glsl2: Emit structure constructors inline
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 static unsigned
34 process_parameters(exec_list *instructions, exec_list *actual_parameters,
35 exec_list *parameters,
36 struct _mesa_glsl_parse_state *state)
37 {
38 unsigned count = 0;
39
40 foreach_list (n, parameters) {
41 ast_node *const ast = exec_node_data(ast_node, n, link);
42 ir_rvalue *result = ast->hir(instructions, state);
43
44 ir_constant *const constant = result->constant_expression_value();
45 if (constant != NULL)
46 result = constant;
47
48 actual_parameters->push_tail(result);
49 count++;
50 }
51
52 return count;
53 }
54
55
56 /**
57 * Generate a source prototype for a function signature
58 *
59 * \param return_type Return type of the function. May be \c NULL.
60 * \param name Name of the function.
61 * \param parameters Parameter list for the function. This may be either a
62 * formal or actual parameter list. Only the type is used.
63 *
64 * \return
65 * A talloced string representing the prototype of the function.
66 */
67 char *
68 prototype_string(const glsl_type *return_type, const char *name,
69 exec_list *parameters)
70 {
71 char *str = NULL;
72
73 if (return_type != NULL)
74 str = talloc_asprintf(str, "%s ", return_type->name);
75
76 str = talloc_asprintf_append(str, "%s(", name);
77
78 const char *comma = "";
79 foreach_list(node, parameters) {
80 const ir_instruction *const param = (ir_instruction *) node;
81
82 str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
83 comma = ", ";
84 }
85
86 str = talloc_strdup_append(str, ")");
87 return str;
88 }
89
90
91 static ir_rvalue *
92 process_call(exec_list *instructions, ir_function *f,
93 YYLTYPE *loc, exec_list *actual_parameters,
94 struct _mesa_glsl_parse_state *state)
95 {
96 void *ctx = state;
97
98 ir_function_signature *sig = f->matching_signature(actual_parameters);
99
100 /* The instructions param will be used when the FINISHMEs below are done */
101 (void) instructions;
102
103 if (sig != NULL) {
104 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
105 * isn't done in ir_function::matching_signature because that function
106 * cannot generate the necessary diagnostics.
107 */
108 exec_list_iterator actual_iter = actual_parameters->iterator();
109 exec_list_iterator formal_iter = sig->parameters.iterator();
110
111 while (actual_iter.has_next()) {
112 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
113 ir_variable *formal = (ir_variable *) formal_iter.get();
114
115 assert(actual != NULL);
116 assert(formal != NULL);
117
118 if ((formal->mode == ir_var_out)
119 || (formal->mode == ir_var_inout)) {
120 if (! actual->is_lvalue()) {
121 /* FINISHME: Log a better diagnostic here. There is no way
122 * FINISHME: to tell the user which parameter is invalid.
123 */
124 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
125 (formal->mode == ir_var_out) ? "out" : "inout");
126 }
127 }
128
129 if (formal->type->is_numeric() || formal->type->is_boolean()) {
130 ir_rvalue *converted = convert_component(actual, formal->type);
131 actual->replace_with(converted);
132 }
133
134 actual_iter.next();
135 formal_iter.next();
136 }
137
138 /* Always insert the call in the instruction stream, and return a deref
139 * of its return val if it returns a value, since we don't know if
140 * the rvalue is going to be assigned to anything or not.
141 */
142 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
143 if (!sig->return_type->is_void()) {
144 ir_variable *var;
145 ir_dereference_variable *deref;
146
147 var = new(ctx) ir_variable(sig->return_type,
148 talloc_asprintf(ctx, "%s_retval",
149 sig->function_name()),
150 ir_var_temporary);
151 instructions->push_tail(var);
152
153 deref = new(ctx) ir_dereference_variable(var);
154 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
155 instructions->push_tail(assign);
156 if (state->language_version >= 120)
157 var->constant_value = call->constant_expression_value();
158
159 deref = new(ctx) ir_dereference_variable(var);
160 return deref;
161 } else {
162 instructions->push_tail(call);
163 return NULL;
164 }
165 } else {
166 char *str = prototype_string(NULL, f->name, actual_parameters);
167
168 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
169 str);
170 talloc_free(str);
171
172 const char *prefix = "candidates are: ";
173 foreach_list (node, &f->signatures) {
174 ir_function_signature *sig = (ir_function_signature *) node;
175
176 str = prototype_string(sig->return_type, f->name, &sig->parameters);
177 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
178 talloc_free(str);
179
180 prefix = " ";
181 }
182
183 return ir_call::get_error_instruction(ctx);
184 }
185 }
186
187
188 static ir_rvalue *
189 match_function_by_name(exec_list *instructions, const char *name,
190 YYLTYPE *loc, exec_list *actual_parameters,
191 struct _mesa_glsl_parse_state *state)
192 {
193 void *ctx = state;
194 ir_function *f = state->symbols->get_function(name);
195
196 if (f == NULL) {
197 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
198 return ir_call::get_error_instruction(ctx);
199 }
200
201 /* Once we've determined that the function being called might exist, try
202 * to find an overload of the function that matches the parameters.
