Merge remote branch 'origin/master' into pipe-video
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
67 *
68 * \return
69 * A talloced string representing the prototype of the function.
70 */
71 char *
72 prototype_string(const glsl_type *return_type, const char *name,
73 exec_list *parameters)
74 {
75 char *str = NULL;
76
77 if (return_type != NULL)
78 str = talloc_asprintf(str, "%s ", return_type->name);
79
80 str = talloc_asprintf_append(str, "%s(", name);
81
82 const char *comma = "";
83 foreach_list(node, parameters) {
84 const ir_instruction *const param = (ir_instruction *) node;
85
86 str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 str = talloc_strdup_append(str, ")");
91 return str;
92 }
93
94
95 static ir_rvalue *
96 match_function_by_name(exec_list *instructions, const char *name,
97 YYLTYPE *loc, exec_list *actual_parameters,
98 struct _mesa_glsl_parse_state *state)
99 {
100 void *ctx = state;
101 ir_function *f = state->symbols->get_function(name);
102 ir_function_signature *sig;
103
104 sig = f ? f->matching_signature(actual_parameters) : NULL;
105
106 /* FINISHME: This doesn't handle the case where shader X contains a
107 * FINISHME: matching signature but shader X + N contains an _exact_
108 * FINISHME: matching signature.
109 */
110 if (sig == NULL && (f == NULL || state->es_shader || !f->has_user_signature()) && state->symbols->get_type(name) == NULL && (state->language_version == 110 || state->symbols->get_variable(name) == NULL)) {
111 /* The current shader doesn't contain a matching function or signature.
112 * Before giving up, look for the prototype in the built-in functions.
113 */
114 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
115 ir_function *builtin;
116 builtin = state->builtins_to_link[i]->symbols->get_function(name);
117 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
118 if (sig != NULL) {
119 if (f == NULL) {
120 f = new(ctx) ir_function(name);
121 state->symbols->add_global_function(f);
122 emit_function(state, instructions, f);
123 }
124
125 f->add_signature(sig->clone_prototype(f, NULL));
126 break;
127 }
128 }
129 }
130
131 if (sig != NULL) {
132 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
133 * isn't done in ir_function::matching_signature because that function
134 * cannot generate the necessary diagnostics.
135 */
136 exec_list_iterator actual_iter = actual_parameters->iterator();
137 exec_list_iterator formal_iter = sig->parameters.iterator();
138
139 while (actual_iter.has_next()) {
140 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
141 ir_variable *formal = (ir_variable *) formal_iter.get();
142
143 assert(actual != NULL);
144 assert(formal != NULL);
145
146 if ((formal->mode == ir_var_out)
147 || (formal->mode == ir_var_inout)) {
148 if (! actual->is_lvalue()) {
149 /* FINISHME: Log a better diagnostic here. There is no way
150 * FINISHME: to tell the user which parameter is invalid.
151 */
152 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
153 (formal->mode == ir_var_out) ? "out" : "inout");
154 }
155 }
156
157 if (formal->type->is_numeric() || formal->type->is_boolean()) {
158 ir_rvalue *converted = convert_component(actual, formal->type);
159 actual->replace_with(converted);
160 }
161
162 actual_iter.next();
163 formal_iter.next();
164 }
165
166 /* Always insert the call in the instruction stream, and return a deref
167 * of its return val if it returns a value, since we don't know if
168 * the rvalue is going to be assigned to anything or not.
