Merge branch 'glsl-to-tgsi'
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96
97 static ir_rvalue *
98 match_function_by_name(exec_list *instructions, const char *name,
99 YYLTYPE *loc, exec_list *actual_parameters,
100 struct _mesa_glsl_parse_state *state)
101 {
102 void *ctx = state;
103 ir_function *f = state->symbols->get_function(name);
104 ir_function_signature *sig;
105
106 sig = f ? f->matching_signature(actual_parameters) : NULL;
107
108 /* FINISHME: This doesn't handle the case where shader X contains a
109 * FINISHME: matching signature but shader X + N contains an _exact_
110 * FINISHME: matching signature.
111 */
112 if (sig == NULL
113 && (f == NULL || state->es_shader || !f->has_user_signature())
114 && state->symbols->get_type(name) == NULL
115 && (state->language_version == 110
116 || state->symbols->get_variable(name) == NULL)) {
117 /* The current shader doesn't contain a matching function or signature.
118 * Before giving up, look for the prototype in the built-in functions.
119 */
120 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
121 ir_function *builtin;
122 builtin = state->builtins_to_link[i]->symbols->get_function(name);
123 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
124 if (sig != NULL) {
125 if (f == NULL) {
126 f = new(ctx) ir_function(name);
127 state->symbols->add_global_function(f);
128 emit_function(state, instructions, f);
129 }
130
131 f->add_signature(sig->clone_prototype(f, NULL));
132 break;
133 }
134 }
135 }
136
137 if (sig != NULL) {
138 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
139 * isn't done in ir_function::matching_signature because that function
140 * cannot generate the necessary diagnostics.
141 *
142 * Also, validate that 'const_in' formal parameters (an extension of our
143 * IR) correspond to ir_constant actual parameters.
144 */
145 exec_list_iterator actual_iter = actual_parameters->iterator();
146 exec_list_iterator formal_iter = sig->parameters.iterator();
147
148 while (actual_iter.has_next()) {
149 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
150 ir_variable *formal = (ir_variable *) formal_iter.get();
151
152 assert(actual != NULL);
153 assert(formal != NULL);
154
155 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
156 _mesa_glsl_error(loc, state,
157 "parameter `%s' must be a constant expression",
158 formal->name);
159 }
160
161 if ((formal->mode == ir_var_out)
162 || (formal->mode == ir_var_inout)) {
163 const char *mode = NULL;
164 switch (formal->mode) {
165 case ir_var_out: mode = "out"; break;
166 case ir_var_inout: mode = "inout"; break;
167 default: assert(false); break;
168 }
169 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
170 * FIXME: 0:0(0).
171 */
172 if (actual->variable_referenced()
173 && actual->variable_referenced()->read_only) {
174 _mesa_glsl_error(loc, state,
175 "function parameter '%s %s' references the "
176 "read-only variable '%s'",
177 mode, formal->name,
178 actual->variable_referenced()->name);
179
180 } else if (!actual->is_lvalue()) {
181 _mesa_glsl_error(loc, state,
182 "function parameter '%s %s' is not an lvalue",
183 mode, formal->name);
184 }
185 }
186
187 if (formal->type->is_numeric() || formal->type->is_boolean()) {
188 ir_rvalue *converted = convert_component(actual, formal->type);
189 actual->replace_with(converted);
190 }
191
192 actual_iter.next();
193 formal_iter.next();
194 }
195
196 /* Always insert the call in the instruction stream, and return a deref
197 * of its return val if it returns a value, since we don't know if
198 * the rvalue is going to be assigned to anything or not.
