Merge branch 'remove-copyteximage-hook'
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96
97 static ir_rvalue *
98 match_function_by_name(exec_list *instructions, const char *name,
99 YYLTYPE *loc, exec_list *actual_parameters,
100 struct _mesa_glsl_parse_state *state)
101 {
102 void *ctx = state;
103 ir_function *f = state->symbols->get_function(name);
104 ir_function_signature *sig;
105
106 sig = f ? f->matching_signature(actual_parameters) : NULL;
107
108 /* FINISHME: This doesn't handle the case where shader X contains a
109 * FINISHME: matching signature but shader X + N contains an _exact_
110 * FINISHME: matching signature.
111 */
112 if (sig == NULL
113 && (f == NULL || state->es_shader || !f->has_user_signature())
114 && state->symbols->get_type(name) == NULL
115 && (state->language_version == 110
116 || state->symbols->get_variable(name) == NULL)) {
117 /* The current shader doesn't contain a matching function or signature.
118 * Before giving up, look for the prototype in the built-in functions.
119 */
120 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
121 ir_function *builtin;
122 builtin = state->builtins_to_link[i]->symbols->get_function(name);
123 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
124 if (sig != NULL) {
125 if (f == NULL) {
126 f = new(ctx) ir_function(name);
127 state->symbols->add_global_function(f);
128 emit_function(state, instructions, f);
129 }
130
131 f->add_signature(sig->clone_prototype(f, NULL));
132 break;
133 }
134 }
135 }
136
137 if (sig != NULL) {
138 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
139 * isn't done in ir_function::matching_signature because that function
140 * cannot generate the necessary diagnostics.
141 *
142 * Also, validate that 'const_in' formal parameters (an extension of our
143 * IR) correspond to ir_constant actual parameters.
144 */
145 exec_list_iterator actual_iter = actual_parameters->iterator();
146 exec_list_iterator formal_iter = sig->parameters.iterator();
147
148 while (actual_iter.has_next()) {
149 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
150 ir_variable *formal = (ir_variable *) formal_iter.get();
151
152 assert(actual != NULL);
153 assert(formal != NULL);
154
155 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
156 _mesa_glsl_error(loc, state,
157 "parameter `%s' must be a constant expression",
158 formal->name);
159 }
160
161 if ((formal->mode == ir_var_out)
162 || (formal->mode == ir_var_inout)) {
163 const char *mode = NULL;
164 switch (formal->mode) {
165 case ir_var_out: mode = "out"; break;
166 case ir_var_inout: mode = "inout"; break;
167 default: assert(false); break;
168 }
169 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
170 * FIXME: 0:0(0).
171 */
172 if (actual->variable_referenced()
173 && actual->variable_referenced()->read_only) {
174 _mesa_glsl_error(loc, state,
175 "function parameter '%s %s' references the "
176 "read-only variable '%s'",
177 mode, formal->name,
178 actual->variable_referenced()->name);
179
180 } else if (!actual->is_lvalue()) {
181 _mesa_glsl_error(loc, state,
182 "function parameter '%s %s' is not an lvalue",
183 mode, formal->name);
184 }
185 }
186
187 if (formal->type->is_numeric() || formal->type->is_boolean()) {
188 ir_rvalue *converted = convert_component(actual, formal->type);
189 actual->replace_with(converted);
190 }
191
192 actual_iter.next();
193 formal_iter.next();
194 }
195
196 /* Always insert the call in the instruction stream, and return a deref
197 * of its return val if it returns a value, since we don't know if
198 * the rvalue is going to be assigned to anything or not.