169 */
170 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
171 if (!sig->return_type->is_void()) {
172 ir_variable *var;
173 ir_dereference_variable *deref;
174
175 var = new(ctx) ir_variable(sig->return_type,
176 talloc_asprintf(ctx, "%s_retval",
177 sig->function_name()),
178 ir_var_temporary);
179 instructions->push_tail(var);
180
181 deref = new(ctx) ir_dereference_variable(var);
182 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
183 instructions->push_tail(assign);
184 if (state->language_version >= 120)
185 var->constant_value = call->constant_expression_value();
186
187 deref = new(ctx) ir_dereference_variable(var);
188 return deref;
189 } else {
190 instructions->push_tail(call);
191 return NULL;
192 }
193 } else {
194 char *str = prototype_string(NULL, name, actual_parameters);
195
196 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
197 str);
198 talloc_free(str);
199
200 const char *prefix = "candidates are: ";
201
202 for (int i = -1; i < state->num_builtins_to_link; i++) {
203 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
204 : state->symbols;
205 f = syms->get_function(name);
206 if (f == NULL)
207 continue;
208
209 foreach_list (node, &f->signatures) {
210 ir_function_signature *sig = (ir_function_signature *) node;
211
212 str = prototype_string(sig->return_type, f->name, &sig->parameters);
213 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
214 talloc_free(str);
215
216 prefix = " ";
217 }
218
219 }
220
221 return ir_call::get_error_instruction(ctx);
222 }
223 }
224
225
226 /**
227 * Perform automatic type conversion of constructor parameters
228 *
229 * This implements the rules in the "Conversion and Scalar Constructors"
230 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
231 */
232 static ir_rvalue *
233 convert_component(ir_rvalue *src, const glsl_type *desired_type)
234 {
235 void *ctx = talloc_parent(src);
236 const unsigned a = desired_type->base_type;
237 const unsigned b = src->type->base_type;
238 ir_expression *result = NULL;
239
240 if (src->type->is_error())
241 return src;
242
243 assert(a <= GLSL_TYPE_BOOL);
244 assert(b <= GLSL_TYPE_BOOL);
245
246 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
247 return src;
248
249 switch (a) {
250 case GLSL_TYPE_UINT:
251 case GLSL_TYPE_INT:
252 if (b == GLSL_TYPE_FLOAT)
253 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
254 else {
255 assert(b == GLSL_TYPE_BOOL);
256 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
257 }
258 break;
259 case GLSL_TYPE_FLOAT:
260 switch (b) {
261 case GLSL_TYPE_UINT:
262 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
263 break;
264 case GLSL_TYPE_INT:
265 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
266 break;
267 case GLSL_TYPE_BOOL:
268 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
269 break;
270 }
271 break;
272 case GLSL_TYPE_BOOL:
273 switch (b) {
274 case GLSL_TYPE_UINT:
275 case GLSL_TYPE_INT:
276 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
277 break;
278 case GLSL_TYPE_FLOAT:
279 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
280 break;
281 }
282 break;
283 }
284
285 assert(result != NULL);
286
287 /* Try constant folding; it may fold in the conversion we just added. */
288 ir_constant *const constant = result->constant_expression_value();
289 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
290 }
291
292 /**
293 * Dereference a specific component from a scalar, vector, or matrix
294 */
295 static ir_rvalue *
296 dereference_component(ir_rvalue *src, unsigned component)
297 {
298 void *ctx = talloc_parent(src);
299 assert(component < src->type->components());
300
301 /* If the source is a constant, just create a new constant instead of a
302 * dereference of the existing constant.
303 */
304 ir_constant *constant = src->as_constant();
305 if (constant)
306 return new(ctx) ir_constant(constant, component);
307
308 if (src->type->is_scalar()) {
309 return src;
310 } else if (src->type->is_vector()) {
311 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
312 } else {
313 assert(src->type->is_matrix());
314
315 /* Dereference a row of the matrix, then call this function again to get
316 * a specific element from that row.
317 */
318 const int c = component / src->type->column_type()->vector_elements;
319 const int r = component % src->type->column_type()->vector_elements;
320 ir_constant *const col_index = new(ctx) ir_constant(c);
321 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
322
323 col->type = src->type->column_type();
324
325 return dereference_component(col, r);
326 }
327
328 assert(!"Should not get here.");
329 return NULL;
330 }
331
332
333 static ir_rvalue *
334 process_array_constructor(exec_list *instructions,
335 const glsl_type *constructor_type,
336 YYLTYPE *loc, exec_list *parameters,
337 struct _mesa_glsl_parse_state *state)
338 {
339 void *ctx = state;
340 /* Array constructors come in two forms: sized and unsized. Sized array
341 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
342 * variables. In this case the number of parameters must exactly match the
343 * specified size of the array.
344 *
345 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
346 * are vec4 variables. In this case the size of the array being constructed
347 * is determined by the number of parameters.
348 *
349 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
350 *
351 * "There must be exactly the same number of arguments as the size of
352 * the array being constructed. If no size is present in the
353 * constructor, then the array is explicitly sized to the number of
354 * arguments provided. The arguments are assigned in order, starting at
355 * element 0, to the elements of the constructed array. Each argument
356 * must be the same type as the element type of the array, or be a type
357 * that can be converted to the element type of the array according to
358 * Section 4.1.10 "Implicit Conversions.""
