Merge branch 'pipe-video' of git://anongit.freedesktop.org/~deathsimple/xvmc-r600...
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
67 *
68 * \return
69 * A talloced string representing the prototype of the function.
70 */
71 char *
72 prototype_string(const glsl_type *return_type, const char *name,
73 exec_list *parameters)
74 {
75 char *str = NULL;
76
77 if (return_type != NULL)
78 str = talloc_asprintf(str, "%s ", return_type->name);
79
80 str = talloc_asprintf_append(str, "%s(", name);
81
82 const char *comma = "";
83 foreach_list(node, parameters) {
84 const ir_instruction *const param = (ir_instruction *) node;
85
86 str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 str = talloc_strdup_append(str, ")");
91 return str;
92 }
93
94
95 static ir_rvalue *
96 process_call(exec_list *instructions, ir_function *f,
97 YYLTYPE *loc, exec_list *actual_parameters,
98 struct _mesa_glsl_parse_state *state)
99 {
100 void *ctx = state;
101
102 ir_function_signature *sig = f->matching_signature(actual_parameters);
103
104 /* The instructions param will be used when the FINISHMEs below are done */
105 (void) instructions;
106
107 if (sig != NULL) {
108 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
109 * isn't done in ir_function::matching_signature because that function
110 * cannot generate the necessary diagnostics.
111 */
112 exec_list_iterator actual_iter = actual_parameters->iterator();
113 exec_list_iterator formal_iter = sig->parameters.iterator();
114
115 while (actual_iter.has_next()) {
116 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
117 ir_variable *formal = (ir_variable *) formal_iter.get();
118
119 assert(actual != NULL);
120 assert(formal != NULL);
121
122 if ((formal->mode == ir_var_out)
123 || (formal->mode == ir_var_inout)) {
124 if (! actual->is_lvalue()) {
125 /* FINISHME: Log a better diagnostic here. There is no way
126 * FINISHME: to tell the user which parameter is invalid.
127 */
128 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
129 (formal->mode == ir_var_out) ? "out" : "inout");
130 }
131 }
132
133 if (formal->type->is_numeric() || formal->type->is_boolean()) {
134 ir_rvalue *converted = convert_component(actual, formal->type);
135 actual->replace_with(converted);
136 }
137
138 actual_iter.next();
139 formal_iter.next();
140 }
141
142 /* Always insert the call in the instruction stream, and return a deref
143 * of its return val if it returns a value, since we don't know if
144 * the rvalue is going to be assigned to anything or not.
145 */
146 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
147 if (!sig->return_type->is_void()) {
148 ir_variable *var;
149 ir_dereference_variable *deref;
150
151 var = new(ctx) ir_variable(sig->return_type,
152 talloc_asprintf(ctx, "%s_retval",
153 sig->function_name()),
154 ir_var_temporary);
155 instructions->push_tail(var);
156
157 deref = new(ctx) ir_dereference_variable(var);
158 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
159 instructions->push_tail(assign);
160 if (state->language_version >= 120)
161 var->constant_value = call->constant_expression_value();
162
163 deref = new(ctx) ir_dereference_variable(var);
164 return deref;
165 } else {
166 instructions->push_tail(call);
167 return NULL;
168 }
169 } else {
170 char *str = prototype_string(NULL, f->name, actual_parameters);
171
172 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
173 str);
174 talloc_free(str);
175
176 const char *prefix = "candidates are: ";
177 foreach_list (node, &f->signatures) {
178 ir_function_signature *sig = (ir_function_signature *) node;
179
180 str = prototype_string(sig->return_type, f->name, &sig->parameters);
181 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
182 talloc_free(str);
183
184 prefix = " ";
185 }
186
187 return ir_call::get_error_instruction(ctx);
188 }
189 }
190
191
192 static ir_rvalue *
193 match_function_by_name(exec_list *instructions, const char *name,
194 YYLTYPE *loc, exec_list *actual_parameters,
195 struct _mesa_glsl_parse_state *state)
196 {
197 void *ctx = state;
198 ir_function *f = state->symbols->get_function(name);
199
200 if (f == NULL) {
201 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
202 return ir_call::get_error_instruction(ctx);
203 }
204
205 /* Once we've determined that the function being called might exist, try
206 * to find an overload of the function that matches the parameters.
