glsl: Skip unavailable built-ins when printing out similar candidates.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * If a function call is generated, \c call_ir will point to it on exit.
278 * Otherwise \c call_ir will be set to \c NULL.
279 */
280 static ir_rvalue *
281 generate_call(exec_list *instructions, ir_function_signature *sig,
282 exec_list *actual_parameters,
283 ir_call **call_ir,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 exec_list post_call_conversions;
288
289 *call_ir = NULL;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(state, actual_parameters,
392 &is_exact);
393 if (is_exact)
394 goto done;
395
396 if (!state->es_shader && f->has_user_signature()) {
397 /* In desktop GL, the presence of a user-defined signature hides any
398 * built-in signatures, so we must ignore them. In contrast, in ES2
399 * user-defined signatures add new overloads, so we must proceed.
400 */
401 goto done;
402 }
403 }
404
405 /* Local shader has no exact candidates; check the built-ins. */
406 _mesa_glsl_initialize_functions(state);
407 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
408 ir_function *builtin =
409 state->builtins_to_link[i]->symbols->get_function(name);
410 if (builtin == NULL)
411 continue;
412
413 bool is_exact = false;
414 ir_function_signature *builtin_sig =
415 builtin->matching_signature(state, actual_parameters, &is_exact);
416
417 if (builtin_sig == NULL)
418 continue;
419
420 /* If the built-in signature is exact, we can stop. */
421 if (is_exact) {
422 sig = builtin_sig;
423 goto done;
424 }
425
426 if (sig == NULL) {
427 /* We found an inexact match, which is better than nothing. However,
428 * we should keep searching for an exact match.
429 */
430 sig = builtin_sig;
431 }
432 }
433
434 done:
435 if (sig != NULL) {
436 /* If the match is from a linked built-in shader, import the prototype. */
437 if (sig != local_sig) {
438 if (f == NULL) {
439 f = new(ctx) ir_function(name);
440 state->symbols->add_global_function(f);
441 emit_function(state, f);
442 }
443 f->add_signature(sig->clone_prototype(f, NULL));
444 }
445 }
446 return sig;
447 }
448
449 /**
450 * Raise a "no matching function" error, listing all possible overloads the
451 * compiler considered so developers can figure out what went wrong.
452 */
453 static void
454 no_matching_function_error(const char *name,
455 YYLTYPE *loc,
456 exec_list *actual_parameters,
457 _mesa_glsl_parse_state *state)
458 {
459 char *str = prototype_string(NULL, name, actual_parameters);
460 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
461 ralloc_free(str);
462
463 const char *prefix = "candidates are: ";
464
465 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
466 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
467 : state->symbols;
468 ir_function *f = syms->get_function(name);
469 if (f == NULL)
470 continue;
471
472 foreach_list (node, &f->signatures) {
473 ir_function_signature *sig = (ir_function_signature *) node;
474
475 if (sig->is_builtin() && !sig->is_builtin_available(state))
476 continue;
477
478 str = prototype_string(sig->return_type, f->name, &sig->parameters);
479 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
480 ralloc_free(str);
481
482 prefix = " ";
483 }
484 }
485 }
486
487 /**
488 * Perform automatic type conversion of constructor parameters
489 *
490 * This implements the rules in the "Conversion and Scalar Constructors"
491 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
492 */
493 static ir_rvalue *
494 convert_component(ir_rvalue *src, const glsl_type *desired_type)
495 {
496 void *ctx = ralloc_parent(src);
497 const unsigned a = desired_type->base_type;
498 const unsigned b = src->type->base_type;
499 ir_expression *result = NULL;
500
501 if (src->type->is_error())
502 return src;
503
504 assert(a <= GLSL_TYPE_BOOL);
505 assert(b <= GLSL_TYPE_BOOL);
506
507 if (a == b)
508 return src;
509
510 switch (a) {
511 case GLSL_TYPE_UINT:
512 switch (b) {
513 case GLSL_TYPE_INT:
514 result = new(ctx) ir_expression(ir_unop_i2u, src);
515 break;
516 case GLSL_TYPE_FLOAT:
517 result = new(ctx) ir_expression(ir_unop_f2u, src);
518 break;
519 case GLSL_TYPE_BOOL:
520 result = new(ctx) ir_expression(ir_unop_i2u,
521 new(ctx) ir_expression(ir_unop_b2i, src));
522 break;
523 }
524 break;
525 case GLSL_TYPE_INT:
526 switch (b) {
527 case GLSL_TYPE_UINT:
528 result = new(ctx) ir_expression(ir_unop_u2i, src);
529 break;
530 case GLSL_TYPE_FLOAT:
531 result = new(ctx) ir_expression(ir_unop_f2i, src);
532 break;
533 case GLSL_TYPE_BOOL:
534 result = new(ctx) ir_expression(ir_unop_b2i, src);
535 break;
536 }
537 break;
538 case GLSL_TYPE_FLOAT:
539 switch (b) {
540 case GLSL_TYPE_UINT:
541 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
542 break;
543 case GLSL_TYPE_INT:
544 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
545 break;
546 case GLSL_TYPE_BOOL:
547 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
548 break;
549 }
550 break;
551 case GLSL_TYPE_BOOL:
552 switch (b) {
553 case GLSL_TYPE_UINT:
554 result = new(ctx) ir_expression(ir_unop_i2b,
555 new(ctx) ir_expression(ir_unop_u2i, src));
556 break;
557 case GLSL_TYPE_INT:
558 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
559 break;
560 case GLSL_TYPE_FLOAT:
561 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
562 break;
563 }
564 break;
565 }
566
567 assert(result != NULL);
568 assert(result->type == desired_type);
569
570 /* Try constant folding; it may fold in the conversion we just added. */
571 ir_constant *const constant = result->constant_expression_value();
572 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
573 }
574
575 /**
576 * Dereference a specific component from a scalar, vector, or matrix
577 */
578 static ir_rvalue *
579 dereference_component(ir_rvalue *src, unsigned component)
580 {
581 void *ctx = ralloc_parent(src);
582 assert(component < src->type->components());
583
584 /* If the source is a constant, just create a new constant instead of a
585 * dereference of the existing constant.
