glsl: Modify strategy for accumulating conditions when lowering if-statements
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 state->toplevel_ir = instructions;
70
71 /* Section 4.2 of the GLSL 1.20 specification states:
72 * "The built-in functions are scoped in a scope outside the global scope
73 * users declare global variables in. That is, a shader's global scope,
74 * available for user-defined functions and global variables, is nested
75 * inside the scope containing the built-in functions."
76 *
77 * Since built-in functions like ftransform() access built-in variables,
78 * it follows that those must be in the outer scope as well.
79 *
80 * We push scope here to create this nesting effect...but don't pop.
81 * This way, a shader's globals are still in the symbol table for use
82 * by the linker.
83 */
84 state->symbols->push_scope();
85
86 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
87 ast->hir(instructions, state);
88
89 detect_recursion_unlinked(state, instructions);
90
91 state->toplevel_ir = NULL;
92 }
93
94
95 /**
96 * If a conversion is available, convert one operand to a different type
97 *
98 * The \c from \c ir_rvalue is converted "in place".
99 *
100 * \param to Type that the operand it to be converted to
101 * \param from Operand that is being converted
102 * \param state GLSL compiler state
103 *
104 * \return
105 * If a conversion is possible (or unnecessary), \c true is returned.
106 * Otherwise \c false is returned.
107 */
108 bool
109 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
110 struct _mesa_glsl_parse_state *state)
111 {
112 void *ctx = state;
113 if (to->base_type == from->type->base_type)
114 return true;
115
116 /* This conversion was added in GLSL 1.20. If the compilation mode is
117 * GLSL 1.10, the conversion is skipped.
118 */
119 if (state->language_version < 120)
120 return false;
121
122 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
123 *
124 * "There are no implicit array or structure conversions. For
125 * example, an array of int cannot be implicitly converted to an
126 * array of float. There are no implicit conversions between
127 * signed and unsigned integers."
128 */
129 /* FINISHME: The above comment is partially a lie. There is int/uint
130 * FINISHME: conversion for immediate constants.
131 */
132 if (!to->is_float() || !from->type->is_numeric())
133 return false;
134
135 /* Convert to a floating point type with the same number of components
136 * as the original type - i.e. int to float, not int to vec4.
137 */
138 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
139 from->type->matrix_columns);
140
141 switch (from->type->base_type) {
142 case GLSL_TYPE_INT:
143 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
144 break;
145 case GLSL_TYPE_UINT:
146 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
147 break;
148 case GLSL_TYPE_BOOL:
149 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
150 break;
151 default:
152 assert(0);
153 }
154
155 return true;
156 }
157
158
159 static const struct glsl_type *
160 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
161 bool multiply,
162 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
163 {
164 const glsl_type *type_a = value_a->type;
165 const glsl_type *type_b = value_b->type;
166
167 /* From GLSL 1.50 spec, page 56:
168 *
169 * "The arithmetic binary operators add (+), subtract (-),
170 * multiply (*), and divide (/) operate on integer and
171 * floating-point scalars, vectors, and matrices."
172 */
173 if (!type_a->is_numeric() || !type_b->is_numeric()) {
174 _mesa_glsl_error(loc, state,
175 "Operands to arithmetic operators must be numeric");
176 return glsl_type::error_type;
177 }
178
179
180 /* "If one operand is floating-point based and the other is
181 * not, then the conversions from Section 4.1.10 "Implicit
182 * Conversions" are applied to the non-floating-point-based operand."
183 */
184 if (!apply_implicit_conversion(type_a, value_b, state)
185 && !apply_implicit_conversion(type_b, value_a, state)) {
186 _mesa_glsl_error(loc, state,
187 "Could not implicitly convert operands to "
188 "arithmetic operator");
189 return glsl_type::error_type;
190 }
191 type_a = value_a->type;
192 type_b = value_b->type;
193
194 /* "If the operands are integer types, they must both be signed or
195 * both be unsigned."
196 *
197 * From this rule and the preceeding conversion it can be inferred that
198 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
199 * The is_numeric check above already filtered out the case where either
200 * type is not one of these, so now the base types need only be tested for
201 * equality.
202 */
203 if (type_a->base_type != type_b->base_type) {
204 _mesa_glsl_error(loc, state,
205 "base type mismatch for arithmetic operator");
206 return glsl_type::error_type;
207 }
208
209 /* "All arithmetic binary operators result in the same fundamental type
210 * (signed integer, unsigned integer, or floating-point) as the
211 * operands they operate on, after operand type conversion. After
212 * conversion, the following cases are valid
213 *
214 * * The two operands are scalars. In this case the operation is
215 * applied, resulting in a scalar."
216 */
217 if (type_a->is_scalar() && type_b->is_scalar())
218 return type_a;
219
220 /* "* One operand is a scalar, and the other is a vector or matrix.
221 * In this case, the scalar operation is applied independently to each
222 * component of the vector or matrix, resulting in the same size
223 * vector or matrix."
224 */
225 if (type_a->is_scalar()) {
226 if (!type_b->is_scalar())
227 return type_b;
228 } else if (type_b->is_scalar()) {
229 return type_a;
230 }
231
232 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
233 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
234 * handled.
235 */
236 assert(!type_a->is_scalar());
237 assert(!type_b->is_scalar());
238
239 /* "* The two operands are vectors of the same size. In this case, the
240 * operation is done component-wise resulting in the same size
241 * vector."
242 */
243 if (type_a->is_vector() && type_b->is_vector()) {
244 if (type_a == type_b) {
245 return type_a;
246 } else {
247 _mesa_glsl_error(loc, state,
248 "vector size mismatch for arithmetic operator");
249 return glsl_type::error_type;
250 }
251 }
252
253 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
254 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
255 * <vector, vector> have been handled. At least one of the operands must
256 * be matrix. Further, since there are no integer matrix types, the base
257 * type of both operands must be float.
258 */
259 assert(type_a->is_matrix() || type_b->is_matrix());
260 assert(type_a->base_type == GLSL_TYPE_FLOAT);
261 assert(type_b->base_type == GLSL_TYPE_FLOAT);
262
263 /* "* The operator is add (+), subtract (-), or divide (/), and the
264 * operands are matrices with the same number of rows and the same
265 * number of columns. In this case, the operation is done component-
266 * wise resulting in the same size matrix."
267 * * The operator is multiply (*), where both operands are matrices or
268 * one operand is a vector and the other a matrix. A right vector
269 * operand is treated as a column vector and a left vector operand as a
270 * row vector. In all these cases, it is required that the number of
271 * columns of the left operand is equal to the number of rows of the
272 * right operand. Then, the multiply (*) operation does a linear
273 * algebraic multiply, yielding an object that has the same number of
274 * rows as the left operand and the same number of columns as the right
275 * operand. Section 5.10 "Vector and Matrix Operations" explains in
276 * more detail how vectors and matrices are operated on."
277 */
278 if (! multiply) {
279 if (type_a == type_b)
280 return type_a;
281 } else {
282 if (type_a->is_matrix() && type_b->is_matrix()) {
283 /* Matrix multiply. The columns of A must match the rows of B. Given
284 * the other previously tested constraints, this means the vector type
285 * of a row from A must be the same as the vector type of a column from
286 * B.
287 */
288 if (type_a->row_type() == type_b->column_type()) {
289 /* The resulting matrix has the number of columns of matrix B and
290 * the number of rows of matrix A. We get the row count of A by
291 * looking at the size of a vector that makes up a column. The
292 * transpose (size of a row) is done for B.
293 */
294 const glsl_type *const type =
295 glsl_type::get_instance(type_a->base_type,
296 type_a->column_type()->vector_elements,
297 type_b->row_type()->vector_elements);
298 assert(type != glsl_type::error_type);
299
300 return type;
301 }
302 } else if (type_a->is_matrix()) {
303 /* A is a matrix and B is a column vector. Columns of A must match
304 * rows of B. Given the other previously tested constraints, this
305 * means the vector type of a row from A must be the same as the
306 * vector the type of B.
307 */
308 if (type_a->row_type() == type_b) {
309 /* The resulting vector has a number of elements equal to
310 * the number of rows of matrix A. */
311 const glsl_type *const type =
312 glsl_type::get_instance(type_a->base_type,
313 type_a->column_type()->vector_elements,
314 1);
315 assert(type != glsl_type::error_type);
316
317 return type;
318 }
319 } else {
320 assert(type_b->is_matrix());
321
322 /* A is a row vector and B is a matrix. Columns of A must match rows
323 * of B. Given the other previously tested constraints, this means
324 * the type of A must be the same as the vector type of a column from
325 * B.
326 */
327 if (type_a == type_b->column_type()) {
328 /* The resulting vector has a number of elements equal to
329 * the number of columns of matrix B. */
330 const glsl_type *const type =
331 glsl_type::get_instance(type_a->base_type,
332 type_b->row_type()->vector_elements,
333 1);
334 assert(type != glsl_type::error_type);
335
336 return type;
337 }
338 }
339
340 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
341 return glsl_type::error_type;
342 }
343
344
345 /* "All other cases are illegal."
346 */
347 _mesa_glsl_error(loc, state, "type mismatch");
348 return glsl_type::error_type;
349 }
350
351
352 static const struct glsl_type *
353 unary_arithmetic_result_type(const struct glsl_type *type,
354 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
355 {
356 /* From GLSL 1.50 spec, page 57:
357 *
358 * "The arithmetic unary operators negate (-), post- and pre-increment
359 * and decrement (-- and ++) operate on integer or floating-point
360 * values (including vectors and matrices). All unary operators work
361 * component-wise on their operands. These result with the same type
362 * they operated on."