359 */
360 exec_list actual_parameters;
361 const unsigned parameter_count =
362 process_parameters(instructions, &actual_parameters, parameters, state);
363
364 if ((parameter_count == 0)
365 || ((constructor_type->length != 0)
366 && (constructor_type->length != parameter_count))) {
367 const unsigned min_param = (constructor_type->length == 0)
368 ? 1 : constructor_type->length;
369
370 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
371 "parameter%s",
372 (constructor_type->length != 0) ? "at least" : "exactly",
373 min_param, (min_param <= 1) ? "" : "s");
374 return ir_call::get_error_instruction(ctx);
375 }
376
377 if (constructor_type->length == 0) {
378 constructor_type =
379 glsl_type::get_array_instance(constructor_type->element_type(),
380 parameter_count);
381 assert(constructor_type != NULL);
382 assert(constructor_type->length == parameter_count);
383 }
384
385 bool all_parameters_are_constant = true;
386
387 /* Type cast each parameter and, if possible, fold constants. */
388 foreach_list_safe(n, &actual_parameters) {
389 ir_rvalue *ir = (ir_rvalue *) n;
390 ir_rvalue *result = ir;
391
392 /* Apply implicit conversions (not the scalar constructor rules!) */
393 if (constructor_type->element_type()->is_float()) {
394 const glsl_type *desired_type =
395 glsl_type::get_instance(GLSL_TYPE_FLOAT,
396 ir->type->vector_elements,
397 ir->type->matrix_columns);
398 result = convert_component(ir, desired_type);
399 }
400
401 if (result->type != constructor_type->element_type()) {
402 _mesa_glsl_error(loc, state, "type error in array constructor: "
403 "expected: %s, found %s",
404 constructor_type->element_type()->name,
405 result->type->name);
406 }
407
408 /* Attempt to convert the parameter to a constant valued expression.
409 * After doing so, track whether or not all the parameters to the
410 * constructor are trivially constant valued expressions.
411 */
412 ir_rvalue *const constant = result->constant_expression_value();
413
414 if (constant != NULL)
415 result = constant;
416 else
417 all_parameters_are_constant = false;
418
419 ir->replace_with(result);
420 }
421
422 if (all_parameters_are_constant)
423 return new(ctx) ir_constant(constructor_type, &actual_parameters);
424
425 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
426 ir_var_temporary);
427 instructions->push_tail(var);
428
429 int i = 0;
430 foreach_list(node, &actual_parameters) {
431 ir_rvalue *rhs = (ir_rvalue *) node;
432 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
433 new(ctx) ir_constant(i));
434
435 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
436 instructions->push_tail(assignment);
437
438 i++;
439 }
440
441 return new(ctx) ir_dereference_variable(var);
442 }
443
444
445 /**
446 * Try to convert a record constructor to a constant expression
447 */
448 static ir_constant *
449 constant_record_constructor(const glsl_type *constructor_type,
450 exec_list *parameters, void *mem_ctx)
451 {
452 foreach_list(node, parameters) {
453 ir_constant *constant = ((ir_instruction *) node)->as_constant();
454 if (constant == NULL)
455 return NULL;
456 node->replace_with(constant);
457 }
458
459 return new(mem_ctx) ir_constant(constructor_type, parameters);
460 }
461
462
463 /**
464 * Determine if a list consists of a single scalar r-value
465 */
466 bool
467 single_scalar_parameter(exec_list *parameters)
468 {
469 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
470 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
471
472 return (p->type->is_scalar() && p->next->is_tail_sentinel());
473 }
474
475
476 /**
477 * Generate inline code for a vector constructor
478 *
479 * The generated constructor code will consist of a temporary variable
480 * declaration of the same type as the constructor. A sequence of assignments
481 * from constructor parameters to the temporary will follow.
482 *
483 * \return
484 * An \c ir_dereference_variable of the temprorary generated in the constructor
485 * body.
486 */
487 ir_rvalue *
488 emit_inline_vector_constructor(const glsl_type *type,
489 exec_list *instructions,
490 exec_list *parameters,
491 void *ctx)
492 {
493 assert(!parameters->is_empty());
494
495 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
496 instructions->push_tail(var);
497
498 /* There are two kinds of vector constructors.
499 *
500 * - Construct a vector from a single scalar by replicating that scalar to
501 * all components of the vector.
502 *
503 * - Construct a vector from an arbirary combination of vectors and
504 * scalars. The components of the constructor parameters are assigned
505 * to the vector in order until the vector is full.