203 */
204 return process_call(instructions, f, loc, actual_parameters, state);
205 }
206
207
208 /**
209 * Perform automatic type conversion of constructor parameters
210 *
211 * This implements the rules in the "Conversion and Scalar Constructors"
212 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
213 */
214 static ir_rvalue *
215 convert_component(ir_rvalue *src, const glsl_type *desired_type)
216 {
217 void *ctx = talloc_parent(src);
218 const unsigned a = desired_type->base_type;
219 const unsigned b = src->type->base_type;
220 ir_expression *result = NULL;
221
222 if (src->type->is_error())
223 return src;
224
225 assert(a <= GLSL_TYPE_BOOL);
226 assert(b <= GLSL_TYPE_BOOL);
227
228 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
229 return src;
230
231 switch (a) {
232 case GLSL_TYPE_UINT:
233 case GLSL_TYPE_INT:
234 if (b == GLSL_TYPE_FLOAT)
235 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
236 else {
237 assert(b == GLSL_TYPE_BOOL);
238 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
239 }
240 break;
241 case GLSL_TYPE_FLOAT:
242 switch (b) {
243 case GLSL_TYPE_UINT:
244 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
245 break;
246 case GLSL_TYPE_INT:
247 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
248 break;
249 case GLSL_TYPE_BOOL:
250 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
251 break;
252 }
253 break;
254 case GLSL_TYPE_BOOL:
255 switch (b) {
256 case GLSL_TYPE_UINT:
257 case GLSL_TYPE_INT:
258 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
259 break;
260 case GLSL_TYPE_FLOAT:
261 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
262 break;
263 }
264 break;
265 }
266
267 assert(result != NULL);
268
269 /* Try constant folding; it may fold in the conversion we just added. */
270 ir_constant *const constant = result->constant_expression_value();
271 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
272 }
273
274 /**
275 * Dereference a specific component from a scalar, vector, or matrix
276 */
277 static ir_rvalue *
278 dereference_component(ir_rvalue *src, unsigned component)
279 {
280 void *ctx = talloc_parent(src);
281 assert(component < src->type->components());
282
283 /* If the source is a constant, just create a new constant instead of a
284 * dereference of the existing constant.
285 */
286 ir_constant *constant = src->as_constant();
287 if (constant)
288 return new(ctx) ir_constant(constant, component);
289
290 if (src->type->is_scalar()) {
291 return src;
292 } else if (src->type->is_vector()) {
293 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
294 } else {
295 assert(src->type->is_matrix());
296
297 /* Dereference a row of the matrix, then call this function again to get
298 * a specific element from that row.
299 */
300 const int c = component / src->type->column_type()->vector_elements;
301 const int r = component % src->type->column_type()->vector_elements;
302 ir_constant *const col_index = new(ctx) ir_constant(c);
303 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
304
305 col->type = src->type->column_type();
306
307 return dereference_component(col, r);
308 }
309
310 assert(!"Should not get here.");
311 return NULL;
312 }
313
314
315 static ir_rvalue *
316 process_array_constructor(exec_list *instructions,
317 const glsl_type *constructor_type,
318 YYLTYPE *loc, exec_list *parameters,
319 struct _mesa_glsl_parse_state *state)
320 {
321 void *ctx = state;
322 /* Array constructors come in two forms: sized and unsized. Sized array
323 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
324 * variables. In this case the number of parameters must exactly match the
325 * specified size of the array.
326 *
327 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
328 * are vec4 variables. In this case the size of the array being constructed
329 * is determined by the number of parameters.
330 *
331 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
332 *
333 * "There must be exactly the same number of arguments as the size of
334 * the array being constructed. If no size is present in the
335 * constructor, then the array is explicitly sized to the number of
336 * arguments provided. The arguments are assigned in order, starting at
337 * element 0, to the elements of the constructed array. Each argument
338 * must be the same type as the element type of the array, or be a type
339 * that can be converted to the element type of the array according to
340 * Section 4.1.10 "Implicit Conversions.""