207 */
208 return process_call(instructions, f, loc, actual_parameters, state);
209 }
210
211
212 /**
213 * Perform automatic type conversion of constructor parameters
214 *
215 * This implements the rules in the "Conversion and Scalar Constructors"
216 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
217 */
218 static ir_rvalue *
219 convert_component(ir_rvalue *src, const glsl_type *desired_type)
220 {
221 void *ctx = talloc_parent(src);
222 const unsigned a = desired_type->base_type;
223 const unsigned b = src->type->base_type;
224 ir_expression *result = NULL;
225
226 if (src->type->is_error())
227 return src;
228
229 assert(a <= GLSL_TYPE_BOOL);
230 assert(b <= GLSL_TYPE_BOOL);
231
232 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
233 return src;
234
235 switch (a) {
236 case GLSL_TYPE_UINT:
237 case GLSL_TYPE_INT:
238 if (b == GLSL_TYPE_FLOAT)
239 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
240 else {
241 assert(b == GLSL_TYPE_BOOL);
242 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
243 }
244 break;
245 case GLSL_TYPE_FLOAT:
246 switch (b) {
247 case GLSL_TYPE_UINT:
248 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
249 break;
250 case GLSL_TYPE_INT:
251 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
252 break;
253 case GLSL_TYPE_BOOL:
254 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
255 break;
256 }
257 break;
258 case GLSL_TYPE_BOOL:
259 switch (b) {
260 case GLSL_TYPE_UINT:
261 case GLSL_TYPE_INT:
262 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
263 break;
264 case GLSL_TYPE_FLOAT:
265 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
266 break;
267 }
268 break;
269 }
270
271 assert(result != NULL);
272
273 /* Try constant folding; it may fold in the conversion we just added. */
274 ir_constant *const constant = result->constant_expression_value();
275 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
276 }
277
278 /**
279 * Dereference a specific component from a scalar, vector, or matrix
280 */
281 static ir_rvalue *
282 dereference_component(ir_rvalue *src, unsigned component)
283 {
284 void *ctx = talloc_parent(src);
285 assert(component < src->type->components());
286
287 /* If the source is a constant, just create a new constant instead of a
288 * dereference of the existing constant.
289 */
290 ir_constant *constant = src->as_constant();
291 if (constant)
292 return new(ctx) ir_constant(constant, component);
293
294 if (src->type->is_scalar()) {
295 return src;
296 } else if (src->type->is_vector()) {
297 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
298 } else {
299 assert(src->type->is_matrix());
300
301 /* Dereference a row of the matrix, then call this function again to get
302 * a specific element from that row.
303 */
304 const int c = component / src->type->column_type()->vector_elements;
305 const int r = component % src->type->column_type()->vector_elements;
306 ir_constant *const col_index = new(ctx) ir_constant(c);
307 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
308
309 col->type = src->type->column_type();
310
311 return dereference_component(col, r);
312 }
313
314 assert(!"Should not get here.");
315 return NULL;
316 }
317
318
319 static ir_rvalue *
320 process_array_constructor(exec_list *instructions,
321 const glsl_type *constructor_type,
322 YYLTYPE *loc, exec_list *parameters,
323 struct _mesa_glsl_parse_state *state)
324 {
325 void *ctx = state;
326 /* Array constructors come in two forms: sized and unsized. Sized array
327 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
328 * variables. In this case the number of parameters must exactly match the
329 * specified size of the array.
330 *
331 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
332 * are vec4 variables. In this case the size of the array being constructed
333 * is determined by the number of parameters.
334 *
335 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
336 *
337 * "There must be exactly the same number of arguments as the size of
338 * the array being constructed. If no size is present in the
339 * constructor, then the array is explicitly sized to the number of
340 * arguments provided. The arguments are assigned in order, starting at
341 * element 0, to the elements of the constructed array. Each argument
342 * must be the same type as the element type of the array, or be a type
343 * that can be converted to the element type of the array according to
344 * Section 4.1.10 "Implicit Conversions.""