586 */
587 ir_constant *constant = src->as_constant();
588 if (constant)
589 return new(ctx) ir_constant(constant, component);
590
591 if (src->type->is_scalar()) {
592 return src;
593 } else if (src->type->is_vector()) {
594 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
595 } else {
596 assert(src->type->is_matrix());
597
598 /* Dereference a row of the matrix, then call this function again to get
599 * a specific element from that row.
600 */
601 const int c = component / src->type->column_type()->vector_elements;
602 const int r = component % src->type->column_type()->vector_elements;
603 ir_constant *const col_index = new(ctx) ir_constant(c);
604 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
605
606 col->type = src->type->column_type();
607
608 return dereference_component(col, r);
609 }
610
611 assert(!"Should not get here.");
612 return NULL;
613 }
614
615
616 static ir_rvalue *
617 process_vec_mat_constructor(exec_list *instructions,
618 const glsl_type *constructor_type,
619 YYLTYPE *loc, exec_list *parameters,
620 struct _mesa_glsl_parse_state *state)
621 {
622 void *ctx = state;
623
624 /* The ARB_shading_language_420pack spec says:
625 *
626 * "If an initializer is a list of initializers enclosed in curly braces,
627 * the variable being declared must be a vector, a matrix, an array, or a
628 * structure.
629 *
630 * int i = { 1 }; // illegal, i is not an aggregate"
631 */
632 if (constructor_type->vector_elements <= 1) {
633 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
634 "matrices, arrays, and structs");
635 return ir_rvalue::error_value(ctx);
636 }
637
638 exec_list actual_parameters;
639 const unsigned parameter_count =
640 process_parameters(instructions, &actual_parameters, parameters, state);
641
642 if (parameter_count == 0
643 || (constructor_type->is_vector() &&
644 constructor_type->vector_elements != parameter_count)
645 || (constructor_type->is_matrix() &&
646 constructor_type->matrix_columns != parameter_count)) {
647 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
648 constructor_type->is_vector() ? "vector" : "matrix",
649 constructor_type->vector_elements);
650 return ir_rvalue::error_value(ctx);
651 }
652
653 bool all_parameters_are_constant = true;
654
655 /* Type cast each parameter and, if possible, fold constants. */
656 foreach_list_safe(n, &actual_parameters) {
657 ir_rvalue *ir = (ir_rvalue *) n;
658 ir_rvalue *result = ir;
659
660 /* Apply implicit conversions (not the scalar constructor rules!). See
661 * the spec quote above. */
662 if (constructor_type->is_float()) {
663 const glsl_type *desired_type =
664 glsl_type::get_instance(GLSL_TYPE_FLOAT,
665 ir->type->vector_elements,
666 ir->type->matrix_columns);
667 if (result->type->can_implicitly_convert_to(desired_type)) {
668 /* Even though convert_component() implements the constructor
669 * conversion rules (not the implicit conversion rules), its safe
670 * to use it here because we already checked that the implicit
671 * conversion is legal.
672 */
673 result = convert_component(ir, desired_type);
674 }
675 }
676
677 if (constructor_type->is_matrix()) {
678 if (result->type != constructor_type->column_type()) {
679 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
680 "expected: %s, found %s",
681 constructor_type->column_type()->name,
682 result->type->name);
683 return ir_rvalue::error_value(ctx);
684 }
685 } else if (result->type != constructor_type->get_scalar_type()) {
686 _mesa_glsl_error(loc, state, "type error in vector constructor: "
687 "expected: %s, found %s",
688 constructor_type->get_scalar_type()->name,
689 result->type->name);
690 return ir_rvalue::error_value(ctx);
691 }
692
693 /* Attempt to convert the parameter to a constant valued expression.
694 * After doing so, track whether or not all the parameters to the
695 * constructor are trivially constant valued expressions.
696 */
697 ir_rvalue *const constant = result->constant_expression_value();
698
699 if (constant != NULL)
700 result = constant;
701 else
702 all_parameters_are_constant = false;
703
704 ir->replace_with(result);
705 }
706
707 if (all_parameters_are_constant)
708 return new(ctx) ir_constant(constructor_type, &actual_parameters);
709
710 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
711 ir_var_temporary);
712 instructions->push_tail(var);
713
714 int i = 0;
715 foreach_list(node, &actual_parameters) {
716 ir_rvalue *rhs = (ir_rvalue *) node;
717 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
718 new(ctx) ir_constant(i));
719
720 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
721 instructions->push_tail(assignment);
722
723 i++;
724 }
725
726 return new(ctx) ir_dereference_variable(var);
727 }
728
729
730 static ir_rvalue *
731 process_array_constructor(exec_list *instructions,
732 const glsl_type *constructor_type,
733 YYLTYPE *loc, exec_list *parameters,
734 struct _mesa_glsl_parse_state *state)
735 {
736 void *ctx = state;
737 /* Array constructors come in two forms: sized and unsized. Sized array
738 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
739 * variables. In this case the number of parameters must exactly match the
740 * specified size of the array.