341 */
342 exec_list actual_parameters;
343 const unsigned parameter_count =
344 process_parameters(instructions, &actual_parameters, parameters, state);
345
346 if ((parameter_count == 0)
347 || ((constructor_type->length != 0)
348 && (constructor_type->length != parameter_count))) {
349 const unsigned min_param = (constructor_type->length == 0)
350 ? 1 : constructor_type->length;
351
352 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
353 "parameter%s",
354 (constructor_type->length != 0) ? "at least" : "exactly",
355 min_param, (min_param <= 1) ? "" : "s");
356 return ir_call::get_error_instruction(ctx);
357 }
358
359 if (constructor_type->length == 0) {
360 constructor_type =
361 glsl_type::get_array_instance(constructor_type->element_type(),
362 parameter_count);
363 assert(constructor_type != NULL);
364 assert(constructor_type->length == parameter_count);
365 }
366
367 bool all_parameters_are_constant = true;
368
369 /* Type cast each parameter and, if possible, fold constants. */
370 foreach_list_safe(n, &actual_parameters) {
371 ir_rvalue *ir = (ir_rvalue *) n;
372 ir_rvalue *result = ir;
373
374 /* Apply implicit conversions (not the scalar constructor rules!) */
375 if (constructor_type->element_type()->is_float()) {
376 const glsl_type *desired_type =
377 glsl_type::get_instance(GLSL_TYPE_FLOAT,
378 ir->type->vector_elements,
379 ir->type->matrix_columns);
380 result = convert_component(ir, desired_type);
381 }
382
383 if (result->type != constructor_type->element_type()) {
384 _mesa_glsl_error(loc, state, "type error in array constructor: "
385 "expected: %s, found %s",
386 constructor_type->element_type()->name,
387 result->type->name);
388 }
389
390 /* Attempt to convert the parameter to a constant valued expression.
391 * After doing so, track whether or not all the parameters to the
392 * constructor are trivially constant valued expressions.
393 */
394 ir_rvalue *const constant = result->constant_expression_value();
395
396 if (constant != NULL)
397 result = constant;
398 else
399 all_parameters_are_constant = false;
400
401 ir->replace_with(result);
402 }
403
404 if (all_parameters_are_constant)
405 return new(ctx) ir_constant(constructor_type, &actual_parameters);
406
407 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
408 ir_var_temporary);
409 instructions->push_tail(var);
410
411 int i = 0;
412 foreach_list(node, &actual_parameters) {
413 ir_rvalue *rhs = (ir_rvalue *) node;
414 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
415 new(ctx) ir_constant(i));
416
417 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
418 instructions->push_tail(assignment);
419
420 i++;
421 }
422
423 return new(ctx) ir_dereference_variable(var);
424 }
425
426
427 /**
428 * Try to convert a record constructor to a constant expression
429 */
430 static ir_constant *
431 constant_record_constructor(const glsl_type *constructor_type,
432 exec_list *parameters, void *mem_ctx)
433 {
434 foreach_list(node, parameters) {
435 if (((ir_instruction *) node)->as_constant() == NULL)
436 return NULL;
437 }
438
439 return new(mem_ctx) ir_constant(constructor_type, parameters);
440 }
441
442
443 /**
444 * Determine if a list consists of a single scalar r-value
445 */
446 bool
447 single_scalar_parameter(exec_list *parameters)
448 {
449 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
450 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
451
452 return (p->type->is_scalar() && p->next->is_tail_sentinel());
453 }
454
455
456 /**
457 * Generate inline code for a vector constructor
458 *
459 * The generated constructor code will consist of a temporary variable
460 * declaration of the same type as the constructor. A sequence of assignments
461 * from constructor parameters to the temporary will follow.
462 *
463 * \return
464 * An \c ir_dereference_variable of the temprorary generated in the constructor
465 * body.
466 */
467 ir_rvalue *
468 emit_inline_vector_constructor(const glsl_type *type,
469 exec_list *instructions,
470 exec_list *parameters,
471 void *ctx)
472 {
473 assert(!parameters->is_empty());
474
475 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
476 instructions->push_tail(var);
477
478 /* There are two kinds of vector constructors.
479 *
480 * - Construct a vector from a single scalar by replicating that scalar to
481 * all components of the vector.
482 *
483 * - Construct a vector from an arbirary combination of vectors and
484 * scalars. The components of the constructor parameters are assigned
485 * to the vector in order until the vector is full.