199 */
200 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
201 if (!sig->return_type->is_void()) {
202 ir_variable *var;
203 ir_dereference_variable *deref;
204
205 var = new(ctx) ir_variable(sig->return_type,
206 ralloc_asprintf(ctx, "%s_retval",
207 sig->function_name()),
208 ir_var_temporary);
209 instructions->push_tail(var);
210
211 deref = new(ctx) ir_dereference_variable(var);
212 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
213 instructions->push_tail(assign);
214 if (state->language_version >= 120)
215 var->constant_value = call->constant_expression_value();
216
217 deref = new(ctx) ir_dereference_variable(var);
218 return deref;
219 } else {
220 instructions->push_tail(call);
221 return NULL;
222 }
223 } else {
224 char *str = prototype_string(NULL, name, actual_parameters);
225
226 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
227 str);
228 ralloc_free(str);
229
230 const char *prefix = "candidates are: ";
231
232 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
233 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
234 : state->symbols;
235 f = syms->get_function(name);
236 if (f == NULL)
237 continue;
238
239 foreach_list (node, &f->signatures) {
240 ir_function_signature *sig = (ir_function_signature *) node;
241
242 str = prototype_string(sig->return_type, f->name, &sig->parameters);
243 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
244 ralloc_free(str);
245
246 prefix = " ";
247 }
248
249 }
250
251 return ir_call::get_error_instruction(ctx);
252 }
253 }
254
255
256 /**
257 * Perform automatic type conversion of constructor parameters
258 *
259 * This implements the rules in the "Conversion and Scalar Constructors"
260 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
261 */
262 static ir_rvalue *
263 convert_component(ir_rvalue *src, const glsl_type *desired_type)
264 {
265 void *ctx = ralloc_parent(src);
266 const unsigned a = desired_type->base_type;
267 const unsigned b = src->type->base_type;
268 ir_expression *result = NULL;
269
270 if (src->type->is_error())
271 return src;
272
273 assert(a <= GLSL_TYPE_BOOL);
274 assert(b <= GLSL_TYPE_BOOL);
275
276 if (a == b)
277 return src;
278
279 switch (a) {
280 case GLSL_TYPE_UINT:
281 switch (b) {
282 case GLSL_TYPE_INT:
283 result = new(ctx) ir_expression(ir_unop_i2u, src);
284 break;
285 case GLSL_TYPE_FLOAT:
286 result = new(ctx) ir_expression(ir_unop_i2u,
287 new(ctx) ir_expression(ir_unop_f2i, src));
288 break;
289 case GLSL_TYPE_BOOL:
290 result = new(ctx) ir_expression(ir_unop_i2u,
291 new(ctx) ir_expression(ir_unop_b2i, src));
292 break;
293 }
294 break;
295 case GLSL_TYPE_INT:
296 switch (b) {
297 case GLSL_TYPE_UINT:
298 result = new(ctx) ir_expression(ir_unop_u2i, src);
299 break;
300 case GLSL_TYPE_FLOAT:
301 result = new(ctx) ir_expression(ir_unop_f2i, src);
302 break;
303 case GLSL_TYPE_BOOL:
304 result = new(ctx) ir_expression(ir_unop_b2i, src);
305 break;
306 }
307 break;
308 case GLSL_TYPE_FLOAT:
309 switch (b) {
310 case GLSL_TYPE_UINT:
311 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
312 break;
313 case GLSL_TYPE_INT:
314 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
315 break;
316 case GLSL_TYPE_BOOL:
317 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
318 break;
319 }
320 break;
321 case GLSL_TYPE_BOOL:
322 switch (b) {
323 case GLSL_TYPE_UINT:
324 result = new(ctx) ir_expression(ir_unop_i2b,
325 new(ctx) ir_expression(ir_unop_u2i, src));
326 break;
327 case GLSL_TYPE_INT:
328 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
329 break;
330 case GLSL_TYPE_FLOAT:
331 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
332 break;
333 }
334 break;
335 }
336
337 assert(result != NULL);
338 assert(result->type == desired_type);
339
340 /* Try constant folding; it may fold in the conversion we just added. */
341 ir_constant *const constant = result->constant_expression_value();
342 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
343 }
344
345 /**
346 * Dereference a specific component from a scalar, vector, or matrix
347 */
348 static ir_rvalue *
349 dereference_component(ir_rvalue *src, unsigned component)
350 {
351 void *ctx = ralloc_parent(src);
352 assert(component < src->type->components());
353
354 /* If the source is a constant, just create a new constant instead of a
355 * dereference of the existing constant.
356 */
357 ir_constant *constant = src->as_constant();
358 if (constant)
359 return new(ctx) ir_constant(constant, component);
360
361 if (src->type->is_scalar()) {
362 return src;
363 } else if (src->type->is_vector()) {
364 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
365 } else {
366 assert(src->type->is_matrix());
367
368 /* Dereference a row of the matrix, then call this function again to get
369 * a specific element from that row.
370 */
371 const int c = component / src->type->column_type()->vector_elements;
372 const int r = component % src->type->column_type()->vector_elements;
373 ir_constant *const col_index = new(ctx) ir_constant(c);
374 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
375
376 col->type = src->type->column_type();
377
378 return dereference_component(col, r);
379 }
380
381 assert(!"Should not get here.");
382 return NULL;
383 }
384
385
386 static ir_rvalue *
387 process_array_constructor(exec_list *instructions,
388 const glsl_type *constructor_type,
389 YYLTYPE *loc, exec_list *parameters,
390 struct _mesa_glsl_parse_state *state)
391 {
392 void *ctx = state;
393 /* Array constructors come in two forms: sized and unsized. Sized array
394 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
395 * variables. In this case the number of parameters must exactly match the
396 * specified size of the array.
397 *
398 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
399 * are vec4 variables. In this case the size of the array being constructed
400 * is determined by the number of parameters.
