d3d1x: fix progs linking if not all EGL platforms are enabled
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(instructions, state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367
368 static const struct glsl_type *
369 modulus_result_type(const struct glsl_type *type_a,
370 const struct glsl_type *type_b,
371 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
372 {
373 /* From GLSL 1.50 spec, page 56:
374 * "The operator modulus (%) operates on signed or unsigned integers or
375 * integer vectors. The operand types must both be signed or both be
376 * unsigned."
377 */
378 if (!type_a->is_integer() || !type_b->is_integer()
379 || (type_a->base_type != type_b->base_type)) {
380 _mesa_glsl_error(loc, state, "type mismatch");
381 return glsl_type::error_type;
382 }
383
384 /* "The operands cannot be vectors of differing size. If one operand is
385 * a scalar and the other vector, then the scalar is applied component-
386 * wise to the vector, resulting in the same type as the vector. If both
387 * are vectors of the same size, the result is computed component-wise."
388 */
389 if (type_a->is_vector()) {
390 if (!type_b->is_vector()
391 || (type_a->vector_elements == type_b->vector_elements))
392 return type_a;
393 } else
394 return type_b;
395
396 /* "The operator modulus (%) is not defined for any other data types
397 * (non-integer types)."
398 */
399 _mesa_glsl_error(loc, state, "type mismatch");
400 return glsl_type::error_type;
401 }
402
403
404 static const struct glsl_type *
405 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
406 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
407 {
408 const glsl_type *type_a = value_a->type;
409 const glsl_type *type_b = value_b->type;
410
411 /* From GLSL 1.50 spec, page 56:
412 * "The relational operators greater than (>), less than (<), greater
413 * than or equal (>=), and less than or equal (<=) operate only on
414 * scalar integer and scalar floating-point expressions."
415 */
416 if (!type_a->is_numeric()
417 || !type_b->is_numeric()
418 || !type_a->is_scalar()
419 || !type_b->is_scalar()) {
420 _mesa_glsl_error(loc, state,
421 "Operands to relational operators must be scalar and "
422 "numeric");
423 return glsl_type::error_type;
424 }
425
426 /* "Either the operands' types must match, or the conversions from
427 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
428 * operand, after which the types must match."
429 */
430 if (!apply_implicit_conversion(type_a, value_b, state)
431 && !apply_implicit_conversion(type_b, value_a, state)) {
432 _mesa_glsl_error(loc, state,
433 "Could not implicitly convert operands to "
434 "relational operator");
435 return glsl_type::error_type;
436 }
437 type_a = value_a->type;
438 type_b = value_b->type;
439
440 if (type_a->base_type != type_b->base_type) {
441 _mesa_glsl_error(loc, state, "base type mismatch");
442 return glsl_type::error_type;
443 }
444
445 /* "The result is scalar Boolean."
446 */
447 return glsl_type::bool_type;
448 }
449
450
451 /**
452 * Validates that a value can be assigned to a location with a specified type
453 *
454 * Validates that \c rhs can be assigned to some location. If the types are
455 * not an exact match but an automatic conversion is possible, \c rhs will be
456 * converted.
457 *
458 * \return
459 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
460 * Otherwise the actual RHS to be assigned will be returned. This may be
461 * \c rhs, or it may be \c rhs after some type conversion.
462 *
463 * \note
464 * In addition to being used for assignments, this function is used to
465 * type-check return values.
466 */
467 ir_rvalue *
468 validate_assignment(struct _mesa_glsl_parse_state *state,
469 const glsl_type *lhs_type, ir_rvalue *rhs)
470 {
471 const glsl_type *rhs_type = rhs->type;
472
473 /* If there is already some error in the RHS, just return it. Anything
474 * else will lead to an avalanche of error message back to the user.
475 */
476 if (rhs_type->is_error())
477 return rhs;
478
479 /* If the types are identical, the assignment can trivially proceed.
480 */
481 if (rhs_type == lhs_type)
482 return rhs;
483
484 /* If the array element types are the same and the size of the LHS is zero,
485 * the assignment is okay.
486 *
487 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
488 * is handled by ir_dereference::is_lvalue.
489 */
490 if (lhs_type->is_array() && rhs->type->is_array()
491 && (lhs_type->element_type() == rhs->type->element_type())
492 && (lhs_type->array_size() == 0)) {
493 return rhs;
494 }
495
496 /* Check for implicit conversion in GLSL 1.20 */
497 if (apply_implicit_conversion(lhs_type, rhs, state)) {
498 rhs_type = rhs->type;
499 if (rhs_type == lhs_type)
500 return rhs;
501 }
502
503 return NULL;
504 }
505
506 ir_rvalue *
507 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
508 ir_rvalue *lhs, ir_rvalue *rhs,
509 YYLTYPE lhs_loc)
510 {
511 void *ctx = state;
512 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
513
514 if (!error_emitted) {
515 if (!lhs->is_lvalue()) {
516 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
517 error_emitted = true;
518 }
519
520 if (state->es_shader && lhs->type->is_array()) {
521 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
522 "allowed in GLSL ES 1.00.");
523 error_emitted = true;
524 }
525 }
526
527 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
528 if (new_rhs == NULL) {
529 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
530 } else {
531 rhs = new_rhs;
532
533 /* If the LHS array was not declared with a size, it takes it size from
534 * the RHS. If the LHS is an l-value and a whole array, it must be a
535 * dereference of a variable. Any other case would require that the LHS
536 * is either not an l-value or not a whole array.
537 */
538 if (lhs->type->array_size() == 0) {
539 ir_dereference *const d = lhs->as_dereference();
540
541 assert(d != NULL);
542
543 ir_variable *const var = d->variable_referenced();
544
545 assert(var != NULL);
546
547 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
548 /* FINISHME: This should actually log the location of the RHS. */
549 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
550 "previous access",
551 var->max_array_access);
552 }
553
554 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
555 rhs->type->array_size());
556 d->type = var->type;
557 }
558 }
559
560 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
561 * but not post_inc) need the converted assigned value as an rvalue
562 * to handle things like:
563 *
564 * i = j += 1;
565 *
566 * So we always just store the computed value being assigned to a
567 * temporary and return a deref of that temporary. If the rvalue
568 * ends up not being used, the temp will get copy-propagated out.
569 */
570 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
571 ir_var_temporary);
572 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
573 instructions->push_tail(var);
574 instructions->push_tail(new(ctx) ir_assignment(deref_var,
575 rhs,
576 NULL));
577 deref_var = new(ctx) ir_dereference_variable(var);
578
579 if (!error_emitted)
580 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
581
582 return new(ctx) ir_dereference_variable(var);
583 }
584
585 static ir_rvalue *
586 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
587 {
588 void *ctx = talloc_parent(lvalue);
589 ir_variable *var;
590
591 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
592 ir_var_temporary);
593 instructions->push_tail(var);
594 var->mode = ir_var_auto;
595
596 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
597 lvalue, NULL));
598
599 /* Once we've created this temporary, mark it read only so it's no
600 * longer considered an lvalue.
601 */
602 var->read_only = true;
603
604 return new(ctx) ir_dereference_variable(var);
605 }
606
607
608 ir_rvalue *
609 ast_node::hir(exec_list *instructions,
610 struct _mesa_glsl_parse_state *state)
611 {
612 (void) instructions;
613 (void) state;
614
615 return NULL;
616 }
617
618
619 ir_rvalue *
620 ast_expression::hir(exec_list *instructions,
621 struct _mesa_glsl_parse_state *state)
622 {
623 void *ctx = state;
624 static const int operations[AST_NUM_OPERATORS] = {
625 -1, /* ast_assign doesn't convert to ir_expression. */
626 -1, /* ast_plus doesn't convert to ir_expression. */
627 ir_unop_neg,
628 ir_binop_add,
629 ir_binop_sub,
630 ir_binop_mul,
631 ir_binop_div,
632 ir_binop_mod,
633 ir_binop_lshift,
634 ir_binop_rshift,
635 ir_binop_less,
636 ir_binop_greater,
637 ir_binop_lequal,
638 ir_binop_gequal,
639 ir_binop_all_equal,
640 ir_binop_any_nequal,
641 ir_binop_bit_and,
642 ir_binop_bit_xor,
643 ir_binop_bit_or,
644 ir_unop_bit_not,
645 ir_binop_logic_and,
646 ir_binop_logic_xor,
647 ir_binop_logic_or,
648 ir_unop_logic_not,
649
650 /* Note: The following block of expression types actually convert
651 * to multiple IR instructions.