741 *
742 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
743 * are vec4 variables. In this case the size of the array being constructed
744 * is determined by the number of parameters.
745 *
746 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
747 *
748 * "There must be exactly the same number of arguments as the size of
749 * the array being constructed. If no size is present in the
750 * constructor, then the array is explicitly sized to the number of
751 * arguments provided. The arguments are assigned in order, starting at
752 * element 0, to the elements of the constructed array. Each argument
753 * must be the same type as the element type of the array, or be a type
754 * that can be converted to the element type of the array according to
755 * Section 4.1.10 "Implicit Conversions.""
756 */
757 exec_list actual_parameters;
758 const unsigned parameter_count =
759 process_parameters(instructions, &actual_parameters, parameters, state);
760
761 if ((parameter_count == 0)
762 || ((constructor_type->length != 0)
763 && (constructor_type->length != parameter_count))) {
764 const unsigned min_param = (constructor_type->length == 0)
765 ? 1 : constructor_type->length;
766
767 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
768 "parameter%s",
769 (constructor_type->length == 0) ? "at least" : "exactly",
770 min_param, (min_param <= 1) ? "" : "s");
771 return ir_rvalue::error_value(ctx);
772 }
773
774 if (constructor_type->length == 0) {
775 constructor_type =
776 glsl_type::get_array_instance(constructor_type->element_type(),
777 parameter_count);
778 assert(constructor_type != NULL);
779 assert(constructor_type->length == parameter_count);
780 }
781
782 bool all_parameters_are_constant = true;
783
784 /* Type cast each parameter and, if possible, fold constants. */
785 foreach_list_safe(n, &actual_parameters) {
786 ir_rvalue *ir = (ir_rvalue *) n;
787 ir_rvalue *result = ir;
788
789 /* Apply implicit conversions (not the scalar constructor rules!). See
790 * the spec quote above. */
791 if (constructor_type->element_type()->is_float()) {
792 const glsl_type *desired_type =
793 glsl_type::get_instance(GLSL_TYPE_FLOAT,
794 ir->type->vector_elements,
795 ir->type->matrix_columns);
796 if (result->type->can_implicitly_convert_to(desired_type)) {
797 /* Even though convert_component() implements the constructor
798 * conversion rules (not the implicit conversion rules), its safe
799 * to use it here because we already checked that the implicit
800 * conversion is legal.
801 */
802 result = convert_component(ir, desired_type);
803 }
804 }
805
806 if (result->type != constructor_type->element_type()) {
807 _mesa_glsl_error(loc, state, "type error in array constructor: "
808 "expected: %s, found %s",
809 constructor_type->element_type()->name,
810 result->type->name);
811 return ir_rvalue::error_value(ctx);
812 }
813
814 /* Attempt to convert the parameter to a constant valued expression.
815 * After doing so, track whether or not all the parameters to the
816 * constructor are trivially constant valued expressions.
817 */
818 ir_rvalue *const constant = result->constant_expression_value();
819
820 if (constant != NULL)
821 result = constant;
822 else
823 all_parameters_are_constant = false;
824
825 ir->replace_with(result);
826 }
827
828 if (all_parameters_are_constant)
829 return new(ctx) ir_constant(constructor_type, &actual_parameters);
830
831 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
832 ir_var_temporary);
833 instructions->push_tail(var);
834
835 int i = 0;
836 foreach_list(node, &actual_parameters) {
837 ir_rvalue *rhs = (ir_rvalue *) node;
838 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
839 new(ctx) ir_constant(i));
840
841 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
842 instructions->push_tail(assignment);
843
844 i++;
845 }
846
847 return new(ctx) ir_dereference_variable(var);
848 }
849
850
851 /**
852 * Try to convert a record constructor to a constant expression
853 */
854 static ir_constant *
855 constant_record_constructor(const glsl_type *constructor_type,
856 exec_list *parameters, void *mem_ctx)
857 {
858 foreach_list(node, parameters) {
859 ir_constant *constant = ((ir_instruction *) node)->as_constant();
860 if (constant == NULL)
861 return NULL;
862 node->replace_with(constant);
863 }
864
865 return new(mem_ctx) ir_constant(constructor_type, parameters);
866 }
867
868
869 /**
870 * Determine if a list consists of a single scalar r-value
871 */
872 bool
873 single_scalar_parameter(exec_list *parameters)
874 {
875 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
876 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
877
878 return (p->type->is_scalar() && p->next->is_tail_sentinel());
879 }
880
881
882 /**
883 * Generate inline code for a vector constructor
884 *
885 * The generated constructor code will consist of a temporary variable
886 * declaration of the same type as the constructor. A sequence of assignments
887 * from constructor parameters to the temporary will follow.
888 *
889 * \return
890 * An \c ir_dereference_variable of the temprorary generated in the constructor
891 * body.