401 *
402 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
403 *
404 * "There must be exactly the same number of arguments as the size of
405 * the array being constructed. If no size is present in the
406 * constructor, then the array is explicitly sized to the number of
407 * arguments provided. The arguments are assigned in order, starting at
408 * element 0, to the elements of the constructed array. Each argument
409 * must be the same type as the element type of the array, or be a type
410 * that can be converted to the element type of the array according to
411 * Section 4.1.10 "Implicit Conversions.""
412 */
413 exec_list actual_parameters;
414 const unsigned parameter_count =
415 process_parameters(instructions, &actual_parameters, parameters, state);
416
417 if ((parameter_count == 0)
418 || ((constructor_type->length != 0)
419 && (constructor_type->length != parameter_count))) {
420 const unsigned min_param = (constructor_type->length == 0)
421 ? 1 : constructor_type->length;
422
423 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
424 "parameter%s",
425 (constructor_type->length != 0) ? "at least" : "exactly",
426 min_param, (min_param <= 1) ? "" : "s");
427 return ir_call::get_error_instruction(ctx);
428 }
429
430 if (constructor_type->length == 0) {
431 constructor_type =
432 glsl_type::get_array_instance(constructor_type->element_type(),
433 parameter_count);
434 assert(constructor_type != NULL);
435 assert(constructor_type->length == parameter_count);
436 }
437
438 bool all_parameters_are_constant = true;
439
440 /* Type cast each parameter and, if possible, fold constants. */
441 foreach_list_safe(n, &actual_parameters) {
442 ir_rvalue *ir = (ir_rvalue *) n;
443 ir_rvalue *result = ir;
444
445 /* Apply implicit conversions (not the scalar constructor rules!) */
446 if (constructor_type->element_type()->is_float()) {
447 const glsl_type *desired_type =
448 glsl_type::get_instance(GLSL_TYPE_FLOAT,
449 ir->type->vector_elements,
450 ir->type->matrix_columns);
451 result = convert_component(ir, desired_type);
452 }
453
454 if (result->type != constructor_type->element_type()) {
455 _mesa_glsl_error(loc, state, "type error in array constructor: "
456 "expected: %s, found %s",
457 constructor_type->element_type()->name,
458 result->type->name);
459 }
460
461 /* Attempt to convert the parameter to a constant valued expression.
462 * After doing so, track whether or not all the parameters to the
463 * constructor are trivially constant valued expressions.
464 */
465 ir_rvalue *const constant = result->constant_expression_value();
466
467 if (constant != NULL)
468 result = constant;
469 else
470 all_parameters_are_constant = false;
471
472 ir->replace_with(result);
473 }
474
475 if (all_parameters_are_constant)
476 return new(ctx) ir_constant(constructor_type, &actual_parameters);
477
478 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
479 ir_var_temporary);
480 instructions->push_tail(var);
481
482 int i = 0;
483 foreach_list(node, &actual_parameters) {
484 ir_rvalue *rhs = (ir_rvalue *) node;
485 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
486 new(ctx) ir_constant(i));
487
488 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
489 instructions->push_tail(assignment);
490
491 i++;
492 }
493
494 return new(ctx) ir_dereference_variable(var);
495 }
496
497
498 /**
499 * Try to convert a record constructor to a constant expression
500 */
501 static ir_constant *
502 constant_record_constructor(const glsl_type *constructor_type,
503 exec_list *parameters, void *mem_ctx)
504 {
505 foreach_list(node, parameters) {
506 ir_constant *constant = ((ir_instruction *) node)->as_constant();
507 if (constant == NULL)
508 return NULL;
509 node->replace_with(constant);
510 }
511
512 return new(mem_ctx) ir_constant(constructor_type, parameters);
513 }
514
515
516 /**
517 * Determine if a list consists of a single scalar r-value
518 */
519 bool
520 single_scalar_parameter(exec_list *parameters)
521 {
522 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
523 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
524
525 return (p->type->is_scalar() && p->next->is_tail_sentinel());
526 }
527
528
529 /**
530 * Generate inline code for a vector constructor
531 *
532 * The generated constructor code will consist of a temporary variable
533 * declaration of the same type as the constructor. A sequence of assignments
534 * from constructor parameters to the temporary will follow.
535 *
536 * \return
537 * An \c ir_dereference_variable of the temprorary generated in the constructor
538 * body.
539 */
540 ir_rvalue *
541 emit_inline_vector_constructor(const glsl_type *type,
542 exec_list *instructions,
543 exec_list *parameters,
544 void *ctx)
545 {
546 assert(!parameters->is_empty());
547
548 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
549 instructions->push_tail(var);
550
551 /* There are two kinds of vector constructors.