486 */
487 const unsigned lhs_components = type->components();
488 if (single_scalar_parameter(parameters)) {
489 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
490 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
491 lhs_components);
492 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
493 const unsigned mask = (1U << lhs_components) - 1;
494
495 assert(rhs->type == lhs->type);
496
497 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
498 instructions->push_tail(inst);
499 } else {
500 unsigned base_component = 0;
501 ir_constant_data data;
502 unsigned constant_mask = 0;
503
504 memset(&data, 0, sizeof(data));
505
506 foreach_list(node, parameters) {
507 ir_rvalue *param = (ir_rvalue *) node;
508 unsigned rhs_components = param->type->components();
509
510 /* Do not try to assign more components to the vector than it has!
511 */
512 if ((rhs_components + base_component) > lhs_components) {
513 rhs_components = lhs_components - base_component;
514 }
515
516 const ir_constant *const c = param->as_constant();
517 if (c != NULL) {
518 for (unsigned i = 0; i < rhs_components; i++) {
519 switch (c->type->base_type) {
520 case GLSL_TYPE_UINT:
521 data.u[i + base_component] = c->get_uint_component(i);
522 break;
523 case GLSL_TYPE_INT:
524 data.i[i + base_component] = c->get_int_component(i);
525 break;
526 case GLSL_TYPE_FLOAT:
527 data.f[i + base_component] = c->get_float_component(i);
528 break;
529 case GLSL_TYPE_BOOL:
530 data.b[i + base_component] = c->get_bool_component(i);
531 break;
532 default:
533 assert(!"Should not get here.");
534 break;
535 }
536 }
537
538 /* Mask of fields to be written in the assignment.
539 */
540 constant_mask |= ((1U << rhs_components) - 1) << base_component;
541 }
542
543 /* Advance the component index by the number of components that were
544 * just assigned.
545 */
546 base_component += rhs_components;
547 }
548
549 if (constant_mask != 0) {
550 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
551 ir_rvalue *rhs = new(ctx) ir_constant(var->type, &data);
552
553 ir_instruction *inst =
554 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
555 instructions->push_tail(inst);
556 }
557
558 base_component = 0;
559 foreach_list(node, parameters) {
560 ir_rvalue *param = (ir_rvalue *) node;
561 unsigned rhs_components = param->type->components();
562
563 /* Do not try to assign more components to the vector than it has!
564 */
565 if ((rhs_components + base_component) > lhs_components) {
566 rhs_components = lhs_components - base_component;
567 }
568
569 const ir_constant *const c = param->as_constant();
570 if (c == NULL) {
571 /* Generate a swizzle that puts the first element of the source at
572 * the location of the first element of the destination.
573 */
574 unsigned swiz[4] = { 0, 0, 0, 0 };
575 for (unsigned i = 0; i < rhs_components; i++)
576 swiz[i + base_component] = i;
577
578 /* Mask of fields to be written in the assignment.
579 */
580 const unsigned write_mask = ((1U << rhs_components) - 1)
581 << base_component;
582
583 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
584 ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, lhs_components);
585
586 ir_instruction *inst =
587 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
588 instructions->push_tail(inst);
589 }
590
591 /* Advance the component index by the number of components that were
592 * just assigned.
593 */
594 base_component += rhs_components;
595 }
596 }
597 return new(ctx) ir_dereference_variable(var);
598 }
599
600
601 /**
602 * Generate assignment of a portion of a vector to a portion of a matrix column
603 *
604 * \param src_base First component of the source to be used in assignment
605 * \param column Column of destination to be assiged
606 * \param row_base First component of the destination column to be assigned
607 * \param count Number of components to be assigned
608 *
609 * \note
610 * \c src_base + \c count must be less than or equal to the number of components
611 * in the source vector.
612 */
613 ir_instruction *
614 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
615 ir_rvalue *src, unsigned src_base, unsigned count,
616 void *mem_ctx)
617 {
618 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
619 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
620
621 assert(column_ref->type->components() >= (row_base + count));
622 assert(src->type->components() >= (src_base + count));
623
624 /* Generate a swizzle that puts the first element of the source at the
625 * location of the first element of the destination.
626 */
627 unsigned swiz[4] = { src_base, src_base, src_base, src_base };
628 for (unsigned i = 0; i < count; i++)
629 swiz[i + row_base] = src_base + i;
630
631 ir_rvalue *const rhs =
632 new(mem_ctx) ir_swizzle(src, swiz, column_ref->type->components());
633
634 /* Mask of fields to be written in the assignment.