345 */
346 exec_list actual_parameters;
347 const unsigned parameter_count =
348 process_parameters(instructions, &actual_parameters, parameters, state);
349
350 if ((parameter_count == 0)
351 || ((constructor_type->length != 0)
352 && (constructor_type->length != parameter_count))) {
353 const unsigned min_param = (constructor_type->length == 0)
354 ? 1 : constructor_type->length;
355
356 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
357 "parameter%s",
358 (constructor_type->length != 0) ? "at least" : "exactly",
359 min_param, (min_param <= 1) ? "" : "s");
360 return ir_call::get_error_instruction(ctx);
361 }
362
363 if (constructor_type->length == 0) {
364 constructor_type =
365 glsl_type::get_array_instance(constructor_type->element_type(),
366 parameter_count);
367 assert(constructor_type != NULL);
368 assert(constructor_type->length == parameter_count);
369 }
370
371 bool all_parameters_are_constant = true;
372
373 /* Type cast each parameter and, if possible, fold constants. */
374 foreach_list_safe(n, &actual_parameters) {
375 ir_rvalue *ir = (ir_rvalue *) n;
376 ir_rvalue *result = ir;
377
378 /* Apply implicit conversions (not the scalar constructor rules!) */
379 if (constructor_type->element_type()->is_float()) {
380 const glsl_type *desired_type =
381 glsl_type::get_instance(GLSL_TYPE_FLOAT,
382 ir->type->vector_elements,
383 ir->type->matrix_columns);
384 result = convert_component(ir, desired_type);
385 }
386
387 if (result->type != constructor_type->element_type()) {
388 _mesa_glsl_error(loc, state, "type error in array constructor: "
389 "expected: %s, found %s",
390 constructor_type->element_type()->name,
391 result->type->name);
392 }
393
394 /* Attempt to convert the parameter to a constant valued expression.
395 * After doing so, track whether or not all the parameters to the
396 * constructor are trivially constant valued expressions.
397 */
398 ir_rvalue *const constant = result->constant_expression_value();
399
400 if (constant != NULL)
401 result = constant;
402 else
403 all_parameters_are_constant = false;
404
405 ir->replace_with(result);
406 }
407
408 if (all_parameters_are_constant)
409 return new(ctx) ir_constant(constructor_type, &actual_parameters);
410
411 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
412 ir_var_temporary);
413 instructions->push_tail(var);
414
415 int i = 0;
416 foreach_list(node, &actual_parameters) {
417 ir_rvalue *rhs = (ir_rvalue *) node;
418 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
419 new(ctx) ir_constant(i));
420
421 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
422 instructions->push_tail(assignment);
423
424 i++;
425 }
426
427 return new(ctx) ir_dereference_variable(var);
428 }
429
430
431 /**
432 * Try to convert a record constructor to a constant expression
433 */
434 static ir_constant *
435 constant_record_constructor(const glsl_type *constructor_type,
436 exec_list *parameters, void *mem_ctx)
437 {
438 foreach_list(node, parameters) {
439 ir_constant *constant = ((ir_instruction *) node)->as_constant();
440 if (constant == NULL)
441 return NULL;
442 node->replace_with(constant);
443 }
444
445 return new(mem_ctx) ir_constant(constructor_type, parameters);
446 }
447
448
449 /**
450 * Determine if a list consists of a single scalar r-value
451 */
452 bool
453 single_scalar_parameter(exec_list *parameters)
454 {
455 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
456 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
457
458 return (p->type->is_scalar() && p->next->is_tail_sentinel());
459 }
460
461
462 /**
463 * Generate inline code for a vector constructor
464 *
465 * The generated constructor code will consist of a temporary variable
466 * declaration of the same type as the constructor. A sequence of assignments
467 * from constructor parameters to the temporary will follow.
468 *
469 * \return
470 * An \c ir_dereference_variable of the temprorary generated in the constructor
471 * body.
472 */
473 ir_rvalue *
474 emit_inline_vector_constructor(const glsl_type *type,
475 exec_list *instructions,
476 exec_list *parameters,
477 void *ctx)
478 {
479 assert(!parameters->is_empty());
480
481 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
482 instructions->push_tail(var);
483
484 /* There are two kinds of vector constructors.
485 *
486 * - Construct a vector from a single scalar by replicating that scalar to
487 * all components of the vector.
488 *
489 * - Construct a vector from an arbirary combination of vectors and
490 * scalars. The components of the constructor parameters are assigned
491 * to the vector in order until the vector is full.
492 */
493 const unsigned lhs_components = type->components();
494 if (single_scalar_parameter(parameters)) {
495 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
496 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
497 lhs_components);
498 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
499 const unsigned mask = (1U << lhs_components) - 1;
500
501 assert(rhs->type == lhs->type);
502
503 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
504 instructions->push_tail(inst);
505 } else {
506 unsigned base_component = 0;
507 unsigned base_lhs_component = 0;
508 ir_constant_data data;
509 unsigned constant_mask = 0, constant_components = 0;
510
511 memset(&data, 0, sizeof(data));
512
513 foreach_list(node, parameters) {
514 ir_rvalue *param = (ir_rvalue *) node;
515 unsigned rhs_components = param->type->components();
516
517 /* Do not try to assign more components to the vector than it has!