552 *
553 * - Construct a vector from a single scalar by replicating that scalar to
554 * all components of the vector.
555 *
556 * - Construct a vector from an arbirary combination of vectors and
557 * scalars. The components of the constructor parameters are assigned
558 * to the vector in order until the vector is full.
559 */
560 const unsigned lhs_components = type->components();
561 if (single_scalar_parameter(parameters)) {
562 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
563 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
564 lhs_components);
565 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
566 const unsigned mask = (1U << lhs_components) - 1;
567
568 assert(rhs->type == lhs->type);
569
570 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
571 instructions->push_tail(inst);
572 } else {
573 unsigned base_component = 0;
574 unsigned base_lhs_component = 0;
575 ir_constant_data data;
576 unsigned constant_mask = 0, constant_components = 0;
577
578 memset(&data, 0, sizeof(data));
579
580 foreach_list(node, parameters) {
581 ir_rvalue *param = (ir_rvalue *) node;
582 unsigned rhs_components = param->type->components();
583
584 /* Do not try to assign more components to the vector than it has!
585 */
586 if ((rhs_components + base_lhs_component) > lhs_components) {
587 rhs_components = lhs_components - base_lhs_component;
588 }
589
590 const ir_constant *const c = param->as_constant();
591 if (c != NULL) {
592 for (unsigned i = 0; i < rhs_components; i++) {
593 switch (c->type->base_type) {
594 case GLSL_TYPE_UINT:
595 data.u[i + base_component] = c->get_uint_component(i);
596 break;
597 case GLSL_TYPE_INT:
598 data.i[i + base_component] = c->get_int_component(i);
599 break;
600 case GLSL_TYPE_FLOAT:
601 data.f[i + base_component] = c->get_float_component(i);
602 break;
603 case GLSL_TYPE_BOOL:
604 data.b[i + base_component] = c->get_bool_component(i);
605 break;
606 default:
607 assert(!"Should not get here.");
608 break;
609 }
610 }
611
612 /* Mask of fields to be written in the assignment.
613 */
614 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
615 constant_components += rhs_components;
616
617 base_component += rhs_components;
618 }
619 /* Advance the component index by the number of components
620 * that were just assigned.
621 */
622 base_lhs_component += rhs_components;
623 }
624
625 if (constant_mask != 0) {
626 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
627 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
628 constant_components,
629 1);
630 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
631
632 ir_instruction *inst =
633 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
634 instructions->push_tail(inst);
635 }
636
637 base_component = 0;
638 foreach_list(node, parameters) {
639 ir_rvalue *param = (ir_rvalue *) node;
640 unsigned rhs_components = param->type->components();
641
642 /* Do not try to assign more components to the vector than it has!
643 */
644 if ((rhs_components + base_component) > lhs_components) {
645 rhs_components = lhs_components - base_component;
646 }
647
648 const ir_constant *const c = param->as_constant();
649 if (c == NULL) {
650 /* Mask of fields to be written in the assignment.
651 */
652 const unsigned write_mask = ((1U << rhs_components) - 1)
653 << base_component;
654
655 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
656
657 /* Generate a swizzle so that LHS and RHS sizes match.
658 */
659 ir_rvalue *rhs =
660 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
661
662 ir_instruction *inst =
663 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
664 instructions->push_tail(inst);
665 }
666
667 /* Advance the component index by the number of components that were
668 * just assigned.
669 */
670 base_component += rhs_components;
671 }
672 }
673 return new(ctx) ir_dereference_variable(var);
674 }
675
676
677 /**
678 * Generate assignment of a portion of a vector to a portion of a matrix column
679 *
680 * \param src_base First component of the source to be used in assignment
681 * \param column Column of destination to be assiged
682 * \param row_base First component of the destination column to be assigned
683 * \param count Number of components to be assigned
684 *
685 * \note
686 * \c src_base + \c count must be less than or equal to the number of components
687 * in the source vector.
688 */
689 ir_instruction *
690 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
691 ir_rvalue *src, unsigned src_base, unsigned count,
692 void *mem_ctx)
693 {
694 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
695 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
696
697 assert(column_ref->type->components() >= (row_base + count));
698 assert(src->type->components() >= (src_base + count));
699
700 /* Generate a swizzle that extracts the number of components from the source
701 * that are to be assigned to the column of the matrix.
702 */
703 if (count < src->type->vector_elements) {
704 src = new(mem_ctx) ir_swizzle(src,
705 src_base + 0, src_base + 1,
706 src_base + 2, src_base + 3,
707 count);
708 }
709
710 /* Mask of fields to be written in the assignment.