363 */
364 if (!type->is_numeric()) {
365 _mesa_glsl_error(loc, state,
366 "Operands to arithmetic operators must be numeric");
367 return glsl_type::error_type;
368 }
369
370 return type;
371 }
372
373 /**
374 * \brief Return the result type of a bit-logic operation.
375 *
376 * If the given types to the bit-logic operator are invalid, return
377 * glsl_type::error_type.
378 *
379 * \param type_a Type of LHS of bit-logic op
380 * \param type_b Type of RHS of bit-logic op
381 */
382 static const struct glsl_type *
383 bit_logic_result_type(const struct glsl_type *type_a,
384 const struct glsl_type *type_b,
385 ast_operators op,
386 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
387 {
388 if (state->language_version < 130) {
389 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
390 return glsl_type::error_type;
391 }
392
393 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
394 *
395 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
396 * (|). The operands must be of type signed or unsigned integers or
397 * integer vectors."
398 */
399 if (!type_a->is_integer()) {
400 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
401 ast_expression::operator_string(op));
402 return glsl_type::error_type;
403 }
404 if (!type_b->is_integer()) {
405 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
406 ast_expression::operator_string(op));
407 return glsl_type::error_type;
408 }
409
410 /* "The fundamental types of the operands (signed or unsigned) must
411 * match,"
412 */
413 if (type_a->base_type != type_b->base_type) {
414 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
415 "base type", ast_expression::operator_string(op));
416 return glsl_type::error_type;
417 }
418
419 /* "The operands cannot be vectors of differing size." */
420 if (type_a->is_vector() &&
421 type_b->is_vector() &&
422 type_a->vector_elements != type_b->vector_elements) {
423 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
424 "different sizes", ast_expression::operator_string(op));
425 return glsl_type::error_type;
426 }
427
428 /* "If one operand is a scalar and the other a vector, the scalar is
429 * applied component-wise to the vector, resulting in the same type as
430 * the vector. The fundamental types of the operands [...] will be the
431 * resulting fundamental type."
432 */
433 if (type_a->is_scalar())
434 return type_b;
435 else
436 return type_a;
437 }
438
439 static const struct glsl_type *
440 modulus_result_type(const struct glsl_type *type_a,
441 const struct glsl_type *type_b,
442 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
443 {
444 if (state->language_version < 130) {
445 _mesa_glsl_error(loc, state,
446 "operator '%%' is reserved in %s",
447 state->version_string);
448 return glsl_type::error_type;
449 }
450
451 /* From GLSL 1.50 spec, page 56:
452 * "The operator modulus (%) operates on signed or unsigned integers or
453 * integer vectors. The operand types must both be signed or both be
454 * unsigned."
455 */
456 if (!type_a->is_integer()) {
457 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
458 return glsl_type::error_type;
459 }
460 if (!type_b->is_integer()) {
461 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
462 return glsl_type::error_type;
463 }
464 if (type_a->base_type != type_b->base_type) {
465 _mesa_glsl_error(loc, state,
466 "operands of %% must have the same base type");
467 return glsl_type::error_type;
468 }
469
470 /* "The operands cannot be vectors of differing size. If one operand is
471 * a scalar and the other vector, then the scalar is applied component-
472 * wise to the vector, resulting in the same type as the vector. If both
473 * are vectors of the same size, the result is computed component-wise."
474 */
475 if (type_a->is_vector()) {
476 if (!type_b->is_vector()
477 || (type_a->vector_elements == type_b->vector_elements))
478 return type_a;
479 } else
480 return type_b;
481
482 /* "The operator modulus (%) is not defined for any other data types
483 * (non-integer types)."
484 */
485 _mesa_glsl_error(loc, state, "type mismatch");
486 return glsl_type::error_type;
487 }
488
489
490 static const struct glsl_type *
491 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
492 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
493 {
494 const glsl_type *type_a = value_a->type;
495 const glsl_type *type_b = value_b->type;
496
497 /* From GLSL 1.50 spec, page 56:
498 * "The relational operators greater than (>), less than (<), greater
499 * than or equal (>=), and less than or equal (<=) operate only on
500 * scalar integer and scalar floating-point expressions."
501 */
502 if (!type_a->is_numeric()
503 || !type_b->is_numeric()
504 || !type_a->is_scalar()
505 || !type_b->is_scalar()) {
506 _mesa_glsl_error(loc, state,
507 "Operands to relational operators must be scalar and "
508 "numeric");
509 return glsl_type::error_type;
510 }
511
512 /* "Either the operands' types must match, or the conversions from
513 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
514 * operand, after which the types must match."
515 */
516 if (!apply_implicit_conversion(type_a, value_b, state)
517 && !apply_implicit_conversion(type_b, value_a, state)) {
518 _mesa_glsl_error(loc, state,
519 "Could not implicitly convert operands to "
520 "relational operator");
521 return glsl_type::error_type;
522 }
523 type_a = value_a->type;
524 type_b = value_b->type;
525
526 if (type_a->base_type != type_b->base_type) {
527 _mesa_glsl_error(loc, state, "base type mismatch");
528 return glsl_type::error_type;
529 }
530
531 /* "The result is scalar Boolean."
532 */
533 return glsl_type::bool_type;
534 }
535
536 /**
537 * \brief Return the result type of a bit-shift operation.
538 *
539 * If the given types to the bit-shift operator are invalid, return
540 * glsl_type::error_type.
541 *
542 * \param type_a Type of LHS of bit-shift op
543 * \param type_b Type of RHS of bit-shift op
544 */
545 static const struct glsl_type *
546 shift_result_type(const struct glsl_type *type_a,
547 const struct glsl_type *type_b,
548 ast_operators op,
549 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
550 {
551 if (state->language_version < 130) {
552 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
553 return glsl_type::error_type;
554 }
555
556 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
557 *
558 * "The shift operators (<<) and (>>). For both operators, the operands
559 * must be signed or unsigned integers or integer vectors. One operand
560 * can be signed while the other is unsigned."
561 */
562 if (!type_a->is_integer()) {
563 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
564 "integer vector", ast_expression::operator_string(op));
565 return glsl_type::error_type;
566
567 }
568 if (!type_b->is_integer()) {
569 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
570 "integer vector", ast_expression::operator_string(op));
571 return glsl_type::error_type;
572 }
573
574 /* "If the first operand is a scalar, the second operand has to be
575 * a scalar as well."
576 */
577 if (type_a->is_scalar() && !type_b->is_scalar()) {
578 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
579 "second must be scalar as well",
580 ast_expression::operator_string(op));
581 return glsl_type::error_type;
582 }
583
584 /* If both operands are vectors, check that they have same number of
585 * elements.
586 */
587 if (type_a->is_vector() &&
588 type_b->is_vector() &&
589 type_a->vector_elements != type_b->vector_elements) {
590 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
591 "have same number of elements",
592 ast_expression::operator_string(op));
593 return glsl_type::error_type;
594 }
595
596 /* "In all cases, the resulting type will be the same type as the left
597 * operand."
598 */
599 return type_a;
600 }
601
602 /**
603 * Validates that a value can be assigned to a location with a specified type
604 *
605 * Validates that \c rhs can be assigned to some location. If the types are
606 * not an exact match but an automatic conversion is possible, \c rhs will be
607 * converted.
608 *
609 * \return
610 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
611 * Otherwise the actual RHS to be assigned will be returned. This may be
612 * \c rhs, or it may be \c rhs after some type conversion.
613 *
614 * \note
615 * In addition to being used for assignments, this function is used to
616 * type-check return values.
617 */
618 ir_rvalue *
619 validate_assignment(struct _mesa_glsl_parse_state *state,
620 const glsl_type *lhs_type, ir_rvalue *rhs,
621 bool is_initializer)
622 {
623 /* If there is already some error in the RHS, just return it. Anything
624 * else will lead to an avalanche of error message back to the user.
625 */
626 if (rhs->type->is_error())
627 return rhs;
628
629 /* If the types are identical, the assignment can trivially proceed.
630 */
631 if (rhs->type == lhs_type)
632 return rhs;
633
634 /* If the array element types are the same and the size of the LHS is zero,
635 * the assignment is okay for initializers embedded in variable
636 * declarations.
637 *
638 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
639 * is handled by ir_dereference::is_lvalue.
640 */
641 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
642 && (lhs_type->element_type() == rhs->type->element_type())
643 && (lhs_type->array_size() == 0)) {
644 return rhs;
645 }
646
647 /* Check for implicit conversion in GLSL 1.20 */
648 if (apply_implicit_conversion(lhs_type, rhs, state)) {
649 if (rhs->type == lhs_type)
650 return rhs;
651 }
652
653 return NULL;
654 }
655
656 ir_rvalue *
657 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
658 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
659 YYLTYPE lhs_loc)
660 {
661 void *ctx = state;
662 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
663
664 if (!error_emitted) {
665 if (lhs->variable_referenced() != NULL
666 && lhs->variable_referenced()->read_only) {
667 _mesa_glsl_error(&lhs_loc, state,
668 "assignment to read-only variable '%s'",
669 lhs->variable_referenced()->name);
670 error_emitted = true;
671
672 } else if (!lhs->is_lvalue()) {
673 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
674 error_emitted = true;
675 }
676
677 if (state->es_shader && lhs->type->is_array()) {
678 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
679 "allowed in GLSL ES 1.00.");
680 error_emitted = true;
681 }
682 }
683
684 ir_rvalue *new_rhs =
685 validate_assignment(state, lhs->type, rhs, is_initializer);
686 if (new_rhs == NULL) {
687 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
688 } else {
689 rhs = new_rhs;
690
691 /* If the LHS array was not declared with a size, it takes it size from
692 * the RHS. If the LHS is an l-value and a whole array, it must be a
693 * dereference of a variable. Any other case would require that the LHS
694 * is either not an l-value or not a whole array.