518 */
519 if ((rhs_components + base_lhs_component) > lhs_components) {
520 rhs_components = lhs_components - base_lhs_component;
521 }
522
523 const ir_constant *const c = param->as_constant();
524 if (c != NULL) {
525 for (unsigned i = 0; i < rhs_components; i++) {
526 switch (c->type->base_type) {
527 case GLSL_TYPE_UINT:
528 data.u[i + base_component] = c->get_uint_component(i);
529 break;
530 case GLSL_TYPE_INT:
531 data.i[i + base_component] = c->get_int_component(i);
532 break;
533 case GLSL_TYPE_FLOAT:
534 data.f[i + base_component] = c->get_float_component(i);
535 break;
536 case GLSL_TYPE_BOOL:
537 data.b[i + base_component] = c->get_bool_component(i);
538 break;
539 default:
540 assert(!"Should not get here.");
541 break;
542 }
543 }
544
545 /* Mask of fields to be written in the assignment.
546 */
547 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
548 constant_components += rhs_components;
549
550 base_component += rhs_components;
551 }
552 /* Advance the component index by the number of components
553 * that were just assigned.
554 */
555 base_lhs_component += rhs_components;
556 }
557
558 if (constant_mask != 0) {
559 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
560 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
561 constant_components,
562 1);
563 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
564
565 ir_instruction *inst =
566 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
567 instructions->push_tail(inst);
568 }
569
570 base_component = 0;
571 foreach_list(node, parameters) {
572 ir_rvalue *param = (ir_rvalue *) node;
573 unsigned rhs_components = param->type->components();
574
575 /* Do not try to assign more components to the vector than it has!
576 */
577 if ((rhs_components + base_component) > lhs_components) {
578 rhs_components = lhs_components - base_component;
579 }
580
581 const ir_constant *const c = param->as_constant();
582 if (c == NULL) {
583 /* Generate a swizzle in case rhs_components != rhs->type->vector_elements. */
584 unsigned swiz[4] = { 0, 0, 0, 0 };
585 for (unsigned i = 0; i < rhs_components; i++)
586 swiz[i] = i;
587
588 /* Mask of fields to be written in the assignment.
589 */
590 const unsigned write_mask = ((1U << rhs_components) - 1)
591 << base_component;
592
593 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
594 ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, rhs_components);
595
596 ir_instruction *inst =
597 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
598 instructions->push_tail(inst);
599 }
600
601 /* Advance the component index by the number of components that were
602 * just assigned.
603 */
604 base_component += rhs_components;
605 }
606 }
607 return new(ctx) ir_dereference_variable(var);
608 }
609
610
611 /**
612 * Generate assignment of a portion of a vector to a portion of a matrix column
613 *
614 * \param src_base First component of the source to be used in assignment
615 * \param column Column of destination to be assiged
616 * \param row_base First component of the destination column to be assigned
617 * \param count Number of components to be assigned
618 *
619 * \note
620 * \c src_base + \c count must be less than or equal to the number of components
621 * in the source vector.
622 */
623 ir_instruction *
624 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
625 ir_rvalue *src, unsigned src_base, unsigned count,
626 void *mem_ctx)
627 {
628 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
629 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
630
631 assert(column_ref->type->components() >= (row_base + count));
632 assert(src->type->components() >= (src_base + count));
633
634 /* Generate a swizzle that puts the first element of the source at the
635 * location of the first element of the destination.
636 */
637 unsigned swiz[4] = { src_base, src_base, src_base, src_base };
638 for (unsigned i = 0; i < count; i++)
639 swiz[i + row_base] = i;
640
641 ir_rvalue *const rhs =
642 new(mem_ctx) ir_swizzle(src, swiz, count);
643
644 /* Mask of fields to be written in the assignment.
645 */
646 const unsigned write_mask = ((1U << count) - 1) << row_base;
647
648 return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
649 }
650
651
652 /**
653 * Generate inline code for a matrix constructor
654 *
655 * The generated constructor code will consist of a temporary variable
656 * declaration of the same type as the constructor. A sequence of assignments
657 * from constructor parameters to the temporary will follow.
658 *
659 * \return
660 * An \c ir_dereference_variable of the temprorary generated in the constructor
661 * body.