892 */
893 ir_rvalue *
894 emit_inline_vector_constructor(const glsl_type *type,
895 exec_list *instructions,
896 exec_list *parameters,
897 void *ctx)
898 {
899 assert(!parameters->is_empty());
900
901 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
902 instructions->push_tail(var);
903
904 /* There are two kinds of vector constructors.
905 *
906 * - Construct a vector from a single scalar by replicating that scalar to
907 * all components of the vector.
908 *
909 * - Construct a vector from an arbirary combination of vectors and
910 * scalars. The components of the constructor parameters are assigned
911 * to the vector in order until the vector is full.
912 */
913 const unsigned lhs_components = type->components();
914 if (single_scalar_parameter(parameters)) {
915 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
916 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
917 lhs_components);
918 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
919 const unsigned mask = (1U << lhs_components) - 1;
920
921 assert(rhs->type == lhs->type);
922
923 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
924 instructions->push_tail(inst);
925 } else {
926 unsigned base_component = 0;
927 unsigned base_lhs_component = 0;
928 ir_constant_data data;
929 unsigned constant_mask = 0, constant_components = 0;
930
931 memset(&data, 0, sizeof(data));
932
933 foreach_list(node, parameters) {
934 ir_rvalue *param = (ir_rvalue *) node;
935 unsigned rhs_components = param->type->components();
936
937 /* Do not try to assign more components to the vector than it has!
938 */
939 if ((rhs_components + base_lhs_component) > lhs_components) {
940 rhs_components = lhs_components - base_lhs_component;
941 }
942
943 const ir_constant *const c = param->as_constant();
944 if (c != NULL) {
945 for (unsigned i = 0; i < rhs_components; i++) {
946 switch (c->type->base_type) {
947 case GLSL_TYPE_UINT:
948 data.u[i + base_component] = c->get_uint_component(i);
949 break;
950 case GLSL_TYPE_INT:
951 data.i[i + base_component] = c->get_int_component(i);
952 break;
953 case GLSL_TYPE_FLOAT:
954 data.f[i + base_component] = c->get_float_component(i);
955 break;
956 case GLSL_TYPE_BOOL:
957 data.b[i + base_component] = c->get_bool_component(i);
958 break;
959 default:
960 assert(!"Should not get here.");
961 break;
962 }
963 }
964
965 /* Mask of fields to be written in the assignment.
966 */
967 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
968 constant_components += rhs_components;
969
970 base_component += rhs_components;
971 }
972 /* Advance the component index by the number of components
973 * that were just assigned.
974 */
975 base_lhs_component += rhs_components;
976 }
977
978 if (constant_mask != 0) {
979 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
980 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
981 constant_components,
982 1);
983 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
984
985 ir_instruction *inst =
986 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
987 instructions->push_tail(inst);
988 }
989
990 base_component = 0;
991 foreach_list(node, parameters) {
992 ir_rvalue *param = (ir_rvalue *) node;
993 unsigned rhs_components = param->type->components();
994
995 /* Do not try to assign more components to the vector than it has!
996 */
997 if ((rhs_components + base_component) > lhs_components) {
998 rhs_components = lhs_components - base_component;
999 }
1000
1001 const ir_constant *const c = param->as_constant();
1002 if (c == NULL) {
1003 /* Mask of fields to be written in the assignment.
1004 */
1005 const unsigned write_mask = ((1U << rhs_components) - 1)
1006 << base_component;
1007
1008 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1009
1010 /* Generate a swizzle so that LHS and RHS sizes match.
1011 */
1012 ir_rvalue *rhs =
1013 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1014
1015 ir_instruction *inst =
1016 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1017 instructions->push_tail(inst);
1018 }
1019
1020 /* Advance the component index by the number of components that were
1021 * just assigned.
1022 */
1023 base_component += rhs_components;
1024 }
1025 }
1026 return new(ctx) ir_dereference_variable(var);
1027 }
1028
1029
1030 /**
1031 * Generate assignment of a portion of a vector to a portion of a matrix column
1032 *
1033 * \param src_base First component of the source to be used in assignment
1034 * \param column Column of destination to be assiged
1035 * \param row_base First component of the destination column to be assigned
1036 * \param count Number of components to be assigned
1037 *
1038 * \note
1039 * \c src_base + \c count must be less than or equal to the number of components
1040 * in the source vector.
1041 */
1042 ir_instruction *
1043 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1044 ir_rvalue *src, unsigned src_base, unsigned count,
1045 void *mem_ctx)
1046 {
1047 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1048 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1049
1050 assert(column_ref->type->components() >= (row_base + count));
1051 assert(src->type->components() >= (src_base + count));
1052
1053 /* Generate a swizzle that extracts the number of components from the source
1054 * that are to be assigned to the column of the matrix.
1055 */
1056 if (count < src->type->vector_elements) {
1057 src = new(mem_ctx) ir_swizzle(src,
1058 src_base + 0, src_base + 1,
1059 src_base + 2, src_base + 3,
1060 count);
1061 }
1062
1063 /* Mask of fields to be written in the assignment.
1064 */
1065 const unsigned write_mask = ((1U << count) - 1) << row_base;
1066
1067 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1068 }
1069
1070
1071 /**
1072 * Generate inline code for a matrix constructor
1073 *
1074 * The generated constructor code will consist of a temporary variable
1075 * declaration of the same type as the constructor. A sequence of assignments
1076 * from constructor parameters to the temporary will follow.
