glsl: Merge "candidates are: " message to the previous line.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * Generate a function call.
278 *
279 * For non-void functions, this returns a dereference of the temporary variable
280 * which stores the return value for the call. For void functions, this returns
281 * NULL.
282 */
283 static ir_rvalue *
284 generate_call(exec_list *instructions, ir_function_signature *sig,
285 exec_list *actual_parameters,
286 struct _mesa_glsl_parse_state *state)
287 {
288 void *ctx = state;
289 exec_list post_call_conversions;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(state, actual_parameters,
392 &is_exact);
393 if (is_exact)
394 goto done;
395
396 if (!state->es_shader && f->has_user_signature()) {
397 /* In desktop GL, the presence of a user-defined signature hides any
398 * built-in signatures, so we must ignore them. In contrast, in ES2
399 * user-defined signatures add new overloads, so we must proceed.
400 */
401 goto done;
402 }
403 }
404
405 /* Local shader has no exact candidates; check the built-ins. */
406 _mesa_glsl_initialize_builtin_functions();
407 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
408
409 done:
410 if (sig != NULL) {
411 /* If the match is from a linked built-in shader, import the prototype. */
412 if (sig != local_sig) {
413 if (f == NULL) {
414 f = new(ctx) ir_function(name);
415 state->symbols->add_global_function(f);
416 emit_function(state, f);
417 }
418 f->add_signature(sig->clone_prototype(f, NULL));
419 }
420 }
421 return sig;
422 }
423
424 /**
425 * Raise a "no matching function" error, listing all possible overloads the
426 * compiler considered so developers can figure out what went wrong.
427 */
428 static void
429 no_matching_function_error(const char *name,
430 YYLTYPE *loc,
431 exec_list *actual_parameters,
432 _mesa_glsl_parse_state *state)
433 {
434 char *str = prototype_string(NULL, name, actual_parameters);
435 _mesa_glsl_error(loc, state,
436 "no matching function for call to `%s'; candidates are:",
437 str);
438 ralloc_free(str);
439
440 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
441 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
442 : state->symbols;
443 ir_function *f = syms->get_function(name);
444 if (f == NULL)
445 continue;
446
447 foreach_list (node, &f->signatures) {
448 ir_function_signature *sig = (ir_function_signature *) node;
449
450 if (sig->is_builtin() && !sig->is_builtin_available(state))
451 continue;
452
453 str = prototype_string(sig->return_type, f->name, &sig->parameters);
454 _mesa_glsl_error(loc, state, " %s", str);
455 ralloc_free(str);
456 }
457 }
458 }
459
460 /**
461 * Perform automatic type conversion of constructor parameters
462 *
463 * This implements the rules in the "Conversion and Scalar Constructors"
464 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
465 */
466 static ir_rvalue *
467 convert_component(ir_rvalue *src, const glsl_type *desired_type)
468 {
469 void *ctx = ralloc_parent(src);
470 const unsigned a = desired_type->base_type;
471 const unsigned b = src->type->base_type;
472 ir_expression *result = NULL;
473
474 if (src->type->is_error())
475 return src;
476
477 assert(a <= GLSL_TYPE_BOOL);
478 assert(b <= GLSL_TYPE_BOOL);
479
480 if (a == b)
481 return src;
482
483 switch (a) {
484 case GLSL_TYPE_UINT:
485 switch (b) {
486 case GLSL_TYPE_INT:
487 result = new(ctx) ir_expression(ir_unop_i2u, src);
488 break;
489 case GLSL_TYPE_FLOAT:
490 result = new(ctx) ir_expression(ir_unop_f2u, src);
491 break;
492 case GLSL_TYPE_BOOL:
493 result = new(ctx) ir_expression(ir_unop_i2u,
494 new(ctx) ir_expression(ir_unop_b2i, src));
495 break;
496 }
497 break;
498 case GLSL_TYPE_INT:
499 switch (b) {
500 case GLSL_TYPE_UINT:
501 result = new(ctx) ir_expression(ir_unop_u2i, src);
502 break;
503 case GLSL_TYPE_FLOAT:
504 result = new(ctx) ir_expression(ir_unop_f2i, src);
505 break;
506 case GLSL_TYPE_BOOL:
507 result = new(ctx) ir_expression(ir_unop_b2i, src);
508 break;
509 }
510 break;
511 case GLSL_TYPE_FLOAT:
512 switch (b) {
513 case GLSL_TYPE_UINT:
514 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
515 break;
516 case GLSL_TYPE_INT:
517 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
518 break;
519 case GLSL_TYPE_BOOL:
520 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
521 break;
522 }
523 break;
524 case GLSL_TYPE_BOOL:
525 switch (b) {
526 case GLSL_TYPE_UINT:
527 result = new(ctx) ir_expression(ir_unop_i2b,
528 new(ctx) ir_expression(ir_unop_u2i, src));
529 break;
530 case GLSL_TYPE_INT:
531 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
532 break;
533 case GLSL_TYPE_FLOAT:
534 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
535 break;
536 }
537 break;
538 }
539
540 assert(result != NULL);
541 assert(result->type == desired_type);
542
543 /* Try constant folding; it may fold in the conversion we just added. */
544 ir_constant *const constant = result->constant_expression_value();
545 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
546 }
547
548 /**
549 * Dereference a specific component from a scalar, vector, or matrix
550 */
551 static ir_rvalue *
552 dereference_component(ir_rvalue *src, unsigned component)
553 {
554 void *ctx = ralloc_parent(src);
555 assert(component < src->type->components());
556
557 /* If the source is a constant, just create a new constant instead of a
558 * dereference of the existing constant.