199 */
200 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
201 if (!sig->return_type->is_void()) {
202 ir_variable *var;
203 ir_dereference_variable *deref;
204
205 var = new(ctx) ir_variable(sig->return_type,
206 ralloc_asprintf(ctx, "%s_retval",
207 sig->function_name()),
208 ir_var_temporary);
209 instructions->push_tail(var);
210
211 deref = new(ctx) ir_dereference_variable(var);
212 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
213 instructions->push_tail(assign);
214 if (state->language_version >= 120)
215 var->constant_value = call->constant_expression_value();
216
217 deref = new(ctx) ir_dereference_variable(var);
218 return deref;
219 } else {
220 instructions->push_tail(call);
221 return NULL;
222 }
223 } else {
224 char *str = prototype_string(NULL, name, actual_parameters);
225
226 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
227 str);
228 ralloc_free(str);
229
230 const char *prefix = "candidates are: ";
231
232 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
233 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
234 : state->symbols;
235 f = syms->get_function(name);
236 if (f == NULL)
237 continue;
238
239 foreach_list (node, &f->signatures) {
240 ir_function_signature *sig = (ir_function_signature *) node;
241
242 str = prototype_string(sig->return_type, f->name, &sig->parameters);
243 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
244 ralloc_free(str);
245
246 prefix = " ";
247 }
248
249 }
250
251 return ir_call::get_error_instruction(ctx);
252 }
253 }
254
255
256 /**
257 * Perform automatic type conversion of constructor parameters
258 *
259 * This implements the rules in the "Conversion and Scalar Constructors"
260 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
261 */
262 static ir_rvalue *
263 convert_component(ir_rvalue *src, const glsl_type *desired_type)
264 {
265 void *ctx = ralloc_parent(src);
266 const unsigned a = desired_type->base_type;
267 const unsigned b = src->type->base_type;
268 ir_expression *result = NULL;
269
270 if (src->type->is_error())
271 return src;
272
273 assert(a <= GLSL_TYPE_BOOL);
274 assert(b <= GLSL_TYPE_BOOL);
275
276 if (a == b)
277 return src;
278
279 switch (a) {
280 case GLSL_TYPE_UINT:
281 switch (b) {
282 case GLSL_TYPE_INT:
283 result = new(ctx) ir_expression(ir_unop_i2u, src);
284 break;
285 case GLSL_TYPE_FLOAT:
286 result = new(ctx) ir_expression(ir_unop_i2u,
287 new(ctx) ir_expression(ir_unop_f2i, src));
288 break;
289 case GLSL_TYPE_BOOL:
290 result = new(ctx) ir_expression(ir_unop_i2u,
291 new(ctx) ir_expression(ir_unop_b2i, src));
292 break;
293 }
294 break;
295 case GLSL_TYPE_INT:
296 switch (b) {
297 case GLSL_TYPE_UINT:
298 result = new(ctx) ir_expression(ir_unop_u2i, src);
299 break;
300 case GLSL_TYPE_FLOAT:
301 result = new(ctx) ir_expression(ir_unop_f2i, src);
302 break;
303 case GLSL_TYPE_BOOL:
304 result = new(ctx) ir_expression(ir_unop_b2i, src);
305 break;
306 }
307 break;
308 case GLSL_TYPE_FLOAT:
309 switch (b) {
310 case GLSL_TYPE_UINT:
311 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
312 break;
313 case GLSL_TYPE_INT:
314 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
315 break;
316 case GLSL_TYPE_BOOL:
317 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
318 break;
319 }
320 break;
321 case GLSL_TYPE_BOOL:
322 switch (b) {
323 case GLSL_TYPE_UINT:
324 result = new(ctx) ir_expression(ir_unop_i2b,
325 new(ctx) ir_expression(ir_unop_u2i, src));
326 break;
327 case GLSL_TYPE_INT:
328 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
329 break;
330 case GLSL_TYPE_FLOAT:
331 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
332 break;
333 }
334 break;
335 }
336
337 assert(result != NULL);
338 assert(result->type == desired_type);
339
340 /* Try constant folding; it may fold in the conversion we just added. */
341 ir_constant *const constant = result->constant_expression_value();
342 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
343 }
344
345 /**
346 * Dereference a specific component from a scalar, vector, or matrix
347 */
348 static ir_rvalue *
349 dereference_component(ir_rvalue *src, unsigned component)
350 {
351 void *ctx = ralloc_parent(src);
352 assert(component < src->type->components());
353
354 /* If the source is a constant, just create a new constant instead of a
355 * dereference of the existing constant.
356 */
357 ir_constant *constant = src->as_constant();
358 if (constant)
359 return new(ctx) ir_constant(constant, component);
360
361 if (src->type->is_scalar()) {
362 return src;
363 } else if (src->type->is_vector()) {
364 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
365 } else {
366 assert(src->type->is_matrix());
367
368 /* Dereference a row of the matrix, then call this function again to get
369 * a specific element from that row.
370 */
371 const int c = component / src->type->column_type()->vector_elements;
372 const int r = component % src->type->column_type()->vector_elements;
373 ir_constant *const col_index = new(ctx) ir_constant(c);
374 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
375
376 col->type = src->type->column_type();
377
378 return dereference_component(col, r);
379 }
380
381 assert(!"Should not get here.");
382 return NULL;
383 }
384
385
386 static ir_rvalue *
387 process_array_constructor(exec_list *instructions,
388 const glsl_type *constructor_type,
389 YYLTYPE *loc, exec_list *parameters,
390 struct _mesa_glsl_parse_state *state)
391 {
392 void *ctx = state;
393 /* Array constructors come in two forms: sized and unsized. Sized array
394 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
395 * variables. In this case the number of parameters must exactly match the
396 * specified size of the array.
397 *
398 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
399 * are vec4 variables. In this case the size of the array being constructed
400 * is determined by the number of parameters.
