glsl2: Don't flatten constructor parameters to scalars
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28
29 inline unsigned min(unsigned a, unsigned b)
30 {
31 return (a < b) ? a : b;
32 }
33
34 static unsigned
35 process_parameters(exec_list *instructions, exec_list *actual_parameters,
36 exec_list *parameters,
37 struct _mesa_glsl_parse_state *state)
38 {
39 unsigned count = 0;
40
41 foreach_list (n, parameters) {
42 ast_node *const ast = exec_node_data(ast_node, n, link);
43 ir_rvalue *result = ast->hir(instructions, state);
44
45 ir_constant *const constant = result->constant_expression_value();
46 if (constant != NULL)
47 result = constant;
48
49 actual_parameters->push_tail(result);
50 count++;
51 }
52
53 return count;
54 }
55
56
57 static ir_rvalue *
58 process_call(exec_list *instructions, ir_function *f,
59 YYLTYPE *loc, exec_list *actual_parameters,
60 struct _mesa_glsl_parse_state *state)
61 {
62 void *ctx = talloc_parent(state);
63
64 const ir_function_signature *sig =
65 f->matching_signature(actual_parameters);
66
67 /* The instructions param will be used when the FINISHMEs below are done */
68 (void) instructions;
69
70 if (sig != NULL) {
71 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
72 * isn't done in ir_function::matching_signature because that function
73 * cannot generate the necessary diagnostics.
74 */
75 exec_list_iterator actual_iter = actual_parameters->iterator();
76 exec_list_iterator formal_iter = sig->parameters.iterator();
77
78 while (actual_iter.has_next()) {
79 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
80 ir_variable *formal = (ir_variable *) formal_iter.get();
81
82 assert(actual != NULL);
83 assert(formal != NULL);
84
85 if ((formal->mode == ir_var_out)
86 || (formal->mode == ir_var_inout)) {
87 if (! actual->is_lvalue()) {
88 /* FINISHME: Log a better diagnostic here. There is no way
89 * FINISHME: to tell the user which parameter is invalid.
90 */
91 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
92 (formal->mode == ir_var_out) ? "out" : "inout");
93 }
94 }
95
96 actual_iter.next();
97 formal_iter.next();
98 }
99
100 /* FINISHME: The list of actual parameters needs to be modified to
101 * FINISHME: include any necessary conversions.
102 */
103 return new(ctx) ir_call(sig, actual_parameters);
104 } else {
105 /* FINISHME: Log a better error message here. G++ will show the types
106 * FINISHME: of the actual parameters and the set of candidate
107 * FINISHME: functions. A different error should also be logged when
108 * FINISHME: multiple functions match.
109 */
110 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
111 f->name);
112 return ir_call::get_error_instruction(ctx);
113 }
114 }
115
116
117 static ir_rvalue *
118 match_function_by_name(exec_list *instructions, const char *name,
119 YYLTYPE *loc, exec_list *actual_parameters,
120 struct _mesa_glsl_parse_state *state)
121 {
122 void *ctx = talloc_parent(state);
123 ir_function *f = state->symbols->get_function(name);
124
125 if (f == NULL) {
126 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
127 return ir_call::get_error_instruction(ctx);
128 }
129
130 /* Once we've determined that the function being called might exist, try
131 * to find an overload of the function that matches the parameters.