662 */
663 ir_rvalue *
664 emit_inline_matrix_constructor(const glsl_type *type,
665 exec_list *instructions,
666 exec_list *parameters,
667 void *ctx)
668 {
669 assert(!parameters->is_empty());
670
671 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
672 instructions->push_tail(var);
673
674 /* There are three kinds of matrix constructors.
675 *
676 * - Construct a matrix from a single scalar by replicating that scalar to
677 * along the diagonal of the matrix and setting all other components to
678 * zero.
679 *
680 * - Construct a matrix from an arbirary combination of vectors and
681 * scalars. The components of the constructor parameters are assigned
682 * to the matrix in colum-major order until the matrix is full.
683 *
684 * - Construct a matrix from a single matrix. The source matrix is copied
685 * to the upper left portion of the constructed matrix, and the remaining
686 * elements take values from the identity matrix.
687 */
688 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
689 if (single_scalar_parameter(parameters)) {
690 /* Assign the scalar to the X component of a vec4, and fill the remaining
691 * components with zero.
692 */
693 ir_variable *rhs_var =
694 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
695 ir_var_temporary);
696 instructions->push_tail(rhs_var);
697
698 ir_constant_data zero;
699 zero.f[0] = 0.0;
700 zero.f[1] = 0.0;
701 zero.f[2] = 0.0;
702 zero.f[3] = 0.0;
703
704 ir_instruction *inst =
705 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
706 new(ctx) ir_constant(rhs_var->type, &zero),
707 NULL);
708 instructions->push_tail(inst);
709
710 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
711
712 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
713 instructions->push_tail(inst);
714
715 /* Assign the temporary vector to each column of the destination matrix
716 * with a swizzle that puts the X component on the diagonal of the
717 * matrix. In some cases this may mean that the X component does not
718 * get assigned into the column at all (i.e., when the matrix has more
719 * columns than rows).
720 */
721 static const unsigned rhs_swiz[4][4] = {
722 { 0, 1, 1, 1 },
723 { 1, 0, 1, 1 },
724 { 1, 1, 0, 1 },
725 { 1, 1, 1, 0 }
726 };
727
728 const unsigned cols_to_init = MIN2(type->matrix_columns,
729 type->vector_elements);
730 for (unsigned i = 0; i < cols_to_init; i++) {
731 ir_constant *const col_idx = new(ctx) ir_constant(i);
732 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
733
734 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
735 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
736 type->vector_elements);
737
738 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
739 instructions->push_tail(inst);
740 }
741
742 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
743 ir_constant *const col_idx = new(ctx) ir_constant(i);
744 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
745
746 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
747 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
748 type->vector_elements);
749
750 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
751 instructions->push_tail(inst);
752 }
753 } else if (first_param->type->is_matrix()) {
754 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
755 *
756 * "If a matrix is constructed from a matrix, then each component
757 * (column i, row j) in the result that has a corresponding
758 * component (column i, row j) in the argument will be initialized
759 * from there. All other components will be initialized to the
760 * identity matrix. If a matrix argument is given to a matrix
761 * constructor, it is an error to have any other arguments."
762 */
763 assert(first_param->next->is_tail_sentinel());
764 ir_rvalue *const src_matrix = first_param;
765
766 /* If the source matrix is smaller, pre-initialize the relavent parts of
767 * the destination matrix to the identity matrix.
768 */
769 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
770 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
771
772 /* If the source matrix has fewer rows, every column of the destination
773 * must be initialized. Otherwise only the columns in the destination
774 * that do not exist in the source must be initialized.
775 */
776 unsigned col =
777 (src_matrix->type->vector_elements < var->type->vector_elements)
778 ? 0 : src_matrix->type->matrix_columns;
779
780 const glsl_type *const col_type = var->type->column_type();
781 for (/* empty */; col < var->type->matrix_columns; col++) {
782 ir_constant_data ident;
783
784 ident.f[0] = 0.0;
785 ident.f[1] = 0.0;
786 ident.f[2] = 0.0;
787 ident.f[3] = 0.0;
788
789 ident.f[col] = 1.0;
790
791 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
792
793 ir_rvalue *const lhs =
794 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
795
796 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
797 instructions->push_tail(inst);
798 }
799 }
800
801 /* Assign columns from the source matrix to the destination matrix.
802 *
803 * Since the parameter will be used in the RHS of multiple assignments,
804 * generate a temporary and copy the paramter there.