1077 *
1078 * \return
1079 * An \c ir_dereference_variable of the temprorary generated in the constructor
1080 * body.
1081 */
1082 ir_rvalue *
1083 emit_inline_matrix_constructor(const glsl_type *type,
1084 exec_list *instructions,
1085 exec_list *parameters,
1086 void *ctx)
1087 {
1088 assert(!parameters->is_empty());
1089
1090 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1091 instructions->push_tail(var);
1092
1093 /* There are three kinds of matrix constructors.
1094 *
1095 * - Construct a matrix from a single scalar by replicating that scalar to
1096 * along the diagonal of the matrix and setting all other components to
1097 * zero.
1098 *
1099 * - Construct a matrix from an arbirary combination of vectors and
1100 * scalars. The components of the constructor parameters are assigned
1101 * to the matrix in colum-major order until the matrix is full.
1102 *
1103 * - Construct a matrix from a single matrix. The source matrix is copied
1104 * to the upper left portion of the constructed matrix, and the remaining
1105 * elements take values from the identity matrix.
1106 */
1107 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1108 if (single_scalar_parameter(parameters)) {
1109 /* Assign the scalar to the X component of a vec4, and fill the remaining
1110 * components with zero.
1111 */
1112 ir_variable *rhs_var =
1113 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1114 ir_var_temporary);
1115 instructions->push_tail(rhs_var);
1116
1117 ir_constant_data zero;
1118 zero.f[0] = 0.0;
1119 zero.f[1] = 0.0;
1120 zero.f[2] = 0.0;
1121 zero.f[3] = 0.0;
1122
1123 ir_instruction *inst =
1124 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1125 new(ctx) ir_constant(rhs_var->type, &zero),
1126 NULL);
1127 instructions->push_tail(inst);
1128
1129 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1130
1131 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1132 instructions->push_tail(inst);
1133
1134 /* Assign the temporary vector to each column of the destination matrix
1135 * with a swizzle that puts the X component on the diagonal of the
1136 * matrix. In some cases this may mean that the X component does not
1137 * get assigned into the column at all (i.e., when the matrix has more
1138 * columns than rows).
1139 */
1140 static const unsigned rhs_swiz[4][4] = {
1141 { 0, 1, 1, 1 },
1142 { 1, 0, 1, 1 },
1143 { 1, 1, 0, 1 },
1144 { 1, 1, 1, 0 }
1145 };
1146
1147 const unsigned cols_to_init = MIN2(type->matrix_columns,
1148 type->vector_elements);
1149 for (unsigned i = 0; i < cols_to_init; i++) {
1150 ir_constant *const col_idx = new(ctx) ir_constant(i);
1151 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1152
1153 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1154 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1155 type->vector_elements);
1156
1157 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1158 instructions->push_tail(inst);
1159 }
1160
1161 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1162 ir_constant *const col_idx = new(ctx) ir_constant(i);
1163 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1164
1165 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1166 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1167 type->vector_elements);
1168
1169 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1170 instructions->push_tail(inst);
1171 }
1172 } else if (first_param->type->is_matrix()) {
1173 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1174 *
1175 * "If a matrix is constructed from a matrix, then each component
1176 * (column i, row j) in the result that has a corresponding
1177 * component (column i, row j) in the argument will be initialized
1178 * from there. All other components will be initialized to the
1179 * identity matrix. If a matrix argument is given to a matrix
1180 * constructor, it is an error to have any other arguments."
1181 */
1182 assert(first_param->next->is_tail_sentinel());
1183 ir_rvalue *const src_matrix = first_param;
1184
1185 /* If the source matrix is smaller, pre-initialize the relavent parts of
1186 * the destination matrix to the identity matrix.
1187 */
1188 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1189 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1190
1191 /* If the source matrix has fewer rows, every column of the destination
1192 * must be initialized. Otherwise only the columns in the destination
1193 * that do not exist in the source must be initialized.
1194 */
1195 unsigned col =
1196 (src_matrix->type->vector_elements < var->type->vector_elements)
1197 ? 0 : src_matrix->type->matrix_columns;
1198
1199 const glsl_type *const col_type = var->type->column_type();
1200 for (/* empty */; col < var->type->matrix_columns; col++) {
1201 ir_constant_data ident;
1202
1203 ident.f[0] = 0.0;
1204 ident.f[1] = 0.0;
1205 ident.f[2] = 0.0;
1206 ident.f[3] = 0.0;
1207
1208 ident.f[col] = 1.0;
1209
1210 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1211
1212 ir_rvalue *const lhs =
1213 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1214
1215 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1216 instructions->push_tail(inst);
1217 }
1218 }
1219
1220 /* Assign columns from the source matrix to the destination matrix.
1221 *
1222 * Since the parameter will be used in the RHS of multiple assignments,
1223 * generate a temporary and copy the paramter there.