711 */
712 const unsigned write_mask = ((1U << count) - 1) << row_base;
713
714 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
715 }
716
717
718 /**
719 * Generate inline code for a matrix constructor
720 *
721 * The generated constructor code will consist of a temporary variable
722 * declaration of the same type as the constructor. A sequence of assignments
723 * from constructor parameters to the temporary will follow.
724 *
725 * \return
726 * An \c ir_dereference_variable of the temprorary generated in the constructor
727 * body.
728 */
729 ir_rvalue *
730 emit_inline_matrix_constructor(const glsl_type *type,
731 exec_list *instructions,
732 exec_list *parameters,
733 void *ctx)
734 {
735 assert(!parameters->is_empty());
736
737 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
738 instructions->push_tail(var);
739
740 /* There are three kinds of matrix constructors.
741 *
742 * - Construct a matrix from a single scalar by replicating that scalar to
743 * along the diagonal of the matrix and setting all other components to
744 * zero.
745 *
746 * - Construct a matrix from an arbirary combination of vectors and
747 * scalars. The components of the constructor parameters are assigned
748 * to the matrix in colum-major order until the matrix is full.
749 *
750 * - Construct a matrix from a single matrix. The source matrix is copied
751 * to the upper left portion of the constructed matrix, and the remaining
752 * elements take values from the identity matrix.
753 */
754 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
755 if (single_scalar_parameter(parameters)) {
756 /* Assign the scalar to the X component of a vec4, and fill the remaining
757 * components with zero.
758 */
759 ir_variable *rhs_var =
760 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
761 ir_var_temporary);
762 instructions->push_tail(rhs_var);
763
764 ir_constant_data zero;
765 zero.f[0] = 0.0;
766 zero.f[1] = 0.0;
767 zero.f[2] = 0.0;
768 zero.f[3] = 0.0;
769
770 ir_instruction *inst =
771 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
772 new(ctx) ir_constant(rhs_var->type, &zero),
773 NULL);
774 instructions->push_tail(inst);
775
776 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
777
778 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
779 instructions->push_tail(inst);
780
781 /* Assign the temporary vector to each column of the destination matrix
782 * with a swizzle that puts the X component on the diagonal of the
783 * matrix. In some cases this may mean that the X component does not
784 * get assigned into the column at all (i.e., when the matrix has more
785 * columns than rows).
786 */
787 static const unsigned rhs_swiz[4][4] = {
788 { 0, 1, 1, 1 },
789 { 1, 0, 1, 1 },
790 { 1, 1, 0, 1 },
791 { 1, 1, 1, 0 }
792 };
793
794 const unsigned cols_to_init = MIN2(type->matrix_columns,
795 type->vector_elements);
796 for (unsigned i = 0; i < cols_to_init; i++) {
797 ir_constant *const col_idx = new(ctx) ir_constant(i);
798 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
799
800 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
801 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
802 type->vector_elements);
803
804 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
805 instructions->push_tail(inst);
806 }
807
808 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
809 ir_constant *const col_idx = new(ctx) ir_constant(i);
810 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
811
812 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
813 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
814 type->vector_elements);
815
816 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
817 instructions->push_tail(inst);
818 }
819 } else if (first_param->type->is_matrix()) {
820 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
821 *
822 * "If a matrix is constructed from a matrix, then each component
823 * (column i, row j) in the result that has a corresponding
824 * component (column i, row j) in the argument will be initialized
825 * from there. All other components will be initialized to the
826 * identity matrix. If a matrix argument is given to a matrix
827 * constructor, it is an error to have any other arguments."
828 */
829 assert(first_param->next->is_tail_sentinel());
830 ir_rvalue *const src_matrix = first_param;
831
832 /* If the source matrix is smaller, pre-initialize the relavent parts of
833 * the destination matrix to the identity matrix.
834 */
835 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
836 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
837
838 /* If the source matrix has fewer rows, every column of the destination
839 * must be initialized. Otherwise only the columns in the destination
840 * that do not exist in the source must be initialized.
841 */
842 unsigned col =
843 (src_matrix->type->vector_elements < var->type->vector_elements)
844 ? 0 : src_matrix->type->matrix_columns;
845
846 const glsl_type *const col_type = var->type->column_type();
847 for (/* empty */; col < var->type->matrix_columns; col++) {
848 ir_constant_data ident;
849
850 ident.f[0] = 0.0;
851 ident.f[1] = 0.0;
852 ident.f[2] = 0.0;
853 ident.f[3] = 0.0;
854
855 ident.f[col] = 1.0;
856
857 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
858
859 ir_rvalue *const lhs =
860 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
861
862 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
863 instructions->push_tail(inst);
864 }
865 }
866
867 /* Assign columns from the source matrix to the destination matrix.