132 */
133 return process_call(instructions, f, loc, actual_parameters, state);
134 }
135
136
137 /**
138 * Perform automatic type conversion of constructor parameters
139 */
140 static ir_rvalue *
141 convert_component(ir_rvalue *src, const glsl_type *desired_type)
142 {
143 void *ctx = talloc_parent(src);
144 const unsigned a = desired_type->base_type;
145 const unsigned b = src->type->base_type;
146 ir_expression *result = NULL;
147
148 if (src->type->is_error())
149 return src;
150
151 assert(a <= GLSL_TYPE_BOOL);
152 assert(b <= GLSL_TYPE_BOOL);
153
154 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
155 return src;
156
157 switch (a) {
158 case GLSL_TYPE_UINT:
159 case GLSL_TYPE_INT:
160 if (b == GLSL_TYPE_FLOAT)
161 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
162 else {
163 assert(b == GLSL_TYPE_BOOL);
164 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
165 }
166 break;
167 case GLSL_TYPE_FLOAT:
168 switch (b) {
169 case GLSL_TYPE_UINT:
170 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
171 break;
172 case GLSL_TYPE_INT:
173 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
174 break;
175 case GLSL_TYPE_BOOL:
176 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
177 break;
178 }
179 break;
180 case GLSL_TYPE_BOOL:
181 switch (b) {
182 case GLSL_TYPE_UINT:
183 case GLSL_TYPE_INT:
184 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
185 break;
186 case GLSL_TYPE_FLOAT:
187 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
188 break;
189 }
190 break;
191 }
192
193 assert(result != NULL);
194
195 ir_constant *const constant = result->constant_expression_value();
196 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
197 }
198
199
200 /**
201 * Dereference a specific component from a scalar, vector, or matrix
202 */
203 static ir_rvalue *
204 dereference_component(ir_rvalue *src, unsigned component)
205 {
206 void *ctx = talloc_parent(src);
207 assert(component < src->type->components());
208
209 /* If the source is a constant, just create a new constant instead of a
210 * dereference of the existing constant.
211 */
212 ir_constant *constant = src->as_constant();
213 if (constant)
214 return new(ctx) ir_constant(constant, component);
215
216 if (src->type->is_scalar()) {
217 return src;
218 } else if (src->type->is_vector()) {
219 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
220 } else {
221 assert(src->type->is_matrix());
222
223 /* Dereference a row of the matrix, then call this function again to get
224 * a specific element from that row.
225 */
226 const int c = component / src->type->column_type()->vector_elements;
227 const int r = component % src->type->column_type()->vector_elements;
228 ir_constant *const col_index = new(ctx) ir_constant(c);
229 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
230
231 col->type = src->type->column_type();
232
233 return dereference_component(col, r);
234 }
235
236 assert(!"Should not get here.");
237 return NULL;
238 }
239
240
241 static ir_rvalue *
242 process_array_constructor(exec_list *instructions,
243 const glsl_type *constructor_type,
244 YYLTYPE *loc, exec_list *parameters,
245 struct _mesa_glsl_parse_state *state)
246 {
247 void *ctx = talloc_parent(state);
248 /* Array constructors come in two forms: sized and unsized. Sized array
249 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
250 * variables. In this case the number of parameters must exactly match the
251 * specified size of the array.
252 *
253 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
254 * are vec4 variables. In this case the size of the array being constructed
255 * is determined by the number of parameters.
256 *
257 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
258 *
259 * "There must be exactly the same number of arguments as the size of
260 * the array being constructed. If no size is present in the
261 * constructor, then the array is explicitly sized to the number of
262 * arguments provided. The arguments are assigned in order, starting at
263 * element 0, to the elements of the constructed array. Each argument
264 * must be the same type as the element type of the array, or be a type
265 * that can be converted to the element type of the array according to
266 * Section 4.1.10 "Implicit Conversions.""
267 */
268 exec_list actual_parameters;
269 const unsigned parameter_count =
270 process_parameters(instructions, &actual_parameters, parameters, state);
271
272 if ((parameter_count == 0)
273 || ((constructor_type->length != 0)
274 && (constructor_type->length != parameter_count))) {
275 const unsigned min_param = (constructor_type->length == 0)
276 ? 1 : constructor_type->length;
277
278 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
279 "parameter%s",
280 (constructor_type->length != 0) ? "at least" : "exactly",
281 min_param, (min_param <= 1) ? "" : "s");
282 return ir_call::get_error_instruction(ctx);
283 }
284
285 if (constructor_type->length == 0) {
286 constructor_type =
287 glsl_type::get_array_instance(state,
288 constructor_type->element_type(),
289 parameter_count);
290 assert(constructor_type != NULL);
291 assert(constructor_type->length == parameter_count);
292 }
293
294 ir_function *f = state->symbols->get_function(constructor_type->name);
295
296 /* If the constructor for this type of array does not exist, generate the
297 * prototype and add it to the symbol table.