506 */
507 const unsigned lhs_components = type->components();
508 if (single_scalar_parameter(parameters)) {
509 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
510 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
511 lhs_components);
512 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
513 const unsigned mask = (1U << lhs_components) - 1;
514
515 assert(rhs->type == lhs->type);
516
517 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
518 instructions->push_tail(inst);
519 } else {
520 unsigned base_component = 0;
521 unsigned base_lhs_component = 0;
522 ir_constant_data data;
523 unsigned constant_mask = 0, constant_components = 0;
524
525 memset(&data, 0, sizeof(data));
526
527 foreach_list(node, parameters) {
528 ir_rvalue *param = (ir_rvalue *) node;
529 unsigned rhs_components = param->type->components();
530
531 /* Do not try to assign more components to the vector than it has!
532 */
533 if ((rhs_components + base_lhs_component) > lhs_components) {
534 rhs_components = lhs_components - base_lhs_component;
535 }
536
537 const ir_constant *const c = param->as_constant();
538 if (c != NULL) {
539 for (unsigned i = 0; i < rhs_components; i++) {
540 switch (c->type->base_type) {
541 case GLSL_TYPE_UINT:
542 data.u[i + base_component] = c->get_uint_component(i);
543 break;
544 case GLSL_TYPE_INT:
545 data.i[i + base_component] = c->get_int_component(i);
546 break;
547 case GLSL_TYPE_FLOAT:
548 data.f[i + base_component] = c->get_float_component(i);
549 break;
550 case GLSL_TYPE_BOOL:
551 data.b[i + base_component] = c->get_bool_component(i);
552 break;
553 default:
554 assert(!"Should not get here.");
555 break;
556 }
557 }
558
559 /* Mask of fields to be written in the assignment.
560 */
561 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
562 constant_components += rhs_components;
563
564 base_component += rhs_components;
565 }
566 /* Advance the component index by the number of components
567 * that were just assigned.
568 */
569 base_lhs_component += rhs_components;
570 }
571
572 if (constant_mask != 0) {
573 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
574 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
575 constant_components,
576 1);
577 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
578
579 ir_instruction *inst =
580 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
581 instructions->push_tail(inst);
582 }
583
584 base_component = 0;
585 foreach_list(node, parameters) {
586 ir_rvalue *param = (ir_rvalue *) node;
587 unsigned rhs_components = param->type->components();
588
589 /* Do not try to assign more components to the vector than it has!
590 */
591 if ((rhs_components + base_component) > lhs_components) {
592 rhs_components = lhs_components - base_component;
593 }
594
595 const ir_constant *const c = param->as_constant();
596 if (c == NULL) {
597 /* Mask of fields to be written in the assignment.
598 */
599 const unsigned write_mask = ((1U << rhs_components) - 1)
600 << base_component;
601
602 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
603
604 /* Generate a swizzle so that LHS and RHS sizes match.
605 */
606 ir_rvalue *rhs =
607 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
608
609 ir_instruction *inst =
610 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
611 instructions->push_tail(inst);
612 }
613
614 /* Advance the component index by the number of components that were
615 * just assigned.
616 */
617 base_component += rhs_components;
618 }
619 }
620 return new(ctx) ir_dereference_variable(var);
621 }
622
623
624 /**
625 * Generate assignment of a portion of a vector to a portion of a matrix column
626 *
627 * \param src_base First component of the source to be used in assignment
628 * \param column Column of destination to be assiged
629 * \param row_base First component of the destination column to be assigned
630 * \param count Number of components to be assigned
631 *
632 * \note
633 * \c src_base + \c count must be less than or equal to the number of components
634 * in the source vector.
635 */
636 ir_instruction *
637 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
638 ir_rvalue *src, unsigned src_base, unsigned count,
639 void *mem_ctx)
640 {
641 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
642 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
643
644 assert(column_ref->type->components() >= (row_base + count));
645 assert(src->type->components() >= (src_base + count));
646
647 /* Generate a swizzle that extracts the number of components from the source
648 * that are to be assigned to the column of the matrix.
649 */
650 if (count < src->type->vector_elements) {
651 src = new(mem_ctx) ir_swizzle(src,
652 src_base + 0, src_base + 1,
653 src_base + 2, src_base + 3,
654 count);
655 }
656
657 /* Mask of fields to be written in the assignment.
658 */
659 const unsigned write_mask = ((1U << count) - 1) << row_base;
660
661 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
662 }
663
664
665 /**
666 * Generate inline code for a matrix constructor
667 *
668 * The generated constructor code will consist of a temporary variable
669 * declaration of the same type as the constructor. A sequence of assignments
670 * from constructor parameters to the temporary will follow.