559 */
560 ir_constant *constant = src->as_constant();
561 if (constant)
562 return new(ctx) ir_constant(constant, component);
563
564 if (src->type->is_scalar()) {
565 return src;
566 } else if (src->type->is_vector()) {
567 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
568 } else {
569 assert(src->type->is_matrix());
570
571 /* Dereference a row of the matrix, then call this function again to get
572 * a specific element from that row.
573 */
574 const int c = component / src->type->column_type()->vector_elements;
575 const int r = component % src->type->column_type()->vector_elements;
576 ir_constant *const col_index = new(ctx) ir_constant(c);
577 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
578
579 col->type = src->type->column_type();
580
581 return dereference_component(col, r);
582 }
583
584 assert(!"Should not get here.");
585 return NULL;
586 }
587
588
589 static ir_rvalue *
590 process_vec_mat_constructor(exec_list *instructions,
591 const glsl_type *constructor_type,
592 YYLTYPE *loc, exec_list *parameters,
593 struct _mesa_glsl_parse_state *state)
594 {
595 void *ctx = state;
596
597 /* The ARB_shading_language_420pack spec says:
598 *
599 * "If an initializer is a list of initializers enclosed in curly braces,
600 * the variable being declared must be a vector, a matrix, an array, or a
601 * structure.
602 *
603 * int i = { 1 }; // illegal, i is not an aggregate"
604 */
605 if (constructor_type->vector_elements <= 1) {
606 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
607 "matrices, arrays, and structs");
608 return ir_rvalue::error_value(ctx);
609 }
610
611 exec_list actual_parameters;
612 const unsigned parameter_count =
613 process_parameters(instructions, &actual_parameters, parameters, state);
614
615 if (parameter_count == 0
616 || (constructor_type->is_vector() &&
617 constructor_type->vector_elements != parameter_count)
618 || (constructor_type->is_matrix() &&
619 constructor_type->matrix_columns != parameter_count)) {
620 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
621 constructor_type->is_vector() ? "vector" : "matrix",
622 constructor_type->vector_elements);
623 return ir_rvalue::error_value(ctx);
624 }
625
626 bool all_parameters_are_constant = true;
627
628 /* Type cast each parameter and, if possible, fold constants. */
629 foreach_list_safe(n, &actual_parameters) {
630 ir_rvalue *ir = (ir_rvalue *) n;
631 ir_rvalue *result = ir;
632
633 /* Apply implicit conversions (not the scalar constructor rules!). See
634 * the spec quote above. */
635 if (constructor_type->is_float()) {
636 const glsl_type *desired_type =
637 glsl_type::get_instance(GLSL_TYPE_FLOAT,
638 ir->type->vector_elements,
639 ir->type->matrix_columns);
640 if (result->type->can_implicitly_convert_to(desired_type)) {
641 /* Even though convert_component() implements the constructor
642 * conversion rules (not the implicit conversion rules), its safe
643 * to use it here because we already checked that the implicit
644 * conversion is legal.
645 */
646 result = convert_component(ir, desired_type);
647 }
648 }
649
650 if (constructor_type->is_matrix()) {
651 if (result->type != constructor_type->column_type()) {
652 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
653 "expected: %s, found %s",
654 constructor_type->column_type()->name,
655 result->type->name);
656 return ir_rvalue::error_value(ctx);
657 }
658 } else if (result->type != constructor_type->get_scalar_type()) {
659 _mesa_glsl_error(loc, state, "type error in vector constructor: "
660 "expected: %s, found %s",
661 constructor_type->get_scalar_type()->name,
662 result->type->name);
663 return ir_rvalue::error_value(ctx);
664 }
665
666 /* Attempt to convert the parameter to a constant valued expression.
667 * After doing so, track whether or not all the parameters to the
668 * constructor are trivially constant valued expressions.
669 */
670 ir_rvalue *const constant = result->constant_expression_value();
671
672 if (constant != NULL)
673 result = constant;
674 else
675 all_parameters_are_constant = false;
676
677 ir->replace_with(result);
678 }
679
680 if (all_parameters_are_constant)
681 return new(ctx) ir_constant(constructor_type, &actual_parameters);
682
683 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
684 ir_var_temporary);
685 instructions->push_tail(var);
686
687 int i = 0;
688 foreach_list(node, &actual_parameters) {
689 ir_rvalue *rhs = (ir_rvalue *) node;
690 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
691 new(ctx) ir_constant(i));
692
693 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
694 instructions->push_tail(assignment);
695
696 i++;
697 }
698
699 return new(ctx) ir_dereference_variable(var);
700 }
701
702
703 static ir_rvalue *
704 process_array_constructor(exec_list *instructions,
705 const glsl_type *constructor_type,
706 YYLTYPE *loc, exec_list *parameters,
707 struct _mesa_glsl_parse_state *state)
708 {
709 void *ctx = state;
710 /* Array constructors come in two forms: sized and unsized. Sized array
711 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
712 * variables. In this case the number of parameters must exactly match the
713 * specified size of the array.
