18e66db2e2aa7b2126f015b395f56fb2731e3471
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 if (state->language_version < 130) {
439 _mesa_glsl_error(loc, state,
440 "operator '%%' is reserved in %s",
441 state->version_string);
442 return glsl_type::error_type;
443 }
444
445 /* From GLSL 1.50 spec, page 56:
446 * "The operator modulus (%) operates on signed or unsigned integers or
447 * integer vectors. The operand types must both be signed or both be
448 * unsigned."
449 */
450 if (!type_a->is_integer() || !type_b->is_integer()
451 || (type_a->base_type != type_b->base_type)) {
452 _mesa_glsl_error(loc, state, "type mismatch");
453 return glsl_type::error_type;
454 }
455
456 /* "The operands cannot be vectors of differing size. If one operand is
457 * a scalar and the other vector, then the scalar is applied component-
458 * wise to the vector, resulting in the same type as the vector. If both
459 * are vectors of the same size, the result is computed component-wise."
460 */
461 if (type_a->is_vector()) {
462 if (!type_b->is_vector()
463 || (type_a->vector_elements == type_b->vector_elements))
464 return type_a;
465 } else
466 return type_b;
467
468 /* "The operator modulus (%) is not defined for any other data types
469 * (non-integer types)."
470 */
471 _mesa_glsl_error(loc, state, "type mismatch");
472 return glsl_type::error_type;
473 }
474
475
476 static const struct glsl_type *
477 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
478 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
479 {
480 const glsl_type *type_a = value_a->type;
481 const glsl_type *type_b = value_b->type;
482
483 /* From GLSL 1.50 spec, page 56:
484 * "The relational operators greater than (>), less than (<), greater
485 * than or equal (>=), and less than or equal (<=) operate only on
486 * scalar integer and scalar floating-point expressions."
487 */
488 if (!type_a->is_numeric()
489 || !type_b->is_numeric()
490 || !type_a->is_scalar()
491 || !type_b->is_scalar()) {
492 _mesa_glsl_error(loc, state,
493 "Operands to relational operators must be scalar and "
494 "numeric");
495 return glsl_type::error_type;
496 }
497
498 /* "Either the operands' types must match, or the conversions from
499 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
500 * operand, after which the types must match."
501 */
502 if (!apply_implicit_conversion(type_a, value_b, state)
503 && !apply_implicit_conversion(type_b, value_a, state)) {
504 _mesa_glsl_error(loc, state,
505 "Could not implicitly convert operands to "
506 "relational operator");
507 return glsl_type::error_type;
508 }
509 type_a = value_a->type;
510 type_b = value_b->type;
511
512 if (type_a->base_type != type_b->base_type) {
513 _mesa_glsl_error(loc, state, "base type mismatch");
514 return glsl_type::error_type;
515 }
516
517 /* "The result is scalar Boolean."
518 */
519 return glsl_type::bool_type;
520 }
521
522 /**
523 * \brief Return the result type of a bit-shift operation.
524 *
525 * If the given types to the bit-shift operator are invalid, return
526 * glsl_type::error_type.
527 *
528 * \param type_a Type of LHS of bit-shift op
529 * \param type_b Type of RHS of bit-shift op
530 */
531 static const struct glsl_type *
532 shift_result_type(const struct glsl_type *type_a,
533 const struct glsl_type *type_b,
534 ast_operators op,
535 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
536 {
537 if (state->language_version < 130) {
538 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
539 return glsl_type::error_type;
540 }
541
542 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
543 *
544 * "The shift operators (<<) and (>>). For both operators, the operands
545 * must be signed or unsigned integers or integer vectors. One operand
546 * can be signed while the other is unsigned."
547 */
548 if (!type_a->is_integer()) {
549 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
550 "integer vector", ast_expression::operator_string(op));
551 return glsl_type::error_type;
552
553 }
554 if (!type_b->is_integer()) {
555 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
556 "integer vector", ast_expression::operator_string(op));
557 return glsl_type::error_type;
558 }
559
560 /* "If the first operand is a scalar, the second operand has to be
561 * a scalar as well."
562 */
563 if (type_a->is_scalar() && !type_b->is_scalar()) {
564 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
565 "second must be scalar as well",
566 ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* If both operands are vectors, check that they have same number of
571 * elements.
572 */
573 if (type_a->is_vector() &&
574 type_b->is_vector() &&
575 type_a->vector_elements != type_b->vector_elements) {
576 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
577 "have same number of elements",
578 ast_expression::operator_string(op));
579 return glsl_type::error_type;
580 }
581
582 /* "In all cases, the resulting type will be the same type as the left
583 * operand."
584 */
585 return type_a;
586 }
587
588 /**
589 * Validates that a value can be assigned to a location with a specified type
590 *
591 * Validates that \c rhs can be assigned to some location. If the types are
592 * not an exact match but an automatic conversion is possible, \c rhs will be
593 * converted.
594 *
595 * \return
596 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
597 * Otherwise the actual RHS to be assigned will be returned. This may be
598 * \c rhs, or it may be \c rhs after some type conversion.
599 *
600 * \note
601 * In addition to being used for assignments, this function is used to
602 * type-check return values.
603 */
604 ir_rvalue *
605 validate_assignment(struct _mesa_glsl_parse_state *state,
606 const glsl_type *lhs_type, ir_rvalue *rhs,
607 bool is_initializer)
608 {
609 /* If there is already some error in the RHS, just return it. Anything
610 * else will lead to an avalanche of error message back to the user.
611 */
612 if (rhs->type->is_error())
613 return rhs;
614
615 /* If the types are identical, the assignment can trivially proceed.
616 */
617 if (rhs->type == lhs_type)
618 return rhs;
619
620 /* If the array element types are the same and the size of the LHS is zero,
621 * the assignment is okay for initializers embedded in variable
622 * declarations.
623 *
624 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
625 * is handled by ir_dereference::is_lvalue.
626 */
627 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
628 && (lhs_type->element_type() == rhs->type->element_type())
629 && (lhs_type->array_size() == 0)) {
630 return rhs;
631 }
632
633 /* Check for implicit conversion in GLSL 1.20 */
634 if (apply_implicit_conversion(lhs_type, rhs, state)) {
635 if (rhs->type == lhs_type)
636 return rhs;
637 }
638
639 return NULL;
640 }
641
642 ir_rvalue *
643 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
644 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
645 YYLTYPE lhs_loc)
646 {
647 void *ctx = state;
648 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
649
650 if (!error_emitted) {
651 if (lhs->variable_referenced() != NULL
652 && lhs->variable_referenced()->read_only) {
653 _mesa_glsl_error(&lhs_loc, state,
654 "assignment to read-only variable '%s'",
655 lhs->variable_referenced()->name);
656 error_emitted = true;
657
658 } else if (!lhs->is_lvalue()) {
659 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
660 error_emitted = true;
661 }
662
663 if (state->es_shader && lhs->type->is_array()) {
664 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
665 "allowed in GLSL ES 1.00.");
666 error_emitted = true;
667 }
668 }
669
670 ir_rvalue *new_rhs =
671 validate_assignment(state, lhs->type, rhs, is_initializer);
672 if (new_rhs == NULL) {
673 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
674 } else {
675 rhs = new_rhs;
676
677 /* If the LHS array was not declared with a size, it takes it size from
678 * the RHS. If the LHS is an l-value and a whole array, it must be a
679 * dereference of a variable. Any other case would require that the LHS
680 * is either not an l-value or not a whole array.
681 */
682 if (lhs->type->array_size() == 0) {
683 ir_dereference *const d = lhs->as_dereference();
684
685 assert(d != NULL);
686
687 ir_variable *const var = d->variable_referenced();
688
689 assert(var != NULL);
690
691 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
692 /* FINISHME: This should actually log the location of the RHS. */
693 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
694 "previous access",
695 var->max_array_access);
696 }
697
698 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
699 rhs->type->array_size());
700 d->type = var->type;
701 }
702 }
703
704 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
705 * but not post_inc) need the converted assigned value as an rvalue
706 * to handle things like:
707 *
708 * i = j += 1;
709 *
710 * So we always just store the computed value being assigned to a
711 * temporary and return a deref of that temporary. If the rvalue
712 * ends up not being used, the temp will get copy-propagated out.
713 */
714 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
715 ir_var_temporary);
716 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
717 instructions->push_tail(var);
718 instructions->push_tail(new(ctx) ir_assignment(deref_var,
719 rhs,
720 NULL));
721 deref_var = new(ctx) ir_dereference_variable(var);
722
723 if (!error_emitted)
724 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
725
726 return new(ctx) ir_dereference_variable(var);
727 }
728
729 static ir_rvalue *
730 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
731 {
732 void *ctx = ralloc_parent(lvalue);
733 ir_variable *var;
734
735 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
736 ir_var_temporary);
737 instructions->push_tail(var);
738 var->mode = ir_var_auto;
739
740 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
741 lvalue, NULL));
742
743 /* Once we've created this temporary, mark it read only so it's no
744 * longer considered an lvalue.
745 */
746 var->read_only = true;
747
748 return new(ctx) ir_dereference_variable(var);
749 }
750
751
752 ir_rvalue *
753 ast_node::hir(exec_list *instructions,
754 struct _mesa_glsl_parse_state *state)
755 {
756 (void) instructions;
757 (void) state;
758
759 return NULL;
760 }
761
762 static void
763 mark_whole_array_access(ir_rvalue *access)
764 {
765 ir_dereference_variable *deref = access->as_dereference_variable();
766
767 if (deref) {
768 deref->var->max_array_access = deref->type->length - 1;
769 }
770 }
771
772 static ir_rvalue *
773 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
774 {
775 int join_op;
776 ir_rvalue *cmp = NULL;
777
778 if (operation == ir_binop_all_equal)
779 join_op = ir_binop_logic_and;
780 else
781 join_op = ir_binop_logic_or;
782
783 switch (op0->type->base_type) {
784 case GLSL_TYPE_FLOAT:
785 case GLSL_TYPE_UINT:
786 case GLSL_TYPE_INT:
787 case GLSL_TYPE_BOOL:
788 return new(mem_ctx) ir_expression(operation, op0, op1);
789
790 case GLSL_TYPE_ARRAY: {
791 for (unsigned int i = 0; i < op0->type->length; i++) {
792 ir_rvalue *e0, *e1, *result;
793
794 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
795 new(mem_ctx) ir_constant(i));
796 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
797 new(mem_ctx) ir_constant(i));
798 result = do_comparison(mem_ctx, operation, e0, e1);
799
800 if (cmp) {
801 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
802 } else {
803 cmp = result;
804 }
805 }
806
807 mark_whole_array_access(op0);
808 mark_whole_array_access(op1);
809 break;
810 }
811
812 case GLSL_TYPE_STRUCT: {
813 for (unsigned int i = 0; i < op0->type->length; i++) {
814 ir_rvalue *e0, *e1, *result;
815 const char *field_name = op0->type->fields.structure[i].name;
816
817 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
818 field_name);
819 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
820 field_name);
821 result = do_comparison(mem_ctx, operation, e0, e1);
822
823 if (cmp) {
824 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
825 } else {
826 cmp = result;
827 }
828 }
829 break;
830 }
831
832 case GLSL_TYPE_ERROR:
833 case GLSL_TYPE_VOID:
834 case GLSL_TYPE_SAMPLER:
835 /* I assume a comparison of a struct containing a sampler just
836 * ignores the sampler present in the type.
837 */
838 break;
839
840 default:
841 assert(!"Should not get here.");
842 break;
843 }
844
845 if (cmp == NULL)
846 cmp = new(mem_ctx) ir_constant(true);
847
848 return cmp;
849 }
850
851 /* For logical operations, we want to ensure that the operands are
852 * scalar booleans. If it isn't, emit an error and return a constant
853 * boolean to avoid triggering cascading error messages.