671 *
672 * \return
673 * An \c ir_dereference_variable of the temprorary generated in the constructor
674 * body.
675 */
676 ir_rvalue *
677 emit_inline_matrix_constructor(const glsl_type *type,
678 exec_list *instructions,
679 exec_list *parameters,
680 void *ctx)
681 {
682 assert(!parameters->is_empty());
683
684 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
685 instructions->push_tail(var);
686
687 /* There are three kinds of matrix constructors.
688 *
689 * - Construct a matrix from a single scalar by replicating that scalar to
690 * along the diagonal of the matrix and setting all other components to
691 * zero.
692 *
693 * - Construct a matrix from an arbirary combination of vectors and
694 * scalars. The components of the constructor parameters are assigned
695 * to the matrix in colum-major order until the matrix is full.
696 *
697 * - Construct a matrix from a single matrix. The source matrix is copied
698 * to the upper left portion of the constructed matrix, and the remaining
699 * elements take values from the identity matrix.
700 */
701 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
702 if (single_scalar_parameter(parameters)) {
703 /* Assign the scalar to the X component of a vec4, and fill the remaining
704 * components with zero.
705 */
706 ir_variable *rhs_var =
707 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
708 ir_var_temporary);
709 instructions->push_tail(rhs_var);
710
711 ir_constant_data zero;
712 zero.f[0] = 0.0;
713 zero.f[1] = 0.0;
714 zero.f[2] = 0.0;
715 zero.f[3] = 0.0;
716
717 ir_instruction *inst =
718 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
719 new(ctx) ir_constant(rhs_var->type, &zero),
720 NULL);
721 instructions->push_tail(inst);
722
723 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
724
725 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
726 instructions->push_tail(inst);
727
728 /* Assign the temporary vector to each column of the destination matrix
729 * with a swizzle that puts the X component on the diagonal of the
730 * matrix. In some cases this may mean that the X component does not
731 * get assigned into the column at all (i.e., when the matrix has more
732 * columns than rows).
733 */
734 static const unsigned rhs_swiz[4][4] = {
735 { 0, 1, 1, 1 },
736 { 1, 0, 1, 1 },
737 { 1, 1, 0, 1 },
738 { 1, 1, 1, 0 }
739 };
740
741 const unsigned cols_to_init = MIN2(type->matrix_columns,
742 type->vector_elements);
743 for (unsigned i = 0; i < cols_to_init; i++) {
744 ir_constant *const col_idx = new(ctx) ir_constant(i);
745 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
746
747 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
748 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
749 type->vector_elements);
750
751 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
752 instructions->push_tail(inst);
753 }
754
755 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
756 ir_constant *const col_idx = new(ctx) ir_constant(i);
757 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
758
759 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
760 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
761 type->vector_elements);
762
763 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
764 instructions->push_tail(inst);
765 }
766 } else if (first_param->type->is_matrix()) {
767 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
768 *
769 * "If a matrix is constructed from a matrix, then each component
770 * (column i, row j) in the result that has a corresponding
771 * component (column i, row j) in the argument will be initialized
772 * from there. All other components will be initialized to the
773 * identity matrix. If a matrix argument is given to a matrix
774 * constructor, it is an error to have any other arguments."
775 */
776 assert(first_param->next->is_tail_sentinel());
777 ir_rvalue *const src_matrix = first_param;
778
779 /* If the source matrix is smaller, pre-initialize the relavent parts of
780 * the destination matrix to the identity matrix.
781 */
782 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
783 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
784
785 /* If the source matrix has fewer rows, every column of the destination
786 * must be initialized. Otherwise only the columns in the destination
787 * that do not exist in the source must be initialized.
788 */
789 unsigned col =
790 (src_matrix->type->vector_elements < var->type->vector_elements)
791 ? 0 : src_matrix->type->matrix_columns;
792
793 const glsl_type *const col_type = var->type->column_type();
794 for (/* empty */; col < var->type->matrix_columns; col++) {
795 ir_constant_data ident;
796
797 ident.f[0] = 0.0;
798 ident.f[1] = 0.0;
799 ident.f[2] = 0.0;
800 ident.f[3] = 0.0;
801
802 ident.f[col] = 1.0;
803
804 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
805
806 ir_rvalue *const lhs =
807 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
808
809 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
810 instructions->push_tail(inst);
811 }
812 }
813
814 /* Assign columns from the source matrix to the destination matrix.
815 *
816 * Since the parameter will be used in the RHS of multiple assignments,
817 * generate a temporary and copy the paramter there.