868 *
869 * Since the parameter will be used in the RHS of multiple assignments,
870 * generate a temporary and copy the paramter there.
871 */
872 ir_variable *const rhs_var =
873 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
874 ir_var_temporary);
875 instructions->push_tail(rhs_var);
876
877 ir_dereference *const rhs_var_ref =
878 new(ctx) ir_dereference_variable(rhs_var);
879 ir_instruction *const inst =
880 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
881 instructions->push_tail(inst);
882
883 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
884 var->type->vector_elements);
885 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
886 var->type->matrix_columns);
887
888 unsigned swiz[4] = { 0, 0, 0, 0 };
889 for (unsigned i = 1; i < last_row; i++)
890 swiz[i] = i;
891
892 const unsigned write_mask = (1U << last_row) - 1;
893
894 for (unsigned i = 0; i < last_col; i++) {
895 ir_dereference *const lhs =
896 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
897 ir_rvalue *const rhs_col =
898 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
899
900 /* If one matrix has columns that are smaller than the columns of the
901 * other matrix, wrap the column access of the larger with a swizzle
902 * so that the LHS and RHS of the assignment have the same size (and
903 * therefore have the same type).
904 *
905 * It would be perfectly valid to unconditionally generate the
906 * swizzles, this this will typically result in a more compact IR tree.
907 */
908 ir_rvalue *rhs;
909 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
910 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
911 } else {
912 rhs = rhs_col;
913 }
914
915 ir_instruction *inst =
916 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
917 instructions->push_tail(inst);
918 }
919 } else {
920 const unsigned cols = type->matrix_columns;
921 const unsigned rows = type->vector_elements;
922 unsigned col_idx = 0;
923 unsigned row_idx = 0;
924
925 foreach_list (node, parameters) {
926 ir_rvalue *const rhs = (ir_rvalue *) node;
927 const unsigned components_remaining_this_column = rows - row_idx;
928 unsigned rhs_components = rhs->type->components();
929 unsigned rhs_base = 0;
930
931 /* Since the parameter might be used in the RHS of two assignments,
932 * generate a temporary and copy the paramter there.
933 */
934 ir_variable *rhs_var =
935 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
936 instructions->push_tail(rhs_var);
937
938 ir_dereference *rhs_var_ref =
939 new(ctx) ir_dereference_variable(rhs_var);
940 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
941 instructions->push_tail(inst);
942
943 /* Assign the current parameter to as many components of the matrix
944 * as it will fill.
945 *
946 * NOTE: A single vector parameter can span two matrix columns. A
947 * single vec4, for example, can completely fill a mat2.
948 */
949 if (rhs_components >= components_remaining_this_column) {
950 const unsigned count = MIN2(rhs_components,
951 components_remaining_this_column);
952
953 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
954
955 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
956 row_idx,
957 rhs_var_ref, 0,
958 count, ctx);
959 instructions->push_tail(inst);
960
961 rhs_base = count;
962
963 col_idx++;
964 row_idx = 0;
965 }
966
967 /* If there is data left in the parameter and components left to be
968 * set in the destination, emit another assignment. It is possible
969 * that the assignment could be of a vec4 to the last element of the
970 * matrix. In this case col_idx==cols, but there is still data
971 * left in the source parameter. Obviously, don't emit an assignment
972 * to data outside the destination matrix.
973 */
974 if ((col_idx < cols) && (rhs_base < rhs_components)) {
975 const unsigned count = rhs_components - rhs_base;
976
977 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
978
979 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
980 row_idx,
981 rhs_var_ref,
982 rhs_base,
983 count, ctx);
984 instructions->push_tail(inst);
985
986 row_idx += count;
987 }
988 }
989 }
990
991 return new(ctx) ir_dereference_variable(var);
992 }
993
994
995 ir_rvalue *
996 emit_inline_record_constructor(const glsl_type *type,
997 exec_list *instructions,
998 exec_list *parameters,
999 void *mem_ctx)
1000 {
1001 ir_variable *const var =
1002 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1003 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1004
1005 instructions->push_tail(var);
1006
1007 exec_node *node = parameters->head;
1008 for (unsigned i = 0; i < type->length; i++) {
1009 assert(!node->is_tail_sentinel());
1010
1011 ir_dereference *const lhs =
1012 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1013 type->fields.structure[i].name);
1014
1015 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1016 assert(rhs != NULL);
1017
1018 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1019
1020 instructions->push_tail(assign);
1021 node = node->next;
1022 }
1023
1024 return d;
1025 }
1026
1027
1028 ir_rvalue *
1029 ast_function_expression::hir(exec_list *instructions,
1030 struct _mesa_glsl_parse_state *state)
1031 {
1032 void *ctx = state;
1033 /* There are three sorts of function calls.