714 *
715 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
716 * are vec4 variables. In this case the size of the array being constructed
717 * is determined by the number of parameters.
718 *
719 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
720 *
721 * "There must be exactly the same number of arguments as the size of
722 * the array being constructed. If no size is present in the
723 * constructor, then the array is explicitly sized to the number of
724 * arguments provided. The arguments are assigned in order, starting at
725 * element 0, to the elements of the constructed array. Each argument
726 * must be the same type as the element type of the array, or be a type
727 * that can be converted to the element type of the array according to
728 * Section 4.1.10 "Implicit Conversions.""
729 */
730 exec_list actual_parameters;
731 const unsigned parameter_count =
732 process_parameters(instructions, &actual_parameters, parameters, state);
733 bool is_unsized_array = constructor_type->is_unsized_array();
734
735 if ((parameter_count == 0) ||
736 (!is_unsized_array && (constructor_type->length != parameter_count))) {
737 const unsigned min_param = is_unsized_array
738 ? 1 : constructor_type->length;
739
740 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
741 "parameter%s",
742 is_unsized_array ? "at least" : "exactly",
743 min_param, (min_param <= 1) ? "" : "s");
744 return ir_rvalue::error_value(ctx);
745 }
746
747 if (is_unsized_array) {
748 constructor_type =
749 glsl_type::get_array_instance(constructor_type->element_type(),
750 parameter_count);
751 assert(constructor_type != NULL);
752 assert(constructor_type->length == parameter_count);
753 }
754
755 bool all_parameters_are_constant = true;
756
757 /* Type cast each parameter and, if possible, fold constants. */
758 foreach_list_safe(n, &actual_parameters) {
759 ir_rvalue *ir = (ir_rvalue *) n;
760 ir_rvalue *result = ir;
761
762 /* Apply implicit conversions (not the scalar constructor rules!). See
763 * the spec quote above. */
764 if (constructor_type->element_type()->is_float()) {
765 const glsl_type *desired_type =
766 glsl_type::get_instance(GLSL_TYPE_FLOAT,
767 ir->type->vector_elements,
768 ir->type->matrix_columns);
769 if (result->type->can_implicitly_convert_to(desired_type)) {
770 /* Even though convert_component() implements the constructor
771 * conversion rules (not the implicit conversion rules), its safe
772 * to use it here because we already checked that the implicit
773 * conversion is legal.
774 */
775 result = convert_component(ir, desired_type);
776 }
777 }
778
779 if (result->type != constructor_type->element_type()) {
780 _mesa_glsl_error(loc, state, "type error in array constructor: "
781 "expected: %s, found %s",
782 constructor_type->element_type()->name,
783 result->type->name);
784 return ir_rvalue::error_value(ctx);
785 }
786
787 /* Attempt to convert the parameter to a constant valued expression.
788 * After doing so, track whether or not all the parameters to the
789 * constructor are trivially constant valued expressions.
790 */
791 ir_rvalue *const constant = result->constant_expression_value();
792
793 if (constant != NULL)
794 result = constant;
795 else
796 all_parameters_are_constant = false;
797
798 ir->replace_with(result);
799 }
800
801 if (all_parameters_are_constant)
802 return new(ctx) ir_constant(constructor_type, &actual_parameters);
803
804 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
805 ir_var_temporary);
806 instructions->push_tail(var);
807
808 int i = 0;
809 foreach_list(node, &actual_parameters) {
810 ir_rvalue *rhs = (ir_rvalue *) node;
811 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
812 new(ctx) ir_constant(i));
813
814 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
815 instructions->push_tail(assignment);
816
817 i++;
818 }
819
820 return new(ctx) ir_dereference_variable(var);
821 }
822
823
824 /**
825 * Try to convert a record constructor to a constant expression
826 */
827 static ir_constant *
828 constant_record_constructor(const glsl_type *constructor_type,
829 exec_list *parameters, void *mem_ctx)
830 {
831 foreach_list(node, parameters) {
832 ir_constant *constant = ((ir_instruction *) node)->as_constant();
833 if (constant == NULL)
834 return NULL;
835 node->replace_with(constant);
836 }
837
838 return new(mem_ctx) ir_constant(constructor_type, parameters);
839 }
840
841
842 /**
843 * Determine if a list consists of a single scalar r-value
844 */
845 bool
846 single_scalar_parameter(exec_list *parameters)
847 {
848 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
849 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
850
851 return (p->type->is_scalar() && p->next->is_tail_sentinel());
852 }
853
854
855 /**
856 * Generate inline code for a vector constructor
857 *
858 * The generated constructor code will consist of a temporary variable
859 * declaration of the same type as the constructor. A sequence of assignments
860 * from constructor parameters to the temporary will follow.
861 *
862 * \return
863 * An \c ir_dereference_variable of the temprorary generated in the constructor
864 * body.
865 */
866 ir_rvalue *
867 emit_inline_vector_constructor(const glsl_type *type,
868 exec_list *instructions,
869 exec_list *parameters,
870 void *ctx)
871 {
872 assert(!parameters->is_empty());
873
874 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
875 instructions->push_tail(var);
876
877 /* There are two kinds of vector constructors.