818 */
819 ir_variable *const rhs_var =
820 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
821 ir_var_temporary);
822 instructions->push_tail(rhs_var);
823
824 ir_dereference *const rhs_var_ref =
825 new(ctx) ir_dereference_variable(rhs_var);
826 ir_instruction *const inst =
827 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
828 instructions->push_tail(inst);
829
830 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
831 var->type->vector_elements);
832 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
833 var->type->matrix_columns);
834
835 unsigned swiz[4] = { 0, 0, 0, 0 };
836 for (unsigned i = 1; i < last_row; i++)
837 swiz[i] = i;
838
839 const unsigned write_mask = (1U << last_row) - 1;
840
841 for (unsigned i = 0; i < last_col; i++) {
842 ir_dereference *const lhs =
843 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
844 ir_rvalue *const rhs_col =
845 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
846
847 /* If one matrix has columns that are smaller than the columns of the
848 * other matrix, wrap the column access of the larger with a swizzle
849 * so that the LHS and RHS of the assignment have the same size (and
850 * therefore have the same type).
851 *
852 * It would be perfectly valid to unconditionally generate the
853 * swizzles, this this will typically result in a more compact IR tree.
854 */
855 ir_rvalue *rhs;
856 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
857 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
858 } else {
859 rhs = rhs_col;
860 }
861
862 ir_instruction *inst =
863 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
864 instructions->push_tail(inst);
865 }
866 } else {
867 const unsigned cols = type->matrix_columns;
868 const unsigned rows = type->vector_elements;
869 unsigned col_idx = 0;
870 unsigned row_idx = 0;
871
872 foreach_list (node, parameters) {
873 ir_rvalue *const rhs = (ir_rvalue *) node;
874 const unsigned components_remaining_this_column = rows - row_idx;
875 unsigned rhs_components = rhs->type->components();
876 unsigned rhs_base = 0;
877
878 /* Since the parameter might be used in the RHS of two assignments,
879 * generate a temporary and copy the paramter there.
880 */
881 ir_variable *rhs_var =
882 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
883 instructions->push_tail(rhs_var);
884
885 ir_dereference *rhs_var_ref =
886 new(ctx) ir_dereference_variable(rhs_var);
887 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
888 instructions->push_tail(inst);
889
890 /* Assign the current parameter to as many components of the matrix
891 * as it will fill.
892 *
893 * NOTE: A single vector parameter can span two matrix columns. A
894 * single vec4, for example, can completely fill a mat2.
895 */
896 if (rhs_components >= components_remaining_this_column) {
897 const unsigned count = MIN2(rhs_components,
898 components_remaining_this_column);
899
900 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
901
902 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
903 row_idx,
904 rhs_var_ref, 0,
905 count, ctx);
906 instructions->push_tail(inst);
907
908 rhs_base = count;
909
910 col_idx++;
911 row_idx = 0;
912 }
913
914 /* If there is data left in the parameter and components left to be
915 * set in the destination, emit another assignment. It is possible
916 * that the assignment could be of a vec4 to the last element of the
917 * matrix. In this case col_idx==cols, but there is still data
918 * left in the source parameter. Obviously, don't emit an assignment
919 * to data outside the destination matrix.
920 */
921 if ((col_idx < cols) && (rhs_base < rhs_components)) {
922 const unsigned count = rhs_components - rhs_base;
923
924 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
925
926 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
927 row_idx,
928 rhs_var_ref,
929 rhs_base,
930 count, ctx);
931 instructions->push_tail(inst);
932
933 row_idx += count;
934 }
935 }
936 }
937
938 return new(ctx) ir_dereference_variable(var);
939 }
940
941
942 ir_rvalue *
943 emit_inline_record_constructor(const glsl_type *type,
944 exec_list *instructions,
945 exec_list *parameters,
946 void *mem_ctx)
947 {
948 ir_variable *const var =
949 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
950 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
951
952 instructions->push_tail(var);
953
954 exec_node *node = parameters->head;
955 for (unsigned i = 0; i < type->length; i++) {
956 assert(!node->is_tail_sentinel());
957
958 ir_dereference *const lhs =
959 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
960 type->fields.structure[i].name);
961
962 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
963 assert(rhs != NULL);
964
965 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
966
967 instructions->push_tail(assign);
968 node = node->next;
969 }
970
971 return d;
972 }
973
974
975 ir_rvalue *
976 ast_function_expression::hir(exec_list *instructions,
977 struct _mesa_glsl_parse_state *state)
978 {
979 void *ctx = state;
980 /* There are three sorts of function calls.