805 */
806 ir_variable *const rhs_var =
807 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
808 ir_var_temporary);
809 instructions->push_tail(rhs_var);
810
811 ir_dereference *const rhs_var_ref =
812 new(ctx) ir_dereference_variable(rhs_var);
813 ir_instruction *const inst =
814 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
815 instructions->push_tail(inst);
816
817 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
818 var->type->vector_elements);
819 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
820 var->type->matrix_columns);
821
822 unsigned swiz[4] = { 0, 0, 0, 0 };
823 for (unsigned i = 1; i < last_row; i++)
824 swiz[i] = i;
825
826 const unsigned write_mask = (1U << last_row) - 1;
827
828 for (unsigned i = 0; i < last_col; i++) {
829 ir_dereference *const lhs =
830 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
831 ir_rvalue *const rhs_col =
832 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
833
834 /* If one matrix has columns that are smaller than the columns of the
835 * other matrix, wrap the column access of the larger with a swizzle
836 * so that the LHS and RHS of the assignment have the same size (and
837 * therefore have the same type).
838 *
839 * It would be perfectly valid to unconditionally generate the
840 * swizzles, this this will typically result in a more compact IR tree.
841 */
842 ir_rvalue *rhs;
843 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
844 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
845 } else {
846 rhs = rhs_col;
847 }
848
849 ir_instruction *inst =
850 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
851 instructions->push_tail(inst);
852 }
853 } else {
854 const unsigned cols = type->matrix_columns;
855 const unsigned rows = type->vector_elements;
856 unsigned col_idx = 0;
857 unsigned row_idx = 0;
858
859 foreach_list (node, parameters) {
860 ir_rvalue *const rhs = (ir_rvalue *) node;
861 const unsigned components_remaining_this_column = rows - row_idx;
862 unsigned rhs_components = rhs->type->components();
863 unsigned rhs_base = 0;
864
865 /* Since the parameter might be used in the RHS of two assignments,
866 * generate a temporary and copy the paramter there.
867 */
868 ir_variable *rhs_var =
869 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
870 instructions->push_tail(rhs_var);
871
872 ir_dereference *rhs_var_ref =
873 new(ctx) ir_dereference_variable(rhs_var);
874 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
875 instructions->push_tail(inst);
876
877 /* Assign the current parameter to as many components of the matrix
878 * as it will fill.
879 *
880 * NOTE: A single vector parameter can span two matrix columns. A
881 * single vec4, for example, can completely fill a mat2.
882 */
883 if (rhs_components >= components_remaining_this_column) {
884 const unsigned count = MIN2(rhs_components,
885 components_remaining_this_column);
886
887 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
888
889 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
890 row_idx,
891 rhs_var_ref, 0,
892 count, ctx);
893 instructions->push_tail(inst);
894
895 rhs_base = count;
896
897 col_idx++;
898 row_idx = 0;
899 }
900
901 /* If there is data left in the parameter and components left to be
902 * set in the destination, emit another assignment. It is possible
903 * that the assignment could be of a vec4 to the last element of the
904 * matrix. In this case col_idx==cols, but there is still data
905 * left in the source parameter. Obviously, don't emit an assignment
906 * to data outside the destination matrix.
907 */
908 if ((col_idx < cols) && (rhs_base < rhs_components)) {
909 const unsigned count = rhs_components - rhs_base;
910
911 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
912
913 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
914 row_idx,
915 rhs_var_ref,
916 rhs_base,
917 count, ctx);
918 instructions->push_tail(inst);
919
920 row_idx += count;
921 }
922 }
923 }
924
925 return new(ctx) ir_dereference_variable(var);
926 }
927
928
929 ir_rvalue *
930 emit_inline_record_constructor(const glsl_type *type,
931 exec_list *instructions,
932 exec_list *parameters,
933 void *mem_ctx)
934 {
935 ir_variable *const var =
936 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
937 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
938
939 instructions->push_tail(var);
940
941 exec_node *node = parameters->head;
942 for (unsigned i = 0; i < type->length; i++) {
943 assert(!node->is_tail_sentinel());
944
945 ir_dereference *const lhs =
946 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
947 type->fields.structure[i].name);
948
949 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
950 assert(rhs != NULL);
951
952 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
953
954 instructions->push_tail(assign);
955 node = node->next;
956 }
957
958 return d;
959 }
960
961
962 ir_rvalue *
963 ast_function_expression::hir(exec_list *instructions,
964 struct _mesa_glsl_parse_state *state)
965 {
966 void *ctx = state;
967 /* There are three sorts of function calls.