401 *
402 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
403 *
404 * "There must be exactly the same number of arguments as the size of
405 * the array being constructed. If no size is present in the
406 * constructor, then the array is explicitly sized to the number of
407 * arguments provided. The arguments are assigned in order, starting at
408 * element 0, to the elements of the constructed array. Each argument
409 * must be the same type as the element type of the array, or be a type
410 * that can be converted to the element type of the array according to
411 * Section 4.1.10 "Implicit Conversions.""
412 */
413 exec_list actual_parameters;
414 const unsigned parameter_count =
415 process_parameters(instructions, &actual_parameters, parameters, state);
416
417 if ((parameter_count == 0)
418 || ((constructor_type->length != 0)
419 && (constructor_type->length != parameter_count))) {
420 const unsigned min_param = (constructor_type->length == 0)
421 ? 1 : constructor_type->length;
422
423 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
424 "parameter%s",
425 (constructor_type->length != 0) ? "at least" : "exactly",
426 min_param, (min_param <= 1) ? "" : "s");
427 return ir_call::get_error_instruction(ctx);
428 }
429
430 if (constructor_type->length == 0) {
431 constructor_type =
432 glsl_type::get_array_instance(constructor_type->element_type(),
433 parameter_count);
434 assert(constructor_type != NULL);
435 assert(constructor_type->length == parameter_count);
436 }
437
438 bool all_parameters_are_constant = true;
439
440 /* Type cast each parameter and, if possible, fold constants. */
441 foreach_list_safe(n, &actual_parameters) {
442 ir_rvalue *ir = (ir_rvalue *) n;
443 ir_rvalue *result = ir;
444
445 /* Apply implicit conversions (not the scalar constructor rules!). See
446 * the spec quote above. */
447 if (constructor_type->element_type()->is_float()) {
448 const glsl_type *desired_type =
449 glsl_type::get_instance(GLSL_TYPE_FLOAT,
450 ir->type->vector_elements,
451 ir->type->matrix_columns);
452 if (result->type->can_implicitly_convert_to(desired_type)) {
453 /* Even though convert_component() implements the constructor
454 * conversion rules (not the implicit conversion rules), its safe
455 * to use it here because we already checked that the implicit
456 * conversion is legal.
457 */
458 result = convert_component(ir, desired_type);
459 }
460 }
461
462 if (result->type != constructor_type->element_type()) {
463 _mesa_glsl_error(loc, state, "type error in array constructor: "
464 "expected: %s, found %s",
465 constructor_type->element_type()->name,
466 result->type->name);
467 }
468
469 /* Attempt to convert the parameter to a constant valued expression.
470 * After doing so, track whether or not all the parameters to the
471 * constructor are trivially constant valued expressions.
472 */
473 ir_rvalue *const constant = result->constant_expression_value();
474
475 if (constant != NULL)
476 result = constant;
477 else
478 all_parameters_are_constant = false;
479
480 ir->replace_with(result);
481 }
482
483 if (all_parameters_are_constant)
484 return new(ctx) ir_constant(constructor_type, &actual_parameters);
485
486 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
487 ir_var_temporary);
488 instructions->push_tail(var);
489
490 int i = 0;
491 foreach_list(node, &actual_parameters) {
492 ir_rvalue *rhs = (ir_rvalue *) node;
493 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
494 new(ctx) ir_constant(i));
495
496 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
497 instructions->push_tail(assignment);
498
499 i++;
500 }
501
502 return new(ctx) ir_dereference_variable(var);
503 }
504
505
506 /**
507 * Try to convert a record constructor to a constant expression
508 */
509 static ir_constant *
510 constant_record_constructor(const glsl_type *constructor_type,
511 exec_list *parameters, void *mem_ctx)
512 {
513 foreach_list(node, parameters) {
514 ir_constant *constant = ((ir_instruction *) node)->as_constant();
515 if (constant == NULL)
516 return NULL;
517 node->replace_with(constant);
518 }
519
520 return new(mem_ctx) ir_constant(constructor_type, parameters);
521 }
522
523
524 /**
525 * Determine if a list consists of a single scalar r-value
526 */
527 bool
528 single_scalar_parameter(exec_list *parameters)
529 {
530 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
531 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
532
533 return (p->type->is_scalar() && p->next->is_tail_sentinel());
534 }
535
536
537 /**
538 * Generate inline code for a vector constructor
539 *
540 * The generated constructor code will consist of a temporary variable
541 * declaration of the same type as the constructor. A sequence of assignments
542 * from constructor parameters to the temporary will follow.
543 *
544 * \return
545 * An \c ir_dereference_variable of the temprorary generated in the constructor
546 * body.
