glsl: Use a new foreach_two_lists macro for walking two lists at once.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->data.mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->data.mode == ir_var_function_out
136 || formal->data.mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->data.mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->data.assigned = true;
159
160 if (var && var->data.read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * Generate a function call.
278 *
279 * For non-void functions, this returns a dereference of the temporary variable
280 * which stores the return value for the call. For void functions, this returns
281 * NULL.
282 */
283 static ir_rvalue *
284 generate_call(exec_list *instructions, ir_function_signature *sig,
285 exec_list *actual_parameters,
286 struct _mesa_glsl_parse_state *state)
287 {
288 void *ctx = state;
289 exec_list post_call_conversions;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 foreach_two_lists(formal_node, &sig->parameters,
297 actual_node, actual_parameters) {
298 ir_rvalue *actual = (ir_rvalue *) actual_node;
299 ir_variable *formal = (ir_variable *) formal_node;
300
301 if (formal->type->is_numeric() || formal->type->is_boolean()) {
302 switch (formal->data.mode) {
303 case ir_var_const_in:
304 case ir_var_function_in: {
305 ir_rvalue *converted
306 = convert_component(actual, formal->type);
307 actual->replace_with(converted);
308 break;
309 }
310 case ir_var_function_out:
311 case ir_var_function_inout:
312 fix_parameter(ctx, actual, formal->type,
313 instructions, &post_call_conversions,
314 formal->data.mode == ir_var_function_inout);
315 break;
316 default:
317 assert (!"Illegal formal parameter mode");
318 break;
319 }
320 }
321 }
322
323 /* If the function call is a constant expression, don't generate any
324 * instructions; just generate an ir_constant.
325 *
326 * Function calls were first allowed to be constant expressions in GLSL
327 * 1.20 and GLSL ES 3.00.
328 */
329 if (state->is_version(120, 300)) {
330 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
331 if (value != NULL) {
332 return value;
333 }
334 }
335
336 ir_dereference_variable *deref = NULL;
337 if (!sig->return_type->is_void()) {
338 /* Create a new temporary to hold the return value. */
339 ir_variable *var;
340
341 var = new(ctx) ir_variable(sig->return_type,
342 ralloc_asprintf(ctx, "%s_retval",
343 sig->function_name()),
344 ir_var_temporary);
345 instructions->push_tail(var);
346
347 deref = new(ctx) ir_dereference_variable(var);
348 }
349 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
350 instructions->push_tail(call);
351
352 /* Also emit any necessary out-parameter conversions. */
353 instructions->append_list(&post_call_conversions);
354
355 return deref ? deref->clone(ctx, NULL) : NULL;
356 }
357
358 /**
359 * Given a function name and parameter list, find the matching signature.
360 */
361 static ir_function_signature *
362 match_function_by_name(const char *name,
363 exec_list *actual_parameters,
364 struct _mesa_glsl_parse_state *state)
365 {
366 void *ctx = state;
367 ir_function *f = state->symbols->get_function(name);
368 ir_function_signature *local_sig = NULL;
369 ir_function_signature *sig = NULL;
370
371 /* Is the function hidden by a record type constructor? */
372 if (state->symbols->get_type(name))
373 goto done; /* no match */
374
375 /* Is the function hidden by a variable (impossible in 1.10)? */
376 if (!state->symbols->separate_function_namespace
377 && state->symbols->get_variable(name))
378 goto done; /* no match */
379
380 if (f != NULL) {
381 /* Look for a match in the local shader. If exact, we're done. */
382 bool is_exact = false;
383 sig = local_sig = f->matching_signature(state, actual_parameters,
384 &is_exact);
385 if (is_exact)
386 goto done;
387
388 if (!state->es_shader && f->has_user_signature()) {
389 /* In desktop GL, the presence of a user-defined signature hides any
390 * built-in signatures, so we must ignore them. In contrast, in ES2
391 * user-defined signatures add new overloads, so we must proceed.
392 */
393 goto done;
394 }
395 }
396
397 /* Local shader has no exact candidates; check the built-ins. */
398 _mesa_glsl_initialize_builtin_functions();
399 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
400
401 done:
402 if (sig != NULL) {
403 /* If the match is from a linked built-in shader, import the prototype. */
404 if (sig != local_sig) {
405 if (f == NULL) {
406 f = new(ctx) ir_function(name);
407 state->symbols->add_global_function(f);
408 emit_function(state, f);
409 }
410 f->add_signature(sig->clone_prototype(f, NULL));
411 }
412 }
413 return sig;
414 }
415
416 static void
417 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
418 ir_function *f)
419 {
420 if (f == NULL)
421 return;
422
423 foreach_list (node, &f->signatures) {
424 ir_function_signature *sig = (ir_function_signature *) node;
425
426 if (sig->is_builtin() && !sig->is_builtin_available(state))
427 continue;
428
429 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
430 _mesa_glsl_error(loc, state, " %s", str);
431 ralloc_free(str);
432 }
433 }
434
435 /**
436 * Raise a "no matching function" error, listing all possible overloads the
437 * compiler considered so developers can figure out what went wrong.