854 */
855 ir_rvalue *
856 get_scalar_boolean_operand(exec_list *instructions,
857 struct _mesa_glsl_parse_state *state,
858 ast_expression *parent_expr,
859 int operand,
860 const char *operand_name,
861 bool *error_emitted)
862 {
863 ast_expression *expr = parent_expr->subexpressions[operand];
864 void *ctx = state;
865 ir_rvalue *val = expr->hir(instructions, state);
866
867 if (val->type->is_boolean() && val->type->is_scalar())
868 return val;
869
870 if (!*error_emitted) {
871 YYLTYPE loc = expr->get_location();
872 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
873 operand_name,
874 parent_expr->operator_string(parent_expr->oper));
875 *error_emitted = true;
876 }
877
878 return new(ctx) ir_constant(true);
879 }
880
881 ir_rvalue *
882 ast_expression::hir(exec_list *instructions,
883 struct _mesa_glsl_parse_state *state)
884 {
885 void *ctx = state;
886 static const int operations[AST_NUM_OPERATORS] = {
887 -1, /* ast_assign doesn't convert to ir_expression. */
888 -1, /* ast_plus doesn't convert to ir_expression. */
889 ir_unop_neg,
890 ir_binop_add,
891 ir_binop_sub,
892 ir_binop_mul,
893 ir_binop_div,
894 ir_binop_mod,
895 ir_binop_lshift,
896 ir_binop_rshift,
897 ir_binop_less,
898 ir_binop_greater,
899 ir_binop_lequal,
900 ir_binop_gequal,
901 ir_binop_all_equal,
902 ir_binop_any_nequal,
903 ir_binop_bit_and,
904 ir_binop_bit_xor,
905 ir_binop_bit_or,
906 ir_unop_bit_not,
907 ir_binop_logic_and,
908 ir_binop_logic_xor,
909 ir_binop_logic_or,
910 ir_unop_logic_not,
911
912 /* Note: The following block of expression types actually convert
913 * to multiple IR instructions.
914 */
915 ir_binop_mul, /* ast_mul_assign */
916 ir_binop_div, /* ast_div_assign */
917 ir_binop_mod, /* ast_mod_assign */
918 ir_binop_add, /* ast_add_assign */
919 ir_binop_sub, /* ast_sub_assign */
920 ir_binop_lshift, /* ast_ls_assign */
921 ir_binop_rshift, /* ast_rs_assign */
922 ir_binop_bit_and, /* ast_and_assign */
923 ir_binop_bit_xor, /* ast_xor_assign */
924 ir_binop_bit_or, /* ast_or_assign */
925
926 -1, /* ast_conditional doesn't convert to ir_expression. */
927 ir_binop_add, /* ast_pre_inc. */
928 ir_binop_sub, /* ast_pre_dec. */
929 ir_binop_add, /* ast_post_inc. */
930 ir_binop_sub, /* ast_post_dec. */
931 -1, /* ast_field_selection doesn't conv to ir_expression. */
932 -1, /* ast_array_index doesn't convert to ir_expression. */
933 -1, /* ast_function_call doesn't conv to ir_expression. */
934 -1, /* ast_identifier doesn't convert to ir_expression. */
935 -1, /* ast_int_constant doesn't convert to ir_expression. */
936 -1, /* ast_uint_constant doesn't conv to ir_expression. */
937 -1, /* ast_float_constant doesn't conv to ir_expression. */
938 -1, /* ast_bool_constant doesn't conv to ir_expression. */
939 -1, /* ast_sequence doesn't convert to ir_expression. */
940 };
941 ir_rvalue *result = NULL;
942 ir_rvalue *op[3];
943 const struct glsl_type *type = glsl_type::error_type;
944 bool error_emitted = false;
945 YYLTYPE loc;
946
947 loc = this->get_location();
948
949 switch (this->oper) {
950 case ast_assign: {
951 op[0] = this->subexpressions[0]->hir(instructions, state);
952 op[1] = this->subexpressions[1]->hir(instructions, state);
953
954 result = do_assignment(instructions, state, op[0], op[1], false,
955 this->subexpressions[0]->get_location());
956 error_emitted = result->type->is_error();
957 type = result->type;
958 break;
959 }
960
961 case ast_plus:
962 op[0] = this->subexpressions[0]->hir(instructions, state);
963
964 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
965
966 error_emitted = type->is_error();
967
968 result = op[0];
969 break;
970
971 case ast_neg:
972 op[0] = this->subexpressions[0]->hir(instructions, state);
973
974 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
975
976 error_emitted = type->is_error();
977
978 result = new(ctx) ir_expression(operations[this->oper], type,
979 op[0], NULL);
980 break;
981
982 case ast_add:
983 case ast_sub:
984 case ast_mul:
985 case ast_div:
986 op[0] = this->subexpressions[0]->hir(instructions, state);
987 op[1] = this->subexpressions[1]->hir(instructions, state);
988
989 type = arithmetic_result_type(op[0], op[1],
990 (this->oper == ast_mul),
991 state, & loc);
992 error_emitted = type->is_error();
993
994 result = new(ctx) ir_expression(operations[this->oper], type,
995 op[0], op[1]);
996 break;
997
998 case ast_mod:
999 op[0] = this->subexpressions[0]->hir(instructions, state);
1000 op[1] = this->subexpressions[1]->hir(instructions, state);
1001
1002 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1003
1004 assert(operations[this->oper] == ir_binop_mod);
1005
1006 result = new(ctx) ir_expression(operations[this->oper], type,
1007 op[0], op[1]);
1008 error_emitted = type->is_error();
1009 break;
1010
1011 case ast_lshift:
1012 case ast_rshift:
1013 if (state->language_version < 130) {
1014 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1015 operator_string(this->oper));
1016 error_emitted = true;
1017 }
1018
1019 op[0] = this->subexpressions[0]->hir(instructions, state);
1020 op[1] = this->subexpressions[1]->hir(instructions, state);
1021 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1022 &loc);
1023 result = new(ctx) ir_expression(operations[this->oper], type,
1024 op[0], op[1]);
1025 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1026 break;
1027
1028 case ast_less:
1029 case ast_greater:
1030 case ast_lequal:
1031 case ast_gequal:
1032 op[0] = this->subexpressions[0]->hir(instructions, state);
1033 op[1] = this->subexpressions[1]->hir(instructions, state);
1034
1035 type = relational_result_type(op[0], op[1], state, & loc);
1036
1037 /* The relational operators must either generate an error or result
1038 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1039 */
1040 assert(type->is_error()
1041 || ((type->base_type == GLSL_TYPE_BOOL)
1042 && type->is_scalar()));
1043
1044 result = new(ctx) ir_expression(operations[this->oper], type,
1045 op[0], op[1]);
1046 error_emitted = type->is_error();
1047 break;
1048
1049 case ast_nequal:
1050 case ast_equal:
1051 op[0] = this->subexpressions[0]->hir(instructions, state);
1052 op[1] = this->subexpressions[1]->hir(instructions, state);
1053
1054 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1055 *
1056 * "The equality operators equal (==), and not equal (!=)
1057 * operate on all types. They result in a scalar Boolean. If
1058 * the operand types do not match, then there must be a
1059 * conversion from Section 4.1.10 "Implicit Conversions"
1060 * applied to one operand that can make them match, in which
1061 * case this conversion is done."
1062 */
1063 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1064 && !apply_implicit_conversion(op[1]->type, op[0], state))
1065 || (op[0]->type != op[1]->type)) {
1066 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1067 "type", (this->oper == ast_equal) ? "==" : "!=");
1068 error_emitted = true;
1069 } else if ((state->language_version <= 110)
1070 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1071 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1072 "GLSL 1.10");
1073 error_emitted = true;
1074 }
1075
1076 if (error_emitted) {
1077 result = new(ctx) ir_constant(false);
1078 } else {
1079 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1080 assert(result->type == glsl_type::bool_type);
1081 type = glsl_type::bool_type;
1082 }
1083
1084 break;
1085
1086 case ast_bit_and:
1087 case ast_bit_xor:
1088 case ast_bit_or:
1089 op[0] = this->subexpressions[0]->hir(instructions, state);
1090 op[1] = this->subexpressions[1]->hir(instructions, state);
1091 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1092 state, &loc);
1093 result = new(ctx) ir_expression(operations[this->oper], type,
1094 op[0], op[1]);
1095 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1096 break;
1097
1098 case ast_bit_not:
1099 op[0] = this->subexpressions[0]->hir(instructions, state);
1100
1101 if (state->language_version < 130) {
1102 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1103 error_emitted = true;
1104 }
1105
1106 if (!op[0]->type->is_integer()) {
1107 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1108 error_emitted = true;
1109 }
1110
1111 type = op[0]->type;
1112 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1113 break;
1114
1115 case ast_logic_and: {
1116 exec_list rhs_instructions;
1117 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1118 "LHS", &error_emitted);
1119 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1120 "RHS", &error_emitted);
1121
1122 ir_constant *op0_const = op[0]->constant_expression_value();
1123 if (op0_const) {
1124 if (op0_const->value.b[0]) {
1125 instructions->append_list(&rhs_instructions);
1126 result = op[1];
1127 } else {
1128 result = op0_const;
1129 }
1130 type = glsl_type::bool_type;
1131 } else {
1132 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1133 "and_tmp",
1134 ir_var_temporary);
1135 instructions->push_tail(tmp);
1136
1137 ir_if *const stmt = new(ctx) ir_if(op[0]);
1138 instructions->push_tail(stmt);
1139
1140 stmt->then_instructions.append_list(&rhs_instructions);
1141 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1142 ir_assignment *const then_assign =
1143 new(ctx) ir_assignment(then_deref, op[1], NULL);
1144 stmt->then_instructions.push_tail(then_assign);
1145
1146 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1147 ir_assignment *const else_assign =
1148 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1149 stmt->else_instructions.push_tail(else_assign);
1150
1151 result = new(ctx) ir_dereference_variable(tmp);
1152 type = tmp->type;
1153 }
1154 break;
1155 }
1156
1157 case ast_logic_or: {
1158 exec_list rhs_instructions;
1159 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1160 "LHS", &error_emitted);
1161 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1162 "RHS", &error_emitted);
1163
1164 ir_constant *op0_const = op[0]->constant_expression_value();
1165 if (op0_const) {
1166 if (op0_const->value.b[0]) {
1167 result = op0_const;
1168 } else {
1169 result = op[1];
1170 }
1171 type = glsl_type::bool_type;
1172 } else {
1173 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1174 "or_tmp",
1175 ir_var_temporary);
1176 instructions->push_tail(tmp);
1177
1178 ir_if *const stmt = new(ctx) ir_if(op[0]);
1179 instructions->push_tail(stmt);
1180
1181 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1182 ir_assignment *const then_assign =
1183 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1184 stmt->then_instructions.push_tail(then_assign);
1185
1186 stmt->else_instructions.append_list(&rhs_instructions);
1187 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1188 ir_assignment *const else_assign =
1189 new(ctx) ir_assignment(else_deref, op[1], NULL);
1190 stmt->else_instructions.push_tail(else_assign);
1191
1192 result = new(ctx) ir_dereference_variable(tmp);
1193 type = tmp->type;
1194 }
1195 break;
1196 }
1197
1198 case ast_logic_xor:
1199 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1200 *
1201 * "The logical binary operators and (&&), or ( | | ), and
1202 * exclusive or (^^). They operate only on two Boolean
1203 * expressions and result in a Boolean expression."
1204 */
1205 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1206 &error_emitted);
1207 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1208 &error_emitted);
1209
1210 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1211 op[0], op[1]);
1212 type = glsl_type::bool_type;
1213 break;
1214
1215 case ast_logic_not:
1216 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1217 "operand", &error_emitted);
1218
1219 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1220 op[0], NULL);
1221 type = glsl_type::bool_type;
1222 break;
1223
1224 case ast_mul_assign:
1225 case ast_div_assign:
1226 case ast_add_assign:
1227 case ast_sub_assign: {
1228 op[0] = this->subexpressions[0]->hir(instructions, state);
1229 op[1] = this->subexpressions[1]->hir(instructions, state);
1230
1231 type = arithmetic_result_type(op[0], op[1],
1232 (this->oper == ast_mul_assign),
1233 state, & loc);
1234
1235 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1236 op[0], op[1]);
1237
1238 result = do_assignment(instructions, state,
1239 op[0]->clone(ctx, NULL), temp_rhs, false,
1240 this->subexpressions[0]->get_location());
1241 type = result->type;
1242 error_emitted = (op[0]->type->is_error());
1243
1244 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1245 * explicitly test for this because none of the binary expression
1246 * operators allow array operands either.