695 */
696 if (lhs->type->array_size() == 0) {
697 ir_dereference *const d = lhs->as_dereference();
698
699 assert(d != NULL);
700
701 ir_variable *const var = d->variable_referenced();
702
703 assert(var != NULL);
704
705 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
706 /* FINISHME: This should actually log the location of the RHS. */
707 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
708 "previous access",
709 var->max_array_access);
710 }
711
712 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
713 rhs->type->array_size());
714 d->type = var->type;
715 }
716 }
717
718 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
719 * but not post_inc) need the converted assigned value as an rvalue
720 * to handle things like:
721 *
722 * i = j += 1;
723 *
724 * So we always just store the computed value being assigned to a
725 * temporary and return a deref of that temporary. If the rvalue
726 * ends up not being used, the temp will get copy-propagated out.
727 */
728 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
729 ir_var_temporary);
730 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
731 instructions->push_tail(var);
732 instructions->push_tail(new(ctx) ir_assignment(deref_var,
733 rhs,
734 NULL));
735 deref_var = new(ctx) ir_dereference_variable(var);
736
737 if (!error_emitted)
738 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
739
740 return new(ctx) ir_dereference_variable(var);
741 }
742
743 static ir_rvalue *
744 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
745 {
746 void *ctx = ralloc_parent(lvalue);
747 ir_variable *var;
748
749 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
750 ir_var_temporary);
751 instructions->push_tail(var);
752 var->mode = ir_var_auto;
753
754 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
755 lvalue, NULL));
756
757 /* Once we've created this temporary, mark it read only so it's no
758 * longer considered an lvalue.
759 */
760 var->read_only = true;
761
762 return new(ctx) ir_dereference_variable(var);
763 }
764
765
766 ir_rvalue *
767 ast_node::hir(exec_list *instructions,
768 struct _mesa_glsl_parse_state *state)
769 {
770 (void) instructions;
771 (void) state;
772
773 return NULL;
774 }
775
776 static void
777 mark_whole_array_access(ir_rvalue *access)
778 {
779 ir_dereference_variable *deref = access->as_dereference_variable();
780
781 if (deref) {
782 deref->var->max_array_access = deref->type->length - 1;
783 }
784 }
785
786 static ir_rvalue *
787 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
788 {
789 int join_op;
790 ir_rvalue *cmp = NULL;
791
792 if (operation == ir_binop_all_equal)
793 join_op = ir_binop_logic_and;
794 else
795 join_op = ir_binop_logic_or;
796
797 switch (op0->type->base_type) {
798 case GLSL_TYPE_FLOAT:
799 case GLSL_TYPE_UINT:
800 case GLSL_TYPE_INT:
801 case GLSL_TYPE_BOOL:
802 return new(mem_ctx) ir_expression(operation, op0, op1);
803
804 case GLSL_TYPE_ARRAY: {
805 for (unsigned int i = 0; i < op0->type->length; i++) {
806 ir_rvalue *e0, *e1, *result;
807
808 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
809 new(mem_ctx) ir_constant(i));
810 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
811 new(mem_ctx) ir_constant(i));
812 result = do_comparison(mem_ctx, operation, e0, e1);
813
814 if (cmp) {
815 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
816 } else {
817 cmp = result;
818 }
819 }
820
821 mark_whole_array_access(op0);
822 mark_whole_array_access(op1);
823 break;
824 }
825
826 case GLSL_TYPE_STRUCT: {
827 for (unsigned int i = 0; i < op0->type->length; i++) {
828 ir_rvalue *e0, *e1, *result;
829 const char *field_name = op0->type->fields.structure[i].name;
830
831 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
832 field_name);
833 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
834 field_name);
835 result = do_comparison(mem_ctx, operation, e0, e1);
836
837 if (cmp) {
838 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
839 } else {
840 cmp = result;
841 }
842 }
843 break;
844 }
845
846 case GLSL_TYPE_ERROR:
847 case GLSL_TYPE_VOID:
848 case GLSL_TYPE_SAMPLER:
849 /* I assume a comparison of a struct containing a sampler just
850 * ignores the sampler present in the type.
851 */
852 break;
853
854 default:
855 assert(!"Should not get here.");
856 break;
857 }
858
859 if (cmp == NULL)
860 cmp = new(mem_ctx) ir_constant(true);
861
862 return cmp;
863 }
864
865 /* For logical operations, we want to ensure that the operands are
866 * scalar booleans. If it isn't, emit an error and return a constant
867 * boolean to avoid triggering cascading error messages.
868 */
869 ir_rvalue *
870 get_scalar_boolean_operand(exec_list *instructions,
871 struct _mesa_glsl_parse_state *state,
872 ast_expression *parent_expr,
873 int operand,
874 const char *operand_name,
875 bool *error_emitted)
876 {
877 ast_expression *expr = parent_expr->subexpressions[operand];
878 void *ctx = state;
879 ir_rvalue *val = expr->hir(instructions, state);
880
881 if (val->type->is_boolean() && val->type->is_scalar())
882 return val;
883
884 if (!*error_emitted) {
885 YYLTYPE loc = expr->get_location();
886 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
887 operand_name,
888 parent_expr->operator_string(parent_expr->oper));
889 *error_emitted = true;
890 }
891
892 return new(ctx) ir_constant(true);
893 }
894
895 ir_rvalue *
896 ast_expression::hir(exec_list *instructions,
897 struct _mesa_glsl_parse_state *state)
898 {
899 void *ctx = state;
900 static const int operations[AST_NUM_OPERATORS] = {
901 -1, /* ast_assign doesn't convert to ir_expression. */
902 -1, /* ast_plus doesn't convert to ir_expression. */
903 ir_unop_neg,
904 ir_binop_add,
905 ir_binop_sub,
906 ir_binop_mul,
907 ir_binop_div,
908 ir_binop_mod,
909 ir_binop_lshift,
910 ir_binop_rshift,
911 ir_binop_less,
912 ir_binop_greater,
913 ir_binop_lequal,
914 ir_binop_gequal,
915 ir_binop_all_equal,
916 ir_binop_any_nequal,
917 ir_binop_bit_and,
918 ir_binop_bit_xor,
919 ir_binop_bit_or,
920 ir_unop_bit_not,
921 ir_binop_logic_and,
922 ir_binop_logic_xor,
923 ir_binop_logic_or,
924 ir_unop_logic_not,
925
926 /* Note: The following block of expression types actually convert
927 * to multiple IR instructions.
928 */
929 ir_binop_mul, /* ast_mul_assign */
930 ir_binop_div, /* ast_div_assign */
931 ir_binop_mod, /* ast_mod_assign */
932 ir_binop_add, /* ast_add_assign */
933 ir_binop_sub, /* ast_sub_assign */
934 ir_binop_lshift, /* ast_ls_assign */
935 ir_binop_rshift, /* ast_rs_assign */
936 ir_binop_bit_and, /* ast_and_assign */
937 ir_binop_bit_xor, /* ast_xor_assign */
938 ir_binop_bit_or, /* ast_or_assign */
939
940 -1, /* ast_conditional doesn't convert to ir_expression. */
941 ir_binop_add, /* ast_pre_inc. */
942 ir_binop_sub, /* ast_pre_dec. */
943 ir_binop_add, /* ast_post_inc. */
944 ir_binop_sub, /* ast_post_dec. */
945 -1, /* ast_field_selection doesn't conv to ir_expression. */
946 -1, /* ast_array_index doesn't convert to ir_expression. */
947 -1, /* ast_function_call doesn't conv to ir_expression. */
948 -1, /* ast_identifier doesn't convert to ir_expression. */
949 -1, /* ast_int_constant doesn't convert to ir_expression. */
950 -1, /* ast_uint_constant doesn't conv to ir_expression. */
951 -1, /* ast_float_constant doesn't conv to ir_expression. */
952 -1, /* ast_bool_constant doesn't conv to ir_expression. */
953 -1, /* ast_sequence doesn't convert to ir_expression. */
954 };
955 ir_rvalue *result = NULL;
956 ir_rvalue *op[3];
957 const struct glsl_type *type; /* a temporary variable for switch cases */
958 bool error_emitted = false;
959 YYLTYPE loc;
960
961 loc = this->get_location();
962
963 switch (this->oper) {
964 case ast_assign: {
965 op[0] = this->subexpressions[0]->hir(instructions, state);
966 op[1] = this->subexpressions[1]->hir(instructions, state);
967
968 result = do_assignment(instructions, state, op[0], op[1], false,
969 this->subexpressions[0]->get_location());
970 error_emitted = result->type->is_error();
971 break;
972 }
973
974 case ast_plus:
975 op[0] = this->subexpressions[0]->hir(instructions, state);
976
977 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
978
979 error_emitted = type->is_error();
980
981 result = op[0];
982 break;
983
984 case ast_neg:
985 op[0] = this->subexpressions[0]->hir(instructions, state);
986
987 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
988
989 error_emitted = type->is_error();
990
991 result = new(ctx) ir_expression(operations[this->oper], type,
992 op[0], NULL);
993 break;
994
995 case ast_add:
996 case ast_sub:
997 case ast_mul:
998 case ast_div:
999 op[0] = this->subexpressions[0]->hir(instructions, state);
1000 op[1] = this->subexpressions[1]->hir(instructions, state);
1001
1002 type = arithmetic_result_type(op[0], op[1],
1003 (this->oper == ast_mul),
1004 state, & loc);
1005 error_emitted = type->is_error();
1006
1007 result = new(ctx) ir_expression(operations[this->oper], type,
1008 op[0], op[1]);
1009 break;
1010
1011 case ast_mod:
1012 op[0] = this->subexpressions[0]->hir(instructions, state);
1013 op[1] = this->subexpressions[1]->hir(instructions, state);
1014
1015 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1016
1017 assert(operations[this->oper] == ir_binop_mod);
1018
1019 result = new(ctx) ir_expression(operations[this->oper], type,
1020 op[0], op[1]);
1021 error_emitted = type->is_error();
1022 break;
1023
1024 case ast_lshift:
1025 case ast_rshift:
1026 if (state->language_version < 130) {
1027 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1028 operator_string(this->oper));
1029 error_emitted = true;
1030 }
1031
1032 op[0] = this->subexpressions[0]->hir(instructions, state);
1033 op[1] = this->subexpressions[1]->hir(instructions, state);
1034 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1035 &loc);
1036 result = new(ctx) ir_expression(operations[this->oper], type,
1037 op[0], op[1]);
1038 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1039 break;
1040
1041 case ast_less:
1042 case ast_greater:
1043 case ast_lequal:
1044 case ast_gequal:
1045 op[0] = this->subexpressions[0]->hir(instructions, state);
1046 op[1] = this->subexpressions[1]->hir(instructions, state);
1047
1048 type = relational_result_type(op[0], op[1], state, & loc);
1049
1050 /* The relational operators must either generate an error or result
1051 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1052 */
1053 assert(type->is_error()
1054 || ((type->base_type == GLSL_TYPE_BOOL)
1055 && type->is_scalar()));
1056
1057 result = new(ctx) ir_expression(operations[this->oper], type,
1058 op[0], op[1]);
1059 error_emitted = type->is_error();
1060 break;
1061
1062 case ast_nequal:
1063 case ast_equal:
1064 op[0] = this->subexpressions[0]->hir(instructions, state);
1065 op[1] = this->subexpressions[1]->hir(instructions, state);
1066
1067 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1068 *
1069 * "The equality operators equal (==), and not equal (!=)
1070 * operate on all types. They result in a scalar Boolean. If
1071 * the operand types do not match, then there must be a
1072 * conversion from Section 4.1.10 "Implicit Conversions"
1073 * applied to one operand that can make them match, in which
1074 * case this conversion is done."