547 */
548 ir_rvalue *
549 emit_inline_vector_constructor(const glsl_type *type,
550 exec_list *instructions,
551 exec_list *parameters,
552 void *ctx)
553 {
554 assert(!parameters->is_empty());
555
556 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
557 instructions->push_tail(var);
558
559 /* There are two kinds of vector constructors.
560 *
561 * - Construct a vector from a single scalar by replicating that scalar to
562 * all components of the vector.
563 *
564 * - Construct a vector from an arbirary combination of vectors and
565 * scalars. The components of the constructor parameters are assigned
566 * to the vector in order until the vector is full.
567 */
568 const unsigned lhs_components = type->components();
569 if (single_scalar_parameter(parameters)) {
570 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
571 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
572 lhs_components);
573 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
574 const unsigned mask = (1U << lhs_components) - 1;
575
576 assert(rhs->type == lhs->type);
577
578 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
579 instructions->push_tail(inst);
580 } else {
581 unsigned base_component = 0;
582 unsigned base_lhs_component = 0;
583 ir_constant_data data;
584 unsigned constant_mask = 0, constant_components = 0;
585
586 memset(&data, 0, sizeof(data));
587
588 foreach_list(node, parameters) {
589 ir_rvalue *param = (ir_rvalue *) node;
590 unsigned rhs_components = param->type->components();
591
592 /* Do not try to assign more components to the vector than it has!
593 */
594 if ((rhs_components + base_lhs_component) > lhs_components) {
595 rhs_components = lhs_components - base_lhs_component;
596 }
597
598 const ir_constant *const c = param->as_constant();
599 if (c != NULL) {
600 for (unsigned i = 0; i < rhs_components; i++) {
601 switch (c->type->base_type) {
602 case GLSL_TYPE_UINT:
603 data.u[i + base_component] = c->get_uint_component(i);
604 break;
605 case GLSL_TYPE_INT:
606 data.i[i + base_component] = c->get_int_component(i);
607 break;
608 case GLSL_TYPE_FLOAT:
609 data.f[i + base_component] = c->get_float_component(i);
610 break;
611 case GLSL_TYPE_BOOL:
612 data.b[i + base_component] = c->get_bool_component(i);
613 break;
614 default:
615 assert(!"Should not get here.");
616 break;
617 }
618 }
619
620 /* Mask of fields to be written in the assignment.
621 */
622 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
623 constant_components += rhs_components;
624
625 base_component += rhs_components;
626 }
627 /* Advance the component index by the number of components
628 * that were just assigned.
629 */
630 base_lhs_component += rhs_components;
631 }
632
633 if (constant_mask != 0) {
634 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
635 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
636 constant_components,
637 1);
638 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
639
640 ir_instruction *inst =
641 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
642 instructions->push_tail(inst);
643 }
644
645 base_component = 0;
646 foreach_list(node, parameters) {
647 ir_rvalue *param = (ir_rvalue *) node;
648 unsigned rhs_components = param->type->components();
649
650 /* Do not try to assign more components to the vector than it has!
651 */
652 if ((rhs_components + base_component) > lhs_components) {
653 rhs_components = lhs_components - base_component;
654 }
655
656 const ir_constant *const c = param->as_constant();
657 if (c == NULL) {
658 /* Mask of fields to be written in the assignment.
659 */
660 const unsigned write_mask = ((1U << rhs_components) - 1)
661 << base_component;
662
663 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
664
665 /* Generate a swizzle so that LHS and RHS sizes match.
666 */
667 ir_rvalue *rhs =
668 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
669
670 ir_instruction *inst =
671 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
672 instructions->push_tail(inst);
673 }
674
675 /* Advance the component index by the number of components that were
676 * just assigned.
677 */
678 base_component += rhs_components;
679 }
680 }
681 return new(ctx) ir_dereference_variable(var);
682 }
683
684
685 /**
686 * Generate assignment of a portion of a vector to a portion of a matrix column
687 *
688 * \param src_base First component of the source to be used in assignment
689 * \param column Column of destination to be assiged
690 * \param row_base First component of the destination column to be assigned
691 * \param count Number of components to be assigned
692 *
693 * \note
694 * \c src_base + \c count must be less than or equal to the number of components
695 * in the source vector.
696 */
697 ir_instruction *
698 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
699 ir_rvalue *src, unsigned src_base, unsigned count,
700 void *mem_ctx)
701 {
702 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
703 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
704
705 assert(column_ref->type->components() >= (row_base + count));
706 assert(src->type->components() >= (src_base + count));
707
708 /* Generate a swizzle that extracts the number of components from the source
709 * that are to be assigned to the column of the matrix.
710 */
711 if (count < src->type->vector_elements) {
712 src = new(mem_ctx) ir_swizzle(src,
713 src_base + 0, src_base + 1,
714 src_base + 2, src_base + 3,
715 count);
716 }
717
718 /* Mask of fields to be written in the assignment.