1247 */
1248
1249 break;
1250 }
1251
1252 case ast_mod_assign: {
1253 op[0] = this->subexpressions[0]->hir(instructions, state);
1254 op[1] = this->subexpressions[1]->hir(instructions, state);
1255
1256 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1257
1258 assert(operations[this->oper] == ir_binop_mod);
1259
1260 ir_rvalue *temp_rhs;
1261 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1262 op[0], op[1]);
1263
1264 result = do_assignment(instructions, state,
1265 op[0]->clone(ctx, NULL), temp_rhs, false,
1266 this->subexpressions[0]->get_location());
1267 type = result->type;
1268 error_emitted = type->is_error();
1269 break;
1270 }
1271
1272 case ast_ls_assign:
1273 case ast_rs_assign: {
1274 op[0] = this->subexpressions[0]->hir(instructions, state);
1275 op[1] = this->subexpressions[1]->hir(instructions, state);
1276 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1277 &loc);
1278 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1279 type, op[0], op[1]);
1280 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1281 temp_rhs, false,
1282 this->subexpressions[0]->get_location());
1283 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1284 break;
1285 }
1286
1287 case ast_and_assign:
1288 case ast_xor_assign:
1289 case ast_or_assign: {
1290 op[0] = this->subexpressions[0]->hir(instructions, state);
1291 op[1] = this->subexpressions[1]->hir(instructions, state);
1292 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1293 state, &loc);
1294 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1295 type, op[0], op[1]);
1296 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1297 temp_rhs, false,
1298 this->subexpressions[0]->get_location());
1299 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1300 break;
1301 }
1302
1303 case ast_conditional: {
1304 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1305 *
1306 * "The ternary selection operator (?:). It operates on three
1307 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1308 * first expression, which must result in a scalar Boolean."
1309 */
1310 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1311 "condition", &error_emitted);
1312
1313 /* The :? operator is implemented by generating an anonymous temporary
1314 * followed by an if-statement. The last instruction in each branch of
1315 * the if-statement assigns a value to the anonymous temporary. This
1316 * temporary is the r-value of the expression.
1317 */
1318 exec_list then_instructions;
1319 exec_list else_instructions;
1320
1321 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1322 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1323
1324 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1325 *
1326 * "The second and third expressions can be any type, as
1327 * long their types match, or there is a conversion in
1328 * Section 4.1.10 "Implicit Conversions" that can be applied
1329 * to one of the expressions to make their types match. This
1330 * resulting matching type is the type of the entire
1331 * expression."
1332 */
1333 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1334 && !apply_implicit_conversion(op[2]->type, op[1], state))
1335 || (op[1]->type != op[2]->type)) {
1336 YYLTYPE loc = this->subexpressions[1]->get_location();
1337
1338 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1339 "operator must have matching types.");
1340 error_emitted = true;
1341 type = glsl_type::error_type;
1342 } else {
1343 type = op[1]->type;
1344 }
1345
1346 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1347 *
1348 * "The second and third expressions must be the same type, but can
1349 * be of any type other than an array."
1350 */
1351 if ((state->language_version <= 110) && type->is_array()) {
1352 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1353 "operator must not be arrays.");
1354 error_emitted = true;
1355 }
1356
1357 ir_constant *cond_val = op[0]->constant_expression_value();
1358 ir_constant *then_val = op[1]->constant_expression_value();
1359 ir_constant *else_val = op[2]->constant_expression_value();
1360
1361 if (then_instructions.is_empty()
1362 && else_instructions.is_empty()
1363 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1364 result = (cond_val->value.b[0]) ? then_val : else_val;
1365 } else {
1366 ir_variable *const tmp =
1367 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1368 instructions->push_tail(tmp);
1369
1370 ir_if *const stmt = new(ctx) ir_if(op[0]);
1371 instructions->push_tail(stmt);
1372
1373 then_instructions.move_nodes_to(& stmt->then_instructions);
1374 ir_dereference *const then_deref =
1375 new(ctx) ir_dereference_variable(tmp);
1376 ir_assignment *const then_assign =
1377 new(ctx) ir_assignment(then_deref, op[1], NULL);
1378 stmt->then_instructions.push_tail(then_assign);
1379
1380 else_instructions.move_nodes_to(& stmt->else_instructions);
1381 ir_dereference *const else_deref =
1382 new(ctx) ir_dereference_variable(tmp);
1383 ir_assignment *const else_assign =
1384 new(ctx) ir_assignment(else_deref, op[2], NULL);
1385 stmt->else_instructions.push_tail(else_assign);
1386
1387 result = new(ctx) ir_dereference_variable(tmp);
1388 }
1389 break;
1390 }
1391
1392 case ast_pre_inc:
1393 case ast_pre_dec: {
1394 op[0] = this->subexpressions[0]->hir(instructions, state);
1395 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1396 op[1] = new(ctx) ir_constant(1.0f);
1397 else
1398 op[1] = new(ctx) ir_constant(1);
1399
1400 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1401
1402 ir_rvalue *temp_rhs;
1403 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1404 op[0], op[1]);
1405
1406 result = do_assignment(instructions, state,
1407 op[0]->clone(ctx, NULL), temp_rhs, false,
1408 this->subexpressions[0]->get_location());
1409 type = result->type;
1410 error_emitted = op[0]->type->is_error();
1411 break;
1412 }
1413
1414 case ast_post_inc:
1415 case ast_post_dec: {
1416 op[0] = this->subexpressions[0]->hir(instructions, state);
1417 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1418 op[1] = new(ctx) ir_constant(1.0f);
1419 else
1420 op[1] = new(ctx) ir_constant(1);
1421
1422 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1423
1424 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1425
1426 ir_rvalue *temp_rhs;
1427 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1428 op[0], op[1]);
1429
1430 /* Get a temporary of a copy of the lvalue before it's modified.
1431 * This may get thrown away later.
1432 */
1433 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1434
1435 (void)do_assignment(instructions, state,
1436 op[0]->clone(ctx, NULL), temp_rhs, false,
1437 this->subexpressions[0]->get_location());
1438
1439 type = result->type;
1440 error_emitted = op[0]->type->is_error();
1441 break;
1442 }
1443
1444 case ast_field_selection:
1445 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1446 type = result->type;
1447 break;
1448
1449 case ast_array_index: {
1450 YYLTYPE index_loc = subexpressions[1]->get_location();
1451
1452 op[0] = subexpressions[0]->hir(instructions, state);
1453 op[1] = subexpressions[1]->hir(instructions, state);
1454
1455 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1456
1457 ir_rvalue *const array = op[0];
1458
1459 result = new(ctx) ir_dereference_array(op[0], op[1]);
1460
1461 /* Do not use op[0] after this point. Use array.
1462 */
1463 op[0] = NULL;
1464
1465
1466 if (error_emitted)
1467 break;
1468
1469 if (!array->type->is_array()
1470 && !array->type->is_matrix()
1471 && !array->type->is_vector()) {
1472 _mesa_glsl_error(& index_loc, state,
1473 "cannot dereference non-array / non-matrix / "
1474 "non-vector");
1475 error_emitted = true;
1476 }
1477
1478 if (!op[1]->type->is_integer()) {
1479 _mesa_glsl_error(& index_loc, state,
1480 "array index must be integer type");
1481 error_emitted = true;
1482 } else if (!op[1]->type->is_scalar()) {
1483 _mesa_glsl_error(& index_loc, state,
1484 "array index must be scalar");
1485 error_emitted = true;
1486 }
1487
1488 /* If the array index is a constant expression and the array has a
1489 * declared size, ensure that the access is in-bounds. If the array
1490 * index is not a constant expression, ensure that the array has a
1491 * declared size.
1492 */
1493 ir_constant *const const_index = op[1]->constant_expression_value();
1494 if (const_index != NULL) {
1495 const int idx = const_index->value.i[0];
1496 const char *type_name;
1497 unsigned bound = 0;
1498
1499 if (array->type->is_matrix()) {
1500 type_name = "matrix";
1501 } else if (array->type->is_vector()) {
1502 type_name = "vector";
1503 } else {
1504 type_name = "array";
1505 }
1506
1507 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1508 *
1509 * "It is illegal to declare an array with a size, and then
1510 * later (in the same shader) index the same array with an
1511 * integral constant expression greater than or equal to the
1512 * declared size. It is also illegal to index an array with a
1513 * negative constant expression."
1514 */
1515 if (array->type->is_matrix()) {
1516 if (array->type->row_type()->vector_elements <= idx) {
1517 bound = array->type->row_type()->vector_elements;
1518 }
1519 } else if (array->type->is_vector()) {
1520 if (array->type->vector_elements <= idx) {
1521 bound = array->type->vector_elements;
1522 }
1523 } else {
1524 if ((array->type->array_size() > 0)
1525 && (array->type->array_size() <= idx)) {
1526 bound = array->type->array_size();
1527 }
1528 }
1529
1530 if (bound > 0) {
1531 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1532 type_name, bound);
1533 error_emitted = true;
1534 } else if (idx < 0) {
1535 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1536 type_name);
1537 error_emitted = true;
1538 }
1539
1540 if (array->type->is_array()) {
1541 /* If the array is a variable dereference, it dereferences the
1542 * whole array, by definition. Use this to get the variable.
1543 *
1544 * FINISHME: Should some methods for getting / setting / testing
1545 * FINISHME: array access limits be added to ir_dereference?
1546 */
1547 ir_variable *const v = array->whole_variable_referenced();
1548 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1549 v->max_array_access = idx;
1550 }
1551 } else if (array->type->array_size() == 0) {
1552 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1553 } else {
1554 if (array->type->is_array()) {
1555 /* whole_variable_referenced can return NULL if the array is a
1556 * member of a structure. In this case it is safe to not update
1557 * the max_array_access field because it is never used for fields
1558 * of structures.
1559 */
1560 ir_variable *v = array->whole_variable_referenced();
1561 if (v != NULL)
1562 v->max_array_access = array->type->array_size() - 1;
1563 }
1564 }
1565
1566 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1567 *
1568 * "Samplers aggregated into arrays within a shader (using square
1569 * brackets [ ]) can only be indexed with integral constant
1570 * expressions [...]."
1571 *
1572 * This restriction was added in GLSL 1.30. Shaders using earlier version
1573 * of the language should not be rejected by the compiler front-end for
1574 * using this construct. This allows useful things such as using a loop
1575 * counter as the index to an array of samplers. If the loop in unrolled,
1576 * the code should compile correctly. Instead, emit a warning.
1577 */
1578 if (array->type->is_array() &&
1579 array->type->element_type()->is_sampler() &&
1580 const_index == NULL) {
1581
1582 if (state->language_version == 100) {
1583 _mesa_glsl_warning(&loc, state,
1584 "sampler arrays indexed with non-constant "
1585 "expressions is optional in GLSL ES 1.00");
1586 } else if (state->language_version < 130) {
1587 _mesa_glsl_warning(&loc, state,
1588 "sampler arrays indexed with non-constant "
1589 "expressions is forbidden in GLSL 1.30 and "
1590 "later");
1591 } else {
1592 _mesa_glsl_error(&loc, state,
1593 "sampler arrays indexed with non-constant "
1594 "expressions is forbidden in GLSL 1.30 and "
1595 "later");
1596 error_emitted = true;
1597 }
1598 }
1599
1600 if (error_emitted)
1601 result->type = glsl_type::error_type;
1602
1603 type = result->type;
1604 break;
1605 }
1606
1607 case ast_function_call:
1608 /* Should *NEVER* get here. ast_function_call should always be handled
1609 * by ast_function_expression::hir.
1610 */
1611 assert(0);
1612 break;
1613
1614 case ast_identifier: {
1615 /* ast_identifier can appear several places in a full abstract syntax
1616 * tree. This particular use must be at location specified in the grammar
1617 * as 'variable_identifier'.