652 */
653 ir_binop_mul, /* ast_mul_assign */
654 ir_binop_div, /* ast_div_assign */
655 ir_binop_mod, /* ast_mod_assign */
656 ir_binop_add, /* ast_add_assign */
657 ir_binop_sub, /* ast_sub_assign */
658 ir_binop_lshift, /* ast_ls_assign */
659 ir_binop_rshift, /* ast_rs_assign */
660 ir_binop_bit_and, /* ast_and_assign */
661 ir_binop_bit_xor, /* ast_xor_assign */
662 ir_binop_bit_or, /* ast_or_assign */
663
664 -1, /* ast_conditional doesn't convert to ir_expression. */
665 ir_binop_add, /* ast_pre_inc. */
666 ir_binop_sub, /* ast_pre_dec. */
667 ir_binop_add, /* ast_post_inc. */
668 ir_binop_sub, /* ast_post_dec. */
669 -1, /* ast_field_selection doesn't conv to ir_expression. */
670 -1, /* ast_array_index doesn't convert to ir_expression. */
671 -1, /* ast_function_call doesn't conv to ir_expression. */
672 -1, /* ast_identifier doesn't convert to ir_expression. */
673 -1, /* ast_int_constant doesn't convert to ir_expression. */
674 -1, /* ast_uint_constant doesn't conv to ir_expression. */
675 -1, /* ast_float_constant doesn't conv to ir_expression. */
676 -1, /* ast_bool_constant doesn't conv to ir_expression. */
677 -1, /* ast_sequence doesn't convert to ir_expression. */
678 };
679 ir_rvalue *result = NULL;
680 ir_rvalue *op[3];
681 const struct glsl_type *type = glsl_type::error_type;
682 bool error_emitted = false;
683 YYLTYPE loc;
684
685 loc = this->get_location();
686
687 switch (this->oper) {
688 case ast_assign: {
689 op[0] = this->subexpressions[0]->hir(instructions, state);
690 op[1] = this->subexpressions[1]->hir(instructions, state);
691
692 result = do_assignment(instructions, state, op[0], op[1],
693 this->subexpressions[0]->get_location());
694 error_emitted = result->type->is_error();
695 type = result->type;
696 break;
697 }
698
699 case ast_plus:
700 op[0] = this->subexpressions[0]->hir(instructions, state);
701
702 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
703
704 error_emitted = type->is_error();
705
706 result = op[0];
707 break;
708
709 case ast_neg:
710 op[0] = this->subexpressions[0]->hir(instructions, state);
711
712 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
713
714 error_emitted = type->is_error();
715
716 result = new(ctx) ir_expression(operations[this->oper], type,
717 op[0], NULL);
718 break;
719
720 case ast_add:
721 case ast_sub:
722 case ast_mul:
723 case ast_div:
724 op[0] = this->subexpressions[0]->hir(instructions, state);
725 op[1] = this->subexpressions[1]->hir(instructions, state);
726
727 type = arithmetic_result_type(op[0], op[1],
728 (this->oper == ast_mul),
729 state, & loc);
730 error_emitted = type->is_error();
731
732 result = new(ctx) ir_expression(operations[this->oper], type,
733 op[0], op[1]);
734 break;
735
736 case ast_mod:
737 op[0] = this->subexpressions[0]->hir(instructions, state);
738 op[1] = this->subexpressions[1]->hir(instructions, state);
739
740 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
741
742 assert(operations[this->oper] == ir_binop_mod);
743
744 result = new(ctx) ir_expression(operations[this->oper], type,
745 op[0], op[1]);
746 error_emitted = type->is_error();
747 break;
748
749 case ast_lshift:
750 case ast_rshift:
751 _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
752 error_emitted = true;
753 break;
754
755 case ast_less:
756 case ast_greater:
757 case ast_lequal:
758 case ast_gequal:
759 op[0] = this->subexpressions[0]->hir(instructions, state);
760 op[1] = this->subexpressions[1]->hir(instructions, state);
761
762 type = relational_result_type(op[0], op[1], state, & loc);
763
764 /* The relational operators must either generate an error or result
765 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
766 */
767 assert(type->is_error()
768 || ((type->base_type == GLSL_TYPE_BOOL)
769 && type->is_scalar()));
770
771 result = new(ctx) ir_expression(operations[this->oper], type,
772 op[0], op[1]);
773 error_emitted = type->is_error();
774 break;
775
776 case ast_nequal:
777 case ast_equal:
778 op[0] = this->subexpressions[0]->hir(instructions, state);
779 op[1] = this->subexpressions[1]->hir(instructions, state);
780
781 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
782 *
783 * "The equality operators equal (==), and not equal (!=)
784 * operate on all types. They result in a scalar Boolean. If
785 * the operand types do not match, then there must be a
786 * conversion from Section 4.1.10 "Implicit Conversions"
787 * applied to one operand that can make them match, in which
788 * case this conversion is done."
789 */
790 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
791 && !apply_implicit_conversion(op[1]->type, op[0], state))
792 || (op[0]->type != op[1]->type)) {
793 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
794 "type", (this->oper == ast_equal) ? "==" : "!=");
795 error_emitted = true;
796 } else if ((state->language_version <= 110)
797 && (op[0]->type->is_array() || op[1]->type->is_array())) {
798 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
799 "GLSL 1.10");
800 error_emitted = true;
801 }
802
803 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
804 op[0], op[1]);
805 type = glsl_type::bool_type;
806
807 assert(result->type == glsl_type::bool_type);
808 break;
809
810 case ast_bit_and:
811 case ast_bit_xor:
812 case ast_bit_or:
813 op[0] = this->subexpressions[0]->hir(instructions, state);
814 op[1] = this->subexpressions[1]->hir(instructions, state);
815
816 if (state->language_version < 130) {
817 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
818 error_emitted = true;
819 }
820
821 if (!op[0]->type->is_integer()) {
822 _mesa_glsl_error(&loc, state, "LHS of `%s' must be an integer",
823 operator_string(this->oper));
824 error_emitted = true;
825 }
826
827 if (!op[1]->type->is_integer()) {
828 _mesa_glsl_error(&loc, state, "RHS of `%s' must be an integer",
829 operator_string(this->oper));
830 error_emitted = true;
831 }
832
833 if (op[0]->type->base_type != op[1]->type->base_type) {
834 _mesa_glsl_error(&loc, state, "operands of `%s' must have the same "
835 "base type", operator_string(this->oper));
836 error_emitted = true;
837 }
838
839 if (op[0]->type->is_vector() && op[1]->type->is_vector()
840 && op[0]->type->vector_elements != op[1]->type->vector_elements) {
841 _mesa_glsl_error(&loc, state, "operands of `%s' cannot be vectors of "
842 "different sizes", operator_string(this->oper));
843 error_emitted = true;
844 }
845
846 type = op[0]->type->is_scalar() ? op[1]->type : op[0]->type;
847 result = new(ctx) ir_expression(operations[this->oper], type,
848 op[0], op[1]);
849 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
850 break;
851
852 case ast_bit_not:
853 op[0] = this->subexpressions[0]->hir(instructions, state);
854
855 if (state->language_version < 130) {
856 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
857 error_emitted = true;
858 }
859
860 if (!op[0]->type->is_integer()) {
861 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
862 error_emitted = true;
863 }
864
865 type = op[0]->type;
866 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
867 break;
868
869 case ast_logic_and: {
870 op[0] = this->subexpressions[0]->hir(instructions, state);
871
872 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
873 YYLTYPE loc = this->subexpressions[0]->get_location();
874
875 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
876 operator_string(this->oper));
877 error_emitted = true;
878 }
879
880 ir_constant *op0_const = op[0]->constant_expression_value();
881 if (op0_const) {
882 if (op0_const->value.b[0]) {
883 op[1] = this->subexpressions[1]->hir(instructions, state);
884
885 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
886 YYLTYPE loc = this->subexpressions[1]->get_location();
887
888 _mesa_glsl_error(& loc, state,
889 "RHS of `%s' must be scalar boolean",
890 operator_string(this->oper));
891 error_emitted = true;
892 }
893 result = op[1];
894 } else {
895 result = op0_const;
896 }
897 type = glsl_type::bool_type;
898 } else {
899 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
900 "and_tmp",
901 ir_var_temporary);
902 instructions->push_tail(tmp);
903
904 ir_if *const stmt = new(ctx) ir_if(op[0]);
905 instructions->push_tail(stmt);
906
907 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
908
909 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
910 YYLTYPE loc = this->subexpressions[1]->get_location();
911
912 _mesa_glsl_error(& loc, state,
913 "RHS of `%s' must be scalar boolean",
914 operator_string(this->oper));
915 error_emitted = true;
916 }
917
918 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
919 ir_assignment *const then_assign =
920 new(ctx) ir_assignment(then_deref, op[1], NULL);
921 stmt->then_instructions.push_tail(then_assign);
922
923 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
924 ir_assignment *const else_assign =
925 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
926 stmt->else_instructions.push_tail(else_assign);
927
928 result = new(ctx) ir_dereference_variable(tmp);
929 type = tmp->type;
930 }
931 break;
932 }
933
934 case ast_logic_or: {
935 op[0] = this->subexpressions[0]->hir(instructions, state);
936
937 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
938 YYLTYPE loc = this->subexpressions[0]->get_location();
939
940 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
941 operator_string(this->oper));
942 error_emitted = true;
943 }
944
945 ir_constant *op0_const = op[0]->constant_expression_value();
946 if (op0_const) {
947 if (op0_const->value.b[0]) {
948 result = op0_const;
949 } else {
950 op[1] = this->subexpressions[1]->hir(instructions, state);
951
952 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
953 YYLTYPE loc = this->subexpressions[1]->get_location();
954
955 _mesa_glsl_error(& loc, state,
956 "RHS of `%s' must be scalar boolean",
957 operator_string(this->oper));
958 error_emitted = true;
959 }
960 result = op[1];
961 }
962 type = glsl_type::bool_type;
963 } else {
964 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
965 "or_tmp",
966 ir_var_temporary);
967 instructions->push_tail(tmp);
968
969 ir_if *const stmt = new(ctx) ir_if(op[0]);
970 instructions->push_tail(stmt);
971
972 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
973
974 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
975 YYLTYPE loc = this->subexpressions[1]->get_location();
976
977 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
978 operator_string(this->oper));
979 error_emitted = true;
980 }
981
982 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
983 ir_assignment *const then_assign =
984 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
985 stmt->then_instructions.push_tail(then_assign);
986
987 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
988 ir_assignment *const else_assign =
989 new(ctx) ir_assignment(else_deref, op[1], NULL);
990 stmt->else_instructions.push_tail(else_assign);
991
992 result = new(ctx) ir_dereference_variable(tmp);
993 type = tmp->type;
994 }
995 break;
996 }
997
998 case ast_logic_xor:
999 op[0] = this->subexpressions[0]->hir(instructions, state);
1000 op[1] = this->subexpressions[1]->hir(instructions, state);
1001
1002
1003 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1004 op[0], op[1]);
1005 type = glsl_type::bool_type;
1006 break;
1007
1008 case ast_logic_not:
1009 op[0] = this->subexpressions[0]->hir(instructions, state);
1010
1011 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1012 YYLTYPE loc = this->subexpressions[0]->get_location();
1013
1014 _mesa_glsl_error(& loc, state,
1015 "operand of `!' must be scalar boolean");
1016 error_emitted = true;
1017 }
1018
1019 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1020 op[0], NULL);
1021 type = glsl_type::bool_type;
1022 break;
1023
1024 case ast_mul_assign:
1025 case ast_div_assign:
1026 case ast_add_assign:
1027 case ast_sub_assign: {
1028 op[0] = this->subexpressions[0]->hir(instructions, state);
1029 op[1] = this->subexpressions[1]->hir(instructions, state);
1030
1031 type = arithmetic_result_type(op[0], op[1],
1032 (this->oper == ast_mul_assign),
1033 state, & loc);
1034
1035 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1036 op[0], op[1]);
1037
1038 result = do_assignment(instructions, state,
1039 op[0]->clone(ctx, NULL), temp_rhs,
1040 this->subexpressions[0]->get_location());
1041 type = result->type;
1042 error_emitted = (op[0]->type->is_error());
1043
1044 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1045 * explicitly test for this because none of the binary expression
1046 * operators allow array operands either.
