glsl: Use bit-flags image attributes and uint16_t for the image format
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list_typed(ast_node, ast, link, parameters) {
45 ir_rvalue *result = ast->hir(instructions, state);
46
47 ir_constant *const constant = result->constant_expression_value();
48 if (constant != NULL)
49 result = constant;
50
51 actual_parameters->push_tail(result);
52 count++;
53 }
54
55 return count;
56 }
57
58
59 /**
60 * Generate a source prototype for a function signature
61 *
62 * \param return_type Return type of the function. May be \c NULL.
63 * \param name Name of the function.
64 * \param parameters List of \c ir_instruction nodes representing the
65 * parameter list for the function. This may be either a
66 * formal (\c ir_variable) or actual (\c ir_rvalue)
67 * parameter list. Only the type is used.
68 *
69 * \return
70 * A ralloced string representing the prototype of the function.
71 */
72 char *
73 prototype_string(const glsl_type *return_type, const char *name,
74 exec_list *parameters)
75 {
76 char *str = NULL;
77
78 if (return_type != NULL)
79 str = ralloc_asprintf(NULL, "%s ", return_type->name);
80
81 ralloc_asprintf_append(&str, "%s(", name);
82
83 const char *comma = "";
84 foreach_in_list(const ir_variable, param, parameters) {
85 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
86 comma = ", ";
87 }
88
89 ralloc_strcat(&str, ")");
90 return str;
91 }
92
93 static bool
94 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
95 const ir_variable *formal, const ir_variable *actual)
96 {
97 /**
98 * From the ARB_shader_image_load_store specification:
99 *
100 * "The values of image variables qualified with coherent,
101 * volatile, restrict, readonly, or writeonly may not be passed
102 * to functions whose formal parameters lack such
103 * qualifiers. [...] It is legal to have additional qualifiers
104 * on a formal parameter, but not to have fewer."
105 */
106 if (actual->data.image_coherent && !formal->data.image_coherent) {
107 _mesa_glsl_error(loc, state,
108 "function call parameter `%s' drops "
109 "`coherent' qualifier", formal->name);
110 return false;
111 }
112
113 if (actual->data.image_volatile && !formal->data.image_volatile) {
114 _mesa_glsl_error(loc, state,
115 "function call parameter `%s' drops "
116 "`volatile' qualifier", formal->name);
117 return false;
118 }
119
120 if (actual->data.image_restrict && !formal->data.image_restrict) {
121 _mesa_glsl_error(loc, state,
122 "function call parameter `%s' drops "
123 "`restrict' qualifier", formal->name);
124 return false;
125 }
126
127 if (actual->data.image_read_only && !formal->data.image_read_only) {
128 _mesa_glsl_error(loc, state,
129 "function call parameter `%s' drops "
130 "`readonly' qualifier", formal->name);
131 return false;
132 }
133
134 if (actual->data.image_write_only && !formal->data.image_write_only) {
135 _mesa_glsl_error(loc, state,
136 "function call parameter `%s' drops "
137 "`writeonly' qualifier", formal->name);
138 return false;
139 }
140
141 return true;
142 }
143
144 /**
145 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
146 * that 'const_in' formal parameters (an extension in our IR) correspond to
147 * ir_constant actual parameters.
148 */
149 static bool
150 verify_parameter_modes(_mesa_glsl_parse_state *state,
151 ir_function_signature *sig,
152 exec_list &actual_ir_parameters,
153 exec_list &actual_ast_parameters)
154 {
155 exec_node *actual_ir_node = actual_ir_parameters.head;
156 exec_node *actual_ast_node = actual_ast_parameters.head;
157
158 foreach_in_list(const ir_variable, formal, &sig->parameters) {
159 /* The lists must be the same length. */
160 assert(!actual_ir_node->is_tail_sentinel());
161 assert(!actual_ast_node->is_tail_sentinel());
162
163 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
164 const ast_expression *const actual_ast =
165 exec_node_data(ast_expression, actual_ast_node, link);
166
167 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
168 * FIXME: 0:0(0).
169 */
170 YYLTYPE loc = actual_ast->get_location();
171
172 /* Verify that 'const_in' parameters are ir_constants. */
173 if (formal->data.mode == ir_var_const_in &&
174 actual->ir_type != ir_type_constant) {
175 _mesa_glsl_error(&loc, state,
176 "parameter `in %s' must be a constant expression",
177 formal->name);
178 return false;
179 }
180
181 /* Verify that shader_in parameters are shader inputs */
182 if (formal->data.must_be_shader_input) {
183 ir_variable *var = actual->variable_referenced();
184 if (var && var->data.mode != ir_var_shader_in) {
185 _mesa_glsl_error(&loc, state,
186 "parameter `%s` must be a shader input",
187 formal->name);
188 return false;
189 }
190
191 if (actual->ir_type == ir_type_swizzle) {
192 _mesa_glsl_error(&loc, state,
193 "parameter `%s` must not be swizzled",
194 formal->name);
195 return false;
196 }
197 }
198
199 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
200 if (formal->data.mode == ir_var_function_out
201 || formal->data.mode == ir_var_function_inout) {
202 const char *mode = NULL;
203 switch (formal->data.mode) {
204 case ir_var_function_out: mode = "out"; break;
205 case ir_var_function_inout: mode = "inout"; break;
206 default: assert(false); break;
207 }
208
209 /* This AST-based check catches errors like f(i++). The IR-based
210 * is_lvalue() is insufficient because the actual parameter at the
211 * IR-level is just a temporary value, which is an l-value.
212 */
213 if (actual_ast->non_lvalue_description != NULL) {
214 _mesa_glsl_error(&loc, state,
215 "function parameter '%s %s' references a %s",
216 mode, formal->name,
217 actual_ast->non_lvalue_description);
218 return false;
219 }
220
221 ir_variable *var = actual->variable_referenced();
222 if (var)
223 var->data.assigned = true;
224
225 if (var && var->data.read_only) {
226 _mesa_glsl_error(&loc, state,
227 "function parameter '%s %s' references the "
228 "read-only variable '%s'",
229 mode, formal->name,
230 actual->variable_referenced()->name);
231 return false;
232 } else if (!actual->is_lvalue()) {
233 /* Even though ir_binop_vector_extract is not an l-value, let it
234 * slop through. generate_call will handle it correctly.
235 */
236 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
237 if (expr == NULL
238 || expr->operation != ir_binop_vector_extract
239 || !expr->operands[0]->is_lvalue()) {
240 _mesa_glsl_error(&loc, state,
241 "function parameter '%s %s' is not an lvalue",
242 mode, formal->name);
243 return false;
244 }
245 }
246 }
247
248 if (formal->type->is_image() &&
249 actual->variable_referenced()) {
250 if (!verify_image_parameter(&loc, state, formal,
251 actual->variable_referenced()))
252 return false;
253 }
254
255 actual_ir_node = actual_ir_node->next;
256 actual_ast_node = actual_ast_node->next;
257 }
258 return true;
259 }
260
261 static void
262 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
263 exec_list *before_instructions, exec_list *after_instructions,
264 bool parameter_is_inout)
265 {
266 ir_expression *const expr = actual->as_expression();
267
268 /* If the types match exactly and the parameter is not a vector-extract,
269 * nothing needs to be done to fix the parameter.