719 */
720 const unsigned write_mask = ((1U << count) - 1) << row_base;
721
722 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
723 }
724
725
726 /**
727 * Generate inline code for a matrix constructor
728 *
729 * The generated constructor code will consist of a temporary variable
730 * declaration of the same type as the constructor. A sequence of assignments
731 * from constructor parameters to the temporary will follow.
732 *
733 * \return
734 * An \c ir_dereference_variable of the temprorary generated in the constructor
735 * body.
736 */
737 ir_rvalue *
738 emit_inline_matrix_constructor(const glsl_type *type,
739 exec_list *instructions,
740 exec_list *parameters,
741 void *ctx)
742 {
743 assert(!parameters->is_empty());
744
745 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
746 instructions->push_tail(var);
747
748 /* There are three kinds of matrix constructors.
749 *
750 * - Construct a matrix from a single scalar by replicating that scalar to
751 * along the diagonal of the matrix and setting all other components to
752 * zero.
753 *
754 * - Construct a matrix from an arbirary combination of vectors and
755 * scalars. The components of the constructor parameters are assigned
756 * to the matrix in colum-major order until the matrix is full.
757 *
758 * - Construct a matrix from a single matrix. The source matrix is copied
759 * to the upper left portion of the constructed matrix, and the remaining
760 * elements take values from the identity matrix.
761 */
762 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
763 if (single_scalar_parameter(parameters)) {
764 /* Assign the scalar to the X component of a vec4, and fill the remaining
765 * components with zero.
766 */
767 ir_variable *rhs_var =
768 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
769 ir_var_temporary);
770 instructions->push_tail(rhs_var);
771
772 ir_constant_data zero;
773 zero.f[0] = 0.0;
774 zero.f[1] = 0.0;
775 zero.f[2] = 0.0;
776 zero.f[3] = 0.0;
777
778 ir_instruction *inst =
779 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
780 new(ctx) ir_constant(rhs_var->type, &zero),
781 NULL);
782 instructions->push_tail(inst);
783
784 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
785
786 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
787 instructions->push_tail(inst);
788
789 /* Assign the temporary vector to each column of the destination matrix
790 * with a swizzle that puts the X component on the diagonal of the
791 * matrix. In some cases this may mean that the X component does not
792 * get assigned into the column at all (i.e., when the matrix has more
793 * columns than rows).
794 */
795 static const unsigned rhs_swiz[4][4] = {
796 { 0, 1, 1, 1 },
797 { 1, 0, 1, 1 },
798 { 1, 1, 0, 1 },
799 { 1, 1, 1, 0 }
800 };
801
802 const unsigned cols_to_init = MIN2(type->matrix_columns,
803 type->vector_elements);
804 for (unsigned i = 0; i < cols_to_init; i++) {
805 ir_constant *const col_idx = new(ctx) ir_constant(i);
806 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
807
808 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
809 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
810 type->vector_elements);
811
812 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
813 instructions->push_tail(inst);
814 }
815
816 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
817 ir_constant *const col_idx = new(ctx) ir_constant(i);
818 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
819
820 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
821 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
822 type->vector_elements);
823
824 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
825 instructions->push_tail(inst);
826 }
827 } else if (first_param->type->is_matrix()) {
828 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
829 *
830 * "If a matrix is constructed from a matrix, then each component
831 * (column i, row j) in the result that has a corresponding
832 * component (column i, row j) in the argument will be initialized
833 * from there. All other components will be initialized to the
834 * identity matrix. If a matrix argument is given to a matrix
835 * constructor, it is an error to have any other arguments."
836 */
837 assert(first_param->next->is_tail_sentinel());
838 ir_rvalue *const src_matrix = first_param;
839
840 /* If the source matrix is smaller, pre-initialize the relavent parts of
841 * the destination matrix to the identity matrix.
842 */
843 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
844 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
845
846 /* If the source matrix has fewer rows, every column of the destination
847 * must be initialized. Otherwise only the columns in the destination
848 * that do not exist in the source must be initialized.
849 */
850 unsigned col =
851 (src_matrix->type->vector_elements < var->type->vector_elements)
852 ? 0 : src_matrix->type->matrix_columns;
853
854 const glsl_type *const col_type = var->type->column_type();
855 for (/* empty */; col < var->type->matrix_columns; col++) {
856 ir_constant_data ident;
857
858 ident.f[0] = 0.0;
859 ident.f[1] = 0.0;
860 ident.f[2] = 0.0;
861 ident.f[3] = 0.0;
862
863 ident.f[col] = 1.0;
864
865 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
866
867 ir_rvalue *const lhs =
868 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
869
870 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
871 instructions->push_tail(inst);
872 }
873 }
874
875 /* Assign columns from the source matrix to the destination matrix.