298 */
299 if (f == NULL) {
300 f = constructor_type->generate_constructor(state->symbols);
301 }
302
303 ir_rvalue *const r =
304 process_call(instructions, f, loc, &actual_parameters, state);
305
306 assert(r != NULL);
307 assert(r->type->is_error() || (r->type == constructor_type));
308
309 return r;
310 }
311
312
313 /**
314 * Try to convert a record constructor to a constant expression
315 */
316 static ir_constant *
317 constant_record_constructor(const glsl_type *constructor_type,
318 YYLTYPE *loc, exec_list *parameters,
319 struct _mesa_glsl_parse_state *state)
320 {
321 void *ctx = talloc_parent(state);
322 bool all_parameters_are_constant = true;
323
324 exec_node *node = parameters->head;
325 for (unsigned i = 0; i < constructor_type->length; i++) {
326 ir_instruction *ir = (ir_instruction *) node;
327
328 if (node->is_tail_sentinal()) {
329 _mesa_glsl_error(loc, state,
330 "insufficient parameters to constructor for `%s'",
331 constructor_type->name);
332 return NULL;
333 }
334
335 if (ir->type != constructor_type->fields.structure[i].type) {
336 _mesa_glsl_error(loc, state,
337 "parameter type mismatch in constructor for `%s' "
338 " (%s vs %s)",
339 constructor_type->name,
340 ir->type->name,
341 constructor_type->fields.structure[i].type->name);
342 return NULL;
343 }
344
345 if (ir->as_constant() == NULL)
346 all_parameters_are_constant = false;
347
348 node = node->next;
349 }
350
351 if (!all_parameters_are_constant)
352 return NULL;
353
354 return new(ctx) ir_constant(constructor_type, parameters);
355 }
356
357
358 /**
359 * Generate data for a constant matrix constructor w/a single scalar parameter
360 *
361 * Matrix constructors in GLSL can be passed a single scalar of the
362 * approriate type. In these cases, the resulting matrix is the identity
363 * matrix multipled by the specified scalar. This function generates data for
364 * that matrix.
365 *
366 * \param type Type of the desired matrix.
367 * \param initializer Scalar value used to initialize the matrix diagonal.
368 * \param data Location to store the resulting matrix.
369 */
370 void
371 generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
372 ir_constant_data *data)
373 {
374 switch (type->base_type) {
375 case GLSL_TYPE_UINT:
376 case GLSL_TYPE_INT:
377 for (unsigned i = 0; i < type->components(); i++)
378 data->u[i] = 0;
379
380 for (unsigned i = 0; i < type->matrix_columns; i++) {
381 /* The array offset of the ith row and column of the matrix.
382 */
383 const unsigned idx = (i * type->vector_elements) + i;
384
385 data->u[idx] = initializer->value.u[0];
386 }
387 break;
388
389 case GLSL_TYPE_FLOAT:
390 for (unsigned i = 0; i < type->components(); i++)
391 data->f[i] = 0;
392
393 for (unsigned i = 0; i < type->matrix_columns; i++) {
394 /* The array offset of the ith row and column of the matrix.
395 */
396 const unsigned idx = (i * type->vector_elements) + i;
397
398 data->f[idx] = initializer->value.f[0];
399 }
400
401 break;
402
403 default:
404 assert(!"Should not get here.");
405 break;
406 }
407 }
408
409
410 /**
411 * Generate data for a constant vector constructor w/a single scalar parameter
412 *
413 * Vector constructors in GLSL can be passed a single scalar of the
414 * approriate type. In these cases, the resulting vector contains the specified
415 * value in all components. This function generates data for that vector.
416 *
417 * \param type Type of the desired vector.
418 * \param initializer Scalar value used to initialize the vector.
419 * \param data Location to store the resulting vector data.
420 */
421 void
422 generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
423 ir_constant_data *data)
424 {
425 switch (type->base_type) {
426 case GLSL_TYPE_UINT:
427 case GLSL_TYPE_INT:
428 for (unsigned i = 0; i < type->components(); i++)
429 data->u[i] = initializer->value.u[0];
430
431 break;
432
433 case GLSL_TYPE_FLOAT:
434 for (unsigned i = 0; i < type->components(); i++)
435 data->f[i] = initializer->value.f[0];
436
437 break;
438
439 case GLSL_TYPE_BOOL:
440 for (unsigned i = 0; i < type->components(); i++)
441 data->b[i] = initializer->value.b[0];
442
443 break;
444
445 default:
446 assert(!"Should not get here.");
447 break;
448 }
449 }
450
451
452 /**
453 * Determine if a list consists of a single scalar r-value
454 */
455 bool
456 single_scalar_parameter(exec_list *parameters)
457 {
458 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
459 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
460
461 return (p->type->is_scalar() && p->next->is_tail_sentinal());
462 }
463
464
465 /**
466 * Generate inline code for a vector constructor
467 *
468 * The generated constructor code will consist of a temporary variable
469 * declaration of the same type as the constructor. A sequence of assignments
470 * from constructor parameters to the temporary will follow.