438 */
439 static void
440 no_matching_function_error(const char *name,
441 YYLTYPE *loc,
442 exec_list *actual_parameters,
443 _mesa_glsl_parse_state *state)
444 {
445 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
446
447 if (state->symbols->get_function(name) == NULL
448 && (!state->uses_builtin_functions
449 || sh->symbols->get_function(name) == NULL)) {
450 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
451 } else {
452 char *str = prototype_string(NULL, name, actual_parameters);
453 _mesa_glsl_error(loc, state,
454 "no matching function for call to `%s'; candidates are:",
455 str);
456 ralloc_free(str);
457
458 print_function_prototypes(state, loc, state->symbols->get_function(name));
459
460 if (state->uses_builtin_functions) {
461 print_function_prototypes(state, loc, sh->symbols->get_function(name));
462 }
463 }
464 }
465
466 /**
467 * Perform automatic type conversion of constructor parameters
468 *
469 * This implements the rules in the "Conversion and Scalar Constructors"
470 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
471 */
472 static ir_rvalue *
473 convert_component(ir_rvalue *src, const glsl_type *desired_type)
474 {
475 void *ctx = ralloc_parent(src);
476 const unsigned a = desired_type->base_type;
477 const unsigned b = src->type->base_type;
478 ir_expression *result = NULL;
479
480 if (src->type->is_error())
481 return src;
482
483 assert(a <= GLSL_TYPE_BOOL);
484 assert(b <= GLSL_TYPE_BOOL);
485
486 if (a == b)
487 return src;
488
489 switch (a) {
490 case GLSL_TYPE_UINT:
491 switch (b) {
492 case GLSL_TYPE_INT:
493 result = new(ctx) ir_expression(ir_unop_i2u, src);
494 break;
495 case GLSL_TYPE_FLOAT:
496 result = new(ctx) ir_expression(ir_unop_f2u, src);
497 break;
498 case GLSL_TYPE_BOOL:
499 result = new(ctx) ir_expression(ir_unop_i2u,
500 new(ctx) ir_expression(ir_unop_b2i, src));
501 break;
502 }
503 break;
504 case GLSL_TYPE_INT:
505 switch (b) {
506 case GLSL_TYPE_UINT:
507 result = new(ctx) ir_expression(ir_unop_u2i, src);
508 break;
509 case GLSL_TYPE_FLOAT:
510 result = new(ctx) ir_expression(ir_unop_f2i, src);
511 break;
512 case GLSL_TYPE_BOOL:
513 result = new(ctx) ir_expression(ir_unop_b2i, src);
514 break;
515 }
516 break;
517 case GLSL_TYPE_FLOAT:
518 switch (b) {
519 case GLSL_TYPE_UINT:
520 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
521 break;
522 case GLSL_TYPE_INT:
523 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
524 break;
525 case GLSL_TYPE_BOOL:
526 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
527 break;
528 }
529 break;
530 case GLSL_TYPE_BOOL:
531 switch (b) {
532 case GLSL_TYPE_UINT:
533 result = new(ctx) ir_expression(ir_unop_i2b,
534 new(ctx) ir_expression(ir_unop_u2i, src));
535 break;
536 case GLSL_TYPE_INT:
537 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
538 break;
539 case GLSL_TYPE_FLOAT:
540 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
541 break;
542 }
543 break;
544 }
545
546 assert(result != NULL);
547 assert(result->type == desired_type);
548
549 /* Try constant folding; it may fold in the conversion we just added. */
550 ir_constant *const constant = result->constant_expression_value();
551 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
552 }
553
554 /**
555 * Dereference a specific component from a scalar, vector, or matrix
556 */
557 static ir_rvalue *
558 dereference_component(ir_rvalue *src, unsigned component)
559 {
560 void *ctx = ralloc_parent(src);
561 assert(component < src->type->components());
562
563 /* If the source is a constant, just create a new constant instead of a
564 * dereference of the existing constant.
565 */
566 ir_constant *constant = src->as_constant();
567 if (constant)
568 return new(ctx) ir_constant(constant, component);
569
570 if (src->type->is_scalar()) {
571 return src;
572 } else if (src->type->is_vector()) {
573 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
574 } else {
575 assert(src->type->is_matrix());
576
577 /* Dereference a row of the matrix, then call this function again to get
578 * a specific element from that row.
579 */
580 const int c = component / src->type->column_type()->vector_elements;
581 const int r = component % src->type->column_type()->vector_elements;
582 ir_constant *const col_index = new(ctx) ir_constant(c);
583 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
584
585 col->type = src->type->column_type();
586
587 return dereference_component(col, r);
588 }
589
590 assert(!"Should not get here.");
591 return NULL;
592 }
593
594
595 static ir_rvalue *
596 process_vec_mat_constructor(exec_list *instructions,
597 const glsl_type *constructor_type,
598 YYLTYPE *loc, exec_list *parameters,
599 struct _mesa_glsl_parse_state *state)
600 {
601 void *ctx = state;
602
603 /* The ARB_shading_language_420pack spec says:
604 *
605 * "If an initializer is a list of initializers enclosed in curly braces,
606 * the variable being declared must be a vector, a matrix, an array, or a
607 * structure.
608 *
609 * int i = { 1 }; // illegal, i is not an aggregate"
610 */
611 if (constructor_type->vector_elements <= 1) {
612 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
613 "matrices, arrays, and structs");
614 return ir_rvalue::error_value(ctx);
615 }
616
617 exec_list actual_parameters;
618 const unsigned parameter_count =
619 process_parameters(instructions, &actual_parameters, parameters, state);
620
621 if (parameter_count == 0
622 || (constructor_type->is_vector() &&
623 constructor_type->vector_elements != parameter_count)
624 || (constructor_type->is_matrix() &&
625 constructor_type->matrix_columns != parameter_count)) {
626 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
627 constructor_type->is_vector() ? "vector" : "matrix",
628 constructor_type->vector_elements);
629 return ir_rvalue::error_value(ctx);
630 }
631
632 bool all_parameters_are_constant = true;
633
634 /* Type cast each parameter and, if possible, fold constants. */
635 foreach_list_safe(n, &actual_parameters) {
636 ir_rvalue *ir = (ir_rvalue *) n;
637 ir_rvalue *result = ir;
638
639 /* Apply implicit conversions (not the scalar constructor rules!). See
640 * the spec quote above. */
641 if (constructor_type->is_float()) {
642 const glsl_type *desired_type =
643 glsl_type::get_instance(GLSL_TYPE_FLOAT,
644 ir->type->vector_elements,
645 ir->type->matrix_columns);
646 if (result->type->can_implicitly_convert_to(desired_type)) {
647 /* Even though convert_component() implements the constructor
648 * conversion rules (not the implicit conversion rules), its safe
649 * to use it here because we already checked that the implicit
650 * conversion is legal.