878 *
879 * - Construct a vector from a single scalar by replicating that scalar to
880 * all components of the vector.
881 *
882 * - Construct a vector from an arbirary combination of vectors and
883 * scalars. The components of the constructor parameters are assigned
884 * to the vector in order until the vector is full.
885 */
886 const unsigned lhs_components = type->components();
887 if (single_scalar_parameter(parameters)) {
888 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
889 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
890 lhs_components);
891 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
892 const unsigned mask = (1U << lhs_components) - 1;
893
894 assert(rhs->type == lhs->type);
895
896 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
897 instructions->push_tail(inst);
898 } else {
899 unsigned base_component = 0;
900 unsigned base_lhs_component = 0;
901 ir_constant_data data;
902 unsigned constant_mask = 0, constant_components = 0;
903
904 memset(&data, 0, sizeof(data));
905
906 foreach_list(node, parameters) {
907 ir_rvalue *param = (ir_rvalue *) node;
908 unsigned rhs_components = param->type->components();
909
910 /* Do not try to assign more components to the vector than it has!
911 */
912 if ((rhs_components + base_lhs_component) > lhs_components) {
913 rhs_components = lhs_components - base_lhs_component;
914 }
915
916 const ir_constant *const c = param->as_constant();
917 if (c != NULL) {
918 for (unsigned i = 0; i < rhs_components; i++) {
919 switch (c->type->base_type) {
920 case GLSL_TYPE_UINT:
921 data.u[i + base_component] = c->get_uint_component(i);
922 break;
923 case GLSL_TYPE_INT:
924 data.i[i + base_component] = c->get_int_component(i);
925 break;
926 case GLSL_TYPE_FLOAT:
927 data.f[i + base_component] = c->get_float_component(i);
928 break;
929 case GLSL_TYPE_BOOL:
930 data.b[i + base_component] = c->get_bool_component(i);
931 break;
932 default:
933 assert(!"Should not get here.");
934 break;
935 }
936 }
937
938 /* Mask of fields to be written in the assignment.
939 */
940 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
941 constant_components += rhs_components;
942
943 base_component += rhs_components;
944 }
945 /* Advance the component index by the number of components
946 * that were just assigned.
947 */
948 base_lhs_component += rhs_components;
949 }
950
951 if (constant_mask != 0) {
952 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
953 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
954 constant_components,
955 1);
956 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
957
958 ir_instruction *inst =
959 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
960 instructions->push_tail(inst);
961 }
962
963 base_component = 0;
964 foreach_list(node, parameters) {
965 ir_rvalue *param = (ir_rvalue *) node;
966 unsigned rhs_components = param->type->components();
967
968 /* Do not try to assign more components to the vector than it has!
969 */
970 if ((rhs_components + base_component) > lhs_components) {
971 rhs_components = lhs_components - base_component;
972 }
973
974 const ir_constant *const c = param->as_constant();
975 if (c == NULL) {
976 /* Mask of fields to be written in the assignment.
977 */
978 const unsigned write_mask = ((1U << rhs_components) - 1)
979 << base_component;
980
981 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
982
983 /* Generate a swizzle so that LHS and RHS sizes match.
984 */
985 ir_rvalue *rhs =
986 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
987
988 ir_instruction *inst =
989 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
990 instructions->push_tail(inst);
991 }
992
993 /* Advance the component index by the number of components that were
994 * just assigned.
995 */
996 base_component += rhs_components;
997 }
998 }
999 return new(ctx) ir_dereference_variable(var);
1000 }
1001
1002
1003 /**
1004 * Generate assignment of a portion of a vector to a portion of a matrix column
1005 *
1006 * \param src_base First component of the source to be used in assignment
1007 * \param column Column of destination to be assiged
1008 * \param row_base First component of the destination column to be assigned
1009 * \param count Number of components to be assigned
1010 *
1011 * \note
1012 * \c src_base + \c count must be less than or equal to the number of components
1013 * in the source vector.
1014 */
1015 ir_instruction *
1016 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1017 ir_rvalue *src, unsigned src_base, unsigned count,
1018 void *mem_ctx)
1019 {
1020 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1021 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1022
1023 assert(column_ref->type->components() >= (row_base + count));
1024 assert(src->type->components() >= (src_base + count));
1025
1026 /* Generate a swizzle that extracts the number of components from the source
1027 * that are to be assigned to the column of the matrix.
1028 */
1029 if (count < src->type->vector_elements) {
1030 src = new(mem_ctx) ir_swizzle(src,
1031 src_base + 0, src_base + 1,
1032 src_base + 2, src_base + 3,
1033 count);
1034 }
1035
1036 /* Mask of fields to be written in the assignment.
1037 */
1038 const unsigned write_mask = ((1U << count) - 1) << row_base;
1039
1040 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1041 }
1042
1043
1044 /**
1045 * Generate inline code for a matrix constructor
1046 *
1047 * The generated constructor code will consist of a temporary variable
1048 * declaration of the same type as the constructor. A sequence of assignments
1049 * from constructor parameters to the temporary will follow.
1050 *
1051 * \return
1052 * An \c ir_dereference_variable of the temprorary generated in the constructor
1053 * body.