635 */
636 const unsigned write_mask = ((1U << count) - 1) << row_base;
637
638 return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
639 }
640
641
642 /**
643 * Generate inline code for a matrix constructor
644 *
645 * The generated constructor code will consist of a temporary variable
646 * declaration of the same type as the constructor. A sequence of assignments
647 * from constructor parameters to the temporary will follow.
648 *
649 * \return
650 * An \c ir_dereference_variable of the temprorary generated in the constructor
651 * body.
652 */
653 ir_rvalue *
654 emit_inline_matrix_constructor(const glsl_type *type,
655 exec_list *instructions,
656 exec_list *parameters,
657 void *ctx)
658 {
659 assert(!parameters->is_empty());
660
661 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
662 instructions->push_tail(var);
663
664 /* There are three kinds of matrix constructors.
665 *
666 * - Construct a matrix from a single scalar by replicating that scalar to
667 * along the diagonal of the matrix and setting all other components to
668 * zero.
669 *
670 * - Construct a matrix from an arbirary combination of vectors and
671 * scalars. The components of the constructor parameters are assigned
672 * to the matrix in colum-major order until the matrix is full.
673 *
674 * - Construct a matrix from a single matrix. The source matrix is copied
675 * to the upper left portion of the constructed matrix, and the remaining
676 * elements take values from the identity matrix.
677 */
678 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
679 if (single_scalar_parameter(parameters)) {
680 /* Assign the scalar to the X component of a vec4, and fill the remaining
681 * components with zero.
682 */
683 ir_variable *rhs_var =
684 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
685 ir_var_temporary);
686 instructions->push_tail(rhs_var);
687
688 ir_constant_data zero;
689 zero.f[0] = 0.0;
690 zero.f[1] = 0.0;
691 zero.f[2] = 0.0;
692 zero.f[3] = 0.0;
693
694 ir_instruction *inst =
695 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
696 new(ctx) ir_constant(rhs_var->type, &zero),
697 NULL);
698 instructions->push_tail(inst);
699
700 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
701
702 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
703 instructions->push_tail(inst);
704
705 /* Assign the temporary vector to each column of the destination matrix
706 * with a swizzle that puts the X component on the diagonal of the
707 * matrix. In some cases this may mean that the X component does not
708 * get assigned into the column at all (i.e., when the matrix has more
709 * columns than rows).
710 */
711 static const unsigned rhs_swiz[4][4] = {
712 { 0, 1, 1, 1 },
713 { 1, 0, 1, 1 },
714 { 1, 1, 0, 1 },
715 { 1, 1, 1, 0 }
716 };
717
718 const unsigned cols_to_init = MIN2(type->matrix_columns,
719 type->vector_elements);
720 for (unsigned i = 0; i < cols_to_init; i++) {
721 ir_constant *const col_idx = new(ctx) ir_constant(i);
722 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
723
724 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
725 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
726 type->vector_elements);
727
728 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
729 instructions->push_tail(inst);
730 }
731
732 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
733 ir_constant *const col_idx = new(ctx) ir_constant(i);
734 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
735
736 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
737 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
738 type->vector_elements);
739
740 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
741 instructions->push_tail(inst);
742 }
743 } else if (first_param->type->is_matrix()) {
744 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
745 *
746 * "If a matrix is constructed from a matrix, then each component
747 * (column i, row j) in the result that has a corresponding
748 * component (column i, row j) in the argument will be initialized
749 * from there. All other components will be initialized to the
750 * identity matrix. If a matrix argument is given to a matrix
751 * constructor, it is an error to have any other arguments."
752 */
753 assert(first_param->next->is_tail_sentinel());
754 ir_rvalue *const src_matrix = first_param;
755
756 /* If the source matrix is smaller, pre-initialize the relavent parts of
757 * the destination matrix to the identity matrix.
758 */
759 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
760 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
761
762 /* If the source matrix has fewer rows, every column of the destination
763 * must be initialized. Otherwise only the columns in the destination
764 * that do not exist in the source must be initialized.
765 */
766 unsigned col =
767 (src_matrix->type->vector_elements < var->type->vector_elements)
768 ? 0 : src_matrix->type->matrix_columns;
769
770 const glsl_type *const col_type = var->type->column_type();
771 for (/* empty */; col < var->type->matrix_columns; col++) {
772 ir_constant_data ident;
773
774 ident.f[0] = 0.0;
775 ident.f[1] = 0.0;
776 ident.f[2] = 0.0;
777 ident.f[3] = 0.0;
778
779 ident.f[col] = 1.0;
780
781 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
782
783 ir_rvalue *const lhs =
784 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
785
786 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
787 instructions->push_tail(inst);
788 }
789 }
790
791 /* Assign columns from the source matrix to the destination matrix.