1075 */
1076 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1077 && !apply_implicit_conversion(op[1]->type, op[0], state))
1078 || (op[0]->type != op[1]->type)) {
1079 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1080 "type", (this->oper == ast_equal) ? "==" : "!=");
1081 error_emitted = true;
1082 } else if ((state->language_version <= 110)
1083 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1084 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1085 "GLSL 1.10");
1086 error_emitted = true;
1087 }
1088
1089 if (error_emitted) {
1090 result = new(ctx) ir_constant(false);
1091 } else {
1092 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1093 assert(result->type == glsl_type::bool_type);
1094 }
1095 break;
1096
1097 case ast_bit_and:
1098 case ast_bit_xor:
1099 case ast_bit_or:
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101 op[1] = this->subexpressions[1]->hir(instructions, state);
1102 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1103 state, &loc);
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], op[1]);
1106 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1107 break;
1108
1109 case ast_bit_not:
1110 op[0] = this->subexpressions[0]->hir(instructions, state);
1111
1112 if (state->language_version < 130) {
1113 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1114 error_emitted = true;
1115 }
1116
1117 if (!op[0]->type->is_integer()) {
1118 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1119 error_emitted = true;
1120 }
1121
1122 type = op[0]->type;
1123 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1124 break;
1125
1126 case ast_logic_and: {
1127 exec_list rhs_instructions;
1128 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1129 "LHS", &error_emitted);
1130 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1131 "RHS", &error_emitted);
1132
1133 ir_constant *op0_const = op[0]->constant_expression_value();
1134 if (op0_const) {
1135 if (op0_const->value.b[0]) {
1136 instructions->append_list(&rhs_instructions);
1137 result = op[1];
1138 } else {
1139 result = op0_const;
1140 }
1141 type = glsl_type::bool_type;
1142 } else {
1143 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1144 "and_tmp",
1145 ir_var_temporary);
1146 instructions->push_tail(tmp);
1147
1148 ir_if *const stmt = new(ctx) ir_if(op[0]);
1149 instructions->push_tail(stmt);
1150
1151 stmt->then_instructions.append_list(&rhs_instructions);
1152 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1153 ir_assignment *const then_assign =
1154 new(ctx) ir_assignment(then_deref, op[1], NULL);
1155 stmt->then_instructions.push_tail(then_assign);
1156
1157 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1158 ir_assignment *const else_assign =
1159 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1160 stmt->else_instructions.push_tail(else_assign);
1161
1162 result = new(ctx) ir_dereference_variable(tmp);
1163 type = tmp->type;
1164 }
1165 break;
1166 }
1167
1168 case ast_logic_or: {
1169 exec_list rhs_instructions;
1170 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1171 "LHS", &error_emitted);
1172 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1173 "RHS", &error_emitted);
1174
1175 ir_constant *op0_const = op[0]->constant_expression_value();
1176 if (op0_const) {
1177 if (op0_const->value.b[0]) {
1178 result = op0_const;
1179 } else {
1180 result = op[1];
1181 }
1182 type = glsl_type::bool_type;
1183 } else {
1184 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1185 "or_tmp",
1186 ir_var_temporary);
1187 instructions->push_tail(tmp);
1188
1189 ir_if *const stmt = new(ctx) ir_if(op[0]);
1190 instructions->push_tail(stmt);
1191
1192 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1193 ir_assignment *const then_assign =
1194 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1195 stmt->then_instructions.push_tail(then_assign);
1196
1197 stmt->else_instructions.append_list(&rhs_instructions);
1198 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1199 ir_assignment *const else_assign =
1200 new(ctx) ir_assignment(else_deref, op[1], NULL);
1201 stmt->else_instructions.push_tail(else_assign);
1202
1203 result = new(ctx) ir_dereference_variable(tmp);
1204 type = tmp->type;
1205 }
1206 break;
1207 }
1208
1209 case ast_logic_xor:
1210 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1211 *
1212 * "The logical binary operators and (&&), or ( | | ), and
1213 * exclusive or (^^). They operate only on two Boolean
1214 * expressions and result in a Boolean expression."
1215 */
1216 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1217 &error_emitted);
1218 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1219 &error_emitted);
1220
1221 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1222 op[0], op[1]);
1223 break;
1224
1225 case ast_logic_not:
1226 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1227 "operand", &error_emitted);
1228
1229 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1230 op[0], NULL);
1231 break;
1232
1233 case ast_mul_assign:
1234 case ast_div_assign:
1235 case ast_add_assign:
1236 case ast_sub_assign: {
1237 op[0] = this->subexpressions[0]->hir(instructions, state);
1238 op[1] = this->subexpressions[1]->hir(instructions, state);
1239
1240 type = arithmetic_result_type(op[0], op[1],
1241 (this->oper == ast_mul_assign),
1242 state, & loc);
1243
1244 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1245 op[0], op[1]);
1246
1247 result = do_assignment(instructions, state,
1248 op[0]->clone(ctx, NULL), temp_rhs, false,
1249 this->subexpressions[0]->get_location());
1250 error_emitted = (op[0]->type->is_error());
1251
1252 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1253 * explicitly test for this because none of the binary expression
1254 * operators allow array operands either.
1255 */
1256
1257 break;
1258 }
1259
1260 case ast_mod_assign: {
1261 op[0] = this->subexpressions[0]->hir(instructions, state);
1262 op[1] = this->subexpressions[1]->hir(instructions, state);
1263
1264 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1265
1266 assert(operations[this->oper] == ir_binop_mod);
1267
1268 ir_rvalue *temp_rhs;
1269 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1270 op[0], op[1]);
1271
1272 result = do_assignment(instructions, state,
1273 op[0]->clone(ctx, NULL), temp_rhs, false,
1274 this->subexpressions[0]->get_location());
1275 error_emitted = type->is_error();
1276 break;
1277 }
1278
1279 case ast_ls_assign:
1280 case ast_rs_assign: {
1281 op[0] = this->subexpressions[0]->hir(instructions, state);
1282 op[1] = this->subexpressions[1]->hir(instructions, state);
1283 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1284 &loc);
1285 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1286 type, op[0], op[1]);
1287 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1288 temp_rhs, false,
1289 this->subexpressions[0]->get_location());
1290 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1291 break;
1292 }
1293
1294 case ast_and_assign:
1295 case ast_xor_assign:
1296 case ast_or_assign: {
1297 op[0] = this->subexpressions[0]->hir(instructions, state);
1298 op[1] = this->subexpressions[1]->hir(instructions, state);
1299 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1300 state, &loc);
1301 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1302 type, op[0], op[1]);
1303 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1304 temp_rhs, false,
1305 this->subexpressions[0]->get_location());
1306 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1307 break;
1308 }
1309
1310 case ast_conditional: {
1311 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1312 *
1313 * "The ternary selection operator (?:). It operates on three
1314 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1315 * first expression, which must result in a scalar Boolean."