876 *
877 * Since the parameter will be used in the RHS of multiple assignments,
878 * generate a temporary and copy the paramter there.
879 */
880 ir_variable *const rhs_var =
881 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
882 ir_var_temporary);
883 instructions->push_tail(rhs_var);
884
885 ir_dereference *const rhs_var_ref =
886 new(ctx) ir_dereference_variable(rhs_var);
887 ir_instruction *const inst =
888 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
889 instructions->push_tail(inst);
890
891 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
892 var->type->vector_elements);
893 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
894 var->type->matrix_columns);
895
896 unsigned swiz[4] = { 0, 0, 0, 0 };
897 for (unsigned i = 1; i < last_row; i++)
898 swiz[i] = i;
899
900 const unsigned write_mask = (1U << last_row) - 1;
901
902 for (unsigned i = 0; i < last_col; i++) {
903 ir_dereference *const lhs =
904 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
905 ir_rvalue *const rhs_col =
906 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
907
908 /* If one matrix has columns that are smaller than the columns of the
909 * other matrix, wrap the column access of the larger with a swizzle
910 * so that the LHS and RHS of the assignment have the same size (and
911 * therefore have the same type).
912 *
913 * It would be perfectly valid to unconditionally generate the
914 * swizzles, this this will typically result in a more compact IR tree.
915 */
916 ir_rvalue *rhs;
917 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
918 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
919 } else {
920 rhs = rhs_col;
921 }
922
923 ir_instruction *inst =
924 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
925 instructions->push_tail(inst);
926 }
927 } else {
928 const unsigned cols = type->matrix_columns;
929 const unsigned rows = type->vector_elements;
930 unsigned col_idx = 0;
931 unsigned row_idx = 0;
932
933 foreach_list (node, parameters) {
934 ir_rvalue *const rhs = (ir_rvalue *) node;
935 const unsigned components_remaining_this_column = rows - row_idx;
936 unsigned rhs_components = rhs->type->components();
937 unsigned rhs_base = 0;
938
939 /* Since the parameter might be used in the RHS of two assignments,
940 * generate a temporary and copy the paramter there.
941 */
942 ir_variable *rhs_var =
943 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
944 instructions->push_tail(rhs_var);
945
946 ir_dereference *rhs_var_ref =
947 new(ctx) ir_dereference_variable(rhs_var);
948 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
949 instructions->push_tail(inst);
950
951 /* Assign the current parameter to as many components of the matrix
952 * as it will fill.
953 *
954 * NOTE: A single vector parameter can span two matrix columns. A
955 * single vec4, for example, can completely fill a mat2.
956 */
957 if (rhs_components >= components_remaining_this_column) {
958 const unsigned count = MIN2(rhs_components,
959 components_remaining_this_column);
960
961 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
962
963 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
964 row_idx,
965 rhs_var_ref, 0,
966 count, ctx);
967 instructions->push_tail(inst);
968
969 rhs_base = count;
970
971 col_idx++;
972 row_idx = 0;
973 }
974
975 /* If there is data left in the parameter and components left to be
976 * set in the destination, emit another assignment. It is possible
977 * that the assignment could be of a vec4 to the last element of the
978 * matrix. In this case col_idx==cols, but there is still data
979 * left in the source parameter. Obviously, don't emit an assignment
980 * to data outside the destination matrix.
981 */
982 if ((col_idx < cols) && (rhs_base < rhs_components)) {
983 const unsigned count = rhs_components - rhs_base;
984
985 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
986
987 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
988 row_idx,
989 rhs_var_ref,
990 rhs_base,
991 count, ctx);
992 instructions->push_tail(inst);
993
994 row_idx += count;
995 }
996 }
997 }
998
999 return new(ctx) ir_dereference_variable(var);
1000 }
1001
1002
1003 ir_rvalue *
1004 emit_inline_record_constructor(const glsl_type *type,
1005 exec_list *instructions,
1006 exec_list *parameters,
1007 void *mem_ctx)
1008 {
1009 ir_variable *const var =
1010 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1011 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1012
1013 instructions->push_tail(var);
1014
1015 exec_node *node = parameters->head;
1016 for (unsigned i = 0; i < type->length; i++) {
1017 assert(!node->is_tail_sentinel());
1018
1019 ir_dereference *const lhs =
1020 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1021 type->fields.structure[i].name);
1022
1023 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1024 assert(rhs != NULL);
1025
1026 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1027
1028 instructions->push_tail(assign);
1029 node = node->next;
1030 }
1031
1032 return d;
1033 }
1034
1035
1036 ir_rvalue *
1037 ast_function_expression::hir(exec_list *instructions,
1038 struct _mesa_glsl_parse_state *state)
1039 {
1040 void *ctx = state;
1041 /* There are three sorts of function calls.