1054 */
1055 ir_rvalue *
1056 emit_inline_matrix_constructor(const glsl_type *type,
1057 exec_list *instructions,
1058 exec_list *parameters,
1059 void *ctx)
1060 {
1061 assert(!parameters->is_empty());
1062
1063 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1064 instructions->push_tail(var);
1065
1066 /* There are three kinds of matrix constructors.
1067 *
1068 * - Construct a matrix from a single scalar by replicating that scalar to
1069 * along the diagonal of the matrix and setting all other components to
1070 * zero.
1071 *
1072 * - Construct a matrix from an arbirary combination of vectors and
1073 * scalars. The components of the constructor parameters are assigned
1074 * to the matrix in colum-major order until the matrix is full.
1075 *
1076 * - Construct a matrix from a single matrix. The source matrix is copied
1077 * to the upper left portion of the constructed matrix, and the remaining
1078 * elements take values from the identity matrix.
1079 */
1080 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1081 if (single_scalar_parameter(parameters)) {
1082 /* Assign the scalar to the X component of a vec4, and fill the remaining
1083 * components with zero.
1084 */
1085 ir_variable *rhs_var =
1086 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1087 ir_var_temporary);
1088 instructions->push_tail(rhs_var);
1089
1090 ir_constant_data zero;
1091 zero.f[0] = 0.0;
1092 zero.f[1] = 0.0;
1093 zero.f[2] = 0.0;
1094 zero.f[3] = 0.0;
1095
1096 ir_instruction *inst =
1097 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1098 new(ctx) ir_constant(rhs_var->type, &zero),
1099 NULL);
1100 instructions->push_tail(inst);
1101
1102 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1103
1104 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1105 instructions->push_tail(inst);
1106
1107 /* Assign the temporary vector to each column of the destination matrix
1108 * with a swizzle that puts the X component on the diagonal of the
1109 * matrix. In some cases this may mean that the X component does not
1110 * get assigned into the column at all (i.e., when the matrix has more
1111 * columns than rows).
1112 */
1113 static const unsigned rhs_swiz[4][4] = {
1114 { 0, 1, 1, 1 },
1115 { 1, 0, 1, 1 },
1116 { 1, 1, 0, 1 },
1117 { 1, 1, 1, 0 }
1118 };
1119
1120 const unsigned cols_to_init = MIN2(type->matrix_columns,
1121 type->vector_elements);
1122 for (unsigned i = 0; i < cols_to_init; i++) {
1123 ir_constant *const col_idx = new(ctx) ir_constant(i);
1124 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1125
1126 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1127 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1128 type->vector_elements);
1129
1130 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1131 instructions->push_tail(inst);
1132 }
1133
1134 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1135 ir_constant *const col_idx = new(ctx) ir_constant(i);
1136 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1137
1138 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1139 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1140 type->vector_elements);
1141
1142 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1143 instructions->push_tail(inst);
1144 }
1145 } else if (first_param->type->is_matrix()) {
1146 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1147 *
1148 * "If a matrix is constructed from a matrix, then each component
1149 * (column i, row j) in the result that has a corresponding
1150 * component (column i, row j) in the argument will be initialized
1151 * from there. All other components will be initialized to the
1152 * identity matrix. If a matrix argument is given to a matrix
1153 * constructor, it is an error to have any other arguments."
1154 */
1155 assert(first_param->next->is_tail_sentinel());
1156 ir_rvalue *const src_matrix = first_param;
1157
1158 /* If the source matrix is smaller, pre-initialize the relavent parts of
1159 * the destination matrix to the identity matrix.
1160 */
1161 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1162 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1163
1164 /* If the source matrix has fewer rows, every column of the destination
1165 * must be initialized. Otherwise only the columns in the destination
1166 * that do not exist in the source must be initialized.
1167 */
1168 unsigned col =
1169 (src_matrix->type->vector_elements < var->type->vector_elements)
1170 ? 0 : src_matrix->type->matrix_columns;
1171
1172 const glsl_type *const col_type = var->type->column_type();
1173 for (/* empty */; col < var->type->matrix_columns; col++) {
1174 ir_constant_data ident;
1175
1176 ident.f[0] = 0.0;
1177 ident.f[1] = 0.0;
1178 ident.f[2] = 0.0;
1179 ident.f[3] = 0.0;
1180
1181 ident.f[col] = 1.0;
1182
1183 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1184
1185 ir_rvalue *const lhs =
1186 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1187
1188 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1189 instructions->push_tail(inst);
1190 }
1191 }
1192
1193 /* Assign columns from the source matrix to the destination matrix.
1194 *
1195 * Since the parameter will be used in the RHS of multiple assignments,
1196 * generate a temporary and copy the paramter there.