1034 *
1035 * 1. constructors - The first subexpression is an ast_type_specifier.
1036 * 2. methods - Only the .length() method of array types.
1037 * 3. functions - Calls to regular old functions.
1038 *
1039 * Method calls are actually detected when the ast_field_selection
1040 * expression is handled.
1041 */
1042 if (is_constructor()) {
1043 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1044 YYLTYPE loc = type->get_location();
1045 const char *name;
1046
1047 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1048
1049 /* constructor_type can be NULL if a variable with the same name as the
1050 * structure has come into scope.
1051 */
1052 if (constructor_type == NULL) {
1053 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1054 "may be shadowed by a variable with the same name)",
1055 type->type_name);
1056 return ir_call::get_error_instruction(ctx);
1057 }
1058
1059
1060 /* Constructors for samplers are illegal.
1061 */
1062 if (constructor_type->is_sampler()) {
1063 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1064 constructor_type->name);
1065 return ir_call::get_error_instruction(ctx);
1066 }
1067
1068 if (constructor_type->is_array()) {
1069 if (state->language_version <= 110) {
1070 _mesa_glsl_error(& loc, state,
1071 "array constructors forbidden in GLSL 1.10");
1072 return ir_call::get_error_instruction(ctx);
1073 }
1074
1075 return process_array_constructor(instructions, constructor_type,
1076 & loc, &this->expressions, state);
1077 }
1078
1079
1080 /* There are two kinds of constructor call. Constructors for built-in
1081 * language types, such as mat4 and vec2, are free form. The only
1082 * requirement is that the parameters must provide enough values of the
1083 * correct scalar type. Constructors for arrays and structures must
1084 * have the exact number of parameters with matching types in the
1085 * correct order. These constructors follow essentially the same type
1086 * matching rules as functions.
1087 */
1088 if (constructor_type->is_record()) {
1089 exec_list actual_parameters;
1090
1091 process_parameters(instructions, &actual_parameters,
1092 &this->expressions, state);
1093
1094 exec_node *node = actual_parameters.head;
1095 for (unsigned i = 0; i < constructor_type->length; i++) {
1096 ir_rvalue *ir = (ir_rvalue *) node;
1097
1098 if (node->is_tail_sentinel()) {
1099 _mesa_glsl_error(&loc, state,
1100 "insufficient parameters to constructor "
1101 "for `%s'",
1102 constructor_type->name);
1103 return ir_call::get_error_instruction(ctx);
1104 }
1105
1106 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1107 ir, state)) {
1108 node->replace_with(ir);
1109 } else {
1110 _mesa_glsl_error(&loc, state,
1111 "parameter type mismatch in constructor "
1112 "for `%s.%s' (%s vs %s)",
1113 constructor_type->name,
1114 constructor_type->fields.structure[i].name,
1115 ir->type->name,
1116 constructor_type->fields.structure[i].type->name);
1117 return ir_call::get_error_instruction(ctx);;
1118 }
1119
1120 node = node->next;
1121 }
1122
1123 if (!node->is_tail_sentinel()) {
1124 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1125 "for `%s'", constructor_type->name);
1126 return ir_call::get_error_instruction(ctx);
1127 }
1128
1129 ir_rvalue *const constant =
1130 constant_record_constructor(constructor_type, &actual_parameters,
1131 state);
1132
1133 return (constant != NULL)
1134 ? constant
1135 : emit_inline_record_constructor(constructor_type, instructions,
1136 &actual_parameters, state);
1137 }
1138
1139 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1140 return ir_call::get_error_instruction(ctx);
1141
1142 /* Total number of components of the type being constructed. */
1143 const unsigned type_components = constructor_type->components();
1144
1145 /* Number of components from parameters that have actually been
1146 * consumed. This is used to perform several kinds of error checking.
1147 */
1148 unsigned components_used = 0;
1149
1150 unsigned matrix_parameters = 0;
1151 unsigned nonmatrix_parameters = 0;
1152 exec_list actual_parameters;
1153
1154 foreach_list (n, &this->expressions) {
1155 ast_node *ast = exec_node_data(ast_node, n, link);
1156 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1157
1158 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1159 *
1160 * "It is an error to provide extra arguments beyond this
1161 * last used argument."
1162 */
1163 if (components_used >= type_components) {
1164 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1165 "constructor",
1166 constructor_type->name);
1167 return ir_call::get_error_instruction(ctx);
1168 }
1169
1170 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1171 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1172 "non-numeric data type",
1173 constructor_type->name);
1174 return ir_call::get_error_instruction(ctx);
1175 }
1176
1177 /* Count the number of matrix and nonmatrix parameters. This
1178 * is used below to enforce some of the constructor rules.