651 */
652 result = convert_component(ir, desired_type);
653 }
654 }
655
656 if (constructor_type->is_matrix()) {
657 if (result->type != constructor_type->column_type()) {
658 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
659 "expected: %s, found %s",
660 constructor_type->column_type()->name,
661 result->type->name);
662 return ir_rvalue::error_value(ctx);
663 }
664 } else if (result->type != constructor_type->get_scalar_type()) {
665 _mesa_glsl_error(loc, state, "type error in vector constructor: "
666 "expected: %s, found %s",
667 constructor_type->get_scalar_type()->name,
668 result->type->name);
669 return ir_rvalue::error_value(ctx);
670 }
671
672 /* Attempt to convert the parameter to a constant valued expression.
673 * After doing so, track whether or not all the parameters to the
674 * constructor are trivially constant valued expressions.
675 */
676 ir_rvalue *const constant = result->constant_expression_value();
677
678 if (constant != NULL)
679 result = constant;
680 else
681 all_parameters_are_constant = false;
682
683 ir->replace_with(result);
684 }
685
686 if (all_parameters_are_constant)
687 return new(ctx) ir_constant(constructor_type, &actual_parameters);
688
689 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
690 ir_var_temporary);
691 instructions->push_tail(var);
692
693 int i = 0;
694 foreach_list(node, &actual_parameters) {
695 ir_rvalue *rhs = (ir_rvalue *) node;
696 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
697 new(ctx) ir_constant(i));
698
699 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
700 instructions->push_tail(assignment);
701
702 i++;
703 }
704
705 return new(ctx) ir_dereference_variable(var);
706 }
707
708
709 static ir_rvalue *
710 process_array_constructor(exec_list *instructions,
711 const glsl_type *constructor_type,
712 YYLTYPE *loc, exec_list *parameters,
713 struct _mesa_glsl_parse_state *state)
714 {
715 void *ctx = state;
716 /* Array constructors come in two forms: sized and unsized. Sized array
717 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
718 * variables. In this case the number of parameters must exactly match the
719 * specified size of the array.
720 *
721 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
722 * are vec4 variables. In this case the size of the array being constructed
723 * is determined by the number of parameters.
724 *
725 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
726 *
727 * "There must be exactly the same number of arguments as the size of
728 * the array being constructed. If no size is present in the
729 * constructor, then the array is explicitly sized to the number of
730 * arguments provided. The arguments are assigned in order, starting at
731 * element 0, to the elements of the constructed array. Each argument
732 * must be the same type as the element type of the array, or be a type
733 * that can be converted to the element type of the array according to
734 * Section 4.1.10 "Implicit Conversions.""
735 */
736 exec_list actual_parameters;
737 const unsigned parameter_count =
738 process_parameters(instructions, &actual_parameters, parameters, state);
739 bool is_unsized_array = constructor_type->is_unsized_array();
740
741 if ((parameter_count == 0) ||
742 (!is_unsized_array && (constructor_type->length != parameter_count))) {
743 const unsigned min_param = is_unsized_array
744 ? 1 : constructor_type->length;
745
746 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
747 "parameter%s",
748 is_unsized_array ? "at least" : "exactly",
749 min_param, (min_param <= 1) ? "" : "s");
750 return ir_rvalue::error_value(ctx);
751 }
752
753 if (is_unsized_array) {
754 constructor_type =
755 glsl_type::get_array_instance(constructor_type->element_type(),
756 parameter_count);
757 assert(constructor_type != NULL);
758 assert(constructor_type->length == parameter_count);
759 }
760
761 bool all_parameters_are_constant = true;
762
763 /* Type cast each parameter and, if possible, fold constants. */
764 foreach_list_safe(n, &actual_parameters) {
765 ir_rvalue *ir = (ir_rvalue *) n;
766 ir_rvalue *result = ir;
767
768 /* Apply implicit conversions (not the scalar constructor rules!). See
769 * the spec quote above. */
770 if (constructor_type->element_type()->is_float()) {
771 const glsl_type *desired_type =
772 glsl_type::get_instance(GLSL_TYPE_FLOAT,
773 ir->type->vector_elements,
774 ir->type->matrix_columns);
775 if (result->type->can_implicitly_convert_to(desired_type)) {
776 /* Even though convert_component() implements the constructor
777 * conversion rules (not the implicit conversion rules), its safe
778 * to use it here because we already checked that the implicit
779 * conversion is legal.
780 */
781 result = convert_component(ir, desired_type);
782 }
783 }
784
785 if (result->type != constructor_type->element_type()) {
786 _mesa_glsl_error(loc, state, "type error in array constructor: "
787 "expected: %s, found %s",
788 constructor_type->element_type()->name,
789 result->type->name);
790 return ir_rvalue::error_value(ctx);
791 }
792
793 /* Attempt to convert the parameter to a constant valued expression.
794 * After doing so, track whether or not all the parameters to the
795 * constructor are trivially constant valued expressions.