1618 */
1619 ir_variable *var =
1620 state->symbols->get_variable(this->primary_expression.identifier);
1621
1622 result = new(ctx) ir_dereference_variable(var);
1623
1624 if (var != NULL) {
1625 var->used = true;
1626 type = result->type;
1627 } else {
1628 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1629 this->primary_expression.identifier);
1630
1631 error_emitted = true;
1632 }
1633 break;
1634 }
1635
1636 case ast_int_constant:
1637 type = glsl_type::int_type;
1638 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1639 break;
1640
1641 case ast_uint_constant:
1642 type = glsl_type::uint_type;
1643 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1644 break;
1645
1646 case ast_float_constant:
1647 type = glsl_type::float_type;
1648 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1649 break;
1650
1651 case ast_bool_constant:
1652 type = glsl_type::bool_type;
1653 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1654 break;
1655
1656 case ast_sequence: {
1657 /* It should not be possible to generate a sequence in the AST without
1658 * any expressions in it.
1659 */
1660 assert(!this->expressions.is_empty());
1661
1662 /* The r-value of a sequence is the last expression in the sequence. If
1663 * the other expressions in the sequence do not have side-effects (and
1664 * therefore add instructions to the instruction list), they get dropped
1665 * on the floor.
1666 */
1667 exec_node *previous_tail_pred = NULL;
1668 YYLTYPE previous_operand_loc = loc;
1669
1670 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1671 /* If one of the operands of comma operator does not generate any
1672 * code, we want to emit a warning. At each pass through the loop
1673 * previous_tail_pred will point to the last instruction in the
1674 * stream *before* processing the previous operand. Naturally,
1675 * instructions->tail_pred will point to the last instruction in the
1676 * stream *after* processing the previous operand. If the two
1677 * pointers match, then the previous operand had no effect.
1678 *
1679 * The warning behavior here differs slightly from GCC. GCC will
1680 * only emit a warning if none of the left-hand operands have an
1681 * effect. However, it will emit a warning for each. I believe that
1682 * there are some cases in C (especially with GCC extensions) where
1683 * it is useful to have an intermediate step in a sequence have no
1684 * effect, but I don't think these cases exist in GLSL. Either way,
1685 * it would be a giant hassle to replicate that behavior.
1686 */
1687 if (previous_tail_pred == instructions->tail_pred) {
1688 _mesa_glsl_warning(&previous_operand_loc, state,
1689 "left-hand operand of comma expression has "
1690 "no effect");
1691 }
1692
1693 /* tail_pred is directly accessed instead of using the get_tail()
1694 * method for performance reasons. get_tail() has extra code to
1695 * return NULL when the list is empty. We don't care about that
1696 * here, so using tail_pred directly is fine.
1697 */
1698 previous_tail_pred = instructions->tail_pred;
1699 previous_operand_loc = ast->get_location();
1700
1701 result = ast->hir(instructions, state);
1702 }
1703
1704 type = result->type;
1705
1706 /* Any errors should have already been emitted in the loop above.
1707 */
1708 error_emitted = true;
1709 break;
1710 }
1711 }
1712
1713 if (type->is_error() && !error_emitted)
1714 _mesa_glsl_error(& loc, state, "type mismatch");
1715
1716 return result;
1717 }
1718
1719
1720 ir_rvalue *
1721 ast_expression_statement::hir(exec_list *instructions,
1722 struct _mesa_glsl_parse_state *state)
1723 {
1724 /* It is possible to have expression statements that don't have an
1725 * expression. This is the solitary semicolon:
1726 *
1727 * for (i = 0; i < 5; i++)
1728 * ;
1729 *
1730 * In this case the expression will be NULL. Test for NULL and don't do
1731 * anything in that case.
1732 */
1733 if (expression != NULL)
1734 expression->hir(instructions, state);
1735
1736 /* Statements do not have r-values.
1737 */
1738 return NULL;
1739 }
1740
1741
1742 ir_rvalue *
1743 ast_compound_statement::hir(exec_list *instructions,
1744 struct _mesa_glsl_parse_state *state)
1745 {
1746 if (new_scope)
1747 state->symbols->push_scope();
1748
1749 foreach_list_typed (ast_node, ast, link, &this->statements)
1750 ast->hir(instructions, state);
1751
1752 if (new_scope)
1753 state->symbols->pop_scope();
1754
1755 /* Compound statements do not have r-values.
1756 */
1757 return NULL;
1758 }
1759
1760
1761 static const glsl_type *
1762 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1763 struct _mesa_glsl_parse_state *state)
1764 {
1765 unsigned length = 0;
1766
1767 /* FINISHME: Reject delcarations of multidimensional arrays. */
1768
1769 if (array_size != NULL) {
1770 exec_list dummy_instructions;
1771 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1772 YYLTYPE loc = array_size->get_location();
1773
1774 /* FINISHME: Verify that the grammar forbids side-effects in array
1775 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1776 */
1777 assert(dummy_instructions.is_empty());
1778
1779 if (ir != NULL) {
1780 if (!ir->type->is_integer()) {
1781 _mesa_glsl_error(& loc, state, "array size must be integer type");
1782 } else if (!ir->type->is_scalar()) {
1783 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1784 } else {
1785 ir_constant *const size = ir->constant_expression_value();
1786
1787 if (size == NULL) {
1788 _mesa_glsl_error(& loc, state, "array size must be a "
1789 "constant valued expression");
1790 } else if (size->value.i[0] <= 0) {
1791 _mesa_glsl_error(& loc, state, "array size must be > 0");
1792 } else {
1793 assert(size->type == ir->type);
1794 length = size->value.u[0];
1795 }
1796 }
1797 }
1798 } else if (state->es_shader) {
1799 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1800 * array declarations have been removed from the language.
1801 */
1802 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1803 "allowed in GLSL ES 1.00.");
1804 }
1805
1806 return glsl_type::get_array_instance(base, length);
1807 }
1808
1809
1810 const glsl_type *
1811 ast_type_specifier::glsl_type(const char **name,
1812 struct _mesa_glsl_parse_state *state) const
1813 {
1814 const struct glsl_type *type;
1815
1816 type = state->symbols->get_type(this->type_name);
1817 *name = this->type_name;
1818
1819 if (this->is_array) {
1820 YYLTYPE loc = this->get_location();
1821 type = process_array_type(&loc, type, this->array_size, state);
1822 }
1823
1824 return type;
1825 }
1826
1827
1828 static void
1829 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1830 ir_variable *var,
1831 struct _mesa_glsl_parse_state *state,
1832 YYLTYPE *loc)
1833 {
1834 if (qual->flags.q.invariant) {
1835 if (var->used) {
1836 _mesa_glsl_error(loc, state,
1837 "variable `%s' may not be redeclared "
1838 "`invariant' after being used",
1839 var->name);
1840 } else {
1841 var->invariant = 1;
1842 }
1843 }
1844
1845 if (qual->flags.q.constant || qual->flags.q.attribute
1846 || qual->flags.q.uniform
1847 || (qual->flags.q.varying && (state->target == fragment_shader)))
1848 var->read_only = 1;
1849
1850 if (qual->flags.q.centroid)
1851 var->centroid = 1;
1852
1853 if (qual->flags.q.attribute && state->target != vertex_shader) {
1854 var->type = glsl_type::error_type;
1855 _mesa_glsl_error(loc, state,
1856 "`attribute' variables may not be declared in the "
1857 "%s shader",
1858 _mesa_glsl_shader_target_name(state->target));
1859 }
1860
1861 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1862 *
1863 * "The varying qualifier can be used only with the data types
1864 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1865 * these."
1866 */
1867 if (qual->flags.q.varying) {
1868 const glsl_type *non_array_type;
1869
1870 if (var->type && var->type->is_array())
1871 non_array_type = var->type->fields.array;
1872 else
1873 non_array_type = var->type;
1874
1875 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1876 var->type = glsl_type::error_type;
1877 _mesa_glsl_error(loc, state,
1878 "varying variables must be of base type float");
1879 }
1880 }
1881
1882 /* If there is no qualifier that changes the mode of the variable, leave
1883 * the setting alone.
1884 */
1885 if (qual->flags.q.in && qual->flags.q.out)
1886 var->mode = ir_var_inout;
1887 else if (qual->flags.q.attribute || qual->flags.q.in
1888 || (qual->flags.q.varying && (state->target == fragment_shader)))
1889 var->mode = ir_var_in;
1890 else if (qual->flags.q.out
1891 || (qual->flags.q.varying && (state->target == vertex_shader)))
1892 var->mode = ir_var_out;
1893 else if (qual->flags.q.uniform)
1894 var->mode = ir_var_uniform;
1895
1896 if (state->all_invariant && (state->current_function == NULL)) {
1897 switch (state->target) {
1898 case vertex_shader:
1899 if (var->mode == ir_var_out)
1900 var->invariant = true;
1901 break;
1902 case geometry_shader:
1903 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1904 var->invariant = true;
1905 break;
1906 case fragment_shader:
1907 if (var->mode == ir_var_in)
1908 var->invariant = true;
1909 break;
1910 }
1911 }
1912
1913 if (qual->flags.q.flat)
1914 var->interpolation = ir_var_flat;
1915 else if (qual->flags.q.noperspective)
1916 var->interpolation = ir_var_noperspective;
1917 else
1918 var->interpolation = ir_var_smooth;
1919
1920 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1921 var->origin_upper_left = qual->flags.q.origin_upper_left;
1922 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1923 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1924 const char *const qual_string = (qual->flags.q.origin_upper_left)
1925 ? "origin_upper_left" : "pixel_center_integer";
1926
1927 _mesa_glsl_error(loc, state,
1928 "layout qualifier `%s' can only be applied to "
1929 "fragment shader input `gl_FragCoord'",
1930 qual_string);
1931 }
1932
1933 if (qual->flags.q.explicit_location) {
1934 const bool global_scope = (state->current_function == NULL);
1935 bool fail = false;
1936 const char *string = "";
1937
1938 /* In the vertex shader only shader inputs can be given explicit
1939 * locations.
1940 *
1941 * In the fragment shader only shader outputs can be given explicit
1942 * locations.
1943 */
1944 switch (state->target) {
1945 case vertex_shader:
1946 if (!global_scope || (var->mode != ir_var_in)) {
1947 fail = true;
1948 string = "input";
1949 }
1950 break;
1951
1952 case geometry_shader:
1953 _mesa_glsl_error(loc, state,
1954 "geometry shader variables cannot be given "
1955 "explicit locations\n");
1956 break;
1957
1958 case fragment_shader:
1959 if (!global_scope || (var->mode != ir_var_in)) {
1960 fail = true;
1961 string = "output";
1962 }
1963 break;
1964 };
1965
1966 if (fail) {
1967 _mesa_glsl_error(loc, state,
1968 "only %s shader %s variables can be given an "
1969 "explicit location\n",
1970 _mesa_glsl_shader_target_name(state->target),
1971 string);
1972 } else {
1973 var->explicit_location = true;
1974
1975 /* This bit of silliness is needed because invalid explicit locations
1976 * are supposed to be flagged during linking. Small negative values
1977 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1978 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1979 * The linker needs to be able to differentiate these cases. This
1980 * ensures that negative values stay negative.
1981 */
1982 if (qual->location >= 0) {
1983 var->location = (state->target == vertex_shader)
1984 ? (qual->location + VERT_ATTRIB_GENERIC0)
1985 : (qual->location + FRAG_RESULT_DATA0);
1986 } else {
1987 var->location = qual->location;
1988 }
1989 }
1990 }
1991
1992 /* Does the declaration use the 'layout' keyword?
1993 */
1994 const bool uses_layout = qual->flags.q.pixel_center_integer
1995 || qual->flags.q.origin_upper_left
1996 || qual->flags.q.explicit_location;
1997
1998 /* Does the declaration use the deprecated 'attribute' or 'varying'
1999 * keywords?
2000 */
2001 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2002 || qual->flags.q.varying;
2003
2004 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2005 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2006 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2007 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2008 * These extensions and all following extensions that add the 'layout'
2009 * keyword have been modified to require the use of 'in' or 'out'.
2010 *
2011 * The following extension do not allow the deprecated keywords:
2012 *
2013 * GL_AMD_conservative_depth
2014 * GL_ARB_gpu_shader5
2015 * GL_ARB_separate_shader_objects
2016 * GL_ARB_tesselation_shader
2017 * GL_ARB_transform_feedback3
2018 * GL_ARB_uniform_buffer_object
2019 *
2020 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2021 * allow layout with the deprecated keywords.
