor. Since there are no non-floating point matrices, we
1408 * need to break them up into a series of column vectors.
1409 */
1410 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1411 foreach_list_safe(n, &actual_parameters) {
1412 ir_rvalue *matrix = (ir_rvalue *) n;
1413
1414 if (!matrix->type->is_matrix())
1415 continue;
1416
1417 /* Create a temporary containing the matrix. */
1418 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1419 ir_var_temporary);
1420 instructions->push_tail(var);
1421 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1422 ir_dereference_variable(var), matrix, NULL));
1423 var->constant_value = matrix->constant_expression_value();
1424
1425 /* Replace the matrix with dereferences of its columns. */
1426 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1427 matrix->insert_before(new (ctx) ir_dereference_array(var,
1428 new(ctx) ir_constant(i)));
1429 }
1430 matrix->remove();
1431 }
1432 }
1433
1434 bool all_parameters_are_constant = true;
1435
1436 /* Type cast each parameter and, if possible, fold constants.*/
1437 foreach_list_safe(n, &actual_parameters) {
1438 ir_rvalue *ir = (ir_rvalue *) n;
1439
1440 const glsl_type *desired_type =
1441 glsl_type::get_instance(constructor_type->base_type,
1442 ir->type->vector_elements,
1443 ir->type->matrix_columns);
1444 ir_rvalue *result = convert_component(ir, desired_type);
1445
1446 /* Attempt to convert the parameter to a constant valued expression.
1447 * After doing so, track whether or not all the parameters to the
1448 * constructor are trivially constant valued expressions.
1449 */
1450 ir_rvalue *const constant = result->constant_expression_value();
1451
1452 if (constant != NULL)
1453 result = constant;
1454 else
1455 all_parameters_are_constant = false;
1456
1457 if (result != ir) {
1458 ir->replace_with(result);
1459 }
1460 }
1461
1462 /* If all of the parameters are trivially constant, create a
1463 * constant representing the complete collection of parameters.
1464 */
1465 if (all_parameters_are_constant) {
1466 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1467 } else if (constructor_type->is_scalar()) {
1468 return dereference_component((ir_rvalue *) actual_parameters.head,
1469 0);
1470 } else if (constructor_type->is_vector()) {
1471 return emit_inline_vector_constructor(constructor_type,
1472 instructions,
1473 &actual_parameters,
1474 ctx);
1475 } else {
1476 assert(constructor_type->is_matrix());
1477 return emit_inline_matrix_constructor(constructor_type,
1478 instructions,
1479 &actual_parameters,
1480 ctx);
1481 }
1482 } else {
1483 const ast_expression *id = subexpressions[0];
1484 const char *func_name = id->primary_expression.identifier;
1485 YYLTYPE loc = id->get_location();
1486 exec_list actual_parameters;
1487
1488 process_parameters(instructions, &actual_parameters, &this->expressions,
1489 state);
1490
1491 ir_function_signature *sig =
1492 match_function_by_name(func_name, &actual_parameters, state);
1493
1494 ir_call *call = NULL;
1495 ir_rvalue *value = NULL;
1496 if (sig == NULL) {
1497 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1498 value = ir_rvalue::error_value(ctx);
1499 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1500 /* an error has already been emitted */
1501 value = ir_rvalue::error_value(ctx);
1502 } else {
1503 value = generate_call(instructions, sig, &loc, &actual_parameters,
1504 &call, state);
1505 }
1506
1507 return value;
1508 }
1509
1510 return ir_rvalue::error_value(ctx);
1511 }