471 *
472 * \return
473 * An \c ir_dereference_variable of the temprorary generated in the constructor
474 * body.
475 */
476 ir_rvalue *
477 emit_inline_vector_constructor(const glsl_type *type,
478 exec_list *instructions,
479 exec_list *parameters,
480 void *ctx)
481 {
482 assert(!parameters->is_empty());
483
484 ir_variable *var = new(ctx) ir_variable(type, strdup("vec_ctor"));
485 instructions->push_tail(var);
486
487 /* There are two kinds of vector constructors.
488 *
489 * - Construct a vector from a single scalar by replicating that scalar to
490 * all components of the vector.
491 *
492 * - Construct a vector from an arbirary combination of vectors and
493 * scalars. The components of the constructor parameters are assigned
494 * to the vector in order until the vector is full.
495 */
496 const unsigned lhs_components = type->components();
497 if (single_scalar_parameter(parameters)) {
498 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
499 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
500 lhs_components);
501 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
502
503 assert(rhs->type == lhs->type);
504
505 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
506 instructions->push_tail(inst);
507 } else {
508 unsigned base_component = 0;
509 foreach_list(node, parameters) {
510 ir_rvalue *rhs = (ir_rvalue *) node;
511 unsigned rhs_components = rhs->type->components();
512
513 /* Do not try to assign more components to the vector than it has!
514 */
515 if ((rhs_components + base_component) > lhs_components) {
516 rhs_components = lhs_components - base_component;
517 }
518
519 /* Emit an assignment of the constructor parameter to the next set of
520 * components in the temporary variable.
521 */
522 unsigned mask[4] = { 0, 0, 0, 0 };
523 for (unsigned i = 0; i < rhs_components; i++) {
524 mask[i] = i + base_component;
525 }
526
527
528 ir_rvalue *lhs_ref = new(ctx) ir_dereference_variable(var);
529 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, mask, rhs_components);
530
531 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
532 instructions->push_tail(inst);
533
534 /* Advance the component index by the number of components that were
535 * just assigned.
536 */
537 base_component += rhs_components;
538 }
539 }
540 return new(ctx) ir_dereference_variable(var);
541 }
542
543
544 /**
545 * Generate assignment of a portion of a vector to a portion of a matrix column
546 *
547 * \param src_base First component of the source to be used in assignment
548 * \param column Column of destination to be assiged
549 * \param row_base First component of the destination column to be assigned
550 * \param count Number of components to be assigned
551 *
552 * \note
553 * \c src_base + \c count must be less than or equal to the number of components
554 * in the source vector.
555 */
556 ir_instruction *
557 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
558 ir_rvalue *src, unsigned src_base, unsigned count,
559 TALLOC_CTX *ctx)
560 {
561 const unsigned mask[8] = { 0, 1, 2, 3, 0, 0, 0, 0 };
562
563 ir_constant *col_idx = new(ctx) ir_constant(column);
564 ir_rvalue *column_ref = new(ctx) ir_dereference_array(var, col_idx);
565
566 assert(column_ref->type->components() >= (row_base + count));
567 ir_rvalue *lhs = new(ctx) ir_swizzle(column_ref, &mask[row_base], count);
568
569 assert(src->type->components() >= (src_base + count));
570 ir_rvalue *rhs = new(ctx) ir_swizzle(src, &mask[src_base], count);
571
572 return new(ctx) ir_assignment(lhs, rhs, NULL);
573 }
574
575
576 /**
577 * Generate inline code for a matrix constructor
578 *
579 * The generated constructor code will consist of a temporary variable
580 * declaration of the same type as the constructor. A sequence of assignments
581 * from constructor parameters to the temporary will follow.