792 *
793 * Since the parameter will be used in the RHS of multiple assignments,
794 * generate a temporary and copy the paramter there.
795 */
796 ir_variable *const rhs_var =
797 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
798 ir_var_temporary);
799 instructions->push_tail(rhs_var);
800
801 ir_dereference *const rhs_var_ref =
802 new(ctx) ir_dereference_variable(rhs_var);
803 ir_instruction *const inst =
804 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
805 instructions->push_tail(inst);
806
807 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
808 var->type->vector_elements);
809 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
810 var->type->matrix_columns);
811
812 unsigned swiz[4] = { 0, 0, 0, 0 };
813 for (unsigned i = 1; i < src_matrix->type->vector_elements; i++)
814 swiz[i] = i;
815
816 const unsigned write_mask = (1U << last_row) - 1;
817
818 for (unsigned i = 0; i < last_col; i++) {
819 ir_dereference *const lhs =
820 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
821 ir_rvalue *const rhs_col =
822 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
823
824 /* If one matrix has columns that are smaller than the columns of the
825 * other matrix, wrap the column access of the larger with a swizzle
826 * so that the LHS and RHS of the assignment have the same size (and
827 * therefore have the same type).
828 *
829 * It would be perfectly valid to unconditionally generate the
830 * swizzles, this this will typically result in a more compact IR tree.
831 */
832 ir_rvalue *rhs;
833 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
834 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
835 lhs->type->vector_elements);
836 } else {
837 rhs = rhs_col;
838 }
839
840 assert(lhs->type == rhs->type);
841
842 ir_instruction *inst =
843 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
844 instructions->push_tail(inst);
845 }
846 } else {
847 const unsigned cols = type->matrix_columns;
848 const unsigned rows = type->vector_elements;
849 unsigned col_idx = 0;
850 unsigned row_idx = 0;
851
852 foreach_list (node, parameters) {
853 ir_rvalue *const rhs = (ir_rvalue *) node;
854 const unsigned components_remaining_this_column = rows - row_idx;
855 unsigned rhs_components = rhs->type->components();
856 unsigned rhs_base = 0;
857
858 /* Since the parameter might be used in the RHS of two assignments,
859 * generate a temporary and copy the paramter there.
860 */
861 ir_variable *rhs_var =
862 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
863 instructions->push_tail(rhs_var);
864
865 ir_dereference *rhs_var_ref =
866 new(ctx) ir_dereference_variable(rhs_var);
867 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
868 instructions->push_tail(inst);
869
870 /* Assign the current parameter to as many components of the matrix
871 * as it will fill.
872 *
873 * NOTE: A single vector parameter can span two matrix columns. A
874 * single vec4, for example, can completely fill a mat2.
875 */
876 if (rhs_components >= components_remaining_this_column) {
877 const unsigned count = MIN2(rhs_components,
878 components_remaining_this_column);
879
880 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
881
882 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
883 row_idx,
884 rhs_var_ref, 0,
885 count, ctx);
886 instructions->push_tail(inst);
887
888 rhs_base = count;
889
890 col_idx++;
891 row_idx = 0;
892 }
893
894 /* If there is data left in the parameter and components left to be
895 * set in the destination, emit another assignment. It is possible
896 * that the assignment could be of a vec4 to the last element of the
897 * matrix. In this case col_idx==cols, but there is still data
898 * left in the source parameter. Obviously, don't emit an assignment
899 * to data outside the destination matrix.
900 */
901 if ((col_idx < cols) && (rhs_base < rhs_components)) {
902 const unsigned count = rhs_components - rhs_base;
903
904 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
905
906 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
907 row_idx,
908 rhs_var_ref,
909 rhs_base,
910 count, ctx);
911 instructions->push_tail(inst);
912
913 row_idx += count;
914 }
915 }
916 }
917
918 return new(ctx) ir_dereference_variable(var);
919 }
920
921
922 ir_rvalue *
923 emit_inline_record_constructor(const glsl_type *type,
924 exec_list *instructions,
925 exec_list *parameters,
926 void *mem_ctx)
927 {
928 ir_variable *const var =
929 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
930 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
931
932 instructions->push_tail(var);
933
934 exec_node *node = parameters->head;
935 for (unsigned i = 0; i < type->length; i++) {
936 assert(!node->is_tail_sentinel());
937
938 ir_dereference *const lhs =
939 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
940 type->fields.structure[i].name);
941
942 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
943 assert(rhs != NULL);
944
945 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
946
947 instructions->push_tail(assign);
948 node = node->next;
949 }
950
951 return d;
952 }
953
954
955 ir_rvalue *
956 ast_function_expression::hir(exec_list *instructions,
957 struct _mesa_glsl_parse_state *state)
958 {
959 void *ctx = state;
960 /* There are three sorts of function calls.