796 */
797 ir_rvalue *const constant = result->constant_expression_value();
798
799 if (constant != NULL)
800 result = constant;
801 else
802 all_parameters_are_constant = false;
803
804 ir->replace_with(result);
805 }
806
807 if (all_parameters_are_constant)
808 return new(ctx) ir_constant(constructor_type, &actual_parameters);
809
810 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
811 ir_var_temporary);
812 instructions->push_tail(var);
813
814 int i = 0;
815 foreach_list(node, &actual_parameters) {
816 ir_rvalue *rhs = (ir_rvalue *) node;
817 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
818 new(ctx) ir_constant(i));
819
820 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
821 instructions->push_tail(assignment);
822
823 i++;
824 }
825
826 return new(ctx) ir_dereference_variable(var);
827 }
828
829
830 /**
831 * Try to convert a record constructor to a constant expression
832 */
833 static ir_constant *
834 constant_record_constructor(const glsl_type *constructor_type,
835 exec_list *parameters, void *mem_ctx)
836 {
837 foreach_list(node, parameters) {
838 ir_constant *constant = ((ir_instruction *) node)->as_constant();
839 if (constant == NULL)
840 return NULL;
841 node->replace_with(constant);
842 }
843
844 return new(mem_ctx) ir_constant(constructor_type, parameters);
845 }
846
847
848 /**
849 * Determine if a list consists of a single scalar r-value
850 */
851 bool
852 single_scalar_parameter(exec_list *parameters)
853 {
854 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
855 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
856
857 return (p->type->is_scalar() && p->next->is_tail_sentinel());
858 }
859
860
861 /**
862 * Generate inline code for a vector constructor
863 *
864 * The generated constructor code will consist of a temporary variable
865 * declaration of the same type as the constructor. A sequence of assignments
866 * from constructor parameters to the temporary will follow.
867 *
868 * \return
869 * An \c ir_dereference_variable of the temprorary generated in the constructor
870 * body.
871 */
872 ir_rvalue *
873 emit_inline_vector_constructor(const glsl_type *type,
874 exec_list *instructions,
875 exec_list *parameters,
876 void *ctx)
877 {
878 assert(!parameters->is_empty());
879
880 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
881 instructions->push_tail(var);
882
883 /* There are two kinds of vector constructors.
884 *
885 * - Construct a vector from a single scalar by replicating that scalar to
886 * all components of the vector.
887 *
888 * - Construct a vector from an arbirary combination of vectors and
889 * scalars. The components of the constructor parameters are assigned
890 * to the vector in order until the vector is full.
891 */
892 const unsigned lhs_components = type->components();
893 if (single_scalar_parameter(parameters)) {
894 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
895 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
896 lhs_components);
897 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
898 const unsigned mask = (1U << lhs_components) - 1;
899
900 assert(rhs->type == lhs->type);
901
902 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
903 instructions->push_tail(inst);
904 } else {
905 unsigned base_component = 0;
906 unsigned base_lhs_component = 0;
907 ir_constant_data data;
908 unsigned constant_mask = 0, constant_components = 0;
909
910 memset(&data, 0, sizeof(data));
911
912 foreach_list(node, parameters) {
913 ir_rvalue *param = (ir_rvalue *) node;
914 unsigned rhs_components = param->type->components();
915
916 /* Do not try to assign more components to the vector than it has!
917 */
918 if ((rhs_components + base_lhs_component) > lhs_components) {
919 rhs_components = lhs_components - base_lhs_component;
920 }
921
922 const ir_constant *const c = param->as_constant();
923 if (c != NULL) {
924 for (unsigned i = 0; i < rhs_components; i++) {
925 switch (c->type->base_type) {
926 case GLSL_TYPE_UINT:
927 data.u[i + base_component] = c->get_uint_component(i);
928 break;
929 case GLSL_TYPE_INT:
930 data.i[i + base_component] = c->get_int_component(i);
931 break;
932 case GLSL_TYPE_FLOAT:
933 data.f[i + base_component] = c->get_float_component(i);
934 break;
935 case GLSL_TYPE_BOOL:
936 data.b[i + base_component] = c->get_bool_component(i);
937 break;
938 default:
939 assert(!"Should not get here.");
940 break;
941 }
942 }
943
944 /* Mask of fields to be written in the assignment.
945 */
946 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
947 constant_components += rhs_components;
948
949 base_component += rhs_components;
950 }
951 /* Advance the component index by the number of components
952 * that were just assigned.
953 */
954 base_lhs_component += rhs_components;
955 }
956
957 if (constant_mask != 0) {
958 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
959 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
960 constant_components,
961 1);
962 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
963
964 ir_instruction *inst =
965 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
966 instructions->push_tail(inst);
967 }
968
969 base_component = 0;
970 foreach_list(node, parameters) {
971 ir_rvalue *param = (ir_rvalue *) node;
972 unsigned rhs_components = param->type->components();
973
974 /* Do not try to assign more components to the vector than it has!
975 */
976 if ((rhs_components + base_component) > lhs_components) {
977 rhs_components = lhs_components - base_component;
978 }
979
980 const ir_constant *const c = param->as_constant();
981 if (c == NULL) {
982 /* Mask of fields to be written in the assignment.
983 */
984 const unsigned write_mask = ((1U << rhs_components) - 1)
985 << base_component;
986
987 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
988
989 /* Generate a swizzle so that LHS and RHS sizes match.
990 */
991 ir_rvalue *rhs =
992 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
993
994 ir_instruction *inst =
995 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
996 instructions->push_tail(inst);
997 }
998
999 /* Advance the component index by the number of components that were
1000 * just assigned.