582 *
583 * \return
584 * An \c ir_dereference_variable of the temprorary generated in the constructor
585 * body.
586 */
587 ir_rvalue *
588 emit_inline_matrix_constructor(const glsl_type *type,
589 exec_list *instructions,
590 exec_list *parameters,
591 void *ctx)
592 {
593 assert(!parameters->is_empty());
594
595 ir_variable *var = new(ctx) ir_variable(type, strdup("mat_ctor"));
596 instructions->push_tail(var);
597
598 /* There are three kinds of matrix constructors.
599 *
600 * - Construct a matrix from a single scalar by replicating that scalar to
601 * along the diagonal of the matrix and setting all other components to
602 * zero.
603 *
604 * - Construct a matrix from an arbirary combination of vectors and
605 * scalars. The components of the constructor parameters are assigned
606 * to the matrix in colum-major order until the matrix is full.
607 *
608 * - Construct a matrix from a single matrix. The source matrix is copied
609 * to the upper left portion of the constructed matrix, and the remaining
610 * elements take values from the identity matrix.
611 */
612 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
613 if (single_scalar_parameter(parameters)) {
614 /* Assign the scalar to the X component of a vec4, and fill the remaining
615 * components with zero.
616 */
617 ir_variable *rhs_var = new(ctx) ir_variable(glsl_type::vec4_type,
618 strdup("mat_ctor_vec"));
619 instructions->push_tail(rhs_var);
620
621 ir_constant_data zero;
622 zero.f[0] = 0.0;
623 zero.f[1] = 0.0;
624 zero.f[2] = 0.0;
625 zero.f[3] = 0.0;
626
627 ir_instruction *inst =
628 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
629 new(ctx) ir_constant(rhs_var->type, &zero),
630 NULL);
631 instructions->push_tail(inst);
632
633 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
634 ir_rvalue *const x_of_rhs = new(ctx) ir_swizzle(rhs_ref, 0, 0, 0, 0, 1);
635
636 inst = new(ctx) ir_assignment(x_of_rhs, first_param, NULL);
637 instructions->push_tail(inst);
638
639 /* Assign the temporary vector to each column of the destination matrix
640 * with a swizzle that puts the X component on the diagonal of the
641 * matrix. In some cases this may mean that the X component does not
642 * get assigned into the column at all (i.e., when the matrix has more
643 * columns than rows).
644 */
645 static const unsigned rhs_swiz[4][4] = {
646 { 0, 1, 1, 1 },
647 { 1, 0, 1, 1 },
648 { 1, 1, 0, 1 },
649 { 1, 1, 1, 0 }
650 };
651
652 const unsigned cols_to_init = min(type->matrix_columns,
653 type->vector_elements);
654 for (unsigned i = 0; i < cols_to_init; i++) {
655 ir_constant *const col_idx = new(ctx) ir_constant(i);
656 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
657
658 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
659 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
660 type->vector_elements);
661
662 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
663 instructions->push_tail(inst);
664 }
665
666 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
667 ir_constant *const col_idx = new(ctx) ir_constant(i);
668 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
669
670 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
671 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
672 type->vector_elements);
673
674 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
675 instructions->push_tail(inst);
676 }
677 } else if (first_param->type->is_matrix()) {
678 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
679 *
680 * "If a matrix is constructed from a matrix, then each component
681 * (column i, row j) in the result that has a corresponding
682 * component (column i, row j) in the argument will be initialized
683 * from there. All other components will be initialized to the
684 * identity matrix. If a matrix argument is given to a matrix
685 * constructor, it is an error to have any other arguments."
686 */
687 assert(first_param->next->is_tail_sentinal());
688 ir_rvalue *const src_matrix = first_param;
689
690 /* If the source matrix is smaller, pre-initialize the relavent parts of
691 * the destination matrix to the identity matrix.
692 */
693 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
694 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
695
696 /* If the source matrix has fewer rows, every column of the destination
697 * must be initialized. Otherwise only the columns in the destination
698 * that do not exist in the source must be initialized.