961 *
962 * 1. constructors - The first subexpression is an ast_type_specifier.
963 * 2. methods - Only the .length() method of array types.
964 * 3. functions - Calls to regular old functions.
965 *
966 * Method calls are actually detected when the ast_field_selection
967 * expression is handled.
968 */
969 if (is_constructor()) {
970 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
971 YYLTYPE loc = type->get_location();
972 const char *name;
973
974 const glsl_type *const constructor_type = type->glsl_type(& name, state);
975
976
977 /* Constructors for samplers are illegal.
978 */
979 if (constructor_type->is_sampler()) {
980 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
981 constructor_type->name);
982 return ir_call::get_error_instruction(ctx);
983 }
984
985 if (constructor_type->is_array()) {
986 if (state->language_version <= 110) {
987 _mesa_glsl_error(& loc, state,
988 "array constructors forbidden in GLSL 1.10");
989 return ir_call::get_error_instruction(ctx);
990 }
991
992 return process_array_constructor(instructions, constructor_type,
993 & loc, &this->expressions, state);
994 }
995
996
997 /* There are two kinds of constructor call. Constructors for built-in
998 * language types, such as mat4 and vec2, are free form. The only
999 * requirement is that the parameters must provide enough values of the
1000 * correct scalar type. Constructors for arrays and structures must
1001 * have the exact number of parameters with matching types in the
1002 * correct order. These constructors follow essentially the same type
1003 * matching rules as functions.
1004 */
1005 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1006 return ir_call::get_error_instruction(ctx);
1007
1008 /* Total number of components of the type being constructed. */
1009 const unsigned type_components = constructor_type->components();
1010
1011 /* Number of components from parameters that have actually been
1012 * consumed. This is used to perform several kinds of error checking.
1013 */
1014 unsigned components_used = 0;
1015
1016 unsigned matrix_parameters = 0;
1017 unsigned nonmatrix_parameters = 0;
1018 exec_list actual_parameters;
1019
1020 foreach_list (n, &this->expressions) {
1021 ast_node *ast = exec_node_data(ast_node, n, link);
1022 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1023
1024 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1025 *
1026 * "It is an error to provide extra arguments beyond this
1027 * last used argument."
1028 */
1029 if (components_used >= type_components) {
1030 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1031 "constructor",
1032 constructor_type->name);
1033 return ir_call::get_error_instruction(ctx);
1034 }
1035
1036 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1037 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1038 "non-numeric data type",
1039 constructor_type->name);
1040 return ir_call::get_error_instruction(ctx);
1041 }
1042
1043 /* Count the number of matrix and nonmatrix parameters. This
1044 * is used below to enforce some of the constructor rules.
1045 */
1046 if (result->type->is_matrix())
1047 matrix_parameters++;
1048 else
1049 nonmatrix_parameters++;
1050
1051 actual_parameters.push_tail(result);
1052 components_used += result->type->components();
1053 }
1054
1055 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1056 *
1057 * "It is an error to construct matrices from other matrices. This
1058 * is reserved for future use."
1059 */
1060 if ((state->language_version <= 110) && (matrix_parameters > 0)
1061 && constructor_type->is_matrix()) {
1062 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1063 "matrix in GLSL 1.10",
1064 constructor_type->name);
1065 return ir_call::get_error_instruction(ctx);
1066 }
1067
1068 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1069 *
1070 * "If a matrix argument is given to a matrix constructor, it is
1071 * an error to have any other arguments."
1072 */
1073 if ((matrix_parameters > 0)
1074 && ((matrix_parameters + nonmatrix_parameters) > 1)
1075 && constructor_type->is_matrix()) {
1076 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1077 "matrix must be only parameter",
1078 constructor_type->name);
1079 return ir_call::get_error_instruction(ctx);
1080 }
1081
1082 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1083 *
1084 * "In these cases, there must be enough components provided in the
1085 * arguments to provide an initializer for every component in the
1086 * constructed value."
1087 */
1088 if (components_used < type_components && components_used != 1
1089 && matrix_parameters == 0) {
1090 _mesa_glsl_error(& loc, state, "too few components to construct "
1091 "`%s'",
1092 constructor_type->name);
1093 return ir_call::get_error_instruction(ctx);
1094 }
1095
1096 /* Later, we cast each parameter to the same base type as the
1097 * constructor. Since there are no non-floating point matrices, we
1098 * need to break them up into a series of column vectors.