270 */
271 if (formal_type == actual->type
272 && (expr == NULL || expr->operation != ir_binop_vector_extract))
273 return;
274
275 /* To convert an out parameter, we need to create a temporary variable to
276 * hold the value before conversion, and then perform the conversion after
277 * the function call returns.
278 *
279 * This has the effect of transforming code like this:
280 *
281 * void f(out int x);
282 * float value;
283 * f(value);
284 *
285 * Into IR that's equivalent to this:
286 *
287 * void f(out int x);
288 * float value;
289 * int out_parameter_conversion;
290 * f(out_parameter_conversion);
291 * value = float(out_parameter_conversion);
292 *
293 * If the parameter is an ir_expression of ir_binop_vector_extract,
294 * additional conversion is needed in the post-call re-write.
295 */
296 ir_variable *tmp =
297 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
298
299 before_instructions->push_tail(tmp);
300
301 /* If the parameter is an inout parameter, copy the value of the actual
302 * parameter to the new temporary. Note that no type conversion is allowed
303 * here because inout parameters must match types exactly.
304 */
305 if (parameter_is_inout) {
306 /* Inout parameters should never require conversion, since that would
307 * require an implicit conversion to exist both to and from the formal
308 * parameter type, and there are no bidirectional implicit conversions.
309 */
310 assert (actual->type == formal_type);
311
312 ir_dereference_variable *const deref_tmp_1 =
313 new(mem_ctx) ir_dereference_variable(tmp);
314 ir_assignment *const assignment =
315 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
316 before_instructions->push_tail(assignment);
317 }
318
319 /* Replace the parameter in the call with a dereference of the new
320 * temporary.
321 */
322 ir_dereference_variable *const deref_tmp_2 =
323 new(mem_ctx) ir_dereference_variable(tmp);
324 actual->replace_with(deref_tmp_2);
325
326
327 /* Copy the temporary variable to the actual parameter with optional
328 * type conversion applied.
329 */
330 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
331 if (actual->type != formal_type)
332 rhs = convert_component(rhs, actual->type);
333
334 ir_rvalue *lhs = actual;
335 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
336 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
337 expr->operands[0]->type,
338 expr->operands[0]->clone(mem_ctx, NULL),
339 rhs,
340 expr->operands[1]->clone(mem_ctx, NULL));
341 lhs = expr->operands[0]->clone(mem_ctx, NULL);
342 }
343
344 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
345 after_instructions->push_tail(assignment_2);
346 }
347
348 /**
349 * Generate a function call.
350 *
351 * For non-void functions, this returns a dereference of the temporary variable
352 * which stores the return value for the call. For void functions, this returns
353 * NULL.
354 */
355 static ir_rvalue *
356 generate_call(exec_list *instructions, ir_function_signature *sig,
357 exec_list *actual_parameters,
358 struct _mesa_glsl_parse_state *state)
359 {
360 void *ctx = state;
361 exec_list post_call_conversions;
362
363 /* Perform implicit conversion of arguments. For out parameters, we need
364 * to place them in a temporary variable and do the conversion after the
365 * call takes place. Since we haven't emitted the call yet, we'll place
366 * the post-call conversions in a temporary exec_list, and emit them later.
367 */
368 foreach_two_lists(formal_node, &sig->parameters,
369 actual_node, actual_parameters) {
370 ir_rvalue *actual = (ir_rvalue *) actual_node;
371 ir_variable *formal = (ir_variable *) formal_node;
372
373 if (formal->type->is_numeric() || formal->type->is_boolean()) {
374 switch (formal->data.mode) {
375 case ir_var_const_in:
376 case ir_var_function_in: {
377 ir_rvalue *converted
378 = convert_component(actual, formal->type);
379 actual->replace_with(converted);
380 break;
381 }
382 case ir_var_function_out:
383 case ir_var_function_inout:
384 fix_parameter(ctx, actual, formal->type,
385 instructions, &post_call_conversions,
386 formal->data.mode == ir_var_function_inout);
387 break;
388 default:
389 assert (!"Illegal formal parameter mode");
390 break;
391 }
392 }
393 }
394
395 /* If the function call is a constant expression, don't generate any
396 * instructions; just generate an ir_constant.
397 *
398 * Function calls were first allowed to be constant expressions in GLSL
399 * 1.20 and GLSL ES 3.00.
400 */
401 if (state->is_version(120, 300)) {
402 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
403 if (value != NULL) {
404 return value;
405 }
406 }
407
408 ir_dereference_variable *deref = NULL;
409 if (!sig->return_type->is_void()) {
410 /* Create a new temporary to hold the return value. */
411 ir_variable *var;
412
413 var = new(ctx) ir_variable(sig->return_type,
414 ralloc_asprintf(ctx, "%s_retval",
415 sig->function_name()),
416 ir_var_temporary);
417 instructions->push_tail(var);
418
419 deref = new(ctx) ir_dereference_variable(var);
420 }
421 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
422 instructions->push_tail(call);
423
424 /* Also emit any necessary out-parameter conversions. */
425 instructions->append_list(&post_call_conversions);
426
427 return deref ? deref->clone(ctx, NULL) : NULL;
428 }
429
430 /**
431 * Given a function name and parameter list, find the matching signature.
432 */
433 static ir_function_signature *
434 match_function_by_name(const char *name,
435 exec_list *actual_parameters,
436 struct _mesa_glsl_parse_state *state)
437 {
438 void *ctx = state;
439 ir_function *f = state->symbols->get_function(name);
440 ir_function_signature *local_sig = NULL;
441 ir_function_signature *sig = NULL;
442
443 /* Is the function hidden by a record type constructor? */
444 if (state->symbols->get_type(name))
445 goto done; /* no match */
446
447 /* Is the function hidden by a variable (impossible in 1.10)? */
448 if (!state->symbols->separate_function_namespace
449 && state->symbols->get_variable(name))
450 goto done; /* no match */
451
452 if (f != NULL) {
453 /* In desktop GL, the presence of a user-defined signature hides any
454 * built-in signatures, so we must ignore them. In contrast, in ES2
455 * user-defined signatures add new overloads, so we must consider them.