1316 */
1317 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1318 "condition", &error_emitted);
1319
1320 /* The :? operator is implemented by generating an anonymous temporary
1321 * followed by an if-statement. The last instruction in each branch of
1322 * the if-statement assigns a value to the anonymous temporary. This
1323 * temporary is the r-value of the expression.
1324 */
1325 exec_list then_instructions;
1326 exec_list else_instructions;
1327
1328 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1329 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1330
1331 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1332 *
1333 * "The second and third expressions can be any type, as
1334 * long their types match, or there is a conversion in
1335 * Section 4.1.10 "Implicit Conversions" that can be applied
1336 * to one of the expressions to make their types match. This
1337 * resulting matching type is the type of the entire
1338 * expression."
1339 */
1340 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1341 && !apply_implicit_conversion(op[2]->type, op[1], state))
1342 || (op[1]->type != op[2]->type)) {
1343 YYLTYPE loc = this->subexpressions[1]->get_location();
1344
1345 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1346 "operator must have matching types.");
1347 error_emitted = true;
1348 type = glsl_type::error_type;
1349 } else {
1350 type = op[1]->type;
1351 }
1352
1353 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1354 *
1355 * "The second and third expressions must be the same type, but can
1356 * be of any type other than an array."
1357 */
1358 if ((state->language_version <= 110) && type->is_array()) {
1359 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1360 "operator must not be arrays.");
1361 error_emitted = true;
1362 }
1363
1364 ir_constant *cond_val = op[0]->constant_expression_value();
1365 ir_constant *then_val = op[1]->constant_expression_value();
1366 ir_constant *else_val = op[2]->constant_expression_value();
1367
1368 if (then_instructions.is_empty()
1369 && else_instructions.is_empty()
1370 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1371 result = (cond_val->value.b[0]) ? then_val : else_val;
1372 } else {
1373 ir_variable *const tmp =
1374 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1375 instructions->push_tail(tmp);
1376
1377 ir_if *const stmt = new(ctx) ir_if(op[0]);
1378 instructions->push_tail(stmt);
1379
1380 then_instructions.move_nodes_to(& stmt->then_instructions);
1381 ir_dereference *const then_deref =
1382 new(ctx) ir_dereference_variable(tmp);
1383 ir_assignment *const then_assign =
1384 new(ctx) ir_assignment(then_deref, op[1], NULL);
1385 stmt->then_instructions.push_tail(then_assign);
1386
1387 else_instructions.move_nodes_to(& stmt->else_instructions);
1388 ir_dereference *const else_deref =
1389 new(ctx) ir_dereference_variable(tmp);
1390 ir_assignment *const else_assign =
1391 new(ctx) ir_assignment(else_deref, op[2], NULL);
1392 stmt->else_instructions.push_tail(else_assign);
1393
1394 result = new(ctx) ir_dereference_variable(tmp);
1395 }
1396 break;
1397 }
1398
1399 case ast_pre_inc:
1400 case ast_pre_dec: {
1401 op[0] = this->subexpressions[0]->hir(instructions, state);
1402 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1403 op[1] = new(ctx) ir_constant(1.0f);
1404 else
1405 op[1] = new(ctx) ir_constant(1);
1406
1407 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1408
1409 ir_rvalue *temp_rhs;
1410 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1411 op[0], op[1]);
1412
1413 result = do_assignment(instructions, state,
1414 op[0]->clone(ctx, NULL), temp_rhs, false,
1415 this->subexpressions[0]->get_location());
1416 error_emitted = op[0]->type->is_error();
1417 break;
1418 }
1419
1420 case ast_post_inc:
1421 case ast_post_dec: {
1422 op[0] = this->subexpressions[0]->hir(instructions, state);
1423 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1424 op[1] = new(ctx) ir_constant(1.0f);
1425 else
1426 op[1] = new(ctx) ir_constant(1);
1427
1428 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1429
1430 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1431
1432 ir_rvalue *temp_rhs;
1433 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1434 op[0], op[1]);
1435
1436 /* Get a temporary of a copy of the lvalue before it's modified.
1437 * This may get thrown away later.
1438 */
1439 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1440
1441 (void)do_assignment(instructions, state,
1442 op[0]->clone(ctx, NULL), temp_rhs, false,
1443 this->subexpressions[0]->get_location());
1444
1445 error_emitted = op[0]->type->is_error();
1446 break;
1447 }
1448
1449 case ast_field_selection:
1450 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1451 break;
1452
1453 case ast_array_index: {
1454 YYLTYPE index_loc = subexpressions[1]->get_location();
1455
1456 op[0] = subexpressions[0]->hir(instructions, state);
1457 op[1] = subexpressions[1]->hir(instructions, state);
1458
1459 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1460
1461 ir_rvalue *const array = op[0];
1462
1463 result = new(ctx) ir_dereference_array(op[0], op[1]);
1464
1465 /* Do not use op[0] after this point. Use array.
1466 */
1467 op[0] = NULL;
1468
1469
1470 if (error_emitted)
1471 break;
1472
1473 if (!array->type->is_array()
1474 && !array->type->is_matrix()
1475 && !array->type->is_vector()) {
1476 _mesa_glsl_error(& index_loc, state,
1477 "cannot dereference non-array / non-matrix / "
1478 "non-vector");
1479 error_emitted = true;
1480 }
1481
1482 if (!op[1]->type->is_integer()) {
1483 _mesa_glsl_error(& index_loc, state,
1484 "array index must be integer type");
1485 error_emitted = true;
1486 } else if (!op[1]->type->is_scalar()) {
1487 _mesa_glsl_error(& index_loc, state,
1488 "array index must be scalar");
1489 error_emitted = true;
1490 }
1491
1492 /* If the array index is a constant expression and the array has a
1493 * declared size, ensure that the access is in-bounds. If the array
1494 * index is not a constant expression, ensure that the array has a
1495 * declared size.
1496 */
1497 ir_constant *const const_index = op[1]->constant_expression_value();
1498 if (const_index != NULL) {
1499 const int idx = const_index->value.i[0];
1500 const char *type_name;
1501 unsigned bound = 0;
1502
1503 if (array->type->is_matrix()) {
1504 type_name = "matrix";
1505 } else if (array->type->is_vector()) {
1506 type_name = "vector";
1507 } else {
1508 type_name = "array";
1509 }
1510
1511 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1512 *
1513 * "It is illegal to declare an array with a size, and then
1514 * later (in the same shader) index the same array with an
1515 * integral constant expression greater than or equal to the
1516 * declared size. It is also illegal to index an array with a
1517 * negative constant expression."
1518 */
1519 if (array->type->is_matrix()) {
1520 if (array->type->row_type()->vector_elements <= idx) {
1521 bound = array->type->row_type()->vector_elements;
1522 }
1523 } else if (array->type->is_vector()) {
1524 if (array->type->vector_elements <= idx) {
1525 bound = array->type->vector_elements;
1526 }
1527 } else {
1528 if ((array->type->array_size() > 0)
1529 && (array->type->array_size() <= idx)) {
1530 bound = array->type->array_size();
1531 }
1532 }
1533
1534 if (bound > 0) {
1535 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1536 type_name, bound);
1537 error_emitted = true;
1538 } else if (idx < 0) {
1539 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1540 type_name);
1541 error_emitted = true;
1542 }
1543
1544 if (array->type->is_array()) {
1545 /* If the array is a variable dereference, it dereferences the
1546 * whole array, by definition. Use this to get the variable.
1547 *
1548 * FINISHME: Should some methods for getting / setting / testing
1549 * FINISHME: array access limits be added to ir_dereference?
1550 */
1551 ir_variable *const v = array->whole_variable_referenced();
1552 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1553 v->max_array_access = idx;
1554 }
1555 } else if (array->type->array_size() == 0) {
1556 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1557 } else {
1558 if (array->type->is_array()) {
1559 /* whole_variable_referenced can return NULL if the array is a
1560 * member of a structure. In this case it is safe to not update
1561 * the max_array_access field because it is never used for fields
1562 * of structures.
1563 */
1564 ir_variable *v = array->whole_variable_referenced();
1565 if (v != NULL)
1566 v->max_array_access = array->type->array_size() - 1;
1567 }
1568 }
1569
1570 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1571 *
1572 * "Samplers aggregated into arrays within a shader (using square
1573 * brackets [ ]) can only be indexed with integral constant
1574 * expressions [...]."
1575 *
1576 * This restriction was added in GLSL 1.30. Shaders using earlier version
1577 * of the language should not be rejected by the compiler front-end for
1578 * using this construct. This allows useful things such as using a loop
1579 * counter as the index to an array of samplers. If the loop in unrolled,
1580 * the code should compile correctly. Instead, emit a warning.
1581 */
1582 if (array->type->is_array() &&
1583 array->type->element_type()->is_sampler() &&
1584 const_index == NULL) {
1585
1586 if (state->language_version == 100) {
1587 _mesa_glsl_warning(&loc, state,
1588 "sampler arrays indexed with non-constant "
1589 "expressions is optional in GLSL ES 1.00");
1590 } else if (state->language_version < 130) {
1591 _mesa_glsl_warning(&loc, state,
1592 "sampler arrays indexed with non-constant "
1593 "expressions is forbidden in GLSL 1.30 and "
1594 "later");
1595 } else {
1596 _mesa_glsl_error(&loc, state,
1597 "sampler arrays indexed with non-constant "
1598 "expressions is forbidden in GLSL 1.30 and "
1599 "later");
1600 error_emitted = true;
1601 }
1602 }
1603
1604 if (error_emitted)
1605 result->type = glsl_type::error_type;
1606
1607 break;
1608 }
1609
1610 case ast_function_call:
1611 /* Should *NEVER* get here. ast_function_call should always be handled
1612 * by ast_function_expression::hir.