1197 */
1198 ir_variable *const rhs_var =
1199 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1200 ir_var_temporary);
1201 instructions->push_tail(rhs_var);
1202
1203 ir_dereference *const rhs_var_ref =
1204 new(ctx) ir_dereference_variable(rhs_var);
1205 ir_instruction *const inst =
1206 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1207 instructions->push_tail(inst);
1208
1209 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1210 var->type->vector_elements);
1211 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1212 var->type->matrix_columns);
1213
1214 unsigned swiz[4] = { 0, 0, 0, 0 };
1215 for (unsigned i = 1; i < last_row; i++)
1216 swiz[i] = i;
1217
1218 const unsigned write_mask = (1U << last_row) - 1;
1219
1220 for (unsigned i = 0; i < last_col; i++) {
1221 ir_dereference *const lhs =
1222 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1223 ir_rvalue *const rhs_col =
1224 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1225
1226 /* If one matrix has columns that are smaller than the columns of the
1227 * other matrix, wrap the column access of the larger with a swizzle
1228 * so that the LHS and RHS of the assignment have the same size (and
1229 * therefore have the same type).
1230 *
1231 * It would be perfectly valid to unconditionally generate the
1232 * swizzles, this this will typically result in a more compact IR tree.
1233 */
1234 ir_rvalue *rhs;
1235 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1236 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1237 } else {
1238 rhs = rhs_col;
1239 }
1240
1241 ir_instruction *inst =
1242 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1243 instructions->push_tail(inst);
1244 }
1245 } else {
1246 const unsigned cols = type->matrix_columns;
1247 const unsigned rows = type->vector_elements;
1248 unsigned col_idx = 0;
1249 unsigned row_idx = 0;
1250
1251 foreach_list (node, parameters) {
1252 ir_rvalue *const rhs = (ir_rvalue *) node;
1253 const unsigned components_remaining_this_column = rows - row_idx;
1254 unsigned rhs_components = rhs->type->components();
1255 unsigned rhs_base = 0;
1256
1257 /* Since the parameter might be used in the RHS of two assignments,
1258 * generate a temporary and copy the paramter there.
1259 */
1260 ir_variable *rhs_var =
1261 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1262 instructions->push_tail(rhs_var);
1263
1264 ir_dereference *rhs_var_ref =
1265 new(ctx) ir_dereference_variable(rhs_var);
1266 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1267 instructions->push_tail(inst);
1268
1269 /* Assign the current parameter to as many components of the matrix
1270 * as it will fill.
1271 *
1272 * NOTE: A single vector parameter can span two matrix columns. A
1273 * single vec4, for example, can completely fill a mat2.
1274 */
1275 if (rhs_components >= components_remaining_this_column) {
1276 const unsigned count = MIN2(rhs_components,
1277 components_remaining_this_column);
1278
1279 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1280
1281 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1282 row_idx,
1283 rhs_var_ref, 0,
1284 count, ctx);
1285 instructions->push_tail(inst);
1286
1287 rhs_base = count;
1288
1289 col_idx++;
1290 row_idx = 0;
1291 }
1292
1293 /* If there is data left in the parameter and components left to be
1294 * set in the destination, emit another assignment. It is possible
1295 * that the assignment could be of a vec4 to the last element of the
1296 * matrix. In this case col_idx==cols, but there is still data
1297 * left in the source parameter. Obviously, don't emit an assignment
1298 * to data outside the destination matrix.
1299 */
1300 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1301 const unsigned count = rhs_components - rhs_base;
1302
1303 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1304
1305 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1306 row_idx,
1307 rhs_var_ref,
1308 rhs_base,
1309 count, ctx);
1310 instructions->push_tail(inst);
1311
1312 row_idx += count;
1313 }
1314 }
1315 }
1316
1317 return new(ctx) ir_dereference_variable(var);
1318 }
1319
1320
1321 ir_rvalue *
1322 emit_inline_record_constructor(const glsl_type *type,
1323 exec_list *instructions,
1324 exec_list *parameters,
1325 void *mem_ctx)
1326 {
1327 ir_variable *const var =
1328 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1329 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1330
1331 instructions->push_tail(var);
1332
1333 exec_node *node = parameters->head;
1334 for (unsigned i = 0; i < type->length; i++) {
1335 assert(!node->is_tail_sentinel());
1336
1337 ir_dereference *const lhs =
1338 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1339 type->fields.structure[i].name);
1340
1341 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1342 assert(rhs != NULL);
1343
1344 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1345
1346 instructions->push_tail(assign);
1347 node = node->next;
1348 }
1349
1350 return d;
1351 }
1352
1353
1354 static ir_rvalue *
1355 process_record_constructor(exec_list *instructions,
1356 const glsl_type *constructor_type,
1357 YYLTYPE *loc, exec_list *parameters,
1358 struct _mesa_glsl_parse_state *state)
1359 {
1360 void *ctx = state;
1361 exec_list actual_parameters;
1362
1363 process_parameters(instructions, &actual_parameters,
1364 parameters, state);
1365
1366 exec_node *node = actual_parameters.head;
1367 for (unsigned i = 0; i < constructor_type->length; i++) {
1368 ir_rvalue *ir = (ir_rvalue *) node;
1369
1370 if (node->is_tail_sentinel()) {
1371 _mesa_glsl_error(loc, state,
1372 "insufficient parameters to constructor for `%s'",
1373 constructor_type->name);
1374 return ir_rvalue::error_value(ctx);
1375 }
1376
1377 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1378 ir, state)) {
1379 node->replace_with(ir);
1380 } else {
1381 _mesa_glsl_error(loc, state,
1382 "parameter type mismatch in constructor for `%s.%s' "
1383 "(%s vs %s)",
1384 constructor_type->name,
1385 constructor_type->fields.structure[i].name,
1386 ir->type->name,
1387 constructor_type->fields.structure[i].type->name);
1388 return ir_rvalue::error_value(ctx);;
1389 }
1390
1391 node = node->next;
1392 }
1393
1394 if (!node->is_tail_sentinel()) {
1395 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1396 "for `%s'", constructor_type->name);
1397 return ir_rvalue::error_value(ctx);
1398 }
1399
1400 ir_rvalue *const constant =
1401 constant_record_constructor(constructor_type, &actual_parameters,
1402 state);
1403
1404 return (constant != NULL)
1405 ? constant
1406 : emit_inline_record_constructor(constructor_type, instructions,
1407 &actual_parameters, state);
1408 }
1409
1410
1411 ir_rvalue *
1412 ast_function_expression::hir(exec_list *instructions,
1413 struct _mesa_glsl_parse_state *state)
1414 {
1415 void *ctx = state;
1416 /* There are three sorts of function calls.