1047 */
1048
1049 break;
1050 }
1051
1052 case ast_mod_assign: {
1053 op[0] = this->subexpressions[0]->hir(instructions, state);
1054 op[1] = this->subexpressions[1]->hir(instructions, state);
1055
1056 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1057
1058 assert(operations[this->oper] == ir_binop_mod);
1059
1060 ir_rvalue *temp_rhs;
1061 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1062 op[0], op[1]);
1063
1064 result = do_assignment(instructions, state,
1065 op[0]->clone(ctx, NULL), temp_rhs,
1066 this->subexpressions[0]->get_location());
1067 type = result->type;
1068 error_emitted = type->is_error();
1069 break;
1070 }
1071
1072 case ast_ls_assign:
1073 case ast_rs_assign:
1074 _mesa_glsl_error(& loc, state,
1075 "FINISHME: implement bit-shift assignment operators");
1076 error_emitted = true;
1077 break;
1078
1079 case ast_and_assign:
1080 case ast_xor_assign:
1081 case ast_or_assign:
1082 _mesa_glsl_error(& loc, state,
1083 "FINISHME: implement logic assignment operators");
1084 error_emitted = true;
1085 break;
1086
1087 case ast_conditional: {
1088 op[0] = this->subexpressions[0]->hir(instructions, state);
1089
1090 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1091 *
1092 * "The ternary selection operator (?:). It operates on three
1093 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1094 * first expression, which must result in a scalar Boolean."
1095 */
1096 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1097 YYLTYPE loc = this->subexpressions[0]->get_location();
1098
1099 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1100 error_emitted = true;
1101 }
1102
1103 /* The :? operator is implemented by generating an anonymous temporary
1104 * followed by an if-statement. The last instruction in each branch of
1105 * the if-statement assigns a value to the anonymous temporary. This
1106 * temporary is the r-value of the expression.
1107 */
1108 exec_list then_instructions;
1109 exec_list else_instructions;
1110
1111 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1112 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1113
1114 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1115 *
1116 * "The second and third expressions can be any type, as
1117 * long their types match, or there is a conversion in
1118 * Section 4.1.10 "Implicit Conversions" that can be applied
1119 * to one of the expressions to make their types match. This
1120 * resulting matching type is the type of the entire
1121 * expression."
1122 */
1123 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1124 && !apply_implicit_conversion(op[2]->type, op[1], state))
1125 || (op[1]->type != op[2]->type)) {
1126 YYLTYPE loc = this->subexpressions[1]->get_location();
1127
1128 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1129 "operator must have matching types.");
1130 error_emitted = true;
1131 type = glsl_type::error_type;
1132 } else {
1133 type = op[1]->type;
1134 }
1135
1136 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1137 *
1138 * "The second and third expressions must be the same type, but can
1139 * be of any type other than an array."
1140 */
1141 if ((state->language_version <= 110) && type->is_array()) {
1142 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1143 "operator must not be arrays.");
1144 error_emitted = true;
1145 }
1146
1147 ir_constant *cond_val = op[0]->constant_expression_value();
1148 ir_constant *then_val = op[1]->constant_expression_value();
1149 ir_constant *else_val = op[2]->constant_expression_value();
1150
1151 if (then_instructions.is_empty()
1152 && else_instructions.is_empty()
1153 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1154 result = (cond_val->value.b[0]) ? then_val : else_val;
1155 } else {
1156 ir_variable *const tmp =
1157 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1158 instructions->push_tail(tmp);
1159
1160 ir_if *const stmt = new(ctx) ir_if(op[0]);
1161 instructions->push_tail(stmt);
1162
1163 then_instructions.move_nodes_to(& stmt->then_instructions);
1164 ir_dereference *const then_deref =
1165 new(ctx) ir_dereference_variable(tmp);
1166 ir_assignment *const then_assign =
1167 new(ctx) ir_assignment(then_deref, op[1], NULL);
1168 stmt->then_instructions.push_tail(then_assign);
1169
1170 else_instructions.move_nodes_to(& stmt->else_instructions);
1171 ir_dereference *const else_deref =
1172 new(ctx) ir_dereference_variable(tmp);
1173 ir_assignment *const else_assign =
1174 new(ctx) ir_assignment(else_deref, op[2], NULL);
1175 stmt->else_instructions.push_tail(else_assign);
1176
1177 result = new(ctx) ir_dereference_variable(tmp);
1178 }
1179 break;
1180 }
1181
1182 case ast_pre_inc:
1183 case ast_pre_dec: {
1184 op[0] = this->subexpressions[0]->hir(instructions, state);
1185 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1186 op[1] = new(ctx) ir_constant(1.0f);
1187 else
1188 op[1] = new(ctx) ir_constant(1);
1189
1190 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1191
1192 ir_rvalue *temp_rhs;
1193 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1194 op[0], op[1]);
1195
1196 result = do_assignment(instructions, state,
1197 op[0]->clone(ctx, NULL), temp_rhs,
1198 this->subexpressions[0]->get_location());
1199 type = result->type;
1200 error_emitted = op[0]->type->is_error();
1201 break;
1202 }
1203
1204 case ast_post_inc:
1205 case ast_post_dec: {
1206 op[0] = this->subexpressions[0]->hir(instructions, state);
1207 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1208 op[1] = new(ctx) ir_constant(1.0f);
1209 else
1210 op[1] = new(ctx) ir_constant(1);
1211
1212 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1213
1214 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1215
1216 ir_rvalue *temp_rhs;
1217 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1218 op[0], op[1]);
1219
1220 /* Get a temporary of a copy of the lvalue before it's modified.
1221 * This may get thrown away later.
1222 */
1223 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1224
1225 (void)do_assignment(instructions, state,
1226 op[0]->clone(ctx, NULL), temp_rhs,
1227 this->subexpressions[0]->get_location());
1228
1229 type = result->type;
1230 error_emitted = op[0]->type->is_error();
1231 break;
1232 }
1233
1234 case ast_field_selection:
1235 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1236 type = result->type;
1237 break;
1238
1239 case ast_array_index: {
1240 YYLTYPE index_loc = subexpressions[1]->get_location();
1241
1242 op[0] = subexpressions[0]->hir(instructions, state);
1243 op[1] = subexpressions[1]->hir(instructions, state);
1244
1245 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1246
1247 ir_rvalue *const array = op[0];
1248
1249 result = new(ctx) ir_dereference_array(op[0], op[1]);
1250
1251 /* Do not use op[0] after this point. Use array.
1252 */
1253 op[0] = NULL;
1254
1255
1256 if (error_emitted)
1257 break;
1258
1259 if (!array->type->is_array()
1260 && !array->type->is_matrix()
1261 && !array->type->is_vector()) {
1262 _mesa_glsl_error(& index_loc, state,
1263 "cannot dereference non-array / non-matrix / "
1264 "non-vector");
1265 error_emitted = true;
1266 }
1267
1268 if (!op[1]->type->is_integer()) {
1269 _mesa_glsl_error(& index_loc, state,
1270 "array index must be integer type");
1271 error_emitted = true;
1272 } else if (!op[1]->type->is_scalar()) {
1273 _mesa_glsl_error(& index_loc, state,
1274 "array index must be scalar");
1275 error_emitted = true;
1276 }
1277
1278 /* If the array index is a constant expression and the array has a
1279 * declared size, ensure that the access is in-bounds. If the array
1280 * index is not a constant expression, ensure that the array has a
1281 * declared size.