1001 */
1002 base_component += rhs_components;
1003 }
1004 }
1005 return new(ctx) ir_dereference_variable(var);
1006 }
1007
1008
1009 /**
1010 * Generate assignment of a portion of a vector to a portion of a matrix column
1011 *
1012 * \param src_base First component of the source to be used in assignment
1013 * \param column Column of destination to be assiged
1014 * \param row_base First component of the destination column to be assigned
1015 * \param count Number of components to be assigned
1016 *
1017 * \note
1018 * \c src_base + \c count must be less than or equal to the number of components
1019 * in the source vector.
1020 */
1021 ir_instruction *
1022 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1023 ir_rvalue *src, unsigned src_base, unsigned count,
1024 void *mem_ctx)
1025 {
1026 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1027 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1028
1029 assert(column_ref->type->components() >= (row_base + count));
1030 assert(src->type->components() >= (src_base + count));
1031
1032 /* Generate a swizzle that extracts the number of components from the source
1033 * that are to be assigned to the column of the matrix.
1034 */
1035 if (count < src->type->vector_elements) {
1036 src = new(mem_ctx) ir_swizzle(src,
1037 src_base + 0, src_base + 1,
1038 src_base + 2, src_base + 3,
1039 count);
1040 }
1041
1042 /* Mask of fields to be written in the assignment.
1043 */
1044 const unsigned write_mask = ((1U << count) - 1) << row_base;
1045
1046 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1047 }
1048
1049
1050 /**
1051 * Generate inline code for a matrix constructor
1052 *
1053 * The generated constructor code will consist of a temporary variable
1054 * declaration of the same type as the constructor. A sequence of assignments
1055 * from constructor parameters to the temporary will follow.
1056 *
1057 * \return
1058 * An \c ir_dereference_variable of the temprorary generated in the constructor
1059 * body.
1060 */
1061 ir_rvalue *
1062 emit_inline_matrix_constructor(const glsl_type *type,
1063 exec_list *instructions,
1064 exec_list *parameters,
1065 void *ctx)
1066 {
1067 assert(!parameters->is_empty());
1068
1069 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1070 instructions->push_tail(var);
1071
1072 /* There are three kinds of matrix constructors.
1073 *
1074 * - Construct a matrix from a single scalar by replicating that scalar to
1075 * along the diagonal of the matrix and setting all other components to
1076 * zero.
1077 *
1078 * - Construct a matrix from an arbirary combination of vectors and
1079 * scalars. The components of the constructor parameters are assigned
1080 * to the matrix in colum-major order until the matrix is full.
1081 *
1082 * - Construct a matrix from a single matrix. The source matrix is copied
1083 * to the upper left portion of the constructed matrix, and the remaining
1084 * elements take values from the identity matrix.
1085 */
1086 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1087 if (single_scalar_parameter(parameters)) {
1088 /* Assign the scalar to the X component of a vec4, and fill the remaining
1089 * components with zero.
1090 */
1091 ir_variable *rhs_var =
1092 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1093 ir_var_temporary);
1094 instructions->push_tail(rhs_var);
1095
1096 ir_constant_data zero;
1097 zero.f[0] = 0.0;
1098 zero.f[1] = 0.0;
1099 zero.f[2] = 0.0;
1100 zero.f[3] = 0.0;
1101
1102 ir_instruction *inst =
1103 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1104 new(ctx) ir_constant(rhs_var->type, &zero),
1105 NULL);
1106 instructions->push_tail(inst);
1107
1108 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1109
1110 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1111 instructions->push_tail(inst);
1112
1113 /* Assign the temporary vector to each column of the destination matrix
1114 * with a swizzle that puts the X component on the diagonal of the
1115 * matrix. In some cases this may mean that the X component does not
1116 * get assigned into the column at all (i.e., when the matrix has more
1117 * columns than rows).
1118 */
1119 static const unsigned rhs_swiz[4][4] = {
1120 { 0, 1, 1, 1 },
1121 { 1, 0, 1, 1 },
1122 { 1, 1, 0, 1 },
1123 { 1, 1, 1, 0 }
1124 };
1125
1126 const unsigned cols_to_init = MIN2(type->matrix_columns,
1127 type->vector_elements);
1128 for (unsigned i = 0; i < cols_to_init; i++) {
1129 ir_constant *const col_idx = new(ctx) ir_constant(i);
1130 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1131
1132 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1133 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1134 type->vector_elements);
1135
1136 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1137 instructions->push_tail(inst);
1138 }
1139
1140 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1141 ir_constant *const col_idx = new(ctx) ir_constant(i);
1142 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1143
1144 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1145 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1146 type->vector_elements);
1147
1148 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1149 instructions->push_tail(inst);
1150 }
1151 } else if (first_param->type->is_matrix()) {
1152 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1153 *
1154 * "If a matrix is constructed from a matrix, then each component
1155 * (column i, row j) in the result that has a corresponding
1156 * component (column i, row j) in the argument will be initialized
1157 * from there. All other components will be initialized to the
1158 * identity matrix. If a matrix argument is given to a matrix
1159 * constructor, it is an error to have any other arguments."
1160 */
1161 assert(first_param->next->is_tail_sentinel());
1162 ir_rvalue *const src_matrix = first_param;
1163
1164 /* If the source matrix is smaller, pre-initialize the relavent parts of
1165 * the destination matrix to the identity matrix.
1166 */
1167 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1168 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1169
1170 /* If the source matrix has fewer rows, every column of the destination
1171 * must be initialized. Otherwise only the columns in the destination
1172 * that do not exist in the source must be initialized.