1417 *
1418 * 1. constructors - The first subexpression is an ast_type_specifier.
1419 * 2. methods - Only the .length() method of array types.
1420 * 3. functions - Calls to regular old functions.
1421 *
1422 * Method calls are actually detected when the ast_field_selection
1423 * expression is handled.
1424 */
1425 if (is_constructor()) {
1426 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1427 YYLTYPE loc = type->get_location();
1428 const char *name;
1429
1430 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1431
1432 /* constructor_type can be NULL if a variable with the same name as the
1433 * structure has come into scope.
1434 */
1435 if (constructor_type == NULL) {
1436 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1437 "may be shadowed by a variable with the same name)",
1438 type->type_name);
1439 return ir_rvalue::error_value(ctx);
1440 }
1441
1442
1443 /* Constructors for samplers are illegal.
1444 */
1445 if (constructor_type->is_sampler()) {
1446 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1447 constructor_type->name);
1448 return ir_rvalue::error_value(ctx);
1449 }
1450
1451 if (constructor_type->is_array()) {
1452 if (!state->check_version(120, 300, &loc,
1453 "array constructors forbidden")) {
1454 return ir_rvalue::error_value(ctx);
1455 }
1456
1457 return process_array_constructor(instructions, constructor_type,
1458 & loc, &this->expressions, state);
1459 }
1460
1461
1462 /* There are two kinds of constructor calls. Constructors for arrays and
1463 * structures must have the exact number of arguments with matching types
1464 * in the correct order. These constructors follow essentially the same
1465 * type matching rules as functions.
1466 *
1467 * Constructors for built-in language types, such as mat4 and vec2, are
1468 * free form. The only requirements are that the parameters must provide
1469 * enough values of the correct scalar type and that no arguments are
1470 * given past the last used argument.
1471 *
1472 * When using the C-style initializer syntax from GLSL 4.20, constructors
1473 * must have the exact number of arguments with matching types in the
1474 * correct order.
1475 */
1476 if (constructor_type->is_record()) {
1477 return process_record_constructor(instructions, constructor_type,
1478 &loc, &this->expressions,
1479 state);
1480 }
1481
1482 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1483 return ir_rvalue::error_value(ctx);
1484
1485 /* Total number of components of the type being constructed. */
1486 const unsigned type_components = constructor_type->components();
1487
1488 /* Number of components from parameters that have actually been
1489 * consumed. This is used to perform several kinds of error checking.
1490 */
1491 unsigned components_used = 0;
1492
1493 unsigned matrix_parameters = 0;
1494 unsigned nonmatrix_parameters = 0;
1495 exec_list actual_parameters;
1496
1497 foreach_list (n, &this->expressions) {
1498 ast_node *ast = exec_node_data(ast_node, n, link);
1499 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1500
1501 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1502 *
1503 * "It is an error to provide extra arguments beyond this
1504 * last used argument."
1505 */
1506 if (components_used >= type_components) {
1507 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1508 "constructor",
1509 constructor_type->name);
1510 return ir_rvalue::error_value(ctx);
1511 }
1512
1513 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1514 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1515 "non-numeric data type",
1516 constructor_type->name);
1517 return ir_rvalue::error_value(ctx);
1518 }
1519
1520 /* Count the number of matrix and nonmatrix parameters. This
1521 * is used below to enforce some of the constructor rules.
1522 */
1523 if (result->type->is_matrix())
1524 matrix_parameters++;
1525 else
1526 nonmatrix_parameters++;
1527
1528 actual_parameters.push_tail(result);
1529 components_used += result->type->components();
1530 }
1531
1532 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1533 *
1534 * "It is an error to construct matrices from other matrices. This
1535 * is reserved for future use."
1536 */
1537 if (matrix_parameters > 0
1538 && constructor_type->is_matrix()
1539 && !state->check_version(120, 100, &loc,
1540 "cannot construct `%s' from a matrix",
1541 constructor_type->name)) {
1542 return ir_rvalue::error_value(ctx);
1543 }
1544
1545 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1546 *
1547 * "If a matrix argument is given to a matrix constructor, it is
1548 * an error to have any other arguments."