1282 */
1283 ir_constant *const const_index = op[1]->constant_expression_value();
1284 if (const_index != NULL) {
1285 const int idx = const_index->value.i[0];
1286 const char *type_name;
1287 unsigned bound = 0;
1288
1289 if (array->type->is_matrix()) {
1290 type_name = "matrix";
1291 } else if (array->type->is_vector()) {
1292 type_name = "vector";
1293 } else {
1294 type_name = "array";
1295 }
1296
1297 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1298 *
1299 * "It is illegal to declare an array with a size, and then
1300 * later (in the same shader) index the same array with an
1301 * integral constant expression greater than or equal to the
1302 * declared size. It is also illegal to index an array with a
1303 * negative constant expression."
1304 */
1305 if (array->type->is_matrix()) {
1306 if (array->type->row_type()->vector_elements <= idx) {
1307 bound = array->type->row_type()->vector_elements;
1308 }
1309 } else if (array->type->is_vector()) {
1310 if (array->type->vector_elements <= idx) {
1311 bound = array->type->vector_elements;
1312 }
1313 } else {
1314 if ((array->type->array_size() > 0)
1315 && (array->type->array_size() <= idx)) {
1316 bound = array->type->array_size();
1317 }
1318 }
1319
1320 if (bound > 0) {
1321 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1322 type_name, bound);
1323 error_emitted = true;
1324 } else if (idx < 0) {
1325 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1326 type_name);
1327 error_emitted = true;
1328 }
1329
1330 if (array->type->is_array()) {
1331 /* If the array is a variable dereference, it dereferences the
1332 * whole array, by definition. Use this to get the variable.
1333 *
1334 * FINISHME: Should some methods for getting / setting / testing
1335 * FINISHME: array access limits be added to ir_dereference?
1336 */
1337 ir_variable *const v = array->whole_variable_referenced();
1338 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1339 v->max_array_access = idx;
1340 }
1341 } else if (array->type->array_size() == 0) {
1342 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1343 } else {
1344 if (array->type->is_array()) {
1345 /* whole_variable_referenced can return NULL if the array is a
1346 * member of a structure. In this case it is safe to not update
1347 * the max_array_access field because it is never used for fields
1348 * of structures.
1349 */
1350 ir_variable *v = array->whole_variable_referenced();
1351 if (v != NULL)
1352 v->max_array_access = array->type->array_size();
1353 }
1354 }
1355
1356 if (error_emitted)
1357 result->type = glsl_type::error_type;
1358
1359 type = result->type;
1360 break;
1361 }
1362
1363 case ast_function_call:
1364 /* Should *NEVER* get here. ast_function_call should always be handled
1365 * by ast_function_expression::hir.
1366 */
1367 assert(0);
1368 break;
1369
1370 case ast_identifier: {
1371 /* ast_identifier can appear several places in a full abstract syntax
1372 * tree. This particular use must be at location specified in the grammar
1373 * as 'variable_identifier'.
1374 */
1375 ir_variable *var =
1376 state->symbols->get_variable(this->primary_expression.identifier);
1377
1378 result = new(ctx) ir_dereference_variable(var);
1379
1380 if (var != NULL) {
1381 type = result->type;
1382 } else {
1383 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1384 this->primary_expression.identifier);
1385
1386 error_emitted = true;
1387 }
1388 break;
1389 }
1390
1391 case ast_int_constant:
1392 type = glsl_type::int_type;
1393 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1394 break;
1395
1396 case ast_uint_constant:
1397 type = glsl_type::uint_type;
1398 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1399 break;
1400
1401 case ast_float_constant:
1402 type = glsl_type::float_type;
1403 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1404 break;
1405
1406 case ast_bool_constant:
1407 type = glsl_type::bool_type;
1408 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1409 break;
1410
1411 case ast_sequence: {
1412 /* It should not be possible to generate a sequence in the AST without
1413 * any expressions in it.
1414 */
1415 assert(!this->expressions.is_empty());
1416
1417 /* The r-value of a sequence is the last expression in the sequence. If
1418 * the other expressions in the sequence do not have side-effects (and
1419 * therefore add instructions to the instruction list), they get dropped
1420 * on the floor.
1421 */
1422 foreach_list_typed (ast_node, ast, link, &this->expressions)
1423 result = ast->hir(instructions, state);
1424
1425 type = result->type;
1426
1427 /* Any errors should have already been emitted in the loop above.
1428 */
1429 error_emitted = true;
1430 break;
1431 }
1432 }
1433
1434 if (type->is_error() && !error_emitted)
1435 _mesa_glsl_error(& loc, state, "type mismatch");
1436
1437 return result;
1438 }
1439
1440
1441 ir_rvalue *
1442 ast_expression_statement::hir(exec_list *instructions,
1443 struct _mesa_glsl_parse_state *state)
1444 {
1445 /* It is possible to have expression statements that don't have an
1446 * expression. This is the solitary semicolon:
1447 *
1448 * for (i = 0; i < 5; i++)
1449 * ;
1450 *
1451 * In this case the expression will be NULL. Test for NULL and don't do
1452 * anything in that case.
1453 */
1454 if (expression != NULL)
1455 expression->hir(instructions, state);
1456
1457 /* Statements do not have r-values.
1458 */
1459 return NULL;
1460 }
1461
1462
1463 ir_rvalue *
1464 ast_compound_statement::hir(exec_list *instructions,
1465 struct _mesa_glsl_parse_state *state)
1466 {
1467 if (new_scope)
1468 state->symbols->push_scope();
1469
1470 foreach_list_typed (ast_node, ast, link, &this->statements)
1471 ast->hir(instructions, state);
1472
1473 if (new_scope)
1474 state->symbols->pop_scope();
1475
1476 /* Compound statements do not have r-values.
1477 */
1478 return NULL;
1479 }
1480
1481
1482 static const glsl_type *
1483 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1484 struct _mesa_glsl_parse_state *state)
1485 {
1486 unsigned length = 0;
1487
1488 /* FINISHME: Reject delcarations of multidimensional arrays. */
1489
1490 if (array_size != NULL) {
1491 exec_list dummy_instructions;
1492 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1493 YYLTYPE loc = array_size->get_location();
1494
1495 /* FINISHME: Verify that the grammar forbids side-effects in array
1496 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1497 */
1498 assert(dummy_instructions.is_empty());
1499
1500 if (ir != NULL) {
1501 if (!ir->type->is_integer()) {
1502 _mesa_glsl_error(& loc, state, "array size must be integer type");
1503 } else if (!ir->type->is_scalar()) {
1504 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1505 } else {
1506 ir_constant *const size = ir->constant_expression_value();
1507
1508 if (size == NULL) {
1509 _mesa_glsl_error(& loc, state, "array size must be a "
1510 "constant valued expression");
1511 } else if (size->value.i[0] <= 0) {
1512 _mesa_glsl_error(& loc, state, "array size must be > 0");
1513 } else {
1514 assert(size->type == ir->type);
1515 length = size->value.u[0];
1516 }
1517 }
1518 }
1519 } else if (state->es_shader) {
1520 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1521 * array declarations have been removed from the language.
1522 */
1523 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1524 "allowed in GLSL ES 1.00.");
1525 }
1526
1527 return glsl_type::get_array_instance(base, length);
1528 }
1529
1530
1531 const glsl_type *
1532 ast_type_specifier::glsl_type(const char **name,
1533 struct _mesa_glsl_parse_state *state) const
1534 {
1535 const struct glsl_type *type;
1536
1537 type = state->symbols->get_type(this->type_name);
1538 *name = this->type_name;
1539
1540 if (this->is_array) {
1541 YYLTYPE loc = this->get_location();
1542 type = process_array_type(&loc, type, this->array_size, state);
1543 }
1544
1545 return type;
1546 }
1547
1548
1549 static void
1550 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1551 ir_variable *var,
1552 struct _mesa_glsl_parse_state *state,
1553 YYLTYPE *loc)
1554 {
1555 if (qual->invariant)
1556 var->invariant = 1;
1557
1558 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1559 if (qual->constant || qual->attribute || qual->uniform
1560 || (qual->varying && (state->target == fragment_shader)))
1561 var->read_only = 1;
1562
1563 if (qual->centroid)
1564 var->centroid = 1;
1565
1566 if (qual->attribute && state->target != vertex_shader) {
1567 var->type = glsl_type::error_type;
1568 _mesa_glsl_error(loc, state,
1569 "`attribute' variables may not be declared in the "
1570 "%s shader",
1571 _mesa_glsl_shader_target_name(state->target));
1572 }
1573
1574 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1575 *
1576 * "The varying qualifier can be used only with the data types
1577 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1578 * these."
1579 */
1580 if (qual->varying) {
1581 const glsl_type *non_array_type;
1582
1583 if (var->type && var->type->is_array())
1584 non_array_type = var->type->fields.array;
1585 else
1586 non_array_type = var->type;
1587
1588 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1589 var->type = glsl_type::error_type;
1590 _mesa_glsl_error(loc, state,
1591 "varying variables must be of base type float");
1592 }
1593 }
1594
1595 /* If there is no qualifier that changes the mode of the variable, leave
1596 * the setting alone.