1224 */
1225 ir_variable *const rhs_var =
1226 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1227 ir_var_temporary);
1228 instructions->push_tail(rhs_var);
1229
1230 ir_dereference *const rhs_var_ref =
1231 new(ctx) ir_dereference_variable(rhs_var);
1232 ir_instruction *const inst =
1233 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1234 instructions->push_tail(inst);
1235
1236 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1237 var->type->vector_elements);
1238 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1239 var->type->matrix_columns);
1240
1241 unsigned swiz[4] = { 0, 0, 0, 0 };
1242 for (unsigned i = 1; i < last_row; i++)
1243 swiz[i] = i;
1244
1245 const unsigned write_mask = (1U << last_row) - 1;
1246
1247 for (unsigned i = 0; i < last_col; i++) {
1248 ir_dereference *const lhs =
1249 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1250 ir_rvalue *const rhs_col =
1251 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1252
1253 /* If one matrix has columns that are smaller than the columns of the
1254 * other matrix, wrap the column access of the larger with a swizzle
1255 * so that the LHS and RHS of the assignment have the same size (and
1256 * therefore have the same type).
1257 *
1258 * It would be perfectly valid to unconditionally generate the
1259 * swizzles, this this will typically result in a more compact IR tree.
1260 */
1261 ir_rvalue *rhs;
1262 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1263 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1264 } else {
1265 rhs = rhs_col;
1266 }
1267
1268 ir_instruction *inst =
1269 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1270 instructions->push_tail(inst);
1271 }
1272 } else {
1273 const unsigned cols = type->matrix_columns;
1274 const unsigned rows = type->vector_elements;
1275 unsigned col_idx = 0;
1276 unsigned row_idx = 0;
1277
1278 foreach_list (node, parameters) {
1279 ir_rvalue *const rhs = (ir_rvalue *) node;
1280 const unsigned components_remaining_this_column = rows - row_idx;
1281 unsigned rhs_components = rhs->type->components();
1282 unsigned rhs_base = 0;
1283
1284 /* Since the parameter might be used in the RHS of two assignments,
1285 * generate a temporary and copy the paramter there.
1286 */
1287 ir_variable *rhs_var =
1288 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1289 instructions->push_tail(rhs_var);
1290
1291 ir_dereference *rhs_var_ref =
1292 new(ctx) ir_dereference_variable(rhs_var);
1293 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1294 instructions->push_tail(inst);
1295
1296 /* Assign the current parameter to as many components of the matrix
1297 * as it will fill.
1298 *
1299 * NOTE: A single vector parameter can span two matrix columns. A
1300 * single vec4, for example, can completely fill a mat2.
1301 */
1302 if (rhs_components >= components_remaining_this_column) {
1303 const unsigned count = MIN2(rhs_components,
1304 components_remaining_this_column);
1305
1306 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1307
1308 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1309 row_idx,
1310 rhs_var_ref, 0,
1311 count, ctx);
1312 instructions->push_tail(inst);
1313
1314 rhs_base = count;
1315
1316 col_idx++;
1317 row_idx = 0;
1318 }
1319
1320 /* If there is data left in the parameter and components left to be
1321 * set in the destination, emit another assignment. It is possible
1322 * that the assignment could be of a vec4 to the last element of the
1323 * matrix. In this case col_idx==cols, but there is still data
1324 * left in the source parameter. Obviously, don't emit an assignment
1325 * to data outside the destination matrix.
1326 */
1327 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1328 const unsigned count = rhs_components - rhs_base;
1329
1330 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1331
1332 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1333 row_idx,
1334 rhs_var_ref,
1335 rhs_base,
1336 count, ctx);
1337 instructions->push_tail(inst);
1338
1339 row_idx += count;
1340 }
1341 }
1342 }
1343
1344 return new(ctx) ir_dereference_variable(var);
1345 }
1346
1347
1348 ir_rvalue *
1349 emit_inline_record_constructor(const glsl_type *type,
1350 exec_list *instructions,
1351 exec_list *parameters,
1352 void *mem_ctx)
1353 {
1354 ir_variable *const var =
1355 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1356 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1357
1358 instructions->push_tail(var);
1359
1360 exec_node *node = parameters->head;
1361 for (unsigned i = 0; i < type->length; i++) {
1362 assert(!node->is_tail_sentinel());
1363
1364 ir_dereference *const lhs =
1365 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1366 type->fields.structure[i].name);
1367
1368 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1369 assert(rhs != NULL);
1370
1371 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1372
1373 instructions->push_tail(assign);
1374 node = node->next;
1375 }
1376
1377 return d;
1378 }
1379
1380
1381 static ir_rvalue *
1382 process_record_constructor(exec_list *instructions,
1383 const glsl_type *constructor_type,
1384 YYLTYPE *loc, exec_list *parameters,
1385 struct _mesa_glsl_parse_state *state)
1386 {
1387 void *ctx = state;
1388 exec_list actual_parameters;
1389
1390 process_parameters(instructions, &actual_parameters,
1391 parameters, state);
1392
1393 exec_node *node = actual_parameters.head;
1394 for (unsigned i = 0; i < constructor_type->length; i++) {
1395 ir_rvalue *ir = (ir_rvalue *) node;
1396
1397 if (node->is_tail_sentinel()) {
1398 _mesa_glsl_error(loc, state,
1399 "insufficient parameters to constructor for `%s'",
1400 constructor_type->name);
1401 return ir_rvalue::error_value(ctx);
1402 }
1403
1404 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1405 ir, state)) {
1406 node->replace_with(ir);
1407 } else {
1408 _mesa_glsl_error(loc, state,
1409 "parameter type mismatch in constructor for `%s.%s' "
1410 "(%s vs %s)",
1411 constructor_type->name,
1412 constructor_type->fields.structure[i].name,
1413 ir->type->name,
1414 constructor_type->fields.structure[i].type->name);
1415 return ir_rvalue::error_value(ctx);;
1416 }
1417
1418 node = node->next;
1419 }
1420
1421 if (!node->is_tail_sentinel()) {
1422 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1423 "for `%s'", constructor_type->name);
1424 return ir_rvalue::error_value(ctx);
1425 }
1426
1427 ir_rvalue *const constant =
1428 constant_record_constructor(constructor_type, &actual_parameters,
1429 state);
1430
1431 return (constant != NULL)
1432 ? constant
1433 : emit_inline_record_constructor(constructor_type, instructions,
1434 &actual_parameters, state);
1435 }
1436
1437
1438 ir_rvalue *
1439 ast_function_expression::hir(exec_list *instructions,
1440 struct _mesa_glsl_parse_state *state)
1441 {
1442 void *ctx = state;
1443 /* There are three sorts of function calls.