1179 */
1180 if (result->type->is_matrix())
1181 matrix_parameters++;
1182 else
1183 nonmatrix_parameters++;
1184
1185 actual_parameters.push_tail(result);
1186 components_used += result->type->components();
1187 }
1188
1189 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1190 *
1191 * "It is an error to construct matrices from other matrices. This
1192 * is reserved for future use."
1193 */
1194 if (state->language_version == 110 && matrix_parameters > 0
1195 && constructor_type->is_matrix()) {
1196 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1197 "matrix in GLSL 1.10",
1198 constructor_type->name);
1199 return ir_call::get_error_instruction(ctx);
1200 }
1201
1202 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1203 *
1204 * "If a matrix argument is given to a matrix constructor, it is
1205 * an error to have any other arguments."
1206 */
1207 if ((matrix_parameters > 0)
1208 && ((matrix_parameters + nonmatrix_parameters) > 1)
1209 && constructor_type->is_matrix()) {
1210 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1211 "matrix must be only parameter",
1212 constructor_type->name);
1213 return ir_call::get_error_instruction(ctx);
1214 }
1215
1216 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1217 *
1218 * "In these cases, there must be enough components provided in the
1219 * arguments to provide an initializer for every component in the
1220 * constructed value."
1221 */
1222 if (components_used < type_components && components_used != 1
1223 && matrix_parameters == 0) {
1224 _mesa_glsl_error(& loc, state, "too few components to construct "
1225 "`%s'",
1226 constructor_type->name);
1227 return ir_call::get_error_instruction(ctx);
1228 }
1229
1230 /* Later, we cast each parameter to the same base type as the
1231 * constructor. Since there are no non-floating point matrices, we
1232 * need to break them up into a series of column vectors.
1233 */
1234 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1235 foreach_list_safe(n, &actual_parameters) {
1236 ir_rvalue *matrix = (ir_rvalue *) n;
1237
1238 if (!matrix->type->is_matrix())
1239 continue;
1240
1241 /* Create a temporary containing the matrix. */
1242 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1243 ir_var_temporary);
1244 instructions->push_tail(var);
1245 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1246 ir_dereference_variable(var), matrix, NULL));
1247 var->constant_value = matrix->constant_expression_value();
1248
1249 /* Replace the matrix with dereferences of its columns. */
1250 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1251 matrix->insert_before(new (ctx) ir_dereference_array(var,
1252 new(ctx) ir_constant(i)));
1253 }
1254 matrix->remove();
1255 }
1256 }
1257
1258 bool all_parameters_are_constant = true;
1259
1260 /* Type cast each parameter and, if possible, fold constants.*/
1261 foreach_list_safe(n, &actual_parameters) {
1262 ir_rvalue *ir = (ir_rvalue *) n;
1263
1264 const glsl_type *desired_type =
1265 glsl_type::get_instance(constructor_type->base_type,
1266 ir->type->vector_elements,
1267 ir->type->matrix_columns);
1268 ir_rvalue *result = convert_component(ir, desired_type);
1269
1270 /* Attempt to convert the parameter to a constant valued expression.
1271 * After doing so, track whether or not all the parameters to the
1272 * constructor are trivially constant valued expressions.
1273 */
1274 ir_rvalue *const constant = result->constant_expression_value();
1275
1276 if (constant != NULL)
1277 result = constant;
1278 else
1279 all_parameters_are_constant = false;
1280
1281 if (result != ir) {
1282 ir->replace_with(result);
1283 }
1284 }
1285
1286 /* If all of the parameters are trivially constant, create a
1287 * constant representing the complete collection of parameters.
1288 */
1289 if (all_parameters_are_constant) {
1290 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1291 } else if (constructor_type->is_scalar()) {
1292 return dereference_component((ir_rvalue *) actual_parameters.head,
1293 0);
1294 } else if (constructor_type->is_vector()) {
1295 return emit_inline_vector_constructor(constructor_type,
1296 instructions,
1297 &actual_parameters,
1298 ctx);
1299 } else {
1300 assert(constructor_type->is_matrix());
1301 return emit_inline_matrix_constructor(constructor_type,
1302 instructions,
1303 &actual_parameters,
1304 ctx);
1305 }
1306 } else {
1307 const ast_expression *id = subexpressions[0];
1308 YYLTYPE loc = id->get_location();
1309 exec_list actual_parameters;
1310
1311 process_parameters(instructions, &actual_parameters, &this->expressions,
1312 state);
1313
1314 return match_function_by_name(instructions,
1315 id->primary_expression.identifier, & loc,
1316 &actual_parameters, state);
1317 }
1318
1319 return ir_call::get_error_instruction(ctx);
1320 }