1597 */
1598 if (qual->in && qual->out)
1599 var->mode = ir_var_inout;
1600 else if (qual->attribute || qual->in
1601 || (qual->varying && (state->target == fragment_shader)))
1602 var->mode = ir_var_in;
1603 else if (qual->out || (qual->varying && (state->target == vertex_shader)))
1604 var->mode = ir_var_out;
1605 else if (qual->uniform)
1606 var->mode = ir_var_uniform;
1607
1608 if (qual->flat)
1609 var->interpolation = ir_var_flat;
1610 else if (qual->noperspective)
1611 var->interpolation = ir_var_noperspective;
1612 else
1613 var->interpolation = ir_var_smooth;
1614
1615 var->pixel_center_integer = qual->pixel_center_integer;
1616 var->origin_upper_left = qual->origin_upper_left;
1617 if ((qual->origin_upper_left || qual->pixel_center_integer)
1618 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1619 const char *const qual_string = (qual->origin_upper_left)
1620 ? "origin_upper_left" : "pixel_center_integer";
1621
1622 _mesa_glsl_error(loc, state,
1623 "layout qualifier `%s' can only be applied to "
1624 "fragment shader input `gl_FragCoord'",
1625 qual_string);
1626 }
1627
1628 if (var->type->is_array() && state->language_version != 110) {
1629 var->array_lvalue = true;
1630 }
1631 }
1632
1633
1634 ir_rvalue *
1635 ast_declarator_list::hir(exec_list *instructions,
1636 struct _mesa_glsl_parse_state *state)
1637 {
1638 void *ctx = state;
1639 const struct glsl_type *decl_type;
1640 const char *type_name = NULL;
1641 ir_rvalue *result = NULL;
1642 YYLTYPE loc = this->get_location();
1643
1644 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1645 *
1646 * "To ensure that a particular output variable is invariant, it is
1647 * necessary to use the invariant qualifier. It can either be used to
1648 * qualify a previously declared variable as being invariant
1649 *
1650 * invariant gl_Position; // make existing gl_Position be invariant"
1651 *
1652 * In these cases the parser will set the 'invariant' flag in the declarator
1653 * list, and the type will be NULL.
1654 */
1655 if (this->invariant) {
1656 assert(this->type == NULL);
1657
1658 if (state->current_function != NULL) {
1659 _mesa_glsl_error(& loc, state,
1660 "All uses of `invariant' keyword must be at global "
1661 "scope\n");
1662 }
1663
1664 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1665 assert(!decl->is_array);
1666 assert(decl->array_size == NULL);
1667 assert(decl->initializer == NULL);
1668
1669 ir_variable *const earlier =
1670 state->symbols->get_variable(decl->identifier);
1671 if (earlier == NULL) {
1672 _mesa_glsl_error(& loc, state,
1673 "Undeclared variable `%s' cannot be marked "
1674 "invariant\n", decl->identifier);
1675 } else if ((state->target == vertex_shader)
1676 && (earlier->mode != ir_var_out)) {
1677 _mesa_glsl_error(& loc, state,
1678 "`%s' cannot be marked invariant, vertex shader "
1679 "outputs only\n", decl->identifier);
1680 } else if ((state->target == fragment_shader)
1681 && (earlier->mode != ir_var_in)) {
1682 _mesa_glsl_error(& loc, state,
1683 "`%s' cannot be marked invariant, fragment shader "
1684 "inputs only\n", decl->identifier);
1685 } else {
1686 earlier->invariant = true;
1687 }
1688 }
1689
1690 /* Invariant redeclarations do not have r-values.
1691 */
1692 return NULL;
1693 }
1694
1695 assert(this->type != NULL);
1696 assert(!this->invariant);
1697
1698 /* The type specifier may contain a structure definition. Process that
1699 * before any of the variable declarations.
1700 */
1701 (void) this->type->specifier->hir(instructions, state);
1702
1703 decl_type = this->type->specifier->glsl_type(& type_name, state);
1704 if (this->declarations.is_empty()) {
1705 /* The only valid case where the declaration list can be empty is when
1706 * the declaration is setting the default precision of a built-in type
1707 * (e.g., 'precision highp vec4;').
1708 */
1709
1710 if (decl_type != NULL) {
1711 } else {
1712 _mesa_glsl_error(& loc, state, "incomplete declaration");
1713 }
1714 }
1715
1716 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
1717 const struct glsl_type *var_type;
1718 ir_variable *var;
1719
1720 /* FINISHME: Emit a warning if a variable declaration shadows a
1721 * FINISHME: declaration at a higher scope.
1722 */
1723
1724 if ((decl_type == NULL) || decl_type->is_void()) {
1725 if (type_name != NULL) {
1726 _mesa_glsl_error(& loc, state,
1727 "invalid type `%s' in declaration of `%s'",
1728 type_name, decl->identifier);
1729 } else {
1730 _mesa_glsl_error(& loc, state,
1731 "invalid type in declaration of `%s'",
1732 decl->identifier);
1733 }
1734 continue;
1735 }
1736
1737 if (decl->is_array) {
1738 var_type = process_array_type(&loc, decl_type, decl->array_size,
1739 state);
1740 } else {
1741 var_type = decl_type;
1742 }
1743
1744 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
1745
1746 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1747 *
1748 * "Global variables can only use the qualifiers const,
1749 * attribute, uni form, or varying. Only one may be
1750 * specified.
1751 *
1752 * Local variables can only use the qualifier const."
1753 *
1754 * This is relaxed in GLSL 1.30.
1755 */
1756 if (state->language_version < 120) {
1757 if (this->type->qualifier.out) {
1758 _mesa_glsl_error(& loc, state,
1759 "`out' qualifier in declaration of `%s' "
1760 "only valid for function parameters in GLSL 1.10.",
1761 decl->identifier);
1762 }
1763 if (this->type->qualifier.in) {
1764 _mesa_glsl_error(& loc, state,
1765 "`in' qualifier in declaration of `%s' "
1766 "only valid for function parameters in GLSL 1.10.",
1767 decl->identifier);
1768 }
1769 /* FINISHME: Test for other invalid qualifiers. */
1770 }
1771
1772 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
1773 & loc);
1774
1775 if (this->type->qualifier.invariant) {
1776 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
1777 var->mode == ir_var_inout)) {
1778 /* FINISHME: Note that this doesn't work for invariant on
1779 * a function signature outval
1780 */
1781 _mesa_glsl_error(& loc, state,
1782 "`%s' cannot be marked invariant, vertex shader "
1783 "outputs only\n", var->name);
1784 } else if ((state->target == fragment_shader) &&
1785 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
1786 /* FINISHME: Note that this doesn't work for invariant on
1787 * a function signature inval
1788 */
1789 _mesa_glsl_error(& loc, state,
1790 "`%s' cannot be marked invariant, fragment shader "
1791 "inputs only\n", var->name);
1792 }
1793 }
1794
1795 if (state->current_function != NULL) {
1796 const char *mode = NULL;
1797 const char *extra = "";
1798
1799 /* There is no need to check for 'inout' here because the parser will
1800 * only allow that in function parameter lists.
1801 */
1802 if (this->type->qualifier.attribute) {
1803 mode = "attribute";
1804 } else if (this->type->qualifier.uniform) {
1805 mode = "uniform";
1806 } else if (this->type->qualifier.varying) {
1807 mode = "varying";
1808 } else if (this->type->qualifier.in) {
1809 mode = "in";
1810 extra = " or in function parameter list";
1811 } else if (this->type->qualifier.out) {
1812 mode = "out";
1813 extra = " or in function parameter list";
1814 }
1815
1816 if (mode) {
1817 _mesa_glsl_error(& loc, state,
1818 "%s variable `%s' must be declared at "
1819 "global scope%s",
1820 mode, var->name, extra);
1821 }
1822 } else if (var->mode == ir_var_in) {
1823 if (state->target == vertex_shader) {
1824 bool error_emitted = false;
1825
1826 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1827 *
1828 * "Vertex shader inputs can only be float, floating-point
1829 * vectors, matrices, signed and unsigned integers and integer
1830 * vectors. Vertex shader inputs can also form arrays of these
1831 * types, but not structures."
1832 *
1833 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1834 *
1835 * "Vertex shader inputs can only be float, floating-point
1836 * vectors, matrices, signed and unsigned integers and integer
1837 * vectors. They cannot be arrays or structures."
1838 *
1839 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1840 *
1841 * "The attribute qualifier can be used only with float,
1842 * floating-point vectors, and matrices. Attribute variables
1843 * cannot be declared as arrays or structures."
1844 */
1845 const glsl_type *check_type = var->type->is_array()
1846 ? var->type->fields.array : var->type;
1847
1848 switch (check_type->base_type) {
1849 case GLSL_TYPE_FLOAT:
1850 break;
1851 case GLSL_TYPE_UINT:
1852 case GLSL_TYPE_INT:
1853 if (state->language_version > 120)
1854 break;
1855 /* FALLTHROUGH */
1856 default:
1857 _mesa_glsl_error(& loc, state,
1858 "vertex shader input / attribute cannot have "
1859 "type %s`%s'",
1860 var->type->is_array() ? "array of " : "",
1861 check_type->name);
1862 error_emitted = true;
1863 }
1864
1865 if (!error_emitted && (state->language_version <= 130)
1866 && var->type->is_array()) {
1867 _mesa_glsl_error(& loc, state,
1868 "vertex shader input / attribute cannot have "
1869 "array type");
1870 error_emitted = true;
1871 }
1872 }
1873 }
1874
1875 /* Process the initializer and add its instructions to a temporary
1876 * list. This list will be added to the instruction stream (below) after
1877 * the declaration is added. This is done because in some cases (such as
1878 * redeclarations) the declaration may not actually be added to the
1879 * instruction stream.