2022 */
2023 const bool relaxed_layout_qualifier_checking =
2024 state->ARB_fragment_coord_conventions_enable;
2025
2026 if (uses_layout && uses_deprecated_qualifier) {
2027 if (relaxed_layout_qualifier_checking) {
2028 _mesa_glsl_warning(loc, state,
2029 "`layout' qualifier may not be used with "
2030 "`attribute' or `varying'");
2031 } else {
2032 _mesa_glsl_error(loc, state,
2033 "`layout' qualifier may not be used with "
2034 "`attribute' or `varying'");
2035 }
2036 }
2037
2038 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2039 * AMD_conservative_depth.
2040 */
2041 int depth_layout_count = qual->flags.q.depth_any
2042 + qual->flags.q.depth_greater
2043 + qual->flags.q.depth_less
2044 + qual->flags.q.depth_unchanged;
2045 if (depth_layout_count > 0
2046 && !state->AMD_conservative_depth_enable) {
2047 _mesa_glsl_error(loc, state,
2048 "extension GL_AMD_conservative_depth must be enabled "
2049 "to use depth layout qualifiers");
2050 } else if (depth_layout_count > 0
2051 && strcmp(var->name, "gl_FragDepth") != 0) {
2052 _mesa_glsl_error(loc, state,
2053 "depth layout qualifiers can be applied only to "
2054 "gl_FragDepth");
2055 } else if (depth_layout_count > 1
2056 && strcmp(var->name, "gl_FragDepth") == 0) {
2057 _mesa_glsl_error(loc, state,
2058 "at most one depth layout qualifier can be applied to "
2059 "gl_FragDepth");
2060 }
2061 if (qual->flags.q.depth_any)
2062 var->depth_layout = ir_depth_layout_any;
2063 else if (qual->flags.q.depth_greater)
2064 var->depth_layout = ir_depth_layout_greater;
2065 else if (qual->flags.q.depth_less)
2066 var->depth_layout = ir_depth_layout_less;
2067 else if (qual->flags.q.depth_unchanged)
2068 var->depth_layout = ir_depth_layout_unchanged;
2069 else
2070 var->depth_layout = ir_depth_layout_none;
2071
2072 if (var->type->is_array() && state->language_version != 110) {
2073 var->array_lvalue = true;
2074 }
2075 }
2076
2077 /**
2078 * Get the variable that is being redeclared by this declaration
2079 *
2080 * Semantic checks to verify the validity of the redeclaration are also
2081 * performed. If semantic checks fail, compilation error will be emitted via
2082 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2083 *
2084 * \returns
2085 * A pointer to an existing variable in the current scope if the declaration
2086 * is a redeclaration, \c NULL otherwise.
2087 */
2088 ir_variable *
2089 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2090 struct _mesa_glsl_parse_state *state)
2091 {
2092 /* Check if this declaration is actually a re-declaration, either to
2093 * resize an array or add qualifiers to an existing variable.
2094 *
2095 * This is allowed for variables in the current scope, or when at
2096 * global scope (for built-ins in the implicit outer scope).
2097 */
2098 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2099 if (earlier == NULL ||
2100 (state->current_function != NULL &&
2101 !state->symbols->name_declared_this_scope(decl->identifier))) {
2102 return NULL;
2103 }
2104
2105
2106 YYLTYPE loc = decl->get_location();
2107
2108 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2109 *
2110 * "It is legal to declare an array without a size and then
2111 * later re-declare the same name as an array of the same
2112 * type and specify a size."
2113 */
2114 if ((earlier->type->array_size() == 0)
2115 && var->type->is_array()
2116 && (var->type->element_type() == earlier->type->element_type())) {
2117 /* FINISHME: This doesn't match the qualifiers on the two
2118 * FINISHME: declarations. It's not 100% clear whether this is
2119 * FINISHME: required or not.
2120 */
2121
2122 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2123 *
2124 * "The size [of gl_TexCoord] can be at most
2125 * gl_MaxTextureCoords."
2126 */
2127 const unsigned size = unsigned(var->type->array_size());
2128 if ((strcmp("gl_TexCoord", var->name) == 0)
2129 && (size > state->Const.MaxTextureCoords)) {
2130 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2131 "be larger than gl_MaxTextureCoords (%u)\n",
2132 state->Const.MaxTextureCoords);
2133 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2134 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2135 "previous access",
2136 earlier->max_array_access);
2137 }
2138
2139 earlier->type = var->type;
2140 delete var;
2141 var = NULL;
2142 } else if (state->ARB_fragment_coord_conventions_enable
2143 && strcmp(var->name, "gl_FragCoord") == 0
2144 && earlier->type == var->type
2145 && earlier->mode == var->mode) {
2146 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2147 * qualifiers.
2148 */
2149 earlier->origin_upper_left = var->origin_upper_left;
2150 earlier->pixel_center_integer = var->pixel_center_integer;
2151
2152 /* According to section 4.3.7 of the GLSL 1.30 spec,
2153 * the following built-in varaibles can be redeclared with an
2154 * interpolation qualifier:
2155 * * gl_FrontColor
2156 * * gl_BackColor
2157 * * gl_FrontSecondaryColor
2158 * * gl_BackSecondaryColor
2159 * * gl_Color
2160 * * gl_SecondaryColor
2161 */
2162 } else if (state->language_version >= 130
2163 && (strcmp(var->name, "gl_FrontColor") == 0
2164 || strcmp(var->name, "gl_BackColor") == 0
2165 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2166 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2167 || strcmp(var->name, "gl_Color") == 0
2168 || strcmp(var->name, "gl_SecondaryColor") == 0)
2169 && earlier->type == var->type
2170 && earlier->mode == var->mode) {
2171 earlier->interpolation = var->interpolation;
2172
2173 /* Layout qualifiers for gl_FragDepth. */
2174 } else if (state->AMD_conservative_depth_enable
2175 && strcmp(var->name, "gl_FragDepth") == 0
2176 && earlier->type == var->type
2177 && earlier->mode == var->mode) {
2178
2179 /** From the AMD_conservative_depth spec:
2180 * Within any shader, the first redeclarations of gl_FragDepth
2181 * must appear before any use of gl_FragDepth.
2182 */
2183 if (earlier->used) {
2184 _mesa_glsl_error(&loc, state,
2185 "the first redeclaration of gl_FragDepth "
2186 "must appear before any use of gl_FragDepth");
2187 }
2188
2189 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2190 if (earlier->depth_layout != ir_depth_layout_none
2191 && earlier->depth_layout != var->depth_layout) {
2192 _mesa_glsl_error(&loc, state,
2193 "gl_FragDepth: depth layout is declared here "
2194 "as '%s, but it was previously declared as "
2195 "'%s'",
2196 depth_layout_string(var->depth_layout),
2197 depth_layout_string(earlier->depth_layout));
2198 }
2199
2200 earlier->depth_layout = var->depth_layout;
2201
2202 } else {
2203 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2204 }
2205
2206 return earlier;
2207 }
2208
2209 /**
2210 * Generate the IR for an initializer in a variable declaration
2211 */
2212 ir_rvalue *
2213 process_initializer(ir_variable *var, ast_declaration *decl,
2214 ast_fully_specified_type *type,
2215 exec_list *initializer_instructions,
2216 struct _mesa_glsl_parse_state *state)
2217 {
2218 ir_rvalue *result = NULL;
2219
2220 YYLTYPE initializer_loc = decl->initializer->get_location();
2221
2222 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2223 *
2224 * "All uniform variables are read-only and are initialized either
2225 * directly by an application via API commands, or indirectly by
2226 * OpenGL."
2227 */
2228 if ((state->language_version <= 110)
2229 && (var->mode == ir_var_uniform)) {
2230 _mesa_glsl_error(& initializer_loc, state,
2231 "cannot initialize uniforms in GLSL 1.10");
2232 }
2233
2234 if (var->type->is_sampler()) {
2235 _mesa_glsl_error(& initializer_loc, state,
2236 "cannot initialize samplers");
2237 }
2238
2239 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2240 _mesa_glsl_error(& initializer_loc, state,
2241 "cannot initialize %s shader input / %s",
2242 _mesa_glsl_shader_target_name(state->target),
2243 (state->target == vertex_shader)
2244 ? "attribute" : "varying");
2245 }
2246
2247 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2248 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2249 state);
2250
2251 /* Calculate the constant value if this is a const or uniform
2252 * declaration.
2253 */
2254 if (type->qualifier.flags.q.constant
2255 || type->qualifier.flags.q.uniform) {
2256 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2257 if (new_rhs != NULL) {
2258 rhs = new_rhs;
2259
2260 ir_constant *constant_value = rhs->constant_expression_value();
2261 if (!constant_value) {
2262 _mesa_glsl_error(& initializer_loc, state,
2263 "initializer of %s variable `%s' must be a "
2264 "constant expression",
2265 (type->qualifier.flags.q.constant)
2266 ? "const" : "uniform",
2267 decl->identifier);
2268 if (var->type->is_numeric()) {
2269 /* Reduce cascading errors. */
2270 var->constant_value = ir_constant::zero(state, var->type);
2271 }
2272 } else {
2273 rhs = constant_value;
2274 var->constant_value = constant_value;
2275 }
2276 } else {
2277 _mesa_glsl_error(&initializer_loc, state,
2278 "initializer of type %s cannot be assigned to "
2279 "variable of type %s",
2280 rhs->type->name, var->type->name);
2281 if (var->type->is_numeric()) {
2282 /* Reduce cascading errors. */
2283 var->constant_value = ir_constant::zero(state, var->type);
2284 }
2285 }
2286 }
2287
2288 if (rhs && !rhs->type->is_error()) {
2289 bool temp = var->read_only;
2290 if (type->qualifier.flags.q.constant)
2291 var->read_only = false;
2292
2293 /* Never emit code to initialize a uniform.
2294 */
2295 const glsl_type *initializer_type;
2296 if (!type->qualifier.flags.q.uniform) {
2297 result = do_assignment(initializer_instructions, state,
2298 lhs, rhs, true,
2299 type->get_location());
2300 initializer_type = result->type;
2301 } else
2302 initializer_type = rhs->type;
2303
2304 /* If the declared variable is an unsized array, it must inherrit
2305 * its full type from the initializer. A declaration such as
2306 *
2307 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2308 *
2309 * becomes
2310 *
2311 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2312 *
2313 * The assignment generated in the if-statement (below) will also
2314 * automatically handle this case for non-uniforms.
2315 *
2316 * If the declared variable is not an array, the types must
2317 * already match exactly. As a result, the type assignment
2318 * here can be done unconditionally. For non-uniforms the call
2319 * to do_assignment can change the type of the initializer (via
2320 * the implicit conversion rules). For uniforms the initializer
2321 * must be a constant expression, and the type of that expression
2322 * was validated above.
2323 */
2324 var->type = initializer_type;
2325
2326 var->read_only = temp;
2327 }
2328
2329 return result;
2330 }
2331
2332 ir_rvalue *
2333 ast_declarator_list::hir(exec_list *instructions,
2334 struct _mesa_glsl_parse_state *state)
2335 {
2336 void *ctx = state;
2337 const struct glsl_type *decl_type;
2338 const char *type_name = NULL;
2339 ir_rvalue *result = NULL;
2340 YYLTYPE loc = this->get_location();
2341
2342 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2343 *
2344 * "To ensure that a particular output variable is invariant, it is
2345 * necessary to use the invariant qualifier. It can either be used to
2346 * qualify a previously declared variable as being invariant
2347 *
2348 * invariant gl_Position; // make existing gl_Position be invariant"
2349 *
2350 * In these cases the parser will set the 'invariant' flag in the declarator
2351 * list, and the type will be NULL.