1173 */
1174 unsigned col =
1175 (src_matrix->type->vector_elements < var->type->vector_elements)
1176 ? 0 : src_matrix->type->matrix_columns;
1177
1178 const glsl_type *const col_type = var->type->column_type();
1179 for (/* empty */; col < var->type->matrix_columns; col++) {
1180 ir_constant_data ident;
1181
1182 ident.f[0] = 0.0;
1183 ident.f[1] = 0.0;
1184 ident.f[2] = 0.0;
1185 ident.f[3] = 0.0;
1186
1187 ident.f[col] = 1.0;
1188
1189 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1190
1191 ir_rvalue *const lhs =
1192 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1193
1194 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1195 instructions->push_tail(inst);
1196 }
1197 }
1198
1199 /* Assign columns from the source matrix to the destination matrix.
1200 *
1201 * Since the parameter will be used in the RHS of multiple assignments,
1202 * generate a temporary and copy the paramter there.
1203 */
1204 ir_variable *const rhs_var =
1205 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1206 ir_var_temporary);
1207 instructions->push_tail(rhs_var);
1208
1209 ir_dereference *const rhs_var_ref =
1210 new(ctx) ir_dereference_variable(rhs_var);
1211 ir_instruction *const inst =
1212 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1213 instructions->push_tail(inst);
1214
1215 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1216 var->type->vector_elements);
1217 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1218 var->type->matrix_columns);
1219
1220 unsigned swiz[4] = { 0, 0, 0, 0 };
1221 for (unsigned i = 1; i < last_row; i++)
1222 swiz[i] = i;
1223
1224 const unsigned write_mask = (1U << last_row) - 1;
1225
1226 for (unsigned i = 0; i < last_col; i++) {
1227 ir_dereference *const lhs =
1228 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1229 ir_rvalue *const rhs_col =
1230 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1231
1232 /* If one matrix has columns that are smaller than the columns of the
1233 * other matrix, wrap the column access of the larger with a swizzle
1234 * so that the LHS and RHS of the assignment have the same size (and
1235 * therefore have the same type).
1236 *
1237 * It would be perfectly valid to unconditionally generate the
1238 * swizzles, this this will typically result in a more compact IR tree.
1239 */
1240 ir_rvalue *rhs;
1241 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1242 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1243 } else {
1244 rhs = rhs_col;
1245 }
1246
1247 ir_instruction *inst =
1248 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1249 instructions->push_tail(inst);
1250 }
1251 } else {
1252 const unsigned cols = type->matrix_columns;
1253 const unsigned rows = type->vector_elements;
1254 unsigned col_idx = 0;
1255 unsigned row_idx = 0;
1256
1257 foreach_list (node, parameters) {
1258 ir_rvalue *const rhs = (ir_rvalue *) node;
1259 const unsigned components_remaining_this_column = rows - row_idx;
1260 unsigned rhs_components = rhs->type->components();
1261 unsigned rhs_base = 0;
1262
1263 /* Since the parameter might be used in the RHS of two assignments,
1264 * generate a temporary and copy the paramter there.
1265 */
1266 ir_variable *rhs_var =
1267 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1268 instructions->push_tail(rhs_var);
1269
1270 ir_dereference *rhs_var_ref =
1271 new(ctx) ir_dereference_variable(rhs_var);
1272 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1273 instructions->push_tail(inst);
1274
1275 /* Assign the current parameter to as many components of the matrix
1276 * as it will fill.
1277 *
1278 * NOTE: A single vector parameter can span two matrix columns. A
1279 * single vec4, for example, can completely fill a mat2.
1280 */
1281 if (rhs_components >= components_remaining_this_column) {
1282 const unsigned count = MIN2(rhs_components,
1283 components_remaining_this_column);
1284
1285 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1286
1287 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1288 row_idx,
1289 rhs_var_ref, 0,
1290 count, ctx);
1291 instructions->push_tail(inst);
1292
1293 rhs_base = count;
1294
1295 col_idx++;
1296 row_idx = 0;
1297 }
1298
1299 /* If there is data left in the parameter and components left to be
1300 * set in the destination, emit another assignment. It is possible
1301 * that the assignment could be of a vec4 to the last element of the
1302 * matrix. In this case col_idx==cols, but there is still data
1303 * left in the source parameter. Obviously, don't emit an assignment
1304 * to data outside the destination matrix.