1042 *
1043 * 1. constructors - The first subexpression is an ast_type_specifier.
1044 * 2. methods - Only the .length() method of array types.
1045 * 3. functions - Calls to regular old functions.
1046 *
1047 * Method calls are actually detected when the ast_field_selection
1048 * expression is handled.
1049 */
1050 if (is_constructor()) {
1051 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1052 YYLTYPE loc = type->get_location();
1053 const char *name;
1054
1055 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1056
1057 /* constructor_type can be NULL if a variable with the same name as the
1058 * structure has come into scope.
1059 */
1060 if (constructor_type == NULL) {
1061 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1062 "may be shadowed by a variable with the same name)",
1063 type->type_name);
1064 return ir_call::get_error_instruction(ctx);
1065 }
1066
1067
1068 /* Constructors for samplers are illegal.
1069 */
1070 if (constructor_type->is_sampler()) {
1071 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1072 constructor_type->name);
1073 return ir_call::get_error_instruction(ctx);
1074 }
1075
1076 if (constructor_type->is_array()) {
1077 if (state->language_version <= 110) {
1078 _mesa_glsl_error(& loc, state,
1079 "array constructors forbidden in GLSL 1.10");
1080 return ir_call::get_error_instruction(ctx);
1081 }
1082
1083 return process_array_constructor(instructions, constructor_type,
1084 & loc, &this->expressions, state);
1085 }
1086
1087
1088 /* There are two kinds of constructor call. Constructors for built-in
1089 * language types, such as mat4 and vec2, are free form. The only
1090 * requirement is that the parameters must provide enough values of the
1091 * correct scalar type. Constructors for arrays and structures must
1092 * have the exact number of parameters with matching types in the
1093 * correct order. These constructors follow essentially the same type
1094 * matching rules as functions.
1095 */
1096 if (constructor_type->is_record()) {
1097 exec_list actual_parameters;
1098
1099 process_parameters(instructions, &actual_parameters,
1100 &this->expressions, state);
1101
1102 exec_node *node = actual_parameters.head;
1103 for (unsigned i = 0; i < constructor_type->length; i++) {
1104 ir_rvalue *ir = (ir_rvalue *) node;
1105
1106 if (node->is_tail_sentinel()) {
1107 _mesa_glsl_error(&loc, state,
1108 "insufficient parameters to constructor "
1109 "for `%s'",
1110 constructor_type->name);
1111 return ir_call::get_error_instruction(ctx);
1112 }
1113
1114 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1115 ir, state)) {
1116 node->replace_with(ir);
1117 } else {
1118 _mesa_glsl_error(&loc, state,
1119 "parameter type mismatch in constructor "
1120 "for `%s.%s' (%s vs %s)",
1121 constructor_type->name,
1122 constructor_type->fields.structure[i].name,
1123 ir->type->name,
1124 constructor_type->fields.structure[i].type->name);
1125 return ir_call::get_error_instruction(ctx);;
1126 }
1127
1128 node = node->next;
1129 }
1130
1131 if (!node->is_tail_sentinel()) {
1132 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1133 "for `%s'", constructor_type->name);
1134 return ir_call::get_error_instruction(ctx);
1135 }
1136
1137 ir_rvalue *const constant =
1138 constant_record_constructor(constructor_type, &actual_parameters,
1139 state);
1140
1141 return (constant != NULL)
1142 ? constant
1143 : emit_inline_record_constructor(constructor_type, instructions,
1144 &actual_parameters, state);
1145 }
1146
1147 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1148 return ir_call::get_error_instruction(ctx);
1149
1150 /* Total number of components of the type being constructed. */
1151 const unsigned type_components = constructor_type->components();
1152
1153 /* Number of components from parameters that have actually been
1154 * consumed. This is used to perform several kinds of error checking.
1155 */
1156 unsigned components_used = 0;
1157
1158 unsigned matrix_parameters = 0;
1159 unsigned nonmatrix_parameters = 0;
1160 exec_list actual_parameters;
1161
1162 foreach_list (n, &this->expressions) {
1163 ast_node *ast = exec_node_data(ast_node, n, link);
1164 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1165
1166 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1167 *
1168 * "It is an error to provide extra arguments beyond this
1169 * last used argument."
1170 */
1171 if (components_used >= type_components) {
1172 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1173 "constructor",
1174 constructor_type->name);
1175 return ir_call::get_error_instruction(ctx);
1176 }
1177
1178 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1179 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1180 "non-numeric data type",
1181 constructor_type->name);
1182 return ir_call::get_error_instruction(ctx);
1183 }
1184
1185 /* Count the number of matrix and nonmatrix parameters. This
1186 * is used below to enforce some of the constructor rules.