2352 */
2353 if (this->invariant) {
2354 assert(this->type == NULL);
2355
2356 if (state->current_function != NULL) {
2357 _mesa_glsl_error(& loc, state,
2358 "All uses of `invariant' keyword must be at global "
2359 "scope\n");
2360 }
2361
2362 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2363 assert(!decl->is_array);
2364 assert(decl->array_size == NULL);
2365 assert(decl->initializer == NULL);
2366
2367 ir_variable *const earlier =
2368 state->symbols->get_variable(decl->identifier);
2369 if (earlier == NULL) {
2370 _mesa_glsl_error(& loc, state,
2371 "Undeclared variable `%s' cannot be marked "
2372 "invariant\n", decl->identifier);
2373 } else if ((state->target == vertex_shader)
2374 && (earlier->mode != ir_var_out)) {
2375 _mesa_glsl_error(& loc, state,
2376 "`%s' cannot be marked invariant, vertex shader "
2377 "outputs only\n", decl->identifier);
2378 } else if ((state->target == fragment_shader)
2379 && (earlier->mode != ir_var_in)) {
2380 _mesa_glsl_error(& loc, state,
2381 "`%s' cannot be marked invariant, fragment shader "
2382 "inputs only\n", decl->identifier);
2383 } else if (earlier->used) {
2384 _mesa_glsl_error(& loc, state,
2385 "variable `%s' may not be redeclared "
2386 "`invariant' after being used",
2387 earlier->name);
2388 } else {
2389 earlier->invariant = true;
2390 }
2391 }
2392
2393 /* Invariant redeclarations do not have r-values.
2394 */
2395 return NULL;
2396 }
2397
2398 assert(this->type != NULL);
2399 assert(!this->invariant);
2400
2401 /* The type specifier may contain a structure definition. Process that
2402 * before any of the variable declarations.
2403 */
2404 (void) this->type->specifier->hir(instructions, state);
2405
2406 decl_type = this->type->specifier->glsl_type(& type_name, state);
2407 if (this->declarations.is_empty()) {
2408 /* The only valid case where the declaration list can be empty is when
2409 * the declaration is setting the default precision of a built-in type
2410 * (e.g., 'precision highp vec4;').
2411 */
2412
2413 if (decl_type != NULL) {
2414 } else {
2415 _mesa_glsl_error(& loc, state, "incomplete declaration");
2416 }
2417 }
2418
2419 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2420 const struct glsl_type *var_type;
2421 ir_variable *var;
2422
2423 /* FINISHME: Emit a warning if a variable declaration shadows a
2424 * FINISHME: declaration at a higher scope.
2425 */
2426
2427 if ((decl_type == NULL) || decl_type->is_void()) {
2428 if (type_name != NULL) {
2429 _mesa_glsl_error(& loc, state,
2430 "invalid type `%s' in declaration of `%s'",
2431 type_name, decl->identifier);
2432 } else {
2433 _mesa_glsl_error(& loc, state,
2434 "invalid type in declaration of `%s'",
2435 decl->identifier);
2436 }
2437 continue;
2438 }
2439
2440 if (decl->is_array) {
2441 var_type = process_array_type(&loc, decl_type, decl->array_size,
2442 state);
2443 } else {
2444 var_type = decl_type;
2445 }
2446
2447 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2448
2449 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2450 *
2451 * "Global variables can only use the qualifiers const,
2452 * attribute, uni form, or varying. Only one may be
2453 * specified.
2454 *
2455 * Local variables can only use the qualifier const."
2456 *
2457 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2458 * that adds the 'layout' keyword.
2459 */
2460 if ((state->language_version < 130)
2461 && !state->ARB_explicit_attrib_location_enable
2462 && !state->ARB_fragment_coord_conventions_enable) {
2463 if (this->type->qualifier.flags.q.out) {
2464 _mesa_glsl_error(& loc, state,
2465 "`out' qualifier in declaration of `%s' "
2466 "only valid for function parameters in %s.",
2467 decl->identifier, state->version_string);
2468 }
2469 if (this->type->qualifier.flags.q.in) {
2470 _mesa_glsl_error(& loc, state,
2471 "`in' qualifier in declaration of `%s' "
2472 "only valid for function parameters in %s.",
2473 decl->identifier, state->version_string);
2474 }
2475 /* FINISHME: Test for other invalid qualifiers. */
2476 }
2477
2478 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2479 & loc);
2480
2481 if (this->type->qualifier.flags.q.invariant) {
2482 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2483 var->mode == ir_var_inout)) {
2484 /* FINISHME: Note that this doesn't work for invariant on
2485 * a function signature outval
2486 */
2487 _mesa_glsl_error(& loc, state,
2488 "`%s' cannot be marked invariant, vertex shader "
2489 "outputs only\n", var->name);
2490 } else if ((state->target == fragment_shader) &&
2491 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2492 /* FINISHME: Note that this doesn't work for invariant on
2493 * a function signature inval
2494 */
2495 _mesa_glsl_error(& loc, state,
2496 "`%s' cannot be marked invariant, fragment shader "
2497 "inputs only\n", var->name);
2498 }
2499 }
2500
2501 if (state->current_function != NULL) {
2502 const char *mode = NULL;
2503 const char *extra = "";
2504
2505 /* There is no need to check for 'inout' here because the parser will
2506 * only allow that in function parameter lists.
2507 */
2508 if (this->type->qualifier.flags.q.attribute) {
2509 mode = "attribute";
2510 } else if (this->type->qualifier.flags.q.uniform) {
2511 mode = "uniform";
2512 } else if (this->type->qualifier.flags.q.varying) {
2513 mode = "varying";
2514 } else if (this->type->qualifier.flags.q.in) {
2515 mode = "in";
2516 extra = " or in function parameter list";
2517 } else if (this->type->qualifier.flags.q.out) {
2518 mode = "out";
2519 extra = " or in function parameter list";
2520 }
2521
2522 if (mode) {
2523 _mesa_glsl_error(& loc, state,
2524 "%s variable `%s' must be declared at "
2525 "global scope%s",
2526 mode, var->name, extra);
2527 }
2528 } else if (var->mode == ir_var_in) {
2529 var->read_only = true;
2530
2531 if (state->target == vertex_shader) {
2532 bool error_emitted = false;
2533
2534 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2535 *
2536 * "Vertex shader inputs can only be float, floating-point
2537 * vectors, matrices, signed and unsigned integers and integer
2538 * vectors. Vertex shader inputs can also form arrays of these
2539 * types, but not structures."
2540 *
2541 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2542 *
2543 * "Vertex shader inputs can only be float, floating-point
2544 * vectors, matrices, signed and unsigned integers and integer
2545 * vectors. They cannot be arrays or structures."
2546 *
2547 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2548 *
2549 * "The attribute qualifier can be used only with float,
2550 * floating-point vectors, and matrices. Attribute variables
2551 * cannot be declared as arrays or structures."
2552 */
2553 const glsl_type *check_type = var->type->is_array()
2554 ? var->type->fields.array : var->type;
2555
2556 switch (check_type->base_type) {
2557 case GLSL_TYPE_FLOAT:
2558 break;
2559 case GLSL_TYPE_UINT:
2560 case GLSL_TYPE_INT:
2561 if (state->language_version > 120)
2562 break;
2563 /* FALLTHROUGH */
2564 default:
2565 _mesa_glsl_error(& loc, state,
2566 "vertex shader input / attribute cannot have "
2567 "type %s`%s'",
2568 var->type->is_array() ? "array of " : "",
2569 check_type->name);
2570 error_emitted = true;
2571 }
2572
2573 if (!error_emitted && (state->language_version <= 130)
2574 && var->type->is_array()) {
2575 _mesa_glsl_error(& loc, state,
2576 "vertex shader input / attribute cannot have "
2577 "array type");
2578 error_emitted = true;
2579 }
2580 }
2581 }
2582
2583 /* Integer vertex outputs must be qualified with 'flat'.
2584 *
2585 * From section 4.3.6 of the GLSL 1.30 spec:
2586 * "If a vertex output is a signed or unsigned integer or integer
2587 * vector, then it must be qualified with the interpolation qualifier
2588 * flat."
2589 */
2590 if (state->language_version >= 130
2591 && state->target == vertex_shader
2592 && state->current_function == NULL
2593 && var->type->is_integer()
2594 && var->mode == ir_var_out
2595 && var->interpolation != ir_var_flat) {
2596
2597 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2598 "then it must be qualified with 'flat'");
2599 }
2600
2601
2602 /* Interpolation qualifiers cannot be applied to 'centroid' and
2603 * 'centroid varying'.
2604 *
2605 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2606 * "interpolation qualifiers may only precede the qualifiers in,
2607 * centroid in, out, or centroid out in a declaration. They do not apply
2608 * to the deprecated storage qualifiers varying or centroid varying."
2609 */
2610 if (state->language_version >= 130
2611 && this->type->qualifier.has_interpolation()
2612 && this->type->qualifier.flags.q.varying) {
2613
2614 const char *i = this->type->qualifier.interpolation_string();
2615 assert(i != NULL);
2616 const char *s;
2617 if (this->type->qualifier.flags.q.centroid)
2618 s = "centroid varying";
2619 else
2620 s = "varying";
2621
2622 _mesa_glsl_error(&loc, state,
2623 "qualifier '%s' cannot be applied to the "
2624 "deprecated storage qualifier '%s'", i, s);
2625 }
2626
2627
2628 /* Interpolation qualifiers can only apply to vertex shader outputs and
2629 * fragment shader inputs.
2630 *
2631 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2632 * "Outputs from a vertex shader (out) and inputs to a fragment
2633 * shader (in) can be further qualified with one or more of these
2634 * interpolation qualifiers"
2635 */
2636 if (state->language_version >= 130
2637 && this->type->qualifier.has_interpolation()) {
2638
2639 const char *i = this->type->qualifier.interpolation_string();
2640 assert(i != NULL);
2641
2642 switch (state->target) {
2643 case vertex_shader:
2644 if (this->type->qualifier.flags.q.in) {
2645 _mesa_glsl_error(&loc, state,
2646 "qualifier '%s' cannot be applied to vertex "
2647 "shader inputs", i);
2648 }
2649 break;
2650 case fragment_shader:
2651 if (this->type->qualifier.flags.q.out) {
2652 _mesa_glsl_error(&loc, state,
2653 "qualifier '%s' cannot be applied to fragment "
2654 "shader outputs", i);
2655 }
2656 break;
2657 default:
2658 assert(0);
2659 }
2660 }
2661
2662
2663 /* From section 4.3.4 of the GLSL 1.30 spec:
2664 * "It is an error to use centroid in in a vertex shader."
2665 */
2666 if (state->language_version >= 130
2667 && this->type->qualifier.flags.q.centroid
2668 && this->type->qualifier.flags.q.in
2669 && state->target == vertex_shader) {
2670
2671 _mesa_glsl_error(&loc, state,
2672 "'centroid in' cannot be used in a vertex shader");
2673 }
2674
2675
2676 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2677 */
2678 if (this->type->specifier->precision != ast_precision_none
2679 && state->language_version != 100
2680 && state->language_version < 130) {
2681
2682 _mesa_glsl_error(&loc, state,
2683 "precision qualifiers are supported only in GLSL ES "
2684 "1.00, and GLSL 1.30 and later");
2685 }
2686
2687
2688 /* Precision qualifiers only apply to floating point and integer types.
2689 *
2690 * From section 4.5.2 of the GLSL 1.30 spec:
2691 * "Any floating point or any integer declaration can have the type
2692 * preceded by one of these precision qualifiers [...] Literal
2693 * constants do not have precision qualifiers. Neither do Boolean
2694 * variables.
2695 *
2696 * In GLSL ES, sampler types are also allowed.
2697 *
2698 * From page 87 of the GLSL ES spec:
2699 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2700 */
2701 if (this->type->specifier->precision != ast_precision_none
2702 && !var->type->is_float()
2703 && !var->type->is_integer()
2704 && !(var->type->is_sampler() && state->es_shader)
2705 && !(var->type->is_array()
2706 && (var->type->fields.array->is_float()
2707 || var->type->fields.array->is_integer()))) {
2708
2709 _mesa_glsl_error(&loc, state,
2710 "precision qualifiers apply only to floating point"
2711 "%s types", state->es_shader ? ", integer, and sampler"
2712 : "and integer");
2713 }
2714
2715 /* Process the initializer and add its instructions to a temporary
2716 * list. This list will be added to the instruction stream (below) after
2717 * the declaration is added. This is done because in some cases (such as
2718 * redeclarations) the declaration may not actually be added to the
2719 * instruction stream.