968 *
969 * 1. constructors - The first subexpression is an ast_type_specifier.
970 * 2. methods - Only the .length() method of array types.
971 * 3. functions - Calls to regular old functions.
972 *
973 * Method calls are actually detected when the ast_field_selection
974 * expression is handled.
975 */
976 if (is_constructor()) {
977 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
978 YYLTYPE loc = type->get_location();
979 const char *name;
980
981 const glsl_type *const constructor_type = type->glsl_type(& name, state);
982
983
984 /* Constructors for samplers are illegal.
985 */
986 if (constructor_type->is_sampler()) {
987 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
988 constructor_type->name);
989 return ir_call::get_error_instruction(ctx);
990 }
991
992 if (constructor_type->is_array()) {
993 if (state->language_version <= 110) {
994 _mesa_glsl_error(& loc, state,
995 "array constructors forbidden in GLSL 1.10");
996 return ir_call::get_error_instruction(ctx);
997 }
998
999 return process_array_constructor(instructions, constructor_type,
1000 & loc, &this->expressions, state);
1001 }
1002
1003
1004 /* There are two kinds of constructor call. Constructors for built-in
1005 * language types, such as mat4 and vec2, are free form. The only
1006 * requirement is that the parameters must provide enough values of the
1007 * correct scalar type. Constructors for arrays and structures must
1008 * have the exact number of parameters with matching types in the
1009 * correct order. These constructors follow essentially the same type
1010 * matching rules as functions.
1011 */
1012 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1013 return ir_call::get_error_instruction(ctx);
1014
1015 /* Total number of components of the type being constructed. */
1016 const unsigned type_components = constructor_type->components();
1017
1018 /* Number of components from parameters that have actually been
1019 * consumed. This is used to perform several kinds of error checking.
1020 */
1021 unsigned components_used = 0;
1022
1023 unsigned matrix_parameters = 0;
1024 unsigned nonmatrix_parameters = 0;
1025 exec_list actual_parameters;
1026
1027 foreach_list (n, &this->expressions) {
1028 ast_node *ast = exec_node_data(ast_node, n, link);
1029 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1030
1031 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1032 *
1033 * "It is an error to provide extra arguments beyond this
1034 * last used argument."
1035 */
1036 if (components_used >= type_components) {
1037 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1038 "constructor",
1039 constructor_type->name);
1040 return ir_call::get_error_instruction(ctx);
1041 }
1042
1043 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1044 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1045 "non-numeric data type",
1046 constructor_type->name);
1047 return ir_call::get_error_instruction(ctx);
1048 }
1049
1050 /* Count the number of matrix and nonmatrix parameters. This
1051 * is used below to enforce some of the constructor rules.
1052 */
1053 if (result->type->is_matrix())
1054 matrix_parameters++;
1055 else
1056 nonmatrix_parameters++;
1057
1058 actual_parameters.push_tail(result);
1059 components_used += result->type->components();
1060 }
1061
1062 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1063 *
1064 * "It is an error to construct matrices from other matrices. This
1065 * is reserved for future use."
1066 */
1067 if (state->language_version == 110 && matrix_parameters > 0
1068 && constructor_type->is_matrix()) {
1069 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1070 "matrix in GLSL 1.10",
1071 constructor_type->name);
1072 return ir_call::get_error_instruction(ctx);
1073 }
1074
1075 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1076 *
1077 * "If a matrix argument is given to a matrix constructor, it is
1078 * an error to have any other arguments."
1079 */
1080 if ((matrix_parameters > 0)
1081 && ((matrix_parameters + nonmatrix_parameters) > 1)
1082 && constructor_type->is_matrix()) {
1083 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1084 "matrix must be only parameter",
1085 constructor_type->name);
1086 return ir_call::get_error_instruction(ctx);
1087 }
1088
1089 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1090 *
1091 * "In these cases, there must be enough components provided in the
1092 * arguments to provide an initializer for every component in the
1093 * constructed value."
1094 */
1095 if (components_used < type_components && components_used != 1
1096 && matrix_parameters == 0) {
1097 _mesa_glsl_error(& loc, state, "too few components to construct "
1098 "`%s'",
1099 constructor_type->name);
1100 return ir_call::get_error_instruction(ctx);
1101 }
1102
1103 /* Later, we cast each parameter to the same base type as the
1104 * constructor. Since there are no non-floating point matrices, we
1105 * need to break them up into a series of column vectors.