1549 */
1550 if ((matrix_parameters > 0)
1551 && ((matrix_parameters + nonmatrix_parameters) > 1)
1552 && constructor_type->is_matrix()) {
1553 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1554 "matrix must be only parameter",
1555 constructor_type->name);
1556 return ir_rvalue::error_value(ctx);
1557 }
1558
1559 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1560 *
1561 * "In these cases, there must be enough components provided in the
1562 * arguments to provide an initializer for every component in the
1563 * constructed value."
1564 */
1565 if (components_used < type_components && components_used != 1
1566 && matrix_parameters == 0) {
1567 _mesa_glsl_error(& loc, state, "too few components to construct "
1568 "`%s'",
1569 constructor_type->name);
1570 return ir_rvalue::error_value(ctx);
1571 }
1572
1573 /* Later, we cast each parameter to the same base type as the
1574 * constructor. Since there are no non-floating point matrices, we
1575 * need to break them up into a series of column vectors.
1576 */
1577 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1578 foreach_list_safe(n, &actual_parameters) {
1579 ir_rvalue *matrix = (ir_rvalue *) n;
1580
1581 if (!matrix->type->is_matrix())
1582 continue;
1583
1584 /* Create a temporary containing the matrix. */
1585 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1586 ir_var_temporary);
1587 instructions->push_tail(var);
1588 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1589 ir_dereference_variable(var), matrix, NULL));
1590 var->constant_value = matrix->constant_expression_value();
1591
1592 /* Replace the matrix with dereferences of its columns. */
1593 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1594 matrix->insert_before(new (ctx) ir_dereference_array(var,
1595 new(ctx) ir_constant(i)));
1596 }
1597 matrix->remove();
1598 }
1599 }
1600
1601 bool all_parameters_are_constant = true;
1602
1603 /* Type cast each parameter and, if possible, fold constants.*/
1604 foreach_list_safe(n, &actual_parameters) {
1605 ir_rvalue *ir = (ir_rvalue *) n;
1606
1607 const glsl_type *desired_type =
1608 glsl_type::get_instance(constructor_type->base_type,
1609 ir->type->vector_elements,
1610 ir->type->matrix_columns);
1611 ir_rvalue *result = convert_component(ir, desired_type);
1612
1613 /* Attempt to convert the parameter to a constant valued expression.
1614 * After doing so, track whether or not all the parameters to the
1615 * constructor are trivially constant valued expressions.
1616 */
1617 ir_rvalue *const constant = result->constant_expression_value();
1618
1619 if (constant != NULL)
1620 result = constant;
1621 else
1622 all_parameters_are_constant = false;
1623
1624 if (result != ir) {
1625 ir->replace_with(result);
1626 }
1627 }
1628
1629 /* If all of the parameters are trivially constant, create a
1630 * constant representing the complete collection of parameters.
1631 */
1632 if (all_parameters_are_constant) {
1633 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1634 } else if (constructor_type->is_scalar()) {
1635 return dereference_component((ir_rvalue *) actual_parameters.head,
1636 0);
1637 } else if (constructor_type->is_vector()) {
1638 return emit_inline_vector_constructor(constructor_type,
1639 instructions,
1640 &actual_parameters,
1641 ctx);
1642 } else {
1643 assert(constructor_type->is_matrix());
1644 return emit_inline_matrix_constructor(constructor_type,
1645 instructions,
1646 &actual_parameters,
1647 ctx);
1648 }
1649 } else {
1650 const ast_expression *id = subexpressions[0];
1651 const char *func_name = id->primary_expression.identifier;
1652 YYLTYPE loc = id->get_location();
1653 exec_list actual_parameters;
1654
1655 process_parameters(instructions, &actual_parameters, &this->expressions,
1656 state);
1657
1658 ir_function_signature *sig =
1659 match_function_by_name(func_name, &actual_parameters, state);
1660
1661 ir_rvalue *value = NULL;
1662 if (sig == NULL) {
1663 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1664 value = ir_rvalue::error_value(ctx);
1665 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1666 /* an error has already been emitted */
1667 value = ir_rvalue::error_value(ctx);
1668 } else {
1669 value = generate_call(instructions, sig, &actual_parameters, state);
1670 }
1671
1672 return value;
1673 }
1674
1675 return ir_rvalue::error_value(ctx);
1676 }
1677
1678 ir_rvalue *
1679 ast_aggregate_initializer::hir(exec_list *instructions,
1680 struct _mesa_glsl_parse_state *state)
1681 {
1682 void *ctx = state;
1683 YYLTYPE loc = this->get_location();
1684 const char *name;
1685
1686 if (!this->constructor_type) {
1687 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1688 return ir_rvalue::error_value(ctx);
1689 }
1690 const glsl_type *const constructor_type =
1691 this->constructor_type->glsl_type(&name, state);
1692
1693 if (!state->ARB_shading_language_420pack_enable) {
1694 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1695 "GL_ARB_shading_language_420pack extension");
1696 return ir_rvalue::error_value(ctx);
1697 }
1698
1699 if (this->constructor_type->is_array) {
1700 return process_array_constructor(instructions, constructor_type, &loc,
1701 &this->expressions, state);
1702 }
1703
1704 if (this->constructor_type->structure) {
1705 return process_record_constructor(instructions, constructor_type, &loc,
1706 &this->expressions, state);
1707 }
1708
1709 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1710 &this->expressions, state);
1711 }