981 *
982 * 1. constructors - The first subexpression is an ast_type_specifier.
983 * 2. methods - Only the .length() method of array types.
984 * 3. functions - Calls to regular old functions.
985 *
986 * Method calls are actually detected when the ast_field_selection
987 * expression is handled.
988 */
989 if (is_constructor()) {
990 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
991 YYLTYPE loc = type->get_location();
992 const char *name;
993
994 const glsl_type *const constructor_type = type->glsl_type(& name, state);
995
996
997 /* Constructors for samplers are illegal.
998 */
999 if (constructor_type->is_sampler()) {
1000 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1001 constructor_type->name);
1002 return ir_call::get_error_instruction(ctx);
1003 }
1004
1005 if (constructor_type->is_array()) {
1006 if (state->language_version <= 110) {
1007 _mesa_glsl_error(& loc, state,
1008 "array constructors forbidden in GLSL 1.10");
1009 return ir_call::get_error_instruction(ctx);
1010 }
1011
1012 return process_array_constructor(instructions, constructor_type,
1013 & loc, &this->expressions, state);
1014 }
1015
1016
1017 /* There are two kinds of constructor call. Constructors for built-in
1018 * language types, such as mat4 and vec2, are free form. The only
1019 * requirement is that the parameters must provide enough values of the
1020 * correct scalar type. Constructors for arrays and structures must
1021 * have the exact number of parameters with matching types in the
1022 * correct order. These constructors follow essentially the same type
1023 * matching rules as functions.
1024 */
1025 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1026 return ir_call::get_error_instruction(ctx);
1027
1028 /* Total number of components of the type being constructed. */
1029 const unsigned type_components = constructor_type->components();
1030
1031 /* Number of components from parameters that have actually been
1032 * consumed. This is used to perform several kinds of error checking.
1033 */
1034 unsigned components_used = 0;
1035
1036 unsigned matrix_parameters = 0;
1037 unsigned nonmatrix_parameters = 0;
1038 exec_list actual_parameters;
1039
1040 foreach_list (n, &this->expressions) {
1041 ast_node *ast = exec_node_data(ast_node, n, link);
1042 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1043
1044 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1045 *
1046 * "It is an error to provide extra arguments beyond this
1047 * last used argument."
1048 */
1049 if (components_used >= type_components) {
1050 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1051 "constructor",
1052 constructor_type->name);
1053 return ir_call::get_error_instruction(ctx);
1054 }
1055
1056 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1057 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1058 "non-numeric data type",
1059 constructor_type->name);
1060 return ir_call::get_error_instruction(ctx);
1061 }
1062
1063 /* Count the number of matrix and nonmatrix parameters. This
1064 * is used below to enforce some of the constructor rules.
1065 */
1066 if (result->type->is_matrix())
1067 matrix_parameters++;
1068 else
1069 nonmatrix_parameters++;
1070
1071 actual_parameters.push_tail(result);
1072 components_used += result->type->components();
1073 }
1074
1075 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1076 *
1077 * "It is an error to construct matrices from other matrices. This
1078 * is reserved for future use."
1079 */
1080 if (state->language_version == 110 && matrix_parameters > 0
1081 && constructor_type->is_matrix()) {
1082 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1083 "matrix in GLSL 1.10",
1084 constructor_type->name);
1085 return ir_call::get_error_instruction(ctx);
1086 }
1087
1088 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1089 *
1090 * "If a matrix argument is given to a matrix constructor, it is
1091 * an error to have any other arguments."
1092 */
1093 if ((matrix_parameters > 0)
1094 && ((matrix_parameters + nonmatrix_parameters) > 1)
1095 && constructor_type->is_matrix()) {
1096 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1097 "matrix must be only parameter",
1098 constructor_type->name);
1099 return ir_call::get_error_instruction(ctx);
1100 }
1101
1102 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1103 *
1104 * "In these cases, there must be enough components provided in the
1105 * arguments to provide an initializer for every component in the
1106 * constructed value."
1107 */
1108 if (components_used < type_components && components_used != 1
1109 && matrix_parameters == 0) {
1110 _mesa_glsl_error(& loc, state, "too few components to construct "
1111 "`%s'",
1112 constructor_type->name);
1113 return ir_call::get_error_instruction(ctx);
1114 }
1115
1116 /* Later, we cast each parameter to the same base type as the
1117 * constructor. Since there are no non-floating point matrices, we
1118 * need to break them up into a series of column vectors.