1305 */
1306 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1307 const unsigned count = rhs_components - rhs_base;
1308
1309 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1310
1311 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1312 row_idx,
1313 rhs_var_ref,
1314 rhs_base,
1315 count, ctx);
1316 instructions->push_tail(inst);
1317
1318 row_idx += count;
1319 }
1320 }
1321 }
1322
1323 return new(ctx) ir_dereference_variable(var);
1324 }
1325
1326
1327 ir_rvalue *
1328 emit_inline_record_constructor(const glsl_type *type,
1329 exec_list *instructions,
1330 exec_list *parameters,
1331 void *mem_ctx)
1332 {
1333 ir_variable *const var =
1334 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1335 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1336
1337 instructions->push_tail(var);
1338
1339 exec_node *node = parameters->head;
1340 for (unsigned i = 0; i < type->length; i++) {
1341 assert(!node->is_tail_sentinel());
1342
1343 ir_dereference *const lhs =
1344 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1345 type->fields.structure[i].name);
1346
1347 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1348 assert(rhs != NULL);
1349
1350 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1351
1352 instructions->push_tail(assign);
1353 node = node->next;
1354 }
1355
1356 return d;
1357 }
1358
1359
1360 static ir_rvalue *
1361 process_record_constructor(exec_list *instructions,
1362 const glsl_type *constructor_type,
1363 YYLTYPE *loc, exec_list *parameters,
1364 struct _mesa_glsl_parse_state *state)
1365 {
1366 void *ctx = state;
1367 exec_list actual_parameters;
1368
1369 process_parameters(instructions, &actual_parameters,
1370 parameters, state);
1371
1372 exec_node *node = actual_parameters.head;
1373 for (unsigned i = 0; i < constructor_type->length; i++) {
1374 ir_rvalue *ir = (ir_rvalue *) node;
1375
1376 if (node->is_tail_sentinel()) {
1377 _mesa_glsl_error(loc, state,
1378 "insufficient parameters to constructor for `%s'",
1379 constructor_type->name);
1380 return ir_rvalue::error_value(ctx);
1381 }
1382
1383 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1384 ir, state)) {
1385 node->replace_with(ir);
1386 } else {
1387 _mesa_glsl_error(loc, state,
1388 "parameter type mismatch in constructor for `%s.%s' "
1389 "(%s vs %s)",
1390 constructor_type->name,
1391 constructor_type->fields.structure[i].name,
1392 ir->type->name,
1393 constructor_type->fields.structure[i].type->name);
1394 return ir_rvalue::error_value(ctx);;
1395 }
1396
1397 node = node->next;
1398 }
1399
1400 if (!node->is_tail_sentinel()) {
1401 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1402 "for `%s'", constructor_type->name);
1403 return ir_rvalue::error_value(ctx);
1404 }
1405
1406 ir_rvalue *const constant =
1407 constant_record_constructor(constructor_type, &actual_parameters,
1408 state);
1409
1410 return (constant != NULL)
1411 ? constant
1412 : emit_inline_record_constructor(constructor_type, instructions,
1413 &actual_parameters, state);
1414 }
1415
1416
1417 ir_rvalue *
1418 ast_function_expression::hir(exec_list *instructions,
1419 struct _mesa_glsl_parse_state *state)
1420 {
1421 void *ctx = state;
1422 /* There are three sorts of function calls.
1423 *
1424 * 1. constructors - The first subexpression is an ast_type_specifier.
1425 * 2. methods - Only the .length() method of array types.
1426 * 3. functions - Calls to regular old functions.
1427 *
1428 * Method calls are actually detected when the ast_field_selection
1429 * expression is handled.
1430 */
1431 if (is_constructor()) {
1432 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1433 YYLTYPE loc = type->get_location();
1434 const char *name;
1435
1436 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1437
1438 /* constructor_type can be NULL if a variable with the same name as the
1439 * structure has come into scope.
1440 */
1441 if (constructor_type == NULL) {
1442 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1443 "may be shadowed by a variable with the same name)",
1444 type->type_name);
1445 return ir_rvalue::error_value(ctx);
1446 }
1447
1448
1449 /* Constructors for samplers are illegal.
1450 */
1451 if (constructor_type->is_sampler()) {
1452 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1453 constructor_type->name);
1454 return ir_rvalue::error_value(ctx);
1455 }
1456
1457 if (constructor_type->is_array()) {
1458 if (!state->check_version(120, 300, &loc,
1459 "array constructors forbidden")) {
1460 return ir_rvalue::error_value(ctx);
1461 }
1462
1463 return process_array_constructor(instructions, constructor_type,
1464 & loc, &this->expressions, state);
1465 }
1466
1467
1468 /* There are two kinds of constructor calls. Constructors for arrays and
1469 * structures must have the exact number of arguments with matching types
1470 * in the correct order. These constructors follow essentially the same
1471 * type matching rules as functions.
1472 *
1473 * Constructors for built-in language types, such as mat4 and vec2, are
1474 * free form. The only requirements are that the parameters must provide
1475 * enough values of the correct scalar type and that no arguments are
1476 * given past the last used argument.
1477 *
1478 * When using the C-style initializer syntax from GLSL 4.20, constructors
1479 * must have the exact number of arguments with matching types in the
1480 * correct order.
1481 */
1482 if (constructor_type->is_record()) {
1483 return process_record_constructor(instructions, constructor_type,
1484 &loc, &this->expressions,
1485 state);
1486 }
1487
1488 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1489 return ir_rvalue::error_value(ctx);
1490
1491 /* Total number of components of the type being constructed. */
1492 const unsigned type_components = constructor_type->components();
1493
1494 /* Number of components from parameters that have actually been
1495 * consumed. This is used to perform several kinds of error checking.
1496 */
1497 unsigned components_used = 0;
1498
1499 unsigned matrix_parameters = 0;
1500 unsigned nonmatrix_parameters = 0;
1501 exec_list actual_parameters;
1502
1503 foreach_list (n, &this->expressions) {
1504 ast_node *ast = exec_node_data(ast_node, n, link);
1505 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1506
1507 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1508 *
1509 * "It is an error to provide extra arguments beyond this
1510 * last used argument."
1511 */
1512 if (components_used >= type_components) {
1513 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1514 "constructor",
1515 constructor_type->name);
1516 return ir_rvalue::error_value(ctx);
1517 }
1518
1519 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1520 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1521 "non-numeric data type",
1522 constructor_type->name);
1523 return ir_rvalue::error_value(ctx);
1524 }
1525
1526 /* Count the number of matrix and nonmatrix parameters. This
1527 * is used below to enforce some of the constructor rules.
1528 */
1529 if (result->type->is_matrix())
1530 matrix_parameters++;
1531 else
1532 nonmatrix_parameters++;
1533
1534 actual_parameters.push_tail(result);
1535 components_used += result->type->components();
1536 }
1537
1538 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1539 *
1540 * "It is an error to construct matrices from other matrices. This
1541 * is reserved for future use."