699 */
700 unsigned col =
701 (src_matrix->type->vector_elements < var->type->vector_elements)
702 ? 0 : src_matrix->type->matrix_columns;
703
704 const glsl_type *const col_type = var->type->column_type();
705 for (/* empty */; col < var->type->matrix_columns; col++) {
706 ir_constant_data ident;
707
708 ident.f[0] = 0.0;
709 ident.f[1] = 0.0;
710 ident.f[2] = 0.0;
711 ident.f[3] = 0.0;
712
713 ident.f[col] = 1.0;
714
715 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
716
717 ir_rvalue *const lhs =
718 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
719
720 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
721 instructions->push_tail(inst);
722 }
723 }
724
725 /* Assign columns from the source matrix to the destination matrix.
726 *
727 * Since the parameter will be used in the RHS of multiple assignments,
728 * generate a temporary and copy the paramter there.
729 */
730 ir_variable *const rhs_var = new(ctx) ir_variable(first_param->type,
731 strdup("mat_ctor_mat"));
732 instructions->push_tail(rhs_var);
733
734 ir_dereference *const rhs_var_ref =
735 new(ctx) ir_dereference_variable(rhs_var);
736 ir_instruction *const inst =
737 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
738 instructions->push_tail(inst);
739
740
741 const unsigned swiz[4] = { 0, 1, 2, 3 };
742 const unsigned last_col = min(src_matrix->type->matrix_columns,
743 var->type->matrix_columns);
744 for (unsigned i = 0; i < last_col; i++) {
745 ir_rvalue *const lhs_col =
746 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
747 ir_rvalue *const rhs_col =
748 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
749
750 /* If one matrix has columns that are smaller than the columns of the
751 * other matrix, wrap the column access of the larger with a swizzle
752 * so that the LHS and RHS of the assignment have the same size (and
753 * therefore have the same type).
754 *
755 * It would be perfectly valid to unconditionally generate the
756 * swizzles, this this will typically result in a more compact IR tree.
757 */
758 ir_rvalue *lhs;
759 ir_rvalue *rhs;
760 if (lhs_col->type->vector_elements < rhs_col->type->vector_elements) {
761 lhs = lhs_col;
762
763 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
764 lhs_col->type->vector_elements);
765 } else if (lhs_col->type->vector_elements
766 > rhs_col->type->vector_elements) {
767 lhs = new(ctx) ir_swizzle(lhs_col, swiz,
768 rhs_col->type->vector_elements);
769 rhs = rhs_col;
770 } else {
771 lhs = lhs_col;
772 rhs = rhs_col;
773 }
774
775 assert(lhs->type == rhs->type);
776
777 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
778 instructions->push_tail(inst);
779 }
780 } else {
781 const unsigned rows = type->matrix_columns;
782 const unsigned cols = type->vector_elements;
783 unsigned col_idx = 0;
784 unsigned row_idx = 0;
785
786 foreach_list (node, parameters) {
787 ir_rvalue *const rhs = (ir_rvalue *) node;
788 const unsigned components_remaining_this_column = rows - row_idx;
789 unsigned rhs_components = rhs->type->components();
790 unsigned rhs_base = 0;
791
792 /* Since the parameter might be used in the RHS of two assignments,
793 * generate a temporary and copy the paramter there.
794 */
795 ir_variable *rhs_var = new(ctx) ir_variable(rhs->type,
796 strdup("mat_ctor_vec"));
797 instructions->push_tail(rhs_var);
798
799 ir_dereference *rhs_var_ref =
800 new(ctx) ir_dereference_variable(rhs_var);
801 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
802 instructions->push_tail(inst);
803
804 /* Assign the current parameter to as many components of the matrix
805 * as it will fill.
806 *
807 * NOTE: A single vector parameter can span two matrix columns. A
808 * single vec4, for example, can completely fill a mat2.
809 */
810 if (rhs_components >= components_remaining_this_column) {
811 const unsigned count = min(rhs_components,
812 components_remaining_this_column);
813
814 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
815
816 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
817 row_idx,
818 rhs_var_ref, 0,
819 count, ctx);
820 instructions->push_tail(inst);
821
822 rhs_base = count;
823
824 col_idx++;
825 row_idx = 0;
826 }
827
828 /* If there is data left in the parameter and components left to be
829 * set in the destination, emit another assignment. It is possible
830 * that the assignment could be of a vec4 to the last element of the
831 * matrix. In this case col_idx==cols, but there is still data
832 * left in the source parameter. Obviously, don't emit an assignment
833 * to data outside the destination matrix.