1444 *
1445 * 1. constructors - The first subexpression is an ast_type_specifier.
1446 * 2. methods - Only the .length() method of array types.
1447 * 3. functions - Calls to regular old functions.
1448 *
1449 * Method calls are actually detected when the ast_field_selection
1450 * expression is handled.
1451 */
1452 if (is_constructor()) {
1453 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1454 YYLTYPE loc = type->get_location();
1455 const char *name;
1456
1457 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1458
1459 /* constructor_type can be NULL if a variable with the same name as the
1460 * structure has come into scope.
1461 */
1462 if (constructor_type == NULL) {
1463 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1464 "may be shadowed by a variable with the same name)",
1465 type->type_name);
1466 return ir_rvalue::error_value(ctx);
1467 }
1468
1469
1470 /* Constructors for samplers are illegal.
1471 */
1472 if (constructor_type->is_sampler()) {
1473 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1474 constructor_type->name);
1475 return ir_rvalue::error_value(ctx);
1476 }
1477
1478 if (constructor_type->is_array()) {
1479 if (!state->check_version(120, 300, &loc,
1480 "array constructors forbidden")) {
1481 return ir_rvalue::error_value(ctx);
1482 }
1483
1484 return process_array_constructor(instructions, constructor_type,
1485 & loc, &this->expressions, state);
1486 }
1487
1488
1489 /* There are two kinds of constructor calls. Constructors for arrays and
1490 * structures must have the exact number of arguments with matching types
1491 * in the correct order. These constructors follow essentially the same
1492 * type matching rules as functions.
1493 *
1494 * Constructors for built-in language types, such as mat4 and vec2, are
1495 * free form. The only requirements are that the parameters must provide
1496 * enough values of the correct scalar type and that no arguments are
1497 * given past the last used argument.
1498 *
1499 * When using the C-style initializer syntax from GLSL 4.20, constructors
1500 * must have the exact number of arguments with matching types in the
1501 * correct order.
1502 */
1503 if (constructor_type->is_record()) {
1504 return process_record_constructor(instructions, constructor_type,
1505 &loc, &this->expressions,
1506 state);
1507 }
1508
1509 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1510 return ir_rvalue::error_value(ctx);
1511
1512 /* Total number of components of the type being constructed. */
1513 const unsigned type_components = constructor_type->components();
1514
1515 /* Number of components from parameters that have actually been
1516 * consumed. This is used to perform several kinds of error checking.
1517 */
1518 unsigned components_used = 0;
1519
1520 unsigned matrix_parameters = 0;
1521 unsigned nonmatrix_parameters = 0;
1522 exec_list actual_parameters;
1523
1524 foreach_list (n, &this->expressions) {
1525 ast_node *ast = exec_node_data(ast_node, n, link);
1526 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1527
1528 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1529 *
1530 * "It is an error to provide extra arguments beyond this
1531 * last used argument."
1532 */
1533 if (components_used >= type_components) {
1534 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1535 "constructor",
1536 constructor_type->name);
1537 return ir_rvalue::error_value(ctx);
1538 }
1539
1540 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1541 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1542 "non-numeric data type",
1543 constructor_type->name);
1544 return ir_rvalue::error_value(ctx);
1545 }
1546
1547 /* Count the number of matrix and nonmatrix parameters. This
1548 * is used below to enforce some of the constructor rules.
1549 */
1550 if (result->type->is_matrix())
1551 matrix_parameters++;
1552 else
1553 nonmatrix_parameters++;
1554
1555 actual_parameters.push_tail(result);
1556 components_used += result->type->components();
1557 }
1558
1559 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1560 *
1561 * "It is an error to construct matrices from other matrices. This
1562 * is reserved for future use."
1563 */
1564 if (matrix_parameters > 0
1565 && constructor_type->is_matrix()
1566 && !state->check_version(120, 100, &loc,
1567 "cannot construct `%s' from a matrix",
1568 constructor_type->name)) {
1569 return ir_rvalue::error_value(ctx);
1570 }
1571
1572 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1573 *
1574 * "If a matrix argument is given to a matrix constructor, it is
1575 * an error to have any other arguments."