1880 */
1881 exec_list initializer_instructions;
1882 if (decl->initializer != NULL) {
1883 YYLTYPE initializer_loc = decl->initializer->get_location();
1884
1885 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1886 *
1887 * "All uniform variables are read-only and are initialized either
1888 * directly by an application via API commands, or indirectly by
1889 * OpenGL."
1890 */
1891 if ((state->language_version <= 110)
1892 && (var->mode == ir_var_uniform)) {
1893 _mesa_glsl_error(& initializer_loc, state,
1894 "cannot initialize uniforms in GLSL 1.10");
1895 }
1896
1897 if (var->type->is_sampler()) {
1898 _mesa_glsl_error(& initializer_loc, state,
1899 "cannot initialize samplers");
1900 }
1901
1902 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
1903 _mesa_glsl_error(& initializer_loc, state,
1904 "cannot initialize %s shader input / %s",
1905 _mesa_glsl_shader_target_name(state->target),
1906 (state->target == vertex_shader)
1907 ? "attribute" : "varying");
1908 }
1909
1910 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var);
1911 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions,
1912 state);
1913
1914 /* Calculate the constant value if this is a const or uniform
1915 * declaration.
1916 */
1917 if (this->type->qualifier.constant || this->type->qualifier.uniform) {
1918 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
1919 if (new_rhs != NULL) {
1920 rhs = new_rhs;
1921
1922 ir_constant *constant_value = rhs->constant_expression_value();
1923 if (!constant_value) {
1924 _mesa_glsl_error(& initializer_loc, state,
1925 "initializer of %s variable `%s' must be a "
1926 "constant expression",
1927 (this->type->qualifier.constant)
1928 ? "const" : "uniform",
1929 decl->identifier);
1930 if (var->type->is_numeric()) {
1931 /* Reduce cascading errors. */
1932 var->constant_value = ir_constant::zero(ctx, var->type);
1933 }
1934 } else {
1935 rhs = constant_value;
1936 var->constant_value = constant_value;
1937 }
1938 } else {
1939 _mesa_glsl_error(&initializer_loc, state,
1940 "initializer of type %s cannot be assigned to "
1941 "variable of type %s",
1942 rhs->type->name, var->type->name);
1943 if (var->type->is_numeric()) {
1944 /* Reduce cascading errors. */
1945 var->constant_value = ir_constant::zero(ctx, var->type);
1946 }
1947 }
1948 }
1949
1950 if (rhs && !rhs->type->is_error()) {
1951 bool temp = var->read_only;
1952 if (this->type->qualifier.constant)
1953 var->read_only = false;
1954
1955 /* Never emit code to initialize a uniform.
1956 */
1957 if (!this->type->qualifier.uniform)
1958 result = do_assignment(&initializer_instructions, state,
1959 lhs, rhs,
1960 this->get_location());
1961 var->read_only = temp;
1962 }
1963 }
1964
1965 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1966 *
1967 * "It is an error to write to a const variable outside of
1968 * its declaration, so they must be initialized when
1969 * declared."
1970 */
1971 if (this->type->qualifier.constant && decl->initializer == NULL) {
1972 _mesa_glsl_error(& loc, state,
1973 "const declaration of `%s' must be initialized");
1974 }
1975
1976 /* Check if this declaration is actually a re-declaration, either to
1977 * resize an array or add qualifiers to an existing variable.
1978 *
1979 * This is allowed for variables in the current scope, or when at
1980 * global scope (for built-ins in the implicit outer scope).
1981 */
1982 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
1983 if (earlier != NULL && (state->current_function == NULL ||
1984 state->symbols->name_declared_this_scope(decl->identifier))) {
1985
1986 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1987 *
1988 * "It is legal to declare an array without a size and then
1989 * later re-declare the same name as an array of the same
1990 * type and specify a size."
1991 */
1992 if ((earlier->type->array_size() == 0)
1993 && var->type->is_array()
1994 && (var->type->element_type() == earlier->type->element_type())) {
1995 /* FINISHME: This doesn't match the qualifiers on the two
1996 * FINISHME: declarations. It's not 100% clear whether this is
1997 * FINISHME: required or not.
1998 */
1999
2000 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2001 *
2002 * "The size [of gl_TexCoord] can be at most
2003 * gl_MaxTextureCoords."
2004 */
2005 const unsigned size = unsigned(var->type->array_size());
2006 if ((strcmp("gl_TexCoord", var->name) == 0)
2007 && (size > state->Const.MaxTextureCoords)) {
2008 YYLTYPE loc = this->get_location();
2009
2010 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2011 "be larger than gl_MaxTextureCoords (%u)\n",
2012 state->Const.MaxTextureCoords);
2013 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2014 YYLTYPE loc = this->get_location();
2015
2016 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2017 "previous access",
2018 earlier->max_array_access);
2019 }
2020
2021 earlier->type = var->type;
2022 delete var;
2023 var = NULL;
2024 } else if (state->extensions->ARB_fragment_coord_conventions
2025 && strcmp(var->name, "gl_FragCoord") == 0
2026 && earlier->type == var->type
2027 && earlier->mode == var->mode) {
2028 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2029 * qualifiers.
2030 */
2031 earlier->origin_upper_left = var->origin_upper_left;
2032 earlier->pixel_center_integer = var->pixel_center_integer;
2033 } else {
2034 YYLTYPE loc = this->get_location();
2035 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2036 }
2037
2038 continue;
2039 }
2040
2041 /* By now, we know it's a new variable declaration (we didn't hit the
2042 * above "continue").
2043 *
2044 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2045 *
2046 * "Identifiers starting with "gl_" are reserved for use by
2047 * OpenGL, and may not be declared in a shader as either a
2048 * variable or a function."
2049 */
2050 if (strncmp(decl->identifier, "gl_", 3) == 0)
2051 _mesa_glsl_error(& loc, state,
2052 "identifier `%s' uses reserved `gl_' prefix",
2053 decl->identifier);
2054
2055 /* Add the variable to the symbol table. Note that the initializer's
2056 * IR was already processed earlier (though it hasn't been emitted yet),
2057 * without the variable in scope.
2058 *
2059 * This differs from most C-like languages, but it follows the GLSL
2060 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2061 * spec:
2062 *
2063 * "Within a declaration, the scope of a name starts immediately
2064 * after the initializer if present or immediately after the name
2065 * being declared if not."
2066 */
2067 if (!state->symbols->add_variable(var->name, var)) {
2068 YYLTYPE loc = this->get_location();
2069 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2070 "current scope", decl->identifier);
2071 continue;
2072 }
2073
2074 /* Push the variable declaration to the top. It means that all
2075 * the variable declarations will appear in a funny
2076 * last-to-first order, but otherwise we run into trouble if a
2077 * function is prototyped, a global var is decled, then the
2078 * function is defined with usage of the global var. See
2079 * glslparsertest's CorrectModule.frag.
2080 */
2081 instructions->push_head(var);
2082 instructions->append_list(&initializer_instructions);
2083 }
2084
2085
2086 /* Generally, variable declarations do not have r-values. However,
2087 * one is used for the declaration in
2088 *
2089 * while (bool b = some_condition()) {
2090 * ...
2091 * }
2092 *
2093 * so we return the rvalue from the last seen declaration here.
2094 */
2095 return result;
2096 }
2097
2098
2099 ir_rvalue *
2100 ast_parameter_declarator::hir(exec_list *instructions,
2101 struct _mesa_glsl_parse_state *state)
2102 {
2103 void *ctx = state;
2104 const struct glsl_type *type;
2105 const char *name = NULL;
2106 YYLTYPE loc = this->get_location();
2107
2108 type = this->type->specifier->glsl_type(& name, state);
2109
2110 if (type == NULL) {
2111 if (name != NULL) {
2112 _mesa_glsl_error(& loc, state,
2113 "invalid type `%s' in declaration of `%s'",
2114 name, this->identifier);
2115 } else {
2116 _mesa_glsl_error(& loc, state,
2117 "invalid type in declaration of `%s'",
2118 this->identifier);
2119 }
2120
2121 type = glsl_type::error_type;
2122 }
2123
2124 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2125 *
2126 * "Functions that accept no input arguments need not use void in the
2127 * argument list because prototypes (or definitions) are required and
2128 * therefore there is no ambiguity when an empty argument list "( )" is
2129 * declared. The idiom "(void)" as a parameter list is provided for
2130 * convenience."
2131 *
2132 * Placing this check here prevents a void parameter being set up
2133 * for a function, which avoids tripping up checks for main taking
2134 * parameters and lookups of an unnamed symbol.
2135 */
2136 if (type->is_void()) {
2137 if (this->identifier != NULL)
2138 _mesa_glsl_error(& loc, state,
2139 "named parameter cannot have type `void'");
2140
2141 is_void = true;
2142 return NULL;
2143 }
2144
2145 if (formal_parameter && (this->identifier == NULL)) {
2146 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2147 return NULL;
2148 }
2149
2150 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2151 * call already handled the "vec4[..] foo" case.