2720 */
2721 exec_list initializer_instructions;
2722 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2723
2724 if (decl->initializer != NULL) {
2725 result = process_initializer((earlier == NULL) ? var : earlier,
2726 decl, this->type,
2727 &initializer_instructions, state);
2728 }
2729
2730 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2731 *
2732 * "It is an error to write to a const variable outside of
2733 * its declaration, so they must be initialized when
2734 * declared."
2735 */
2736 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2737 _mesa_glsl_error(& loc, state,
2738 "const declaration of `%s' must be initialized",
2739 decl->identifier);
2740 }
2741
2742 /* If the declaration is not a redeclaration, there are a few additional
2743 * semantic checks that must be applied. In addition, variable that was
2744 * created for the declaration should be added to the IR stream.
2745 */
2746 if (earlier == NULL) {
2747 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2748 *
2749 * "Identifiers starting with "gl_" are reserved for use by
2750 * OpenGL, and may not be declared in a shader as either a
2751 * variable or a function."
2752 */
2753 if (strncmp(decl->identifier, "gl_", 3) == 0)
2754 _mesa_glsl_error(& loc, state,
2755 "identifier `%s' uses reserved `gl_' prefix",
2756 decl->identifier);
2757
2758 /* Add the variable to the symbol table. Note that the initializer's
2759 * IR was already processed earlier (though it hasn't been emitted
2760 * yet), without the variable in scope.
2761 *
2762 * This differs from most C-like languages, but it follows the GLSL
2763 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2764 * spec:
2765 *
2766 * "Within a declaration, the scope of a name starts immediately
2767 * after the initializer if present or immediately after the name
2768 * being declared if not."
2769 */
2770 if (!state->symbols->add_variable(var)) {
2771 YYLTYPE loc = this->get_location();
2772 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2773 "current scope", decl->identifier);
2774 continue;
2775 }
2776
2777 /* Push the variable declaration to the top. It means that all the
2778 * variable declarations will appear in a funny last-to-first order,
2779 * but otherwise we run into trouble if a function is prototyped, a
2780 * global var is decled, then the function is defined with usage of
2781 * the global var. See glslparsertest's CorrectModule.frag.
2782 */
2783 instructions->push_head(var);
2784 }
2785
2786 instructions->append_list(&initializer_instructions);
2787 }
2788
2789
2790 /* Generally, variable declarations do not have r-values. However,
2791 * one is used for the declaration in
2792 *
2793 * while (bool b = some_condition()) {
2794 * ...
2795 * }
2796 *
2797 * so we return the rvalue from the last seen declaration here.
2798 */
2799 return result;
2800 }
2801
2802
2803 ir_rvalue *
2804 ast_parameter_declarator::hir(exec_list *instructions,
2805 struct _mesa_glsl_parse_state *state)
2806 {
2807 void *ctx = state;
2808 const struct glsl_type *type;
2809 const char *name = NULL;
2810 YYLTYPE loc = this->get_location();
2811
2812 type = this->type->specifier->glsl_type(& name, state);
2813
2814 if (type == NULL) {
2815 if (name != NULL) {
2816 _mesa_glsl_error(& loc, state,
2817 "invalid type `%s' in declaration of `%s'",
2818 name, this->identifier);
2819 } else {
2820 _mesa_glsl_error(& loc, state,
2821 "invalid type in declaration of `%s'",
2822 this->identifier);
2823 }
2824
2825 type = glsl_type::error_type;
2826 }
2827
2828 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2829 *
2830 * "Functions that accept no input arguments need not use void in the
2831 * argument list because prototypes (or definitions) are required and
2832 * therefore there is no ambiguity when an empty argument list "( )" is
2833 * declared. The idiom "(void)" as a parameter list is provided for
2834 * convenience."
2835 *
2836 * Placing this check here prevents a void parameter being set up
2837 * for a function, which avoids tripping up checks for main taking
2838 * parameters and lookups of an unnamed symbol.
2839 */
2840 if (type->is_void()) {
2841 if (this->identifier != NULL)
2842 _mesa_glsl_error(& loc, state,
2843 "named parameter cannot have type `void'");
2844
2845 is_void = true;
2846 return NULL;
2847 }
2848
2849 if (formal_parameter && (this->identifier == NULL)) {
2850 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2851 return NULL;
2852 }
2853
2854 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2855 * call already handled the "vec4[..] foo" case.
2856 */
2857 if (this->is_array) {
2858 type = process_array_type(&loc, type, this->array_size, state);
2859 }
2860
2861 if (type->array_size() == 0) {
2862 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2863 "a declared size.");
2864 type = glsl_type::error_type;
2865 }
2866
2867 is_void = false;
2868 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2869
2870 /* Apply any specified qualifiers to the parameter declaration. Note that
2871 * for function parameters the default mode is 'in'.
2872 */
2873 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2874
2875 instructions->push_tail(var);
2876
2877 /* Parameter declarations do not have r-values.
2878 */
2879 return NULL;
2880 }
2881
2882
2883 void
2884 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2885 bool formal,
2886 exec_list *ir_parameters,
2887 _mesa_glsl_parse_state *state)
2888 {
2889 ast_parameter_declarator *void_param = NULL;
2890 unsigned count = 0;
2891
2892 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2893 param->formal_parameter = formal;
2894 param->hir(ir_parameters, state);
2895
2896 if (param->is_void)
2897 void_param = param;
2898
2899 count++;
2900 }
2901
2902 if ((void_param != NULL) && (count > 1)) {
2903 YYLTYPE loc = void_param->get_location();
2904
2905 _mesa_glsl_error(& loc, state,
2906 "`void' parameter must be only parameter");
2907 }
2908 }
2909
2910
2911 void
2912 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2913 ir_function *f)
2914 {
2915 /* Emit the new function header */
2916 if (state->current_function == NULL) {
2917 instructions->push_tail(f);
2918 } else {
2919 /* IR invariants disallow function declarations or definitions nested
2920 * within other function definitions. Insert the new ir_function
2921 * block in the instruction sequence before the ir_function block
2922 * containing the current ir_function_signature.
2923 */
2924 ir_function *const curr =
2925 const_cast<ir_function *>(state->current_function->function());
2926
2927 curr->insert_before(f);
2928 }
2929 }
2930
2931
2932 ir_rvalue *
2933 ast_function::hir(exec_list *instructions,
2934 struct _mesa_glsl_parse_state *state)
2935 {
2936 void *ctx = state;
2937 ir_function *f = NULL;
2938 ir_function_signature *sig = NULL;
2939 exec_list hir_parameters;
2940
2941 const char *const name = identifier;
2942
2943 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2944 *
2945 * "Function declarations (prototypes) cannot occur inside of functions;
2946 * they must be at global scope, or for the built-in functions, outside
2947 * the global scope."
2948 *
2949 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2950 *
2951 * "User defined functions may only be defined within the global scope."
2952 *
2953 * Note that this language does not appear in GLSL 1.10.
2954 */
2955 if ((state->current_function != NULL) && (state->language_version != 110)) {
2956 YYLTYPE loc = this->get_location();
2957 _mesa_glsl_error(&loc, state,
2958 "declaration of function `%s' not allowed within "
2959 "function body", name);
2960 }
2961
2962 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2963 *
2964 * "Identifiers starting with "gl_" are reserved for use by
2965 * OpenGL, and may not be declared in a shader as either a
2966 * variable or a function."
2967 */
2968 if (strncmp(name, "gl_", 3) == 0) {
2969 YYLTYPE loc = this->get_location();
2970 _mesa_glsl_error(&loc, state,
2971 "identifier `%s' uses reserved `gl_' prefix", name);
2972 }
2973
2974 /* Convert the list of function parameters to HIR now so that they can be
2975 * used below to compare this function's signature with previously seen
2976 * signatures for functions with the same name.
2977 */
2978 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2979 is_definition,
2980 & hir_parameters, state);
2981
2982 const char *return_type_name;
2983 const glsl_type *return_type =
2984 this->return_type->specifier->glsl_type(& return_type_name, state);
2985
2986 if (!return_type) {
2987 YYLTYPE loc = this->get_location();
2988 _mesa_glsl_error(&loc, state,
2989 "function `%s' has undeclared return type `%s'",
2990 name, return_type_name);
2991 return_type = glsl_type::error_type;
2992 }
2993
2994 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2995 * "No qualifier is allowed on the return type of a function."
2996 */
2997 if (this->return_type->has_qualifiers()) {
2998 YYLTYPE loc = this->get_location();
2999 _mesa_glsl_error(& loc, state,
3000 "function `%s' return type has qualifiers", name);
3001 }
3002
3003 /* Verify that this function's signature either doesn't match a previously
3004 * seen signature for a function with the same name, or, if a match is found,
3005 * that the previously seen signature does not have an associated definition.
3006 */
3007 f = state->symbols->get_function(name);
3008 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3009 sig = f->exact_matching_signature(&hir_parameters);
3010 if (sig != NULL) {
3011 const char *badvar = sig->qualifiers_match(&hir_parameters);
3012 if (badvar != NULL) {
3013 YYLTYPE loc = this->get_location();
3014
3015 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3016 "qualifiers don't match prototype", name, badvar);
3017 }
3018
3019 if (sig->return_type != return_type) {
3020 YYLTYPE loc = this->get_location();
3021
3022 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3023 "match prototype", name);
3024 }
3025
3026 if (is_definition && sig->is_defined) {
3027 YYLTYPE loc = this->get_location();
3028
3029 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3030 }
3031 }
3032 } else {
3033 f = new(ctx) ir_function(name);
3034 if (!state->symbols->add_function(f)) {
3035 /* This function name shadows a non-function use of the same name. */
3036 YYLTYPE loc = this->get_location();
3037
3038 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3039 "non-function", name);
3040 return NULL;
3041 }
3042
3043 emit_function(state, instructions, f);
3044 }
3045
3046 /* Verify the return type of main() */
3047 if (strcmp(name, "main") == 0) {
3048 if (! return_type->is_void()) {
3049 YYLTYPE loc = this->get_location();
3050
3051 _mesa_glsl_error(& loc, state, "main() must return void");
3052 }
3053
3054 if (!hir_parameters.is_empty()) {
3055 YYLTYPE loc = this->get_location();
3056
3057 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3058 }
3059 }
3060
3061 /* Finish storing the information about this new function in its signature.
3062 */
3063 if (sig == NULL) {
3064 sig = new(ctx) ir_function_signature(return_type);
3065 f->add_signature(sig);
3066 }
3067
3068 sig->replace_parameters(&hir_parameters);
3069 signature = sig;
3070
3071 /* Function declarations (prototypes) do not have r-values.
3072 */
3073 return NULL;
3074 }
3075
3076
3077 ir_rvalue *
3078 ast_function_definition::hir(exec_list *instructions,
3079 struct _mesa_glsl_parse_state *state)
3080 {
3081 prototype->is_definition = true;
3082 prototype->hir(instructions, state);
3083
3084 ir_function_signature *signature = prototype->signature;
3085 if (signature == NULL)
3086 return NULL;
3087
3088 assert(state->current_function == NULL);
3089 state->current_function = signature;
3090 state->found_return = false;
3091
3092 /* Duplicate parameters declared in the prototype as concrete variables.
3093 * Add these to the symbol table.
3094 */
3095 state->symbols->push_scope();
3096 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3097 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3098
3099 assert(var != NULL);
3100
3101 /* The only way a parameter would "exist" is if two parameters have
3102 * the same name.
3103 */
3104 if (state->symbols->name_declared_this_scope(var->name)) {
3105 YYLTYPE loc = this->get_location();
3106
3107 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3108 } else {
3109 state->symbols->add_variable(var);
3110 }
3111 }
3112
3113 /* Convert the body of the function to HIR. */
3114 this->body->hir(&signature->body, state);
3115 signature->is_defined = true;
3116
3117 state->symbols->pop_scope();
3118
3119 assert(state->current_function == signature);
3120 state->current_function = NULL;
3121
3122 if (!signature->return_type->is_void() && !state->found_return) {
3123 YYLTYPE loc = this->get_location();
3124 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3125 "%s, but no return statement",
3126 signature->function_name(),
3127 signature->return_type->name);
3128 }
3129
3130 /* Function definitions do not have r-values.