456 */
457 bool allow_builtins = state->es_shader || !f->has_user_signature();
458
459 /* Look for a match in the local shader. If exact, we're done. */
460 bool is_exact = false;
461 sig = local_sig = f->matching_signature(state, actual_parameters,
462 allow_builtins, &is_exact);
463 if (is_exact)
464 goto done;
465
466 if (!allow_builtins)
467 goto done;
468 }
469
470 /* Local shader has no exact candidates; check the built-ins. */
471 _mesa_glsl_initialize_builtin_functions();
472 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
473
474 done:
475 if (sig != NULL) {
476 /* If the match is from a linked built-in shader, import the prototype. */
477 if (sig != local_sig) {
478 if (f == NULL) {
479 f = new(ctx) ir_function(name);
480 state->symbols->add_global_function(f);
481 emit_function(state, f);
482 }
483 f->add_signature(sig->clone_prototype(f, NULL));
484 }
485 }
486 return sig;
487 }
488
489 static void
490 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
491 ir_function *f)
492 {
493 if (f == NULL)
494 return;
495
496 foreach_in_list(ir_function_signature, sig, &f->signatures) {
497 if (sig->is_builtin() && !sig->is_builtin_available(state))
498 continue;
499
500 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
501 _mesa_glsl_error(loc, state, " %s", str);
502 ralloc_free(str);
503 }
504 }
505
506 /**
507 * Raise a "no matching function" error, listing all possible overloads the
508 * compiler considered so developers can figure out what went wrong.
509 */
510 static void
511 no_matching_function_error(const char *name,
512 YYLTYPE *loc,
513 exec_list *actual_parameters,
514 _mesa_glsl_parse_state *state)
515 {
516 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
517
518 if (state->symbols->get_function(name) == NULL
519 && (!state->uses_builtin_functions
520 || sh->symbols->get_function(name) == NULL)) {
521 _mesa_glsl_error(loc, state, "no function with name '%s'", name);
522 } else {
523 char *str = prototype_string(NULL, name, actual_parameters);
524 _mesa_glsl_error(loc, state,
525 "no matching function for call to `%s'; candidates are:",
526 str);
527 ralloc_free(str);
528
529 print_function_prototypes(state, loc, state->symbols->get_function(name));
530
531 if (state->uses_builtin_functions) {
532 print_function_prototypes(state, loc, sh->symbols->get_function(name));
533 }
534 }
535 }
536
537 /**
538 * Perform automatic type conversion of constructor parameters
539 *
540 * This implements the rules in the "Conversion and Scalar Constructors"
541 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
542 */
543 static ir_rvalue *
544 convert_component(ir_rvalue *src, const glsl_type *desired_type)
545 {
546 void *ctx = ralloc_parent(src);
547 const unsigned a = desired_type->base_type;
548 const unsigned b = src->type->base_type;
549 ir_expression *result = NULL;
550
551 if (src->type->is_error())
552 return src;
553
554 assert(a <= GLSL_TYPE_BOOL);
555 assert(b <= GLSL_TYPE_BOOL);
556
557 if (a == b)
558 return src;
559
560 switch (a) {
561 case GLSL_TYPE_UINT:
562 switch (b) {
563 case GLSL_TYPE_INT:
564 result = new(ctx) ir_expression(ir_unop_i2u, src);
565 break;
566 case GLSL_TYPE_FLOAT:
567 result = new(ctx) ir_expression(ir_unop_f2u, src);
568 break;
569 case GLSL_TYPE_BOOL:
570 result = new(ctx) ir_expression(ir_unop_i2u,
571 new(ctx) ir_expression(ir_unop_b2i, src));
572 break;
573 }
574 break;
575 case GLSL_TYPE_INT:
576 switch (b) {
577 case GLSL_TYPE_UINT:
578 result = new(ctx) ir_expression(ir_unop_u2i, src);
579 break;
580 case GLSL_TYPE_FLOAT:
581 result = new(ctx) ir_expression(ir_unop_f2i, src);
582 break;
583 case GLSL_TYPE_BOOL:
584 result = new(ctx) ir_expression(ir_unop_b2i, src);
585 break;
586 }
587 break;
588 case GLSL_TYPE_FLOAT:
589 switch (b) {
590 case GLSL_TYPE_UINT:
591 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
592 break;
593 case GLSL_TYPE_INT:
594 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
595 break;
596 case GLSL_TYPE_BOOL:
597 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
598 break;
599 }
600 break;
601 case GLSL_TYPE_BOOL:
602 switch (b) {
603 case GLSL_TYPE_UINT:
604 result = new(ctx) ir_expression(ir_unop_i2b,
605 new(ctx) ir_expression(ir_unop_u2i, src));
606 break;
607 case GLSL_TYPE_INT:
608 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
609 break;
610 case GLSL_TYPE_FLOAT:
611 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
612 break;
613 }
614 break;
615 }
616
617 assert(result != NULL);
618 assert(result->type == desired_type);
619
620 /* Try constant folding; it may fold in the conversion we just added. */
621 ir_constant *const constant = result->constant_expression_value();
622 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
623 }
624
625 /**
626 * Dereference a specific component from a scalar, vector, or matrix
627 */
628 static ir_rvalue *
629 dereference_component(ir_rvalue *src, unsigned component)
630 {
631 void *ctx = ralloc_parent(src);
632 assert(component < src->type->components());
633
634 /* If the source is a constant, just create a new constant instead of a
635 * dereference of the existing constant.
636 */
637 ir_constant *constant = src->as_constant();
638 if (constant)
639 return new(ctx) ir_constant(constant, component);
640
641 if (src->type->is_scalar()) {
642 return src;
643 } else if (src->type->is_vector()) {
644 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
645 } else {
646 assert(src->type->is_matrix());
647
648 /* Dereference a row of the matrix, then call this function again to get
649 * a specific element from that row.
650 */
651 const int c = component / src->type->column_type()->vector_elements;
652 const int r = component % src->type->column_type()->vector_elements;
653 ir_constant *const col_index = new(ctx) ir_constant(c);
654 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
655
656 col->type = src->type->column_type();
657
658 return dereference_component(col, r);
659 }
660
661 assert(!"Should not get here.");
662 return NULL;
663 }
664
665
666 static ir_rvalue *
667 process_vec_mat_constructor(exec_list *instructions,
668 const glsl_type *constructor_type,
669 YYLTYPE *loc, exec_list *parameters,
670 struct _mesa_glsl_parse_state *state)
671 {
672 void *ctx = state;
673
674 /* The ARB_shading_language_420pack spec says:
675 *
676 * "If an initializer is a list of initializers enclosed in curly braces,
677 * the variable being declared must be a vector, a matrix, an array, or a
678 * structure.