1119 */
1120 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1121 foreach_list_safe(n, &actual_parameters) {
1122 ir_rvalue *matrix = (ir_rvalue *) n;
1123
1124 if (!matrix->type->is_matrix())
1125 continue;
1126
1127 /* Create a temporary containing the matrix. */
1128 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1129 ir_var_temporary);
1130 instructions->push_tail(var);
1131 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1132 ir_dereference_variable(var), matrix, NULL));
1133 var->constant_value = matrix->constant_expression_value();
1134
1135 /* Replace the matrix with dereferences of its columns. */
1136 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1137 matrix->insert_before(new (ctx) ir_dereference_array(var,
1138 new(ctx) ir_constant(i)));
1139 }
1140 matrix->remove();
1141 }
1142 }
1143
1144 bool all_parameters_are_constant = true;
1145
1146 /* Type cast each parameter and, if possible, fold constants.*/
1147 foreach_list_safe(n, &actual_parameters) {
1148 ir_rvalue *ir = (ir_rvalue *) n;
1149
1150 const glsl_type *desired_type =
1151 glsl_type::get_instance(constructor_type->base_type,
1152 ir->type->vector_elements,
1153 ir->type->matrix_columns);
1154 ir_rvalue *result = convert_component(ir, desired_type);
1155
1156 /* Attempt to convert the parameter to a constant valued expression.
1157 * After doing so, track whether or not all the parameters to the
1158 * constructor are trivially constant valued expressions.
1159 */
1160 ir_rvalue *const constant = result->constant_expression_value();
1161
1162 if (constant != NULL)
1163 result = constant;
1164 else
1165 all_parameters_are_constant = false;
1166
1167 if (result != ir) {
1168 ir->replace_with(result);
1169 }
1170 }
1171
1172 /* If all of the parameters are trivially constant, create a
1173 * constant representing the complete collection of parameters.
1174 */
1175 if (all_parameters_are_constant) {
1176 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1177 } else if (constructor_type->is_scalar()) {
1178 return dereference_component((ir_rvalue *) actual_parameters.head,
1179 0);
1180 } else if (constructor_type->is_vector()) {
1181 return emit_inline_vector_constructor(constructor_type,
1182 instructions,
1183 &actual_parameters,
1184 ctx);
1185 } else {
1186 assert(constructor_type->is_matrix());
1187 return emit_inline_matrix_constructor(constructor_type,
1188 instructions,
1189 &actual_parameters,
1190 ctx);
1191 }
1192 } else {
1193 const ast_expression *id = subexpressions[0];
1194 YYLTYPE loc = id->get_location();
1195 exec_list actual_parameters;
1196
1197 process_parameters(instructions, &actual_parameters, &this->expressions,
1198 state);
1199
1200 const glsl_type *const type =
1201 state->symbols->get_type(id->primary_expression.identifier);
1202
1203 if ((type != NULL) && type->is_record()) {
1204 exec_node *node = actual_parameters.head;
1205 for (unsigned i = 0; i < type->length; i++) {
1206 ir_rvalue *ir = (ir_rvalue *) node;
1207
1208 if (node->is_tail_sentinel()) {
1209 _mesa_glsl_error(&loc, state,
1210 "insufficient parameters to constructor "
1211 "for `%s'",
1212 type->name);
1213 return ir_call::get_error_instruction(ctx);
1214 }
1215
1216 if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1217 state)) {
1218 node->replace_with(ir);
1219 } else {
1220 _mesa_glsl_error(&loc, state,
1221 "parameter type mismatch in constructor "
1222 "for `%s.%s' (%s vs %s)",
1223 type->name,
1224 type->fields.structure[i].name,
1225 ir->type->name,
1226 type->fields.structure[i].type->name);
1227 return ir_call::get_error_instruction(ctx);;
1228 }
1229
1230 node = node->next;
1231 }
1232
1233 if (!node->is_tail_sentinel()) {
1234 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1235 "for `%s'", type->name);
1236 return ir_call::get_error_instruction(ctx);
1237 }
1238
1239 ir_rvalue *const constant =
1240 constant_record_constructor(type, &actual_parameters, state);
1241
1242 return (constant != NULL)
1243 ? constant
1244 : emit_inline_record_constructor(type, instructions,
1245 &actual_parameters, state);
1246 }
1247
1248 return match_function_by_name(instructions,
1249 id->primary_expression.identifier, & loc,
1250 &actual_parameters, state);
1251 }
1252
1253 return ir_call::get_error_instruction(ctx);
1254 }