1613 */
1614 assert(0);
1615 break;
1616
1617 case ast_identifier: {
1618 /* ast_identifier can appear several places in a full abstract syntax
1619 * tree. This particular use must be at location specified in the grammar
1620 * as 'variable_identifier'.
1621 */
1622 ir_variable *var =
1623 state->symbols->get_variable(this->primary_expression.identifier);
1624
1625 result = new(ctx) ir_dereference_variable(var);
1626
1627 if (var != NULL) {
1628 var->used = true;
1629 } else {
1630 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1631 this->primary_expression.identifier);
1632
1633 error_emitted = true;
1634 }
1635 break;
1636 }
1637
1638 case ast_int_constant:
1639 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1640 break;
1641
1642 case ast_uint_constant:
1643 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1644 break;
1645
1646 case ast_float_constant:
1647 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1648 break;
1649
1650 case ast_bool_constant:
1651 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1652 break;
1653
1654 case ast_sequence: {
1655 /* It should not be possible to generate a sequence in the AST without
1656 * any expressions in it.
1657 */
1658 assert(!this->expressions.is_empty());
1659
1660 /* The r-value of a sequence is the last expression in the sequence. If
1661 * the other expressions in the sequence do not have side-effects (and
1662 * therefore add instructions to the instruction list), they get dropped
1663 * on the floor.
1664 */
1665 exec_node *previous_tail_pred = NULL;
1666 YYLTYPE previous_operand_loc = loc;
1667
1668 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1669 /* If one of the operands of comma operator does not generate any
1670 * code, we want to emit a warning. At each pass through the loop
1671 * previous_tail_pred will point to the last instruction in the
1672 * stream *before* processing the previous operand. Naturally,
1673 * instructions->tail_pred will point to the last instruction in the
1674 * stream *after* processing the previous operand. If the two
1675 * pointers match, then the previous operand had no effect.
1676 *
1677 * The warning behavior here differs slightly from GCC. GCC will
1678 * only emit a warning if none of the left-hand operands have an
1679 * effect. However, it will emit a warning for each. I believe that
1680 * there are some cases in C (especially with GCC extensions) where
1681 * it is useful to have an intermediate step in a sequence have no
1682 * effect, but I don't think these cases exist in GLSL. Either way,
1683 * it would be a giant hassle to replicate that behavior.
1684 */
1685 if (previous_tail_pred == instructions->tail_pred) {
1686 _mesa_glsl_warning(&previous_operand_loc, state,
1687 "left-hand operand of comma expression has "
1688 "no effect");
1689 }
1690
1691 /* tail_pred is directly accessed instead of using the get_tail()
1692 * method for performance reasons. get_tail() has extra code to
1693 * return NULL when the list is empty. We don't care about that
1694 * here, so using tail_pred directly is fine.
1695 */
1696 previous_tail_pred = instructions->tail_pred;
1697 previous_operand_loc = ast->get_location();
1698
1699 result = ast->hir(instructions, state);
1700 }
1701
1702 /* Any errors should have already been emitted in the loop above.
1703 */
1704 error_emitted = true;
1705 break;
1706 }
1707 }
1708 type = NULL; /* use result->type, not type. */
1709 assert(result != NULL);
1710
1711 if (result->type->is_error() && !error_emitted)
1712 _mesa_glsl_error(& loc, state, "type mismatch");
1713
1714 return result;
1715 }
1716
1717
1718 ir_rvalue *
1719 ast_expression_statement::hir(exec_list *instructions,
1720 struct _mesa_glsl_parse_state *state)
1721 {
1722 /* It is possible to have expression statements that don't have an
1723 * expression. This is the solitary semicolon:
1724 *
1725 * for (i = 0; i < 5; i++)
1726 * ;
1727 *
1728 * In this case the expression will be NULL. Test for NULL and don't do
1729 * anything in that case.
1730 */
1731 if (expression != NULL)
1732 expression->hir(instructions, state);
1733
1734 /* Statements do not have r-values.
1735 */
1736 return NULL;
1737 }
1738
1739
1740 ir_rvalue *
1741 ast_compound_statement::hir(exec_list *instructions,
1742 struct _mesa_glsl_parse_state *state)
1743 {
1744 if (new_scope)
1745 state->symbols->push_scope();
1746
1747 foreach_list_typed (ast_node, ast, link, &this->statements)
1748 ast->hir(instructions, state);
1749
1750 if (new_scope)
1751 state->symbols->pop_scope();
1752
1753 /* Compound statements do not have r-values.
1754 */
1755 return NULL;
1756 }
1757
1758
1759 static const glsl_type *
1760 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1761 struct _mesa_glsl_parse_state *state)
1762 {
1763 unsigned length = 0;
1764
1765 /* FINISHME: Reject delcarations of multidimensional arrays. */
1766
1767 if (array_size != NULL) {
1768 exec_list dummy_instructions;
1769 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1770 YYLTYPE loc = array_size->get_location();
1771
1772 if (ir != NULL) {
1773 if (!ir->type->is_integer()) {
1774 _mesa_glsl_error(& loc, state, "array size must be integer type");
1775 } else if (!ir->type->is_scalar()) {
1776 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1777 } else {
1778 ir_constant *const size = ir->constant_expression_value();
1779
1780 if (size == NULL) {
1781 _mesa_glsl_error(& loc, state, "array size must be a "
1782 "constant valued expression");
1783 } else if (size->value.i[0] <= 0) {
1784 _mesa_glsl_error(& loc, state, "array size must be > 0");
1785 } else {
1786 assert(size->type == ir->type);
1787 length = size->value.u[0];
1788
1789 /* If the array size is const (and we've verified that
1790 * it is) then no instructions should have been emitted
1791 * when we converted it to HIR. If they were emitted,
1792 * then either the array size isn't const after all, or
1793 * we are emitting unnecessary instructions.
1794 */
1795 assert(dummy_instructions.is_empty());
1796 }
1797 }
1798 }
1799 } else if (state->es_shader) {
1800 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1801 * array declarations have been removed from the language.
1802 */
1803 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1804 "allowed in GLSL ES 1.00.");
1805 }
1806
1807 return glsl_type::get_array_instance(base, length);
1808 }
1809
1810
1811 const glsl_type *
1812 ast_type_specifier::glsl_type(const char **name,
1813 struct _mesa_glsl_parse_state *state) const
1814 {
1815 const struct glsl_type *type;
1816
1817 type = state->symbols->get_type(this->type_name);
1818 *name = this->type_name;
1819
1820 if (this->is_array) {
1821 YYLTYPE loc = this->get_location();
1822 type = process_array_type(&loc, type, this->array_size, state);
1823 }
1824
1825 return type;
1826 }
1827
1828
1829 static void
1830 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1831 ir_variable *var,
1832 struct _mesa_glsl_parse_state *state,
1833 YYLTYPE *loc)
1834 {
1835 if (qual->flags.q.invariant) {
1836 if (var->used) {
1837 _mesa_glsl_error(loc, state,
1838 "variable `%s' may not be redeclared "
1839 "`invariant' after being used",
1840 var->name);
1841 } else {
1842 var->invariant = 1;
1843 }
1844 }
1845
1846 if (qual->flags.q.constant || qual->flags.q.attribute
1847 || qual->flags.q.uniform
1848 || (qual->flags.q.varying && (state->target == fragment_shader)))
1849 var->read_only = 1;
1850
1851 if (qual->flags.q.centroid)
1852 var->centroid = 1;
1853
1854 if (qual->flags.q.attribute && state->target != vertex_shader) {
1855 var->type = glsl_type::error_type;
1856 _mesa_glsl_error(loc, state,
1857 "`attribute' variables may not be declared in the "
1858 "%s shader",
1859 _mesa_glsl_shader_target_name(state->target));
1860 }
1861
1862 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1863 *
1864 * "The varying qualifier can be used only with the data types
1865 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1866 * these."
1867 */
1868 if (qual->flags.q.varying) {
1869 const glsl_type *non_array_type;
1870
1871 if (var->type && var->type->is_array())
1872 non_array_type = var->type->fields.array;
1873 else
1874 non_array_type = var->type;
1875
1876 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1877 var->type = glsl_type::error_type;
1878 _mesa_glsl_error(loc, state,
1879 "varying variables must be of base type float");
1880 }
1881 }
1882
1883 /* If there is no qualifier that changes the mode of the variable, leave
1884 * the setting alone.
1885 */
1886 if (qual->flags.q.in && qual->flags.q.out)
1887 var->mode = ir_var_inout;
1888 else if (qual->flags.q.attribute || qual->flags.q.in
1889 || (qual->flags.q.varying && (state->target == fragment_shader)))
1890 var->mode = ir_var_in;
1891 else if (qual->flags.q.out
1892 || (qual->flags.q.varying && (state->target == vertex_shader)))
1893 var->mode = ir_var_out;
1894 else if (qual->flags.q.uniform)
1895 var->mode = ir_var_uniform;
1896
1897 if (state->all_invariant && (state->current_function == NULL)) {
1898 switch (state->target) {
1899 case vertex_shader:
1900 if (var->mode == ir_var_out)
1901 var->invariant = true;
1902 break;
1903 case geometry_shader:
1904 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1905 var->invariant = true;
1906 break;
1907 case fragment_shader:
1908 if (var->mode == ir_var_in)
1909 var->invariant = true;
1910 break;
1911 }
1912 }
1913
1914 if (qual->flags.q.flat)
1915 var->interpolation = ir_var_flat;
1916 else if (qual->flags.q.noperspective)
1917 var->interpolation = ir_var_noperspective;
1918 else
1919 var->interpolation = ir_var_smooth;
1920
1921 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1922 var->origin_upper_left = qual->flags.q.origin_upper_left;
1923 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1924 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1925 const char *const qual_string = (qual->flags.q.origin_upper_left)
1926 ? "origin_upper_left" : "pixel_center_integer";
1927
1928 _mesa_glsl_error(loc, state,
1929 "layout qualifier `%s' can only be applied to "
1930 "fragment shader input `gl_FragCoord'",
1931 qual_string);
1932 }
1933
1934 if (qual->flags.q.explicit_location) {
1935 const bool global_scope = (state->current_function == NULL);
1936 bool fail = false;
1937 const char *string = "";
1938
1939 /* In the vertex shader only shader inputs can be given explicit
1940 * locations.