679 *
680 * int i = { 1 }; // illegal, i is not an aggregate"
681 */
682 if (constructor_type->vector_elements <= 1) {
683 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
684 "matrices, arrays, and structs");
685 return ir_rvalue::error_value(ctx);
686 }
687
688 exec_list actual_parameters;
689 const unsigned parameter_count =
690 process_parameters(instructions, &actual_parameters, parameters, state);
691
692 if (parameter_count == 0
693 || (constructor_type->is_vector() &&
694 constructor_type->vector_elements != parameter_count)
695 || (constructor_type->is_matrix() &&
696 constructor_type->matrix_columns != parameter_count)) {
697 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
698 constructor_type->is_vector() ? "vector" : "matrix",
699 constructor_type->vector_elements);
700 return ir_rvalue::error_value(ctx);
701 }
702
703 bool all_parameters_are_constant = true;
704
705 /* Type cast each parameter and, if possible, fold constants. */
706 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
707 ir_rvalue *result = ir;
708
709 /* Apply implicit conversions (not the scalar constructor rules!). See
710 * the spec quote above. */
711 if (constructor_type->is_float()) {
712 const glsl_type *desired_type =
713 glsl_type::get_instance(GLSL_TYPE_FLOAT,
714 ir->type->vector_elements,
715 ir->type->matrix_columns);
716 if (result->type->can_implicitly_convert_to(desired_type, state)) {
717 /* Even though convert_component() implements the constructor
718 * conversion rules (not the implicit conversion rules), its safe
719 * to use it here because we already checked that the implicit
720 * conversion is legal.
721 */
722 result = convert_component(ir, desired_type);
723 }
724 }
725
726 if (constructor_type->is_matrix()) {
727 if (result->type != constructor_type->column_type()) {
728 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
729 "expected: %s, found %s",
730 constructor_type->column_type()->name,
731 result->type->name);
732 return ir_rvalue::error_value(ctx);
733 }
734 } else if (result->type != constructor_type->get_scalar_type()) {
735 _mesa_glsl_error(loc, state, "type error in vector constructor: "
736 "expected: %s, found %s",
737 constructor_type->get_scalar_type()->name,
738 result->type->name);
739 return ir_rvalue::error_value(ctx);
740 }
741
742 /* Attempt to convert the parameter to a constant valued expression.
743 * After doing so, track whether or not all the parameters to the
744 * constructor are trivially constant valued expressions.
745 */
746 ir_rvalue *const constant = result->constant_expression_value();
747
748 if (constant != NULL)
749 result = constant;
750 else
751 all_parameters_are_constant = false;
752
753 ir->replace_with(result);
754 }
755
756 if (all_parameters_are_constant)
757 return new(ctx) ir_constant(constructor_type, &actual_parameters);
758
759 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
760 ir_var_temporary);
761 instructions->push_tail(var);
762
763 int i = 0;
764
765 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
766 ir_instruction *assignment = NULL;
767
768 if (var->type->is_matrix()) {
769 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
770 new(ctx) ir_constant(i));
771 assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
772 } else {
773 /* use writemask rather than index for vector */
774 assert(var->type->is_vector());
775 assert(i < 4);
776 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
777 assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
778 }
779
780 instructions->push_tail(assignment);
781
782 i++;
783 }
784
785 return new(ctx) ir_dereference_variable(var);
786 }
787
788
789 static ir_rvalue *
790 process_array_constructor(exec_list *instructions,
791 const glsl_type *constructor_type,
792 YYLTYPE *loc, exec_list *parameters,
793 struct _mesa_glsl_parse_state *state)
794 {
795 void *ctx = state;
796 /* Array constructors come in two forms: sized and unsized. Sized array
797 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
798 * variables. In this case the number of parameters must exactly match the
799 * specified size of the array.
800 *
801 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
802 * are vec4 variables. In this case the size of the array being constructed
803 * is determined by the number of parameters.
804 *
805 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
806 *
807 * "There must be exactly the same number of arguments as the size of
808 * the array being constructed. If no size is present in the
809 * constructor, then the array is explicitly sized to the number of
810 * arguments provided. The arguments are assigned in order, starting at
811 * element 0, to the elements of the constructed array. Each argument
812 * must be the same type as the element type of the array, or be a type
813 * that can be converted to the element type of the array according to
814 * Section 4.1.10 "Implicit Conversions.""
815 */
816 exec_list actual_parameters;
817 const unsigned parameter_count =
818 process_parameters(instructions, &actual_parameters, parameters, state);
819 bool is_unsized_array = constructor_type->is_unsized_array();
820
821 if ((parameter_count == 0) ||
822 (!is_unsized_array && (constructor_type->length != parameter_count))) {
823 const unsigned min_param = is_unsized_array
824 ? 1 : constructor_type->length;
825
826 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
827 "parameter%s",
828 is_unsized_array ? "at least" : "exactly",
829 min_param, (min_param <= 1) ? "" : "s");
830 return ir_rvalue::error_value(ctx);
831 }
832
833 if (is_unsized_array) {
834 constructor_type =
835 glsl_type::get_array_instance(constructor_type->element_type(),
836 parameter_count);
837 assert(constructor_type != NULL);
838 assert(constructor_type->length == parameter_count);
839 }
840
841 bool all_parameters_are_constant = true;
842
843 /* Type cast each parameter and, if possible, fold constants. */
844 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
845 ir_rvalue *result = ir;
846
847 /* Apply implicit conversions (not the scalar constructor rules!). See
848 * the spec quote above. */
849 if (constructor_type->element_type()->is_float()) {
850 const glsl_type *desired_type =
851 glsl_type::get_instance(GLSL_TYPE_FLOAT,
852 ir->type->vector_elements,
853 ir->type->matrix_columns);
854 if (result->type->can_implicitly_convert_to(desired_type, state)) {
855 /* Even though convert_component() implements the constructor
856 * conversion rules (not the implicit conversion rules), its safe
857 * to use it here because we already checked that the implicit
858 * conversion is legal.
859 */
860 result = convert_component(ir, desired_type);
861 }
862 }
863
864 if (result->type != constructor_type->element_type()) {
865 _mesa_glsl_error(loc, state, "type error in array constructor: "
866 "expected: %s, found %s",
867 constructor_type->element_type()->name,
868 result->type->name);
869 return ir_rvalue::error_value(ctx);
870 }
871
872 /* Attempt to convert the parameter to a constant valued expression.
873 * After doing so, track whether or not all the parameters to the
874 * constructor are trivially constant valued expressions.