1576 */
1577 if ((matrix_parameters > 0)
1578 && ((matrix_parameters + nonmatrix_parameters) > 1)
1579 && constructor_type->is_matrix()) {
1580 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1581 "matrix must be only parameter",
1582 constructor_type->name);
1583 return ir_rvalue::error_value(ctx);
1584 }
1585
1586 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1587 *
1588 * "In these cases, there must be enough components provided in the
1589 * arguments to provide an initializer for every component in the
1590 * constructed value."
1591 */
1592 if (components_used < type_components && components_used != 1
1593 && matrix_parameters == 0) {
1594 _mesa_glsl_error(& loc, state, "too few components to construct "
1595 "`%s'",
1596 constructor_type->name);
1597 return ir_rvalue::error_value(ctx);
1598 }
1599
1600 /* Later, we cast each parameter to the same base type as the
1601 * constructor. Since there are no non-floating point matrices, we
1602 * need to break them up into a series of column vectors.
1603 */
1604 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1605 foreach_list_safe(n, &actual_parameters) {
1606 ir_rvalue *matrix = (ir_rvalue *) n;
1607
1608 if (!matrix->type->is_matrix())
1609 continue;
1610
1611 /* Create a temporary containing the matrix. */
1612 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1613 ir_var_temporary);
1614 instructions->push_tail(var);
1615 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1616 ir_dereference_variable(var), matrix, NULL));
1617 var->constant_value = matrix->constant_expression_value();
1618
1619 /* Replace the matrix with dereferences of its columns. */
1620 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1621 matrix->insert_before(new (ctx) ir_dereference_array(var,
1622 new(ctx) ir_constant(i)));
1623 }
1624 matrix->remove();
1625 }
1626 }
1627
1628 bool all_parameters_are_constant = true;
1629
1630 /* Type cast each parameter and, if possible, fold constants.*/
1631 foreach_list_safe(n, &actual_parameters) {
1632 ir_rvalue *ir = (ir_rvalue *) n;
1633
1634 const glsl_type *desired_type =
1635 glsl_type::get_instance(constructor_type->base_type,
1636 ir->type->vector_elements,
1637 ir->type->matrix_columns);
1638 ir_rvalue *result = convert_component(ir, desired_type);
1639
1640 /* Attempt to convert the parameter to a constant valued expression.
1641 * After doing so, track whether or not all the parameters to the
1642 * constructor are trivially constant valued expressions.
1643 */
1644 ir_rvalue *const constant = result->constant_expression_value();
1645
1646 if (constant != NULL)
1647 result = constant;
1648 else
1649 all_parameters_are_constant = false;
1650
1651 if (result != ir) {
1652 ir->replace_with(result);
1653 }
1654 }
1655
1656 /* If all of the parameters are trivially constant, create a
1657 * constant representing the complete collection of parameters.
1658 */
1659 if (all_parameters_are_constant) {
1660 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1661 } else if (constructor_type->is_scalar()) {
1662 return dereference_component((ir_rvalue *) actual_parameters.head,
1663 0);
1664 } else if (constructor_type->is_vector()) {
1665 return emit_inline_vector_constructor(constructor_type,
1666 instructions,
1667 &actual_parameters,
1668 ctx);
1669 } else {
1670 assert(constructor_type->is_matrix());
1671 return emit_inline_matrix_constructor(constructor_type,
1672 instructions,
1673 &actual_parameters,
1674 ctx);
1675 }
1676 } else {
1677 const ast_expression *id = subexpressions[0];
1678 const char *func_name = id->primary_expression.identifier;
1679 YYLTYPE loc = id->get_location();
1680 exec_list actual_parameters;
1681
1682 process_parameters(instructions, &actual_parameters, &this->expressions,
1683 state);
1684
1685 ir_function_signature *sig =
1686 match_function_by_name(func_name, &actual_parameters, state);
1687
1688 ir_call *call = NULL;
1689 ir_rvalue *value = NULL;
1690 if (sig == NULL) {
1691 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1692 value = ir_rvalue::error_value(ctx);
1693 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1694 /* an error has already been emitted */
1695 value = ir_rvalue::error_value(ctx);
1696 } else {
1697 value = generate_call(instructions, sig, &actual_parameters,
1698 &call, state);
1699 }
1700
1701 return value;
1702 }
1703
1704 return ir_rvalue::error_value(ctx);
1705 }
1706
1707 ir_rvalue *
1708 ast_aggregate_initializer::hir(exec_list *instructions,
1709 struct _mesa_glsl_parse_state *state)
1710 {
1711 void *ctx = state;
1712 YYLTYPE loc = this->get_location();
1713 const char *name;
1714
1715 if (!this->constructor_type) {
1716 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1717 return ir_rvalue::error_value(ctx);
1718 }
1719 const glsl_type *const constructor_type =
1720 this->constructor_type->glsl_type(&name, state);
1721
1722 if (!state->ARB_shading_language_420pack_enable) {
1723 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1724 "GL_ARB_shading_language_420pack extension");
1725 return ir_rvalue::error_value(ctx);
1726 }
1727
1728 if (this->constructor_type->is_array) {
1729 return process_array_constructor(instructions, constructor_type, &loc,
1730 &this->expressions, state);
1731 }
1732
1733 if (this->constructor_type->structure) {
1734 return process_record_constructor(instructions, constructor_type, &loc,
1735 &this->expressions, state);
1736 }
1737
1738 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1739 &this->expressions, state);
1740 }