1099 */
1100 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1101 foreach_list_safe(n, &actual_parameters) {
1102 ir_rvalue *matrix = (ir_rvalue *) n;
1103
1104 if (!matrix->type->is_matrix())
1105 continue;
1106
1107 /* Create a temporary containing the matrix. */
1108 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1109 ir_var_temporary);
1110 instructions->push_tail(var);
1111 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1112 ir_dereference_variable(var), matrix, NULL));
1113 var->constant_value = matrix->constant_expression_value();
1114
1115 /* Replace the matrix with dereferences of its columns. */
1116 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1117 matrix->insert_before(new (ctx) ir_dereference_array(var,
1118 new(ctx) ir_constant(i)));
1119 }
1120 matrix->remove();
1121 }
1122 }
1123
1124 bool all_parameters_are_constant = true;
1125
1126 /* Type cast each parameter and, if possible, fold constants.*/
1127 foreach_list_safe(n, &actual_parameters) {
1128 ir_rvalue *ir = (ir_rvalue *) n;
1129
1130 const glsl_type *desired_type =
1131 glsl_type::get_instance(constructor_type->base_type,
1132 ir->type->vector_elements,
1133 ir->type->matrix_columns);
1134 ir_rvalue *result = convert_component(ir, desired_type);
1135
1136 /* Attempt to convert the parameter to a constant valued expression.
1137 * After doing so, track whether or not all the parameters to the
1138 * constructor are trivially constant valued expressions.
1139 */
1140 ir_rvalue *const constant = result->constant_expression_value();
1141
1142 if (constant != NULL)
1143 result = constant;
1144 else
1145 all_parameters_are_constant = false;
1146
1147 if (result != ir) {
1148 ir->replace_with(result);
1149 }
1150 }
1151
1152 /* If all of the parameters are trivially constant, create a
1153 * constant representing the complete collection of parameters.
1154 */
1155 if (all_parameters_are_constant) {
1156 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1157 } else if (constructor_type->is_scalar()) {
1158 return dereference_component((ir_rvalue *) actual_parameters.head,
1159 0);
1160 } else if (constructor_type->is_vector()) {
1161 return emit_inline_vector_constructor(constructor_type,
1162 instructions,
1163 &actual_parameters,
1164 ctx);
1165 } else {
1166 assert(constructor_type->is_matrix());
1167 return emit_inline_matrix_constructor(constructor_type,
1168 instructions,
1169 &actual_parameters,
1170 ctx);
1171 }
1172 } else {
1173 const ast_expression *id = subexpressions[0];
1174 YYLTYPE loc = id->get_location();
1175 exec_list actual_parameters;
1176
1177 process_parameters(instructions, &actual_parameters, &this->expressions,
1178 state);
1179
1180 const glsl_type *const type =
1181 state->symbols->get_type(id->primary_expression.identifier);
1182
1183 if ((type != NULL) && type->is_record()) {
1184 exec_node *node = actual_parameters.head;
1185 for (unsigned i = 0; i < type->length; i++) {
1186 ir_instruction *ir = (ir_instruction *) node;
1187
1188 if (node->is_tail_sentinel()) {
1189 _mesa_glsl_error(&loc, state,
1190 "insufficient parameters to constructor "
1191 "for `%s'",
1192 type->name);
1193 return ir_call::get_error_instruction(ctx);
1194 }
1195
1196 if (ir->type != type->fields.structure[i].type) {
1197 _mesa_glsl_error(&loc, state,
1198 "parameter type mismatch in constructor "
1199 "for `%s.%s' (%s vs %s)",
1200 type->name,
1201 type->fields.structure[i].name,
1202 ir->type->name,
1203 type->fields.structure[i].type->name);
1204 return ir_call::get_error_instruction(ctx);;
1205 }
1206
1207 node = node->next;
1208 }
1209
1210 ir_rvalue *const constant =
1211 constant_record_constructor(type, &actual_parameters, state);
1212
1213 return (constant != NULL)
1214 ? constant
1215 : emit_inline_record_constructor(type, instructions,
1216 &actual_parameters, state);
1217 }
1218
1219 return match_function_by_name(instructions,
1220 id->primary_expression.identifier, & loc,
1221 &actual_parameters, state);
1222 }
1223
1224 return ir_call::get_error_instruction(ctx);
1225 }