875 */
876 ir_rvalue *const constant = result->constant_expression_value();
877
878 if (constant != NULL)
879 result = constant;
880 else
881 all_parameters_are_constant = false;
882
883 ir->replace_with(result);
884 }
885
886 if (all_parameters_are_constant)
887 return new(ctx) ir_constant(constructor_type, &actual_parameters);
888
889 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
890 ir_var_temporary);
891 instructions->push_tail(var);
892
893 int i = 0;
894 foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
895 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
896 new(ctx) ir_constant(i));
897
898 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
899 instructions->push_tail(assignment);
900
901 i++;
902 }
903
904 return new(ctx) ir_dereference_variable(var);
905 }
906
907
908 /**
909 * Try to convert a record constructor to a constant expression
910 */
911 static ir_constant *
912 constant_record_constructor(const glsl_type *constructor_type,
913 exec_list *parameters, void *mem_ctx)
914 {
915 foreach_in_list(ir_instruction, node, parameters) {
916 ir_constant *constant = node->as_constant();
917 if (constant == NULL)
918 return NULL;
919 node->replace_with(constant);
920 }
921
922 return new(mem_ctx) ir_constant(constructor_type, parameters);
923 }
924
925
926 /**
927 * Determine if a list consists of a single scalar r-value
928 */
929 bool
930 single_scalar_parameter(exec_list *parameters)
931 {
932 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
933 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
934
935 return (p->type->is_scalar() && p->next->is_tail_sentinel());
936 }
937
938
939 /**
940 * Generate inline code for a vector constructor
941 *
942 * The generated constructor code will consist of a temporary variable
943 * declaration of the same type as the constructor. A sequence of assignments
944 * from constructor parameters to the temporary will follow.
945 *
946 * \return
947 * An \c ir_dereference_variable of the temprorary generated in the constructor
948 * body.
949 */
950 ir_rvalue *
951 emit_inline_vector_constructor(const glsl_type *type,
952 exec_list *instructions,
953 exec_list *parameters,
954 void *ctx)
955 {
956 assert(!parameters->is_empty());
957
958 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
959 instructions->push_tail(var);
960
961 /* There are two kinds of vector constructors.
962 *
963 * - Construct a vector from a single scalar by replicating that scalar to
964 * all components of the vector.
965 *
966 * - Construct a vector from an arbirary combination of vectors and
967 * scalars. The components of the constructor parameters are assigned
968 * to the vector in order until the vector is full.
969 */
970 const unsigned lhs_components = type->components();
971 if (single_scalar_parameter(parameters)) {
972 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
973 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
974 lhs_components);
975 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
976 const unsigned mask = (1U << lhs_components) - 1;
977
978 assert(rhs->type == lhs->type);
979
980 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
981 instructions->push_tail(inst);
982 } else {
983 unsigned base_component = 0;
984 unsigned base_lhs_component = 0;
985 ir_constant_data data;
986 unsigned constant_mask = 0, constant_components = 0;
987
988 memset(&data, 0, sizeof(data));
989
990 foreach_in_list(ir_rvalue, param, parameters) {
991 unsigned rhs_components = param->type->components();
992
993 /* Do not try to assign more components to the vector than it has!
994 */
995 if ((rhs_components + base_lhs_component) > lhs_components) {
996 rhs_components = lhs_components - base_lhs_component;
997 }
998
999 const ir_constant *const c = param->as_constant();
1000 if (c != NULL) {
1001 for (unsigned i = 0; i < rhs_components; i++) {
1002 switch (c->type->base_type) {
1003 case GLSL_TYPE_UINT:
1004 data.u[i + base_component] = c->get_uint_component(i);
1005 break;
1006 case GLSL_TYPE_INT:
1007 data.i[i + base_component] = c->get_int_component(i);
1008 break;
1009 case GLSL_TYPE_FLOAT:
1010 data.f[i + base_component] = c->get_float_component(i);
1011 break;
1012 case GLSL_TYPE_BOOL:
1013 data.b[i + base_component] = c->get_bool_component(i);
1014 break;
1015 default:
1016 assert(!"Should not get here.");
1017 break;
1018 }
1019 }
1020
1021 /* Mask of fields to be written in the assignment.
1022 */
1023 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1024 constant_components += rhs_components;
1025
1026 base_component += rhs_components;
1027 }
1028 /* Advance the component index by the number of components
1029 * that were just assigned.
1030 */
1031 base_lhs_component += rhs_components;
1032 }
1033
1034 if (constant_mask != 0) {
1035 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1036 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
1037 constant_components,
1038 1);
1039 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1040
1041 ir_instruction *inst =
1042 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1043 instructions->push_tail(inst);
1044 }
1045
1046 base_component = 0;
1047 foreach_in_list(ir_rvalue, param, parameters) {
1048 unsigned rhs_components = param->type->components();
1049
1050 /* Do not try to assign more components to the vector than it has!
1051 */
1052 if ((rhs_components + base_component) > lhs_components) {
1053 rhs_components = lhs_components - base_component;
1054 }
1055
1056 const ir_constant *const c = param->as_constant();
1057 if (c == NULL) {
1058 /* Mask of fields to be written in the assignment.
1059 */
1060 const unsigned write_mask = ((1U << rhs_components) - 1)
1061 << base_component;
1062
1063 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1064
1065 /* Generate a swizzle so that LHS and RHS sizes match.
1066 */
1067 ir_rvalue *rhs =
1068 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1069
1070 ir_instruction *inst =
1071 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1072 instructions->push_tail(inst);
1073 }
1074
1075 /* Advance the component index by the number of components that were
1076 * just assigned.
1077 */
1078 base_component += rhs_components;
1079 }
1080 }
1081 return new(ctx) ir_dereference_variable(var);
1082 }
1083
1084
1085 /**
1086 * Generate assignment of a portion of a vector to a portion of a matrix column
1087 *
1088 * \param src_base First component of the source to be used in assignment
1089 * \param column Column of destination to be assiged
1090 * \param row_base First component of the destination column to be assigned
1091 * \param count Number of components to be assigned
1092 *
1093 * \note
1094 * \c src_base + \c count must be less than or equal to the number of components
1095 * in the source vector.
1096 */
1097 ir_instruction *
1098 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1099 ir_rvalue *src, unsigned src_base, unsigned count,
1100 void *mem_ctx)
1101 {
1102 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1103 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1104
1105 assert(column_ref->type->components() >= (row_base + count));
1106 assert(src->type->components() >= (src_base + count));
1107
1108 /* Generate a swizzle that extracts the number of components from the source
1109 * that are to be assigned to the column of the matrix.
1110 */
1111 if (count < src->type->vector_elements) {
1112 src = new(mem_ctx) ir_swizzle(src,
1113 src_base + 0, src_base + 1,
1114 src_base + 2, src_base + 3,
1115 count);
1116 }
1117
1118 /* Mask of fields to be written in the assignment.
1119 */
1120 const unsigned write_mask = ((1U << count) - 1) << row_base;
1121
1122 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1123 }
1124
1125
1126 /**
1127 * Generate inline code for a matrix constructor
1128 *
1129 * The generated constructor code will consist of a temporary variable
1130 * declaration of the same type as the constructor. A sequence of assignments
1131 * from constructor parameters to the temporary will follow.
1132 *
1133 * \return
1134 * An \c ir_dereference_variable of the temprorary generated in the constructor
1135 * body.