2152 */
2153 if (this->is_array) {
2154 type = process_array_type(&loc, type, this->array_size, state);
2155 }
2156
2157 if (type->array_size() == 0) {
2158 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2159 "a declared size.");
2160 type = glsl_type::error_type;
2161 }
2162
2163 is_void = false;
2164 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2165
2166 /* Apply any specified qualifiers to the parameter declaration. Note that
2167 * for function parameters the default mode is 'in'.
2168 */
2169 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2170
2171 instructions->push_tail(var);
2172
2173 /* Parameter declarations do not have r-values.
2174 */
2175 return NULL;
2176 }
2177
2178
2179 void
2180 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2181 bool formal,
2182 exec_list *ir_parameters,
2183 _mesa_glsl_parse_state *state)
2184 {
2185 ast_parameter_declarator *void_param = NULL;
2186 unsigned count = 0;
2187
2188 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2189 param->formal_parameter = formal;
2190 param->hir(ir_parameters, state);
2191
2192 if (param->is_void)
2193 void_param = param;
2194
2195 count++;
2196 }
2197
2198 if ((void_param != NULL) && (count > 1)) {
2199 YYLTYPE loc = void_param->get_location();
2200
2201 _mesa_glsl_error(& loc, state,
2202 "`void' parameter must be only parameter");
2203 }
2204 }
2205
2206
2207 ir_rvalue *
2208 ast_function::hir(exec_list *instructions,
2209 struct _mesa_glsl_parse_state *state)
2210 {
2211 void *ctx = state;
2212 ir_function *f = NULL;
2213 ir_function_signature *sig = NULL;
2214 exec_list hir_parameters;
2215
2216 const char *const name = identifier;
2217
2218 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2219 *
2220 * "Function declarations (prototypes) cannot occur inside of functions;
2221 * they must be at global scope, or for the built-in functions, outside
2222 * the global scope."
2223 *
2224 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2225 *
2226 * "User defined functions may only be defined within the global scope."
2227 *
2228 * Note that this language does not appear in GLSL 1.10.
2229 */
2230 if ((state->current_function != NULL) && (state->language_version != 110)) {
2231 YYLTYPE loc = this->get_location();
2232 _mesa_glsl_error(&loc, state,
2233 "declaration of function `%s' not allowed within "
2234 "function body", name);
2235 }
2236
2237 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2238 *
2239 * "Identifiers starting with "gl_" are reserved for use by
2240 * OpenGL, and may not be declared in a shader as either a
2241 * variable or a function."
2242 */
2243 if (strncmp(name, "gl_", 3) == 0) {
2244 YYLTYPE loc = this->get_location();
2245 _mesa_glsl_error(&loc, state,
2246 "identifier `%s' uses reserved `gl_' prefix", name);
2247 }
2248
2249 /* Convert the list of function parameters to HIR now so that they can be
2250 * used below to compare this function's signature with previously seen
2251 * signatures for functions with the same name.
2252 */
2253 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2254 is_definition,
2255 & hir_parameters, state);
2256
2257 const char *return_type_name;
2258 const glsl_type *return_type =
2259 this->return_type->specifier->glsl_type(& return_type_name, state);
2260
2261 if (!return_type) {
2262 YYLTYPE loc = this->get_location();
2263 _mesa_glsl_error(&loc, state,
2264 "function `%s' has undeclared return type `%s'",
2265 name, return_type_name);
2266 return_type = glsl_type::error_type;
2267 }
2268
2269 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2270 * "No qualifier is allowed on the return type of a function."
2271 */
2272 if (this->return_type->has_qualifiers()) {
2273 YYLTYPE loc = this->get_location();
2274 _mesa_glsl_error(& loc, state,
2275 "function `%s' return type has qualifiers", name);
2276 }
2277
2278 /* Verify that this function's signature either doesn't match a previously
2279 * seen signature for a function with the same name, or, if a match is found,
2280 * that the previously seen signature does not have an associated definition.
2281 */
2282 f = state->symbols->get_function(name);
2283 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2284 sig = f->exact_matching_signature(&hir_parameters);
2285 if (sig != NULL) {
2286 const char *badvar = sig->qualifiers_match(&hir_parameters);
2287 if (badvar != NULL) {
2288 YYLTYPE loc = this->get_location();
2289
2290 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2291 "qualifiers don't match prototype", name, badvar);
2292 }
2293
2294 if (sig->return_type != return_type) {
2295 YYLTYPE loc = this->get_location();
2296
2297 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2298 "match prototype", name);
2299 }
2300
2301 if (is_definition && sig->is_defined) {
2302 YYLTYPE loc = this->get_location();
2303
2304 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
2305 }
2306 }
2307 } else {
2308 f = new(ctx) ir_function(name);
2309 if (!state->symbols->add_function(f->name, f)) {
2310 /* This function name shadows a non-function use of the same name. */
2311 YYLTYPE loc = this->get_location();
2312
2313 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
2314 "non-function", name);
2315 return NULL;
2316 }
2317
2318 /* Emit the new function header */
2319 if (state->current_function == NULL)
2320 instructions->push_tail(f);
2321 else {
2322 /* IR invariants disallow function declarations or definitions nested
2323 * within other function definitions. Insert the new ir_function
2324 * block in the instruction sequence before the ir_function block
2325 * containing the current ir_function_signature.
2326 *
2327 * This can only happen in a GLSL 1.10 shader. In all other GLSL
2328 * versions this nesting is disallowed. There is a check for this at
2329 * the top of this function.
2330 */
2331 ir_function *const curr =
2332 const_cast<ir_function *>(state->current_function->function());
2333
2334 curr->insert_before(f);
2335 }
2336 }
2337
2338 /* Verify the return type of main() */
2339 if (strcmp(name, "main") == 0) {
2340 if (! return_type->is_void()) {
2341 YYLTYPE loc = this->get_location();
2342
2343 _mesa_glsl_error(& loc, state, "main() must return void");
2344 }
2345
2346 if (!hir_parameters.is_empty()) {
2347 YYLTYPE loc = this->get_location();
2348
2349 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
2350 }
2351 }
2352
2353 /* Finish storing the information about this new function in its signature.
2354 */
2355 if (sig == NULL) {
2356 sig = new(ctx) ir_function_signature(return_type);
2357 f->add_signature(sig);
2358 }
2359
2360 sig->replace_parameters(&hir_parameters);
2361 signature = sig;
2362
2363 /* Function declarations (prototypes) do not have r-values.
2364 */
2365 return NULL;
2366 }
2367
2368
2369 ir_rvalue *
2370 ast_function_definition::hir(exec_list *instructions,
2371 struct _mesa_glsl_parse_state *state)
2372 {
2373 prototype->is_definition = true;
2374 prototype->hir(instructions, state);
2375
2376 ir_function_signature *signature = prototype->signature;
2377 if (signature == NULL)
2378 return NULL;
2379
2380 assert(state->current_function == NULL);
2381 state->current_function = signature;
2382 state->found_return = false;
2383
2384 /* Duplicate parameters declared in the prototype as concrete variables.
2385 * Add these to the symbol table.
2386 */
2387 state->symbols->push_scope();
2388 foreach_iter(exec_list_iterator, iter, signature->parameters) {
2389 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
2390
2391 assert(var != NULL);
2392
2393 /* The only way a parameter would "exist" is if two parameters have
2394 * the same name.
2395 */
2396 if (state->symbols->name_declared_this_scope(var->name)) {
2397 YYLTYPE loc = this->get_location();
2398
2399 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
2400 } else {
2401 state->symbols->add_variable(var->name, var);
2402 }
2403 }
2404
2405 /* Convert the body of the function to HIR. */
2406 this->body->hir(&signature->body, state);
2407 signature->is_defined = true;
2408
2409 state->symbols->pop_scope();
2410
2411 assert(state->current_function == signature);
2412 state->current_function = NULL;
2413
2414 if (!signature->return_type->is_void() && !state->found_return) {
2415 YYLTYPE loc = this->get_location();
2416 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
2417 "%s, but no return statement",
2418 signature->function_name(),
2419 signature->return_type->name);
2420 }
2421
2422 /* Function definitions do not have r-values.
2423 */
2424 return NULL;
2425 }
2426
2427
2428 ir_rvalue *
2429 ast_jump_statement::hir(exec_list *instructions,
2430 struct _mesa_glsl_parse_state *state)
2431 {
2432 void *ctx = state;
2433
2434 switch (mode) {
2435 case ast_return: {
2436 ir_return *inst;
2437 assert(state->current_function);
2438
2439 if (opt_return_value) {
2440 if (state->current_function->return_type->base_type ==
2441 GLSL_TYPE_VOID) {
2442 YYLTYPE loc = this->get_location();
2443
2444 _mesa_glsl_error(& loc, state,
2445 "`return` with a value, in function `%s' "
2446 "returning void",
2447 state->current_function->function_name());
2448 }
2449
2450 ir_expression *const ret = (ir_expression *)
2451 opt_return_value->hir(instructions, state);
2452 assert(ret != NULL);
2453
2454 /* Implicit conversions are not allowed for return values. */
2455 if (state->current_function->return_type != ret->type) {
2456 YYLTYPE loc = this->get_location();
2457
2458 _mesa_glsl_error(& loc, state,
2459 "`return' with wrong type %s, in function `%s' "
2460 "returning %s",
2461 ret->type->name,
2462 state->current_function->function_name(),
2463 state->current_function->return_type->name);
2464 }
2465
2466 inst = new(ctx) ir_return(ret);
2467 } else {
2468 if (state->current_function->return_type->base_type !=
2469 GLSL_TYPE_VOID) {
2470 YYLTYPE loc = this->get_location();
2471
2472 _mesa_glsl_error(& loc, state,
2473 "`return' with no value, in function %s returning "
2474 "non-void",
2475 state->current_function->function_name());
2476 }
2477 inst = new(ctx) ir_return;
2478 }
2479
2480 state->found_return = true;
2481 instructions->push_tail(inst);
2482 break;
2483 }
2484
2485 case ast_discard:
2486 if (state->target != fragment_shader) {
2487 YYLTYPE loc = this->get_location();
2488
2489 _mesa_glsl_error(& loc, state,
2490 "`discard' may only appear in a fragment shader");
2491 }
2492 instructions->push_tail(new(ctx) ir_discard);
2493 break;
2494
2495 case ast_break:
2496 case ast_continue:
2497 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2498 * FINISHME: and they use a different IR instruction for 'break'.