1106 */
1107 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1108 foreach_list_safe(n, &actual_parameters) {
1109 ir_rvalue *matrix = (ir_rvalue *) n;
1110
1111 if (!matrix->type->is_matrix())
1112 continue;
1113
1114 /* Create a temporary containing the matrix. */
1115 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1116 ir_var_temporary);
1117 instructions->push_tail(var);
1118 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1119 ir_dereference_variable(var), matrix, NULL));
1120 var->constant_value = matrix->constant_expression_value();
1121
1122 /* Replace the matrix with dereferences of its columns. */
1123 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1124 matrix->insert_before(new (ctx) ir_dereference_array(var,
1125 new(ctx) ir_constant(i)));
1126 }
1127 matrix->remove();
1128 }
1129 }
1130
1131 bool all_parameters_are_constant = true;
1132
1133 /* Type cast each parameter and, if possible, fold constants.*/
1134 foreach_list_safe(n, &actual_parameters) {
1135 ir_rvalue *ir = (ir_rvalue *) n;
1136
1137 const glsl_type *desired_type =
1138 glsl_type::get_instance(constructor_type->base_type,
1139 ir->type->vector_elements,
1140 ir->type->matrix_columns);
1141 ir_rvalue *result = convert_component(ir, desired_type);
1142
1143 /* Attempt to convert the parameter to a constant valued expression.
1144 * After doing so, track whether or not all the parameters to the
1145 * constructor are trivially constant valued expressions.
1146 */
1147 ir_rvalue *const constant = result->constant_expression_value();
1148
1149 if (constant != NULL)
1150 result = constant;
1151 else
1152 all_parameters_are_constant = false;
1153
1154 if (result != ir) {
1155 ir->replace_with(result);
1156 }
1157 }
1158
1159 /* If all of the parameters are trivially constant, create a
1160 * constant representing the complete collection of parameters.
1161 */
1162 if (all_parameters_are_constant) {
1163 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1164 } else if (constructor_type->is_scalar()) {
1165 return dereference_component((ir_rvalue *) actual_parameters.head,
1166 0);
1167 } else if (constructor_type->is_vector()) {
1168 return emit_inline_vector_constructor(constructor_type,
1169 instructions,
1170 &actual_parameters,
1171 ctx);
1172 } else {
1173 assert(constructor_type->is_matrix());
1174 return emit_inline_matrix_constructor(constructor_type,
1175 instructions,
1176 &actual_parameters,
1177 ctx);
1178 }
1179 } else {
1180 const ast_expression *id = subexpressions[0];
1181 YYLTYPE loc = id->get_location();
1182 exec_list actual_parameters;
1183
1184 process_parameters(instructions, &actual_parameters, &this->expressions,
1185 state);
1186
1187 const glsl_type *const type =
1188 state->symbols->get_type(id->primary_expression.identifier);
1189
1190 if ((type != NULL) && type->is_record()) {
1191 exec_node *node = actual_parameters.head;
1192 for (unsigned i = 0; i < type->length; i++) {
1193 ir_rvalue *ir = (ir_rvalue *) node;
1194
1195 if (node->is_tail_sentinel()) {
1196 _mesa_glsl_error(&loc, state,
1197 "insufficient parameters to constructor "
1198 "for `%s'",
1199 type->name);
1200 return ir_call::get_error_instruction(ctx);
1201 }
1202
1203 if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1204 state)) {
1205 node->replace_with(ir);
1206 } else {
1207 _mesa_glsl_error(&loc, state,
1208 "parameter type mismatch in constructor "
1209 "for `%s.%s' (%s vs %s)",
1210 type->name,
1211 type->fields.structure[i].name,
1212 ir->type->name,
1213 type->fields.structure[i].type->name);
1214 return ir_call::get_error_instruction(ctx);;
1215 }
1216
1217 node = node->next;
1218 }
1219
1220 if (!node->is_tail_sentinel()) {
1221 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1222 "for `%s'", type->name);
1223 return ir_call::get_error_instruction(ctx);
1224 }
1225
1226 ir_rvalue *const constant =
1227 constant_record_constructor(type, &actual_parameters, state);
1228
1229 return (constant != NULL)
1230 ? constant
1231 : emit_inline_record_constructor(type, instructions,
1232 &actual_parameters, state);
1233 }
1234
1235 return match_function_by_name(instructions,
1236 id->primary_expression.identifier, & loc,
1237 &actual_parameters, state);
1238 }
1239
1240 return ir_call::get_error_instruction(ctx);
1241 }