834 */
835 if ((col_idx < cols) && (rhs_base < rhs_components)) {
836 const unsigned count = rhs_components - rhs_base;
837
838 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
839
840 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
841 row_idx,
842 rhs_var_ref,
843 rhs_base,
844 count, ctx);
845 instructions->push_tail(inst);
846
847 row_idx += count;
848 }
849 }
850 }
851
852 return new(ctx) ir_dereference_variable(var);
853 }
854
855
856 ir_rvalue *
857 ast_function_expression::hir(exec_list *instructions,
858 struct _mesa_glsl_parse_state *state)
859 {
860 void *ctx = talloc_parent(state);
861 /* There are three sorts of function calls.
862 *
863 * 1. contstructors - The first subexpression is an ast_type_specifier.
864 * 2. methods - Only the .length() method of array types.
865 * 3. functions - Calls to regular old functions.
866 *
867 * Method calls are actually detected when the ast_field_selection
868 * expression is handled.
869 */
870 if (is_constructor()) {
871 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
872 YYLTYPE loc = type->get_location();
873 const char *name;
874
875 const glsl_type *const constructor_type = type->glsl_type(& name, state);
876
877
878 /* Constructors for samplers are illegal.
879 */
880 if (constructor_type->is_sampler()) {
881 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
882 constructor_type->name);
883 return ir_call::get_error_instruction(ctx);
884 }
885
886 if (constructor_type->is_array()) {
887 if (state->language_version <= 110) {
888 _mesa_glsl_error(& loc, state,
889 "array constructors forbidden in GLSL 1.10");
890 return ir_call::get_error_instruction(ctx);
891 }
892
893 return process_array_constructor(instructions, constructor_type,
894 & loc, &this->expressions, state);
895 }
896
897 /* There are two kinds of constructor call. Constructors for built-in
898 * language types, such as mat4 and vec2, are free form. The only
899 * requirement is that the parameters must provide enough values of the
900 * correct scalar type. Constructors for arrays and structures must
901 * have the exact number of parameters with matching types in the
902 * correct order. These constructors follow essentially the same type
903 * matching rules as functions.
904 */
905 if (constructor_type->is_numeric() || constructor_type->is_boolean()) {
906 /* Total number of components of the type being constructed.
907 */
908 const unsigned type_components = constructor_type->components();
909
910 /* Number of components from parameters that have actually been
911 * consumed. This is used to perform several kinds of error checking.
912 */
913 unsigned components_used = 0;
914
915 unsigned matrix_parameters = 0;
916 unsigned nonmatrix_parameters = 0;
917 exec_list actual_parameters;
918
919 bool all_parameters_are_constant = true;
920
921 /* This handles invalid constructor calls such as 'vec4 v = vec4();'
922 */
923 if (this->expressions.is_empty()) {
924 _mesa_glsl_error(& loc, state, "too few components to construct "
925 "`%s'",
926 constructor_type->name);
927 return ir_call::get_error_instruction(ctx);
928 }
929
930 foreach_list (n, &this->expressions) {
931 ast_node *ast = exec_node_data(ast_node, n, link);
932 ir_rvalue *result =
933 ast->hir(instructions, state)->as_rvalue();
934
935 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
936 *
937 * "It is an error to provide extra arguments beyond this
938 * last used argument."
939 */
940 if (components_used >= type_components) {
941 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
942 "constructor",
943 constructor_type->name);
944 return ir_call::get_error_instruction(ctx);
945 }
946
947 if (!result->type->is_numeric() && !result->type->is_boolean()) {
948 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
949 "non-numeric data type",
950 constructor_type->name);
951 return ir_call::get_error_instruction(ctx);
952 }
953
954 /* Count the number of matrix and nonmatrix parameters. This
955 * is used below to enforce some of the constructor rules.
956 */
957 if (result->type->is_matrix())
958 matrix_parameters++;
959 else
960 nonmatrix_parameters++;
961
962 /* Type cast the parameter and add it to the parameter list for
963 * the constructor.
964 */
965 const glsl_type *desired_type =
966 glsl_type::get_instance(constructor_type->base_type,
967 result->type->vector_elements,
968 result->type->matrix_columns);
969 result = convert_component(result, desired_type);
970
971 /* Attempt to convert the parameter to a constant valued expression.