1542 */
1543 if (matrix_parameters > 0
1544 && constructor_type->is_matrix()
1545 && !state->check_version(120, 100, &loc,
1546 "cannot construct `%s' from a matrix",
1547 constructor_type->name)) {
1548 return ir_rvalue::error_value(ctx);
1549 }
1550
1551 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1552 *
1553 * "If a matrix argument is given to a matrix constructor, it is
1554 * an error to have any other arguments."
1555 */
1556 if ((matrix_parameters > 0)
1557 && ((matrix_parameters + nonmatrix_parameters) > 1)
1558 && constructor_type->is_matrix()) {
1559 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1560 "matrix must be only parameter",
1561 constructor_type->name);
1562 return ir_rvalue::error_value(ctx);
1563 }
1564
1565 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1566 *
1567 * "In these cases, there must be enough components provided in the
1568 * arguments to provide an initializer for every component in the
1569 * constructed value."
1570 */
1571 if (components_used < type_components && components_used != 1
1572 && matrix_parameters == 0) {
1573 _mesa_glsl_error(& loc, state, "too few components to construct "
1574 "`%s'",
1575 constructor_type->name);
1576 return ir_rvalue::error_value(ctx);
1577 }
1578
1579 /* Later, we cast each parameter to the same base type as the
1580 * constructor. Since there are no non-floating point matrices, we
1581 * need to break them up into a series of column vectors.
1582 */
1583 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1584 foreach_list_safe(n, &actual_parameters) {
1585 ir_rvalue *matrix = (ir_rvalue *) n;
1586
1587 if (!matrix->type->is_matrix())
1588 continue;
1589
1590 /* Create a temporary containing the matrix. */
1591 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1592 ir_var_temporary);
1593 instructions->push_tail(var);
1594 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1595 ir_dereference_variable(var), matrix, NULL));
1596 var->constant_value = matrix->constant_expression_value();
1597
1598 /* Replace the matrix with dereferences of its columns. */
1599 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1600 matrix->insert_before(new (ctx) ir_dereference_array(var,
1601 new(ctx) ir_constant(i)));
1602 }
1603 matrix->remove();
1604 }
1605 }
1606
1607 bool all_parameters_are_constant = true;
1608
1609 /* Type cast each parameter and, if possible, fold constants.*/
1610 foreach_list_safe(n, &actual_parameters) {
1611 ir_rvalue *ir = (ir_rvalue *) n;
1612
1613 const glsl_type *desired_type =
1614 glsl_type::get_instance(constructor_type->base_type,
1615 ir->type->vector_elements,
1616 ir->type->matrix_columns);
1617 ir_rvalue *result = convert_component(ir, desired_type);
1618
1619 /* Attempt to convert the parameter to a constant valued expression.
1620 * After doing so, track whether or not all the parameters to the
1621 * constructor are trivially constant valued expressions.
1622 */
1623 ir_rvalue *const constant = result->constant_expression_value();
1624
1625 if (constant != NULL)
1626 result = constant;
1627 else
1628 all_parameters_are_constant = false;
1629
1630 if (result != ir) {
1631 ir->replace_with(result);
1632 }
1633 }
1634
1635 /* If all of the parameters are trivially constant, create a
1636 * constant representing the complete collection of parameters.
1637 */
1638 if (all_parameters_are_constant) {
1639 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1640 } else if (constructor_type->is_scalar()) {
1641 return dereference_component((ir_rvalue *) actual_parameters.head,
1642 0);
1643 } else if (constructor_type->is_vector()) {
1644 return emit_inline_vector_constructor(constructor_type,
1645 instructions,
1646 &actual_parameters,
1647 ctx);
1648 } else {
1649 assert(constructor_type->is_matrix());
1650 return emit_inline_matrix_constructor(constructor_type,
1651 instructions,
1652 &actual_parameters,
1653 ctx);
1654 }
1655 } else {
1656 const ast_expression *id = subexpressions[0];
1657 const char *func_name = id->primary_expression.identifier;
1658 YYLTYPE loc = get_location();
1659 exec_list actual_parameters;
1660
1661 process_parameters(instructions, &actual_parameters, &this->expressions,
1662 state);
1663
1664 ir_function_signature *sig =
1665 match_function_by_name(func_name, &actual_parameters, state);
1666
1667 ir_rvalue *value = NULL;
1668 if (sig == NULL) {
1669 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1670 value = ir_rvalue::error_value(ctx);
1671 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1672 /* an error has already been emitted */
1673 value = ir_rvalue::error_value(ctx);
1674 } else {
1675 value = generate_call(instructions, sig, &actual_parameters, state);
1676 }
1677
1678 return value;
1679 }
1680
1681 return ir_rvalue::error_value(ctx);
1682 }
1683
1684 ir_rvalue *
1685 ast_aggregate_initializer::hir(exec_list *instructions,
1686 struct _mesa_glsl_parse_state *state)
1687 {
1688 void *ctx = state;
1689 YYLTYPE loc = this->get_location();
1690 const char *name;
1691
1692 if (!this->constructor_type) {
1693 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1694 return ir_rvalue::error_value(ctx);
1695 }
1696 const glsl_type *const constructor_type =
1697 this->constructor_type->glsl_type(&name, state);
1698
1699 if (!state->ARB_shading_language_420pack_enable) {
1700 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1701 "GL_ARB_shading_language_420pack extension");
1702 return ir_rvalue::error_value(ctx);
1703 }
1704
1705 if (this->constructor_type->is_array) {
1706 return process_array_constructor(instructions, constructor_type, &loc,
1707 &this->expressions, state);
1708 }
1709
1710 if (this->constructor_type->structure) {
1711 return process_record_constructor(instructions, constructor_type, &loc,
1712 &this->expressions, state);
1713 }
1714
1715 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1716 &this->expressions, state);
1717 }