1941 *
1942 * In the fragment shader only shader outputs can be given explicit
1943 * locations.
1944 */
1945 switch (state->target) {
1946 case vertex_shader:
1947 if (!global_scope || (var->mode != ir_var_in)) {
1948 fail = true;
1949 string = "input";
1950 }
1951 break;
1952
1953 case geometry_shader:
1954 _mesa_glsl_error(loc, state,
1955 "geometry shader variables cannot be given "
1956 "explicit locations\n");
1957 break;
1958
1959 case fragment_shader:
1960 if (!global_scope || (var->mode != ir_var_out)) {
1961 fail = true;
1962 string = "output";
1963 }
1964 break;
1965 };
1966
1967 if (fail) {
1968 _mesa_glsl_error(loc, state,
1969 "only %s shader %s variables can be given an "
1970 "explicit location\n",
1971 _mesa_glsl_shader_target_name(state->target),
1972 string);
1973 } else {
1974 var->explicit_location = true;
1975
1976 /* This bit of silliness is needed because invalid explicit locations
1977 * are supposed to be flagged during linking. Small negative values
1978 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1979 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1980 * The linker needs to be able to differentiate these cases. This
1981 * ensures that negative values stay negative.
1982 */
1983 if (qual->location >= 0) {
1984 var->location = (state->target == vertex_shader)
1985 ? (qual->location + VERT_ATTRIB_GENERIC0)
1986 : (qual->location + FRAG_RESULT_DATA0);
1987 } else {
1988 var->location = qual->location;
1989 }
1990 }
1991 }
1992
1993 /* Does the declaration use the 'layout' keyword?
1994 */
1995 const bool uses_layout = qual->flags.q.pixel_center_integer
1996 || qual->flags.q.origin_upper_left
1997 || qual->flags.q.explicit_location;
1998
1999 /* Does the declaration use the deprecated 'attribute' or 'varying'
2000 * keywords?
2001 */
2002 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2003 || qual->flags.q.varying;
2004
2005 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2006 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2007 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2008 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2009 * These extensions and all following extensions that add the 'layout'
2010 * keyword have been modified to require the use of 'in' or 'out'.
2011 *
2012 * The following extension do not allow the deprecated keywords:
2013 *
2014 * GL_AMD_conservative_depth
2015 * GL_ARB_gpu_shader5
2016 * GL_ARB_separate_shader_objects
2017 * GL_ARB_tesselation_shader
2018 * GL_ARB_transform_feedback3
2019 * GL_ARB_uniform_buffer_object
2020 *
2021 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2022 * allow layout with the deprecated keywords.
2023 */
2024 const bool relaxed_layout_qualifier_checking =
2025 state->ARB_fragment_coord_conventions_enable;
2026
2027 if (uses_layout && uses_deprecated_qualifier) {
2028 if (relaxed_layout_qualifier_checking) {
2029 _mesa_glsl_warning(loc, state,
2030 "`layout' qualifier may not be used with "
2031 "`attribute' or `varying'");
2032 } else {
2033 _mesa_glsl_error(loc, state,
2034 "`layout' qualifier may not be used with "
2035 "`attribute' or `varying'");
2036 }
2037 }
2038
2039 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2040 * AMD_conservative_depth.
2041 */
2042 int depth_layout_count = qual->flags.q.depth_any
2043 + qual->flags.q.depth_greater
2044 + qual->flags.q.depth_less
2045 + qual->flags.q.depth_unchanged;
2046 if (depth_layout_count > 0
2047 && !state->AMD_conservative_depth_enable) {
2048 _mesa_glsl_error(loc, state,
2049 "extension GL_AMD_conservative_depth must be enabled "
2050 "to use depth layout qualifiers");
2051 } else if (depth_layout_count > 0
2052 && strcmp(var->name, "gl_FragDepth") != 0) {
2053 _mesa_glsl_error(loc, state,
2054 "depth layout qualifiers can be applied only to "
2055 "gl_FragDepth");
2056 } else if (depth_layout_count > 1
2057 && strcmp(var->name, "gl_FragDepth") == 0) {
2058 _mesa_glsl_error(loc, state,
2059 "at most one depth layout qualifier can be applied to "
2060 "gl_FragDepth");
2061 }
2062 if (qual->flags.q.depth_any)
2063 var->depth_layout = ir_depth_layout_any;
2064 else if (qual->flags.q.depth_greater)
2065 var->depth_layout = ir_depth_layout_greater;
2066 else if (qual->flags.q.depth_less)
2067 var->depth_layout = ir_depth_layout_less;
2068 else if (qual->flags.q.depth_unchanged)
2069 var->depth_layout = ir_depth_layout_unchanged;
2070 else
2071 var->depth_layout = ir_depth_layout_none;
2072
2073 if (var->type->is_array() && state->language_version != 110) {
2074 var->array_lvalue = true;
2075 }
2076 }
2077
2078 /**
2079 * Get the variable that is being redeclared by this declaration
2080 *
2081 * Semantic checks to verify the validity of the redeclaration are also
2082 * performed. If semantic checks fail, compilation error will be emitted via
2083 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2084 *
2085 * \returns
2086 * A pointer to an existing variable in the current scope if the declaration
2087 * is a redeclaration, \c NULL otherwise.
2088 */
2089 ir_variable *
2090 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2091 struct _mesa_glsl_parse_state *state)
2092 {
2093 /* Check if this declaration is actually a re-declaration, either to
2094 * resize an array or add qualifiers to an existing variable.
2095 *
2096 * This is allowed for variables in the current scope, or when at
2097 * global scope (for built-ins in the implicit outer scope).
2098 */
2099 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2100 if (earlier == NULL ||
2101 (state->current_function != NULL &&
2102 !state->symbols->name_declared_this_scope(decl->identifier))) {
2103 return NULL;
2104 }
2105
2106
2107 YYLTYPE loc = decl->get_location();
2108
2109 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2110 *
2111 * "It is legal to declare an array without a size and then
2112 * later re-declare the same name as an array of the same
2113 * type and specify a size."
2114 */
2115 if ((earlier->type->array_size() == 0)
2116 && var->type->is_array()
2117 && (var->type->element_type() == earlier->type->element_type())) {
2118 /* FINISHME: This doesn't match the qualifiers on the two
2119 * FINISHME: declarations. It's not 100% clear whether this is
2120 * FINISHME: required or not.
2121 */
2122
2123 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2124 *
2125 * "The size [of gl_TexCoord] can be at most
2126 * gl_MaxTextureCoords."
2127 */
2128 const unsigned size = unsigned(var->type->array_size());
2129 if ((strcmp("gl_TexCoord", var->name) == 0)
2130 && (size > state->Const.MaxTextureCoords)) {
2131 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2132 "be larger than gl_MaxTextureCoords (%u)\n",
2133 state->Const.MaxTextureCoords);
2134 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2135 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2136 "previous access",
2137 earlier->max_array_access);
2138 }
2139
2140 earlier->type = var->type;
2141 delete var;
2142 var = NULL;
2143 } else if (state->ARB_fragment_coord_conventions_enable
2144 && strcmp(var->name, "gl_FragCoord") == 0
2145 && earlier->type == var->type
2146 && earlier->mode == var->mode) {
2147 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2148 * qualifiers.
2149 */
2150 earlier->origin_upper_left = var->origin_upper_left;
2151 earlier->pixel_center_integer = var->pixel_center_integer;
2152
2153 /* According to section 4.3.7 of the GLSL 1.30 spec,
2154 * the following built-in varaibles can be redeclared with an
2155 * interpolation qualifier:
2156 * * gl_FrontColor
2157 * * gl_BackColor
2158 * * gl_FrontSecondaryColor
2159 * * gl_BackSecondaryColor
2160 * * gl_Color
2161 * * gl_SecondaryColor
2162 */
2163 } else if (state->language_version >= 130
2164 && (strcmp(var->name, "gl_FrontColor") == 0
2165 || strcmp(var->name, "gl_BackColor") == 0
2166 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2167 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2168 || strcmp(var->name, "gl_Color") == 0
2169 || strcmp(var->name, "gl_SecondaryColor") == 0)
2170 && earlier->type == var->type
2171 && earlier->mode == var->mode) {
2172 earlier->interpolation = var->interpolation;
2173
2174 /* Layout qualifiers for gl_FragDepth. */
2175 } else if (state->AMD_conservative_depth_enable
2176 && strcmp(var->name, "gl_FragDepth") == 0
2177 && earlier->type == var->type
2178 && earlier->mode == var->mode) {
2179
2180 /** From the AMD_conservative_depth spec:
2181 * Within any shader, the first redeclarations of gl_FragDepth
2182 * must appear before any use of gl_FragDepth.