972 * After doing so, track whether or not all the parameters to the
973 * constructor are trivially constant valued expressions.
974 */
975 ir_rvalue *const constant = result->constant_expression_value();
976
977 if (constant != NULL)
978 result = constant;
979 else
980 all_parameters_are_constant = false;
981
982 actual_parameters.push_tail(result);
983 components_used += result->type->components();
984 }
985
986 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
987 *
988 * "It is an error to construct matrices from other matrices. This
989 * is reserved for future use."
990 */
991 if ((state->language_version <= 110) && (matrix_parameters > 0)
992 && constructor_type->is_matrix()) {
993 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
994 "matrix in GLSL 1.10",
995 constructor_type->name);
996 return ir_call::get_error_instruction(ctx);
997 }
998
999 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1000 *
1001 * "If a matrix argument is given to a matrix constructor, it is
1002 * an error to have any other arguments."
1003 */
1004 if ((matrix_parameters > 0)
1005 && ((matrix_parameters + nonmatrix_parameters) > 1)
1006 && constructor_type->is_matrix()) {
1007 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1008 "matrix must be only parameter",
1009 constructor_type->name);
1010 return ir_call::get_error_instruction(ctx);
1011 }
1012
1013 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1014 *
1015 * "In these cases, there must be enough components provided in the
1016 * arguments to provide an initializer for every component in the
1017 * constructed value."
1018 */
1019 if ((components_used < type_components) && (components_used != 1)) {
1020 _mesa_glsl_error(& loc, state, "too few components to construct "
1021 "`%s'",
1022 constructor_type->name);
1023 return ir_call::get_error_instruction(ctx);
1024 }
1025
1026
1027 /* If all of the parameters are trivially constant, create a
1028 * constant representing the complete collection of parameters.
1029 */
1030 if (all_parameters_are_constant) {
1031 if (components_used >= type_components)
1032 return new(ctx) ir_constant(constructor_type,
1033 & actual_parameters);
1034
1035 /* The above case must handle all scalar constructors.
1036 */
1037 assert(constructor_type->is_vector()
1038 || constructor_type->is_matrix());
1039
1040 /* Constructors with exactly one component are special for
1041 * vectors and matrices. For vectors it causes all elements of
1042 * the vector to be filled with the value. For matrices it
1043 * causes the matrix to be filled with 0 and the diagonal to be
1044 * filled with the value.
1045 */
1046 ir_constant_data data;
1047 ir_constant *const initializer =
1048 (ir_constant *) actual_parameters.head;
1049 if (constructor_type->is_matrix())
1050 generate_constructor_matrix(constructor_type, initializer,
1051 &data);
1052 else
1053 generate_constructor_vector(constructor_type, initializer,
1054 &data);
1055
1056 return new(ctx) ir_constant(constructor_type, &data);
1057 } else if (constructor_type->is_scalar()) {
1058 return dereference_component((ir_rvalue *) actual_parameters.head,
1059 0);
1060 } else if (constructor_type->is_vector()) {
1061 return emit_inline_vector_constructor(constructor_type,
1062 instructions,
1063 &actual_parameters,
1064 ctx);
1065 } else {
1066 assert(constructor_type->is_matrix());
1067 return emit_inline_matrix_constructor(constructor_type,
1068 instructions,
1069 &actual_parameters,
1070 ctx);
1071 }
1072 }
1073
1074 return ir_call::get_error_instruction(ctx);
1075 } else {
1076 const ast_expression *id = subexpressions[0];
1077 YYLTYPE loc = id->get_location();
1078 exec_list actual_parameters;
1079
1080 process_parameters(instructions, &actual_parameters, &this->expressions,
1081 state);
1082
1083 const glsl_type *const type =
1084 state->symbols->get_type(id->primary_expression.identifier);
1085
1086 if ((type != NULL) && type->is_record()) {
1087 ir_constant *constant =
1088 constant_record_constructor(type, &loc, &actual_parameters, state);
1089
1090 if (constant != NULL)
1091 return constant;
1092 }
1093
1094 return match_function_by_name(instructions,
1095 id->primary_expression.identifier, & loc,
1096 &actual_parameters, state);
1097 }
1098
1099 return ir_call::get_error_instruction(ctx);
1100 }