2499 */
2500 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2501 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2502 * FINISHME: loop.
2503 */
2504 if (state->loop_or_switch_nesting == NULL) {
2505 YYLTYPE loc = this->get_location();
2506
2507 _mesa_glsl_error(& loc, state,
2508 "`%s' may only appear in a loop",
2509 (mode == ast_break) ? "break" : "continue");
2510 } else {
2511 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
2512
2513 /* Inline the for loop expression again, since we don't know
2514 * where near the end of the loop body the normal copy of it
2515 * is going to be placed.
2516 */
2517 if (mode == ast_continue &&
2518 state->loop_or_switch_nesting_ast->rest_expression) {
2519 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
2520 state);
2521 }
2522
2523 if (loop != NULL) {
2524 ir_loop_jump *const jump =
2525 new(ctx) ir_loop_jump((mode == ast_break)
2526 ? ir_loop_jump::jump_break
2527 : ir_loop_jump::jump_continue);
2528 instructions->push_tail(jump);
2529 }
2530 }
2531
2532 break;
2533 }
2534
2535 /* Jump instructions do not have r-values.
2536 */
2537 return NULL;
2538 }
2539
2540
2541 ir_rvalue *
2542 ast_selection_statement::hir(exec_list *instructions,
2543 struct _mesa_glsl_parse_state *state)
2544 {
2545 void *ctx = state;
2546
2547 ir_rvalue *const condition = this->condition->hir(instructions, state);
2548
2549 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2550 *
2551 * "Any expression whose type evaluates to a Boolean can be used as the
2552 * conditional expression bool-expression. Vector types are not accepted
2553 * as the expression to if."
2554 *
2555 * The checks are separated so that higher quality diagnostics can be
2556 * generated for cases where both rules are violated.
2557 */
2558 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
2559 YYLTYPE loc = this->condition->get_location();
2560
2561 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
2562 "boolean");
2563 }
2564
2565 ir_if *const stmt = new(ctx) ir_if(condition);
2566
2567 if (then_statement != NULL) {
2568 state->symbols->push_scope();
2569 then_statement->hir(& stmt->then_instructions, state);
2570 state->symbols->pop_scope();
2571 }
2572
2573 if (else_statement != NULL) {
2574 state->symbols->push_scope();
2575 else_statement->hir(& stmt->else_instructions, state);
2576 state->symbols->pop_scope();
2577 }
2578
2579 instructions->push_tail(stmt);
2580
2581 /* if-statements do not have r-values.
2582 */
2583 return NULL;
2584 }
2585
2586
2587 void
2588 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
2589 struct _mesa_glsl_parse_state *state)
2590 {
2591 void *ctx = state;
2592
2593 if (condition != NULL) {
2594 ir_rvalue *const cond =
2595 condition->hir(& stmt->body_instructions, state);
2596
2597 if ((cond == NULL)
2598 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
2599 YYLTYPE loc = condition->get_location();
2600
2601 _mesa_glsl_error(& loc, state,
2602 "loop condition must be scalar boolean");
2603 } else {
2604 /* As the first code in the loop body, generate a block that looks
2605 * like 'if (!condition) break;' as the loop termination condition.
2606 */
2607 ir_rvalue *const not_cond =
2608 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
2609 NULL);
2610
2611 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
2612
2613 ir_jump *const break_stmt =
2614 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
2615
2616 if_stmt->then_instructions.push_tail(break_stmt);
2617 stmt->body_instructions.push_tail(if_stmt);
2618 }
2619 }
2620 }
2621
2622
2623 ir_rvalue *
2624 ast_iteration_statement::hir(exec_list *instructions,
2625 struct _mesa_glsl_parse_state *state)
2626 {
2627 void *ctx = state;
2628
2629 /* For-loops and while-loops start a new scope, but do-while loops do not.
2630 */
2631 if (mode != ast_do_while)
2632 state->symbols->push_scope();
2633
2634 if (init_statement != NULL)
2635 init_statement->hir(instructions, state);
2636
2637 ir_loop *const stmt = new(ctx) ir_loop();
2638 instructions->push_tail(stmt);
2639
2640 /* Track the current loop and / or switch-statement nesting.
2641 */
2642 ir_instruction *const nesting = state->loop_or_switch_nesting;
2643 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
2644
2645 state->loop_or_switch_nesting = stmt;
2646 state->loop_or_switch_nesting_ast = this;
2647
2648 if (mode != ast_do_while)
2649 condition_to_hir(stmt, state);
2650
2651 if (body != NULL)
2652 body->hir(& stmt->body_instructions, state);
2653
2654 if (rest_expression != NULL)
2655 rest_expression->hir(& stmt->body_instructions, state);
2656
2657 if (mode == ast_do_while)
2658 condition_to_hir(stmt, state);
2659
2660 if (mode != ast_do_while)
2661 state->symbols->pop_scope();
2662
2663 /* Restore previous nesting before returning.
2664 */
2665 state->loop_or_switch_nesting = nesting;
2666 state->loop_or_switch_nesting_ast = nesting_ast;
2667
2668 /* Loops do not have r-values.
2669 */
2670 return NULL;
2671 }
2672
2673
2674 ir_rvalue *
2675 ast_type_specifier::hir(exec_list *instructions,
2676 struct _mesa_glsl_parse_state *state)
2677 {
2678 if (this->structure != NULL)
2679 return this->structure->hir(instructions, state);
2680
2681 return NULL;
2682 }
2683
2684
2685 ir_rvalue *
2686 ast_struct_specifier::hir(exec_list *instructions,
2687 struct _mesa_glsl_parse_state *state)
2688 {
2689 unsigned decl_count = 0;
2690
2691 /* Make an initial pass over the list of structure fields to determine how
2692 * many there are. Each element in this list is an ast_declarator_list.
2693 * This means that we actually need to count the number of elements in the
2694 * 'declarations' list in each of the elements.
2695 */
2696 foreach_list_typed (ast_declarator_list, decl_list, link,
2697 &this->declarations) {
2698 foreach_list_const (decl_ptr, & decl_list->declarations) {
2699 decl_count++;
2700 }
2701 }
2702
2703 /* Allocate storage for the structure fields and process the field
2704 * declarations. As the declarations are processed, try to also convert
2705 * the types to HIR. This ensures that structure definitions embedded in
2706 * other structure definitions are processed.
2707 */
2708 glsl_struct_field *const fields = talloc_array(state, glsl_struct_field,
2709 decl_count);
2710
2711 unsigned i = 0;
2712 foreach_list_typed (ast_declarator_list, decl_list, link,
2713 &this->declarations) {
2714 const char *type_name;
2715
2716 decl_list->type->specifier->hir(instructions, state);
2717
2718 /* Section 10.9 of the GLSL ES 1.00 specification states that
2719 * embedded structure definitions have been removed from the language.
2720 */
2721 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
2722 YYLTYPE loc = this->get_location();
2723 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
2724 "not allowed in GLSL ES 1.00.");
2725 }
2726
2727 const glsl_type *decl_type =
2728 decl_list->type->specifier->glsl_type(& type_name, state);
2729
2730 foreach_list_typed (ast_declaration, decl, link,
2731 &decl_list->declarations) {
2732 const struct glsl_type *field_type = decl_type;
2733 if (decl->is_array) {
2734 YYLTYPE loc = decl->get_location();
2735 field_type = process_array_type(&loc, decl_type, decl->array_size,
2736 state);
2737 }
2738 fields[i].type = (field_type != NULL)
2739 ? field_type : glsl_type::error_type;
2740 fields[i].name = decl->identifier;
2741 i++;
2742 }
2743 }
2744
2745 assert(i == decl_count);
2746
2747 const glsl_type *t =
2748 glsl_type::get_record_instance(fields, decl_count, this->name);
2749
2750 YYLTYPE loc = this->get_location();
2751 if (!state->symbols->add_type(name, t)) {
2752 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
2753 } else {
2754
2755 const glsl_type **s = (const glsl_type **)
2756 realloc(state->user_structures,
2757 sizeof(state->user_structures[0]) *
2758 (state->num_user_structures + 1));
2759 if (s != NULL) {
2760 s[state->num_user_structures] = t;
2761 state->user_structures = s;
2762 state->num_user_structures++;
2763 }
2764 }
2765
2766 /* Structure type definitions do not have r-values.
2767 */
2768 return NULL;
2769 }