1187 */
1188 if (result->type->is_matrix())
1189 matrix_parameters++;
1190 else
1191 nonmatrix_parameters++;
1192
1193 actual_parameters.push_tail(result);
1194 components_used += result->type->components();
1195 }
1196
1197 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1198 *
1199 * "It is an error to construct matrices from other matrices. This
1200 * is reserved for future use."
1201 */
1202 if (state->language_version == 110 && matrix_parameters > 0
1203 && constructor_type->is_matrix()) {
1204 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1205 "matrix in GLSL 1.10",
1206 constructor_type->name);
1207 return ir_call::get_error_instruction(ctx);
1208 }
1209
1210 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1211 *
1212 * "If a matrix argument is given to a matrix constructor, it is
1213 * an error to have any other arguments."
1214 */
1215 if ((matrix_parameters > 0)
1216 && ((matrix_parameters + nonmatrix_parameters) > 1)
1217 && constructor_type->is_matrix()) {
1218 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1219 "matrix must be only parameter",
1220 constructor_type->name);
1221 return ir_call::get_error_instruction(ctx);
1222 }
1223
1224 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1225 *
1226 * "In these cases, there must be enough components provided in the
1227 * arguments to provide an initializer for every component in the
1228 * constructed value."
1229 */
1230 if (components_used < type_components && components_used != 1
1231 && matrix_parameters == 0) {
1232 _mesa_glsl_error(& loc, state, "too few components to construct "
1233 "`%s'",
1234 constructor_type->name);
1235 return ir_call::get_error_instruction(ctx);
1236 }
1237
1238 /* Later, we cast each parameter to the same base type as the
1239 * constructor. Since there are no non-floating point matrices, we
1240 * need to break them up into a series of column vectors.
1241 */
1242 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1243 foreach_list_safe(n, &actual_parameters) {
1244 ir_rvalue *matrix = (ir_rvalue *) n;
1245
1246 if (!matrix->type->is_matrix())
1247 continue;
1248
1249 /* Create a temporary containing the matrix. */
1250 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1251 ir_var_temporary);
1252 instructions->push_tail(var);
1253 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1254 ir_dereference_variable(var), matrix, NULL));
1255 var->constant_value = matrix->constant_expression_value();
1256
1257 /* Replace the matrix with dereferences of its columns. */
1258 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1259 matrix->insert_before(new (ctx) ir_dereference_array(var,
1260 new(ctx) ir_constant(i)));
1261 }
1262 matrix->remove();
1263 }
1264 }
1265
1266 bool all_parameters_are_constant = true;
1267
1268 /* Type cast each parameter and, if possible, fold constants.*/
1269 foreach_list_safe(n, &actual_parameters) {
1270 ir_rvalue *ir = (ir_rvalue *) n;
1271
1272 const glsl_type *desired_type =
1273 glsl_type::get_instance(constructor_type->base_type,
1274 ir->type->vector_elements,
1275 ir->type->matrix_columns);
1276 ir_rvalue *result = convert_component(ir, desired_type);
1277
1278 /* Attempt to convert the parameter to a constant valued expression.
1279 * After doing so, track whether or not all the parameters to the
1280 * constructor are trivially constant valued expressions.
1281 */
1282 ir_rvalue *const constant = result->constant_expression_value();
1283
1284 if (constant != NULL)
1285 result = constant;
1286 else
1287 all_parameters_are_constant = false;
1288
1289 if (result != ir) {
1290 ir->replace_with(result);
1291 }
1292 }
1293
1294 /* If all of the parameters are trivially constant, create a
1295 * constant representing the complete collection of parameters.
1296 */
1297 if (all_parameters_are_constant) {
1298 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1299 } else if (constructor_type->is_scalar()) {
1300 return dereference_component((ir_rvalue *) actual_parameters.head,
1301 0);
1302 } else if (constructor_type->is_vector()) {
1303 return emit_inline_vector_constructor(constructor_type,
1304 instructions,
1305 &actual_parameters,
1306 ctx);
1307 } else {
1308 assert(constructor_type->is_matrix());
1309 return emit_inline_matrix_constructor(constructor_type,
1310 instructions,
1311 &actual_parameters,
1312 ctx);
1313 }
1314 } else {
1315 const ast_expression *id = subexpressions[0];
1316 YYLTYPE loc = id->get_location();
1317 exec_list actual_parameters;
1318
1319 process_parameters(instructions, &actual_parameters, &this->expressions,
1320 state);
1321
1322 return match_function_by_name(instructions,
1323 id->primary_expression.identifier, & loc,
1324 &actual_parameters, state);
1325 }
1326
1327 return ir_call::get_error_instruction(ctx);
1328 }