1136 */
1137 ir_rvalue *
1138 emit_inline_matrix_constructor(const glsl_type *type,
1139 exec_list *instructions,
1140 exec_list *parameters,
1141 void *ctx)
1142 {
1143 assert(!parameters->is_empty());
1144
1145 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1146 instructions->push_tail(var);
1147
1148 /* There are three kinds of matrix constructors.
1149 *
1150 * - Construct a matrix from a single scalar by replicating that scalar to
1151 * along the diagonal of the matrix and setting all other components to
1152 * zero.
1153 *
1154 * - Construct a matrix from an arbirary combination of vectors and
1155 * scalars. The components of the constructor parameters are assigned
1156 * to the matrix in colum-major order until the matrix is full.
1157 *
1158 * - Construct a matrix from a single matrix. The source matrix is copied
1159 * to the upper left portion of the constructed matrix, and the remaining
1160 * elements take values from the identity matrix.
1161 */
1162 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1163 if (single_scalar_parameter(parameters)) {
1164 /* Assign the scalar to the X component of a vec4, and fill the remaining
1165 * components with zero.
1166 */
1167 ir_variable *rhs_var =
1168 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1169 ir_var_temporary);
1170 instructions->push_tail(rhs_var);
1171
1172 ir_constant_data zero;
1173 zero.f[0] = 0.0;
1174 zero.f[1] = 0.0;
1175 zero.f[2] = 0.0;
1176 zero.f[3] = 0.0;
1177
1178 ir_instruction *inst =
1179 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1180 new(ctx) ir_constant(rhs_var->type, &zero),
1181 NULL);
1182 instructions->push_tail(inst);
1183
1184 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1185
1186 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1187 instructions->push_tail(inst);
1188
1189 /* Assign the temporary vector to each column of the destination matrix
1190 * with a swizzle that puts the X component on the diagonal of the
1191 * matrix. In some cases this may mean that the X component does not
1192 * get assigned into the column at all (i.e., when the matrix has more
1193 * columns than rows).
1194 */
1195 static const unsigned rhs_swiz[4][4] = {
1196 { 0, 1, 1, 1 },
1197 { 1, 0, 1, 1 },
1198 { 1, 1, 0, 1 },
1199 { 1, 1, 1, 0 }
1200 };
1201
1202 const unsigned cols_to_init = MIN2(type->matrix_columns,
1203 type->vector_elements);
1204 for (unsigned i = 0; i < cols_to_init; i++) {
1205 ir_constant *const col_idx = new(ctx) ir_constant(i);
1206 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1207
1208 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1209 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1210 type->vector_elements);
1211
1212 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1213 instructions->push_tail(inst);
1214 }
1215
1216 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1217 ir_constant *const col_idx = new(ctx) ir_constant(i);
1218 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1219
1220 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1221 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1222 type->vector_elements);
1223
1224 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1225 instructions->push_tail(inst);
1226 }
1227 } else if (first_param->type->is_matrix()) {
1228 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1229 *
1230 * "If a matrix is constructed from a matrix, then each component
1231 * (column i, row j) in the result that has a corresponding
1232 * component (column i, row j) in the argument will be initialized
1233 * from there. All other components will be initialized to the
1234 * identity matrix. If a matrix argument is given to a matrix
1235 * constructor, it is an error to have any other arguments."
1236 */
1237 assert(first_param->next->is_tail_sentinel());
1238 ir_rvalue *const src_matrix = first_param;
1239
1240 /* If the source matrix is smaller, pre-initialize the relavent parts of
1241 * the destination matrix to the identity matrix.
1242 */
1243 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1244 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1245
1246 /* If the source matrix has fewer rows, every column of the destination
1247 * must be initialized. Otherwise only the columns in the destination
1248 * that do not exist in the source must be initialized.
1249 */
1250 unsigned col =
1251 (src_matrix->type->vector_elements < var->type->vector_elements)
1252 ? 0 : src_matrix->type->matrix_columns;
1253
1254 const glsl_type *const col_type = var->type->column_type();
1255 for (/* empty */; col < var->type->matrix_columns; col++) {
1256 ir_constant_data ident;
1257
1258 ident.f[0] = 0.0;
1259 ident.f[1] = 0.0;
1260 ident.f[2] = 0.0;
1261 ident.f[3] = 0.0;
1262
1263 ident.f[col] = 1.0;
1264
1265 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1266
1267 ir_rvalue *const lhs =
1268 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1269
1270 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1271 instructions->push_tail(inst);
1272 }
1273 }
1274
1275 /* Assign columns from the source matrix to the destination matrix.
1276 *
1277 * Since the parameter will be used in the RHS of multiple assignments,
1278 * generate a temporary and copy the paramter there.
1279 */
1280 ir_variable *const rhs_var =
1281 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1282 ir_var_temporary);
1283 instructions->push_tail(rhs_var);
1284
1285 ir_dereference *const rhs_var_ref =
1286 new(ctx) ir_dereference_variable(rhs_var);
1287 ir_instruction *const inst =
1288 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1289 instructions->push_tail(inst);
1290
1291 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1292 var->type->vector_elements);
1293 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1294 var->type->matrix_columns);
1295
1296 unsigned swiz[4] = { 0, 0, 0, 0 };
1297 for (unsigned i = 1; i < last_row; i++)
1298 swiz[i] = i;
1299
1300 const unsigned write_mask = (1U << last_row) - 1;
1301
1302 for (unsigned i = 0; i < last_col; i++) {
1303 ir_dereference *const lhs =
1304 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1305 ir_rvalue *const rhs_col =
1306 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1307
1308 /* If one matrix has columns that are smaller than the columns of the
1309 * other matrix, wrap the column access of the larger with a swizzle
1310 * so that the LHS and RHS of the assignment have the same size (and
1311 * therefore have the same type).
1312 *
1313 * It would be perfectly valid to unconditionally generate the
1314 * swizzles, this this will typically result in a more compact IR tree.
1315 */
1316 ir_rvalue *rhs;
1317 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1318 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1319 } else {
1320 rhs = rhs_col;
1321 }
1322
1323 ir_instruction *inst =
1324 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1325 instructions->push_tail(inst);
1326 }
1327 } else {
1328 const unsigned cols = type->matrix_columns;
1329 const unsigned rows = type->vector_elements;
1330 unsigned col_idx = 0;
1331 unsigned row_idx = 0;
1332
1333 foreach_in_list(ir_rvalue, rhs, parameters) {
1334 const unsigned components_remaining_this_column = rows - row_idx;
1335 unsigned rhs_components = rhs->type->components();
1336 unsigned rhs_base = 0;
1337
1338 /* Since the parameter might be used in the RHS of two assignments,
1339 * generate a temporary and copy the paramter there.