3131 */
3132 return NULL;
3133 }
3134
3135
3136 ir_rvalue *
3137 ast_jump_statement::hir(exec_list *instructions,
3138 struct _mesa_glsl_parse_state *state)
3139 {
3140 void *ctx = state;
3141
3142 switch (mode) {
3143 case ast_return: {
3144 ir_return *inst;
3145 assert(state->current_function);
3146
3147 if (opt_return_value) {
3148 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3149
3150 /* The value of the return type can be NULL if the shader says
3151 * 'return foo();' and foo() is a function that returns void.
3152 *
3153 * NOTE: The GLSL spec doesn't say that this is an error. The type
3154 * of the return value is void. If the return type of the function is
3155 * also void, then this should compile without error. Seriously.
3156 */
3157 const glsl_type *const ret_type =
3158 (ret == NULL) ? glsl_type::void_type : ret->type;
3159
3160 /* Implicit conversions are not allowed for return values. */
3161 if (state->current_function->return_type != ret_type) {
3162 YYLTYPE loc = this->get_location();
3163
3164 _mesa_glsl_error(& loc, state,
3165 "`return' with wrong type %s, in function `%s' "
3166 "returning %s",
3167 ret_type->name,
3168 state->current_function->function_name(),
3169 state->current_function->return_type->name);
3170 }
3171
3172 inst = new(ctx) ir_return(ret);
3173 } else {
3174 if (state->current_function->return_type->base_type !=
3175 GLSL_TYPE_VOID) {
3176 YYLTYPE loc = this->get_location();
3177
3178 _mesa_glsl_error(& loc, state,
3179 "`return' with no value, in function %s returning "
3180 "non-void",
3181 state->current_function->function_name());
3182 }
3183 inst = new(ctx) ir_return;
3184 }
3185
3186 state->found_return = true;
3187 instructions->push_tail(inst);
3188 break;
3189 }
3190
3191 case ast_discard:
3192 if (state->target != fragment_shader) {
3193 YYLTYPE loc = this->get_location();
3194
3195 _mesa_glsl_error(& loc, state,
3196 "`discard' may only appear in a fragment shader");
3197 }
3198 instructions->push_tail(new(ctx) ir_discard);
3199 break;
3200
3201 case ast_break:
3202 case ast_continue:
3203 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3204 * FINISHME: and they use a different IR instruction for 'break'.
3205 */
3206 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3207 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3208 * FINISHME: loop.
3209 */
3210 if (state->loop_or_switch_nesting == NULL) {
3211 YYLTYPE loc = this->get_location();
3212
3213 _mesa_glsl_error(& loc, state,
3214 "`%s' may only appear in a loop",
3215 (mode == ast_break) ? "break" : "continue");
3216 } else {
3217 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3218
3219 /* Inline the for loop expression again, since we don't know
3220 * where near the end of the loop body the normal copy of it
3221 * is going to be placed.
3222 */
3223 if (mode == ast_continue &&
3224 state->loop_or_switch_nesting_ast->rest_expression) {
3225 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3226 state);
3227 }
3228
3229 if (loop != NULL) {
3230 ir_loop_jump *const jump =
3231 new(ctx) ir_loop_jump((mode == ast_break)
3232 ? ir_loop_jump::jump_break
3233 : ir_loop_jump::jump_continue);
3234 instructions->push_tail(jump);
3235 }
3236 }
3237
3238 break;
3239 }
3240
3241 /* Jump instructions do not have r-values.
3242 */
3243 return NULL;
3244 }
3245
3246
3247 ir_rvalue *
3248 ast_selection_statement::hir(exec_list *instructions,
3249 struct _mesa_glsl_parse_state *state)
3250 {
3251 void *ctx = state;
3252
3253 ir_rvalue *const condition = this->condition->hir(instructions, state);
3254
3255 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3256 *
3257 * "Any expression whose type evaluates to a Boolean can be used as the
3258 * conditional expression bool-expression. Vector types are not accepted
3259 * as the expression to if."
3260 *
3261 * The checks are separated so that higher quality diagnostics can be
3262 * generated for cases where both rules are violated.
3263 */
3264 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3265 YYLTYPE loc = this->condition->get_location();
3266
3267 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3268 "boolean");
3269 }
3270
3271 ir_if *const stmt = new(ctx) ir_if(condition);
3272
3273 if (then_statement != NULL) {
3274 state->symbols->push_scope();
3275 then_statement->hir(& stmt->then_instructions, state);
3276 state->symbols->pop_scope();
3277 }
3278
3279 if (else_statement != NULL) {
3280 state->symbols->push_scope();
3281 else_statement->hir(& stmt->else_instructions, state);
3282 state->symbols->pop_scope();
3283 }
3284
3285 instructions->push_tail(stmt);
3286
3287 /* if-statements do not have r-values.
3288 */
3289 return NULL;
3290 }
3291
3292
3293 void
3294 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3295 struct _mesa_glsl_parse_state *state)
3296 {
3297 void *ctx = state;
3298
3299 if (condition != NULL) {
3300 ir_rvalue *const cond =
3301 condition->hir(& stmt->body_instructions, state);
3302
3303 if ((cond == NULL)
3304 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3305 YYLTYPE loc = condition->get_location();
3306
3307 _mesa_glsl_error(& loc, state,
3308 "loop condition must be scalar boolean");
3309 } else {
3310 /* As the first code in the loop body, generate a block that looks
3311 * like 'if (!condition) break;' as the loop termination condition.
3312 */
3313 ir_rvalue *const not_cond =
3314 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3315 NULL);
3316
3317 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3318
3319 ir_jump *const break_stmt =
3320 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3321
3322 if_stmt->then_instructions.push_tail(break_stmt);
3323 stmt->body_instructions.push_tail(if_stmt);
3324 }
3325 }
3326 }
3327
3328
3329 ir_rvalue *
3330 ast_iteration_statement::hir(exec_list *instructions,
3331 struct _mesa_glsl_parse_state *state)
3332 {
3333 void *ctx = state;
3334
3335 /* For-loops and while-loops start a new scope, but do-while loops do not.
3336 */
3337 if (mode != ast_do_while)
3338 state->symbols->push_scope();
3339
3340 if (init_statement != NULL)
3341 init_statement->hir(instructions, state);
3342
3343 ir_loop *const stmt = new(ctx) ir_loop();
3344 instructions->push_tail(stmt);
3345
3346 /* Track the current loop and / or switch-statement nesting.
3347 */
3348 ir_instruction *const nesting = state->loop_or_switch_nesting;
3349 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3350
3351 state->loop_or_switch_nesting = stmt;
3352 state->loop_or_switch_nesting_ast = this;
3353
3354 if (mode != ast_do_while)
3355 condition_to_hir(stmt, state);
3356
3357 if (body != NULL)
3358 body->hir(& stmt->body_instructions, state);
3359
3360 if (rest_expression != NULL)
3361 rest_expression->hir(& stmt->body_instructions, state);
3362
3363 if (mode == ast_do_while)
3364 condition_to_hir(stmt, state);
3365
3366 if (mode != ast_do_while)
3367 state->symbols->pop_scope();
3368
3369 /* Restore previous nesting before returning.
3370 */
3371 state->loop_or_switch_nesting = nesting;
3372 state->loop_or_switch_nesting_ast = nesting_ast;
3373
3374 /* Loops do not have r-values.
3375 */
3376 return NULL;
3377 }
3378
3379
3380 ir_rvalue *
3381 ast_type_specifier::hir(exec_list *instructions,
3382 struct _mesa_glsl_parse_state *state)
3383 {
3384 if (!this->is_precision_statement && this->structure == NULL)
3385 return NULL;
3386
3387 YYLTYPE loc = this->get_location();
3388
3389 if (this->precision != ast_precision_none
3390 && state->language_version != 100
3391 && state->language_version < 130) {
3392 _mesa_glsl_error(&loc, state,
3393 "precision qualifiers exist only in "
3394 "GLSL ES 1.00, and GLSL 1.30 and later");
3395 return NULL;
3396 }
3397 if (this->precision != ast_precision_none
3398 && this->structure != NULL) {
3399 _mesa_glsl_error(&loc, state,
3400 "precision qualifiers do not apply to structures");
3401 return NULL;
3402 }
3403
3404 /* If this is a precision statement, check that the type to which it is
3405 * applied is either float or int.
3406 *
3407 * From section 4.5.3 of the GLSL 1.30 spec:
3408 * "The precision statement
3409 * precision precision-qualifier type;
3410 * can be used to establish a default precision qualifier. The type
3411 * field can be either int or float [...]. Any other types or
3412 * qualifiers will result in an error.
3413 */
3414 if (this->is_precision_statement) {
3415 assert(this->precision != ast_precision_none);
3416 assert(this->structure == NULL); /* The check for structures was
3417 * performed above. */
3418 if (this->is_array) {
3419 _mesa_glsl_error(&loc, state,
3420 "default precision statements do not apply to "
3421 "arrays");
3422 return NULL;
3423 }
3424 if (this->type_specifier != ast_float
3425 && this->type_specifier != ast_int) {
3426 _mesa_glsl_error(&loc, state,
3427 "default precision statements apply only to types "
3428 "float and int");
3429 return NULL;
3430 }
3431
3432 /* FINISHME: Translate precision statements into IR. */
3433 return NULL;
3434 }
3435
3436 if (this->structure != NULL)
3437 return this->structure->hir(instructions, state);
3438
3439 return NULL;
3440 }
3441
3442
3443 ir_rvalue *
3444 ast_struct_specifier::hir(exec_list *instructions,
3445 struct _mesa_glsl_parse_state *state)
3446 {
3447 unsigned decl_count = 0;
3448
3449 /* Make an initial pass over the list of structure fields to determine how
3450 * many there are. Each element in this list is an ast_declarator_list.
3451 * This means that we actually need to count the number of elements in the
3452 * 'declarations' list in each of the elements.
3453 */
3454 foreach_list_typed (ast_declarator_list, decl_list, link,
3455 &this->declarations) {
3456 foreach_list_const (decl_ptr, & decl_list->declarations) {
3457 decl_count++;
3458 }
3459 }
3460
3461 /* Allocate storage for the structure fields and process the field
3462 * declarations. As the declarations are processed, try to also convert
3463 * the types to HIR. This ensures that structure definitions embedded in
3464 * other structure definitions are processed.
3465 */
3466 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3467 decl_count);
3468
3469 unsigned i = 0;
3470 foreach_list_typed (ast_declarator_list, decl_list, link,
3471 &this->declarations) {
3472 const char *type_name;
3473
3474 decl_list->type->specifier->hir(instructions, state);
3475
3476 /* Section 10.9 of the GLSL ES 1.00 specification states that
3477 * embedded structure definitions have been removed from the language.
3478 */
3479 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3480 YYLTYPE loc = this->get_location();
3481 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3482 "not allowed in GLSL ES 1.00.");
3483 }
3484
3485 const glsl_type *decl_type =
3486 decl_list->type->specifier->glsl_type(& type_name, state);
3487
3488 foreach_list_typed (ast_declaration, decl, link,
3489 &decl_list->declarations) {
3490 const struct glsl_type *field_type = decl_type;
3491 if (decl->is_array) {
3492 YYLTYPE loc = decl->get_location();
3493 field_type = process_array_type(&loc, decl_type, decl->array_size,
3494 state);
3495 }
3496 fields[i].type = (field_type != NULL)
3497 ? field_type : glsl_type::error_type;
3498 fields[i].name = decl->identifier;
3499 i++;
3500 }
3501 }
3502
3503 assert(i == decl_count);
3504
3505 const glsl_type *t =
3506 glsl_type::get_record_instance(fields, decl_count, this->name);
3507
3508 YYLTYPE loc = this->get_location();
3509 if (!state->symbols->add_type(name, t)) {
3510 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3511 } else {
3512 const glsl_type **s = reralloc(state, state->user_structures,
3513 const glsl_type *,
3514 state->num_user_structures + 1);
3515 if (s != NULL) {
3516 s[state->num_user_structures] = t;
3517 state->user_structures = s;
3518 state->num_user_structures++;
3519 }
3520 }
3521
3522 /* Structure type definitions do not have r-values.
3523 */
3524 return NULL;
3525 }