2183 */
2184 if (earlier->used) {
2185 _mesa_glsl_error(&loc, state,
2186 "the first redeclaration of gl_FragDepth "
2187 "must appear before any use of gl_FragDepth");
2188 }
2189
2190 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2191 if (earlier->depth_layout != ir_depth_layout_none
2192 && earlier->depth_layout != var->depth_layout) {
2193 _mesa_glsl_error(&loc, state,
2194 "gl_FragDepth: depth layout is declared here "
2195 "as '%s, but it was previously declared as "
2196 "'%s'",
2197 depth_layout_string(var->depth_layout),
2198 depth_layout_string(earlier->depth_layout));
2199 }
2200
2201 earlier->depth_layout = var->depth_layout;
2202
2203 } else {
2204 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2205 }
2206
2207 return earlier;
2208 }
2209
2210 /**
2211 * Generate the IR for an initializer in a variable declaration
2212 */
2213 ir_rvalue *
2214 process_initializer(ir_variable *var, ast_declaration *decl,
2215 ast_fully_specified_type *type,
2216 exec_list *initializer_instructions,
2217 struct _mesa_glsl_parse_state *state)
2218 {
2219 ir_rvalue *result = NULL;
2220
2221 YYLTYPE initializer_loc = decl->initializer->get_location();
2222
2223 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2224 *
2225 * "All uniform variables are read-only and are initialized either
2226 * directly by an application via API commands, or indirectly by
2227 * OpenGL."
2228 */
2229 if ((state->language_version <= 110)
2230 && (var->mode == ir_var_uniform)) {
2231 _mesa_glsl_error(& initializer_loc, state,
2232 "cannot initialize uniforms in GLSL 1.10");
2233 }
2234
2235 if (var->type->is_sampler()) {
2236 _mesa_glsl_error(& initializer_loc, state,
2237 "cannot initialize samplers");
2238 }
2239
2240 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2241 _mesa_glsl_error(& initializer_loc, state,
2242 "cannot initialize %s shader input / %s",
2243 _mesa_glsl_shader_target_name(state->target),
2244 (state->target == vertex_shader)
2245 ? "attribute" : "varying");
2246 }
2247
2248 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2249 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2250 state);
2251
2252 /* Calculate the constant value if this is a const or uniform
2253 * declaration.
2254 */
2255 if (type->qualifier.flags.q.constant
2256 || type->qualifier.flags.q.uniform) {
2257 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2258 if (new_rhs != NULL) {
2259 rhs = new_rhs;
2260
2261 ir_constant *constant_value = rhs->constant_expression_value();
2262 if (!constant_value) {
2263 _mesa_glsl_error(& initializer_loc, state,
2264 "initializer of %s variable `%s' must be a "
2265 "constant expression",
2266 (type->qualifier.flags.q.constant)
2267 ? "const" : "uniform",
2268 decl->identifier);
2269 if (var->type->is_numeric()) {
2270 /* Reduce cascading errors. */
2271 var->constant_value = ir_constant::zero(state, var->type);
2272 }
2273 } else {
2274 rhs = constant_value;
2275 var->constant_value = constant_value;
2276 }
2277 } else {
2278 _mesa_glsl_error(&initializer_loc, state,
2279 "initializer of type %s cannot be assigned to "
2280 "variable of type %s",
2281 rhs->type->name, var->type->name);
2282 if (var->type->is_numeric()) {
2283 /* Reduce cascading errors. */
2284 var->constant_value = ir_constant::zero(state, var->type);
2285 }
2286 }
2287 }
2288
2289 if (rhs && !rhs->type->is_error()) {
2290 bool temp = var->read_only;
2291 if (type->qualifier.flags.q.constant)
2292 var->read_only = false;
2293
2294 /* Never emit code to initialize a uniform.
2295 */
2296 const glsl_type *initializer_type;
2297 if (!type->qualifier.flags.q.uniform) {
2298 result = do_assignment(initializer_instructions, state,
2299 lhs, rhs, true,
2300 type->get_location());
2301 initializer_type = result->type;
2302 } else
2303 initializer_type = rhs->type;
2304
2305 /* If the declared variable is an unsized array, it must inherrit
2306 * its full type from the initializer. A declaration such as
2307 *
2308 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2309 *
2310 * becomes
2311 *
2312 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2313 *
2314 * The assignment generated in the if-statement (below) will also
2315 * automatically handle this case for non-uniforms.
2316 *
2317 * If the declared variable is not an array, the types must
2318 * already match exactly. As a result, the type assignment
2319 * here can be done unconditionally. For non-uniforms the call
2320 * to do_assignment can change the type of the initializer (via
2321 * the implicit conversion rules). For uniforms the initializer
2322 * must be a constant expression, and the type of that expression
2323 * was validated above.
2324 */
2325 var->type = initializer_type;
2326
2327 var->read_only = temp;
2328 }
2329
2330 return result;
2331 }
2332
2333 ir_rvalue *
2334 ast_declarator_list::hir(exec_list *instructions,
2335 struct _mesa_glsl_parse_state *state)
2336 {
2337 void *ctx = state;
2338 const struct glsl_type *decl_type;
2339 const char *type_name = NULL;
2340 ir_rvalue *result = NULL;
2341 YYLTYPE loc = this->get_location();
2342
2343 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2344 *
2345 * "To ensure that a particular output variable is invariant, it is
2346 * necessary to use the invariant qualifier. It can either be used to
2347 * qualify a previously declared variable as being invariant
2348 *
2349 * invariant gl_Position; // make existing gl_Position be invariant"
2350 *
2351 * In these cases the parser will set the 'invariant' flag in the declarator
2352 * list, and the type will be NULL.
2353 */
2354 if (this->invariant) {
2355 assert(this->type == NULL);
2356
2357 if (state->current_function != NULL) {
2358 _mesa_glsl_error(& loc, state,
2359 "All uses of `invariant' keyword must be at global "
2360 "scope\n");
2361 }
2362
2363 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2364 assert(!decl->is_array);
2365 assert(decl->array_size == NULL);
2366 assert(decl->initializer == NULL);
2367
2368 ir_variable *const earlier =
2369 state->symbols->get_variable(decl->identifier);
2370 if (earlier == NULL) {
2371 _mesa_glsl_error(& loc, state,
2372 "Undeclared variable `%s' cannot be marked "
2373 "invariant\n", decl->identifier);
2374 } else if ((state->target == vertex_shader)
2375 && (earlier->mode != ir_var_out)) {
2376 _mesa_glsl_error(& loc, state,
2377 "`%s' cannot be marked invariant, vertex shader "
2378 "outputs only\n", decl->identifier);
2379 } else if ((state->target == fragment_shader)
2380 && (earlier->mode != ir_var_in)) {
2381 _mesa_glsl_error(& loc, state,
2382 "`%s' cannot be marked invariant, fragment shader "
2383 "inputs only\n", decl->identifier);
2384 } else if (earlier->used) {
2385 _mesa_glsl_error(& loc, state,
2386 "variable `%s' may not be redeclared "
2387 "`invariant' after being used",
2388 earlier->name);
2389 } else {
2390 earlier->invariant = true;
2391 }
2392 }
2393
2394 /* Invariant redeclarations do not have r-values.
2395 */
2396 return NULL;
2397 }
2398
2399 assert(this->type != NULL);
2400 assert(!this->invariant);
2401
2402 /* The type specifier may contain a structure definition. Process that
2403 * before any of the variable declarations.
2404 */
2405 (void) this->type->specifier->hir(instructions, state);
2406
2407 decl_type = this->type->specifier->glsl_type(& type_name, state);
2408 if (this->declarations.is_empty()) {
2409 if (decl_type != NULL) {
2410 /* Warn if this empty declaration is not for declaring a structure.
2411 */
2412 if (this->type->specifier->structure == NULL) {
2413 _mesa_glsl_warning(&loc, state, "empty declaration");
2414 }
2415 } else {
2416 _mesa_glsl_error(& loc, state, "incomplete declaration");
2417 }
2418 }
2419
2420 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2421 const struct glsl_type *var_type;
2422 ir_variable *var;
2423
2424 /* FINISHME: Emit a warning if a variable declaration shadows a
2425 * FINISHME: declaration at a higher scope.
2426 */
2427
2428 if ((decl_type == NULL) || decl_type->is_void()) {
2429 if (type_name != NULL) {
2430 _mesa_glsl_error(& loc, state,
2431 "invalid type `%s' in declaration of `%s'",
2432 type_name, decl->identifier);
2433 } else {
2434 _mesa_glsl_error(& loc, state,
2435 "invalid type in declaration of `%s'",
2436 decl->identifier);
2437 }
2438 continue;
2439 }
2440
2441 if (decl->is_array) {
2442 var_type = process_array_type(&loc, decl_type, decl->array_size,
2443 state);
2444 } else {
2445 var_type = decl_type;
2446 }
2447
2448 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2449
2450 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2451 *
2452 * "Global variables can only use the qualifiers const,
2453 * attribute, uni form, or varying. Only one may be
2454 * specified.
2455 *
2456 * Local variables can only use the qualifier const."
2457 *
2458 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2459 * that adds the 'layout' keyword.
2460 */
2461 if ((state->language_version < 130)
2462 && !state->ARB_explicit_attrib_location_enable
2463 && !state->ARB_fragment_coord_conventions_enable) {
2464 if (this->type->qualifier.flags.q.out) {
2465 _mesa_glsl_error(& loc, state,
2466 "`out' qualifier in declaration of `%s' "