1340 */
1341 ir_variable *rhs_var =
1342 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1343 instructions->push_tail(rhs_var);
1344
1345 ir_dereference *rhs_var_ref =
1346 new(ctx) ir_dereference_variable(rhs_var);
1347 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1348 instructions->push_tail(inst);
1349
1350 /* Assign the current parameter to as many components of the matrix
1351 * as it will fill.
1352 *
1353 * NOTE: A single vector parameter can span two matrix columns. A
1354 * single vec4, for example, can completely fill a mat2.
1355 */
1356 if (rhs_components >= components_remaining_this_column) {
1357 const unsigned count = MIN2(rhs_components,
1358 components_remaining_this_column);
1359
1360 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1361
1362 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1363 row_idx,
1364 rhs_var_ref, 0,
1365 count, ctx);
1366 instructions->push_tail(inst);
1367
1368 rhs_base = count;
1369
1370 col_idx++;
1371 row_idx = 0;
1372 }
1373
1374 /* If there is data left in the parameter and components left to be
1375 * set in the destination, emit another assignment. It is possible
1376 * that the assignment could be of a vec4 to the last element of the
1377 * matrix. In this case col_idx==cols, but there is still data
1378 * left in the source parameter. Obviously, don't emit an assignment
1379 * to data outside the destination matrix.
1380 */
1381 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1382 const unsigned count = rhs_components - rhs_base;
1383
1384 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1385
1386 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1387 row_idx,
1388 rhs_var_ref,
1389 rhs_base,
1390 count, ctx);
1391 instructions->push_tail(inst);
1392
1393 row_idx += count;
1394 }
1395 }
1396 }
1397
1398 return new(ctx) ir_dereference_variable(var);
1399 }
1400
1401
1402 ir_rvalue *
1403 emit_inline_record_constructor(const glsl_type *type,
1404 exec_list *instructions,
1405 exec_list *parameters,
1406 void *mem_ctx)
1407 {
1408 ir_variable *const var =
1409 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1410 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1411
1412 instructions->push_tail(var);
1413
1414 exec_node *node = parameters->head;
1415 for (unsigned i = 0; i < type->length; i++) {
1416 assert(!node->is_tail_sentinel());
1417
1418 ir_dereference *const lhs =
1419 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1420 type->fields.structure[i].name);
1421
1422 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1423 assert(rhs != NULL);
1424
1425 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1426
1427 instructions->push_tail(assign);
1428 node = node->next;
1429 }
1430
1431 return d;
1432 }
1433
1434
1435 static ir_rvalue *
1436 process_record_constructor(exec_list *instructions,
1437 const glsl_type *constructor_type,
1438 YYLTYPE *loc, exec_list *parameters,
1439 struct _mesa_glsl_parse_state *state)
1440 {
1441 void *ctx = state;
1442 exec_list actual_parameters;
1443
1444 process_parameters(instructions, &actual_parameters,
1445 parameters, state);
1446
1447 exec_node *node = actual_parameters.head;
1448 for (unsigned i = 0; i < constructor_type->length; i++) {
1449 ir_rvalue *ir = (ir_rvalue *) node;
1450
1451 if (node->is_tail_sentinel()) {
1452 _mesa_glsl_error(loc, state,
1453 "insufficient parameters to constructor for `%s'",
1454 constructor_type->name);
1455 return ir_rvalue::error_value(ctx);
1456 }
1457
1458 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1459 ir, state)) {
1460 node->replace_with(ir);
1461 } else {
1462 _mesa_glsl_error(loc, state,
1463 "parameter type mismatch in constructor for `%s.%s' "
1464 "(%s vs %s)",
1465 constructor_type->name,
1466 constructor_type->fields.structure[i].name,
1467 ir->type->name,
1468 constructor_type->fields.structure[i].type->name);
1469 return ir_rvalue::error_value(ctx);;
1470 }
1471
1472 node = node->next;
1473 }
1474
1475 if (!node->is_tail_sentinel()) {
1476 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1477 "for `%s'", constructor_type->name);
1478 return ir_rvalue::error_value(ctx);
1479 }
1480
1481 ir_rvalue *const constant =
1482 constant_record_constructor(constructor_type, &actual_parameters,
1483 state);
1484
1485 return (constant != NULL)
1486 ? constant
1487 : emit_inline_record_constructor(constructor_type, instructions,
1488 &actual_parameters, state);
1489 }
1490
1491
1492 ir_rvalue *
1493 ast_function_expression::hir(exec_list *instructions,
1494 struct _mesa_glsl_parse_state *state)
1495 {
1496 void *ctx = state;
1497 /* There are three sorts of function calls.
1498 *
1499 * 1. constructors - The first subexpression is an ast_type_specifier.
1500 * 2. methods - Only the .length() method of array types.
1501 * 3. functions - Calls to regular old functions.
1502 *
1503 * Method calls are actually detected when the ast_field_selection
1504 * expression is handled.
1505 */
1506 if (is_constructor()) {
1507 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1508 YYLTYPE loc = type->get_location();
1509 const char *name;
1510
1511 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1512
1513 /* constructor_type can be NULL if a variable with the same name as the
1514 * structure has come into scope.
1515 */
1516 if (constructor_type == NULL) {
1517 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1518 "may be shadowed by a variable with the same name)",
1519 type->type_name);
1520 return ir_rvalue::error_value(ctx);
1521 }
1522
1523
1524 /* Constructors for samplers are illegal.
1525 */
1526 if (constructor_type->is_sampler()) {
1527 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1528 constructor_type->name);
1529 return ir_rvalue::error_value(ctx);
1530 }
1531
1532 if (constructor_type->is_array()) {
1533 if (!state->check_version(120, 300, &loc,
1534 "array constructors forbidden")) {
1535 return ir_rvalue::error_value(ctx);
1536 }
1537
1538 return process_array_constructor(instructions, constructor_type,
1539 & loc, &this->expressions, state);
1540 }
1541
1542
1543 /* There are two kinds of constructor calls. Constructors for arrays and
1544 * structures must have the exact number of arguments with matching types
1545 * in the correct order. These constructors follow essentially the same
1546 * type matching rules as functions.
1547 *
1548 * Constructors for built-in language types, such as mat4 and vec2, are
1549 * free form. The only requirements are that the parameters must provide
1550 * enough values of the correct scalar type and that no arguments are
1551 * given past the last used argument.
1552 *
1553 * When using the C-style initializer syntax from GLSL 4.20, constructors
1554 * must have the exact number of arguments with matching types in the
1555 * correct order.
1556 */
1557 if (constructor_type->is_record()) {
1558 return process_record_constructor(instructions, constructor_type,
1559 &loc, &this->expressions,
1560 state);
1561 }
1562
1563 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1564 return ir_rvalue::error_value(ctx);
1565
1566 /* Total number of components of the type being constructed. */
1567 const unsigned type_components = constructor_type->components();
1568
1569 /* Number of components from parameters that have actually been
1570 * consumed. This is used to perform several kinds of error checking.
1571 */
1572 unsigned components_used = 0;
1573
1574 unsigned matrix_parameters = 0;
1575 unsigned nonmatrix_parameters = 0;
1576 exec_list actual_parameters;
1577
1578 foreach_list_typed(ast_node, ast, link, &this->expressions) {
1579 ir_rvalue *result = ast->hir(instructions, state);
1580
1581 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1582 *
1583 * "It is an error to provide extra arguments beyond this
1584 * last used argument."
1585 */
1586 if (components_used >= type_components) {
1587 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1588 "constructor",
1589 constructor_type->name);
1590 return ir_rvalue::error_value(ctx);
1591 }
1592
1593 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1594 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1595 "non-numeric data type",
1596 constructor_type->name);
1597 return ir_rvalue::error_value(ctx);
1598 }
1599
1600 /* Count the number of matrix and nonmatrix parameters. This
1601 * is used below to enforce some of the constructor rules.
1602 */
1603 if (result->type->is_matrix())
1604 matrix_parameters++;
1605 else
1606 nonmatrix_parameters++;
1607
1608 actual_parameters.push_tail(result);
1609 components_used += result->type->components();
1610 }
1611
1612 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1613 *
1614 * "It is an error to construct matrices from other matrices. This
1615 * is reserved for future use."
1616 */
1617 if (matrix_parameters > 0
1618 && constructor_type->is_matrix()
1619 && !state->check_version(120, 100, &loc,
1620 "cannot construct `%s' from a matrix",
1621 constructor_type->name)) {
1622 return ir_rvalue::error_value(ctx);
1623 }
1624
1625 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1626 *
1627 * "If a matrix argument is given to a matrix constructor, it is
1628 * an error to have any other arguments."
1629 */
1630 if ((matrix_parameters > 0)
1631 && ((matrix_parameters + nonmatrix_parameters) > 1)
1632 && constructor_type->is_matrix()) {
1633 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1634 "matrix must be only parameter",
1635 constructor_type->name);
1636 return ir_rvalue::error_value(ctx);
1637 }
1638
1639 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1640 *
1641 * "In these cases, there must be enough components provided in the
1642 * arguments to provide an initializer for every component in the
1643 * constructed value."
1644 */
1645 if (components_used < type_components && components_used != 1
1646 && matrix_parameters == 0) {
1647 _mesa_glsl_error(& loc, state, "too few components to construct "
1648 "`%s'",
1649 constructor_type->name);
1650 return ir_rvalue::error_value(ctx);
1651 }
1652
1653 /* Later, we cast each parameter to the same base type as the
1654 * constructor. Since there are no non-floating point matrices, we
1655 * need to break them up into a series of column vectors.
1656 */
1657 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1658 foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
1659 if (!matrix->type->is_matrix())
1660 continue;
1661
1662 /* Create a temporary containing the matrix. */
1663 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1664 ir_var_temporary);
1665 instructions->push_tail(var);
1666 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1667 ir_dereference_variable(var), matrix, NULL));
1668 var->constant_value = matrix->constant_expression_value();
1669
1670 /* Replace the matrix with dereferences of its columns. */
1671 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1672 matrix->insert_before(new (ctx) ir_dereference_array(var,
1673 new(ctx) ir_constant(i)));
1674 }
1675 matrix->remove();
1676 }
1677 }
1678
1679 bool all_parameters_are_constant = true;
1680
1681 /* Type cast each parameter and, if possible, fold constants.*/
1682 foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1683 const glsl_type *desired_type =
1684 glsl_type::get_instance(constructor_type->base_type,
1685 ir->type->vector_elements,
1686 ir->type->matrix_columns);
1687 ir_rvalue *result = convert_component(ir, desired_type);
1688
1689 /* Attempt to convert the parameter to a constant valued expression.
1690 * After doing so, track whether or not all the parameters to the
1691 * constructor are trivially constant valued expressions.
1692 */
1693 ir_rvalue *const constant = result->constant_expression_value();
1694
1695 if (constant != NULL)
1696 result = constant;
1697 else
1698 all_parameters_are_constant = false;
1699
1700 if (result != ir) {
1701 ir->replace_with(result);
1702 }
1703 }
1704
1705 /* If all of the parameters are trivially constant, create a
1706 * constant representing the complete collection of parameters.
1707 */
1708 if (all_parameters_are_constant) {
1709 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1710 } else if (constructor_type->is_scalar()) {
1711 return dereference_component((ir_rvalue *) actual_parameters.head,
1712 0);
1713 } else if (constructor_type->is_vector()) {
1714 return emit_inline_vector_constructor(constructor_type,
1715 instructions,
1716 &actual_parameters,
1717 ctx);
1718 } else {
1719 assert(constructor_type->is_matrix());
1720 return emit_inline_matrix_constructor(constructor_type,
1721 instructions,
1722 &actual_parameters,
1723 ctx);
1724 }
1725 } else {
1726 const ast_expression *id = subexpressions[0];
1727 const char *func_name = id->primary_expression.identifier;
1728 YYLTYPE loc = get_location();
1729 exec_list actual_parameters;
1730
1731 process_parameters(instructions, &actual_parameters, &this->expressions,
1732 state);
1733
1734 ir_function_signature *sig =
1735 match_function_by_name(func_name, &actual_parameters, state);
1736
1737 ir_rvalue *value = NULL;
1738 if (sig == NULL) {
1739 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1740 value = ir_rvalue::error_value(ctx);
1741 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1742 /* an error has already been emitted */
1743 value = ir_rvalue::error_value(ctx);
1744 } else {
1745 value = generate_call(instructions, sig, &actual_parameters, state);
1746 }
1747
1748 return value;
1749 }
1750
1751 return ir_rvalue::error_value(ctx);
1752 }
1753
1754 ir_rvalue *
1755 ast_aggregate_initializer::hir(exec_list *instructions,
1756 struct _mesa_glsl_parse_state *state)
1757 {
1758 void *ctx = state;
1759 YYLTYPE loc = this->get_location();
1760
1761 if (!this->constructor_type) {
1762 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1763 return ir_rvalue::error_value(ctx);
1764 }
1765 const glsl_type *const constructor_type = this->constructor_type;
1766
1767 if (!state->ARB_shading_language_420pack_enable) {
1768 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1769 "GL_ARB_shading_language_420pack extension");
1770 return ir_rvalue::error_value(ctx);
1771 }
1772
1773 if (constructor_type->is_array()) {
1774 return process_array_constructor(instructions, constructor_type, &loc,
1775 &this->expressions, state);
1776 }
1777
1778 if (constructor_type->is_record()) {
1779 return process_record_constructor(instructions, constructor_type, &loc,
1780 &this->expressions, state);
1781 }
1782
1783 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1784 &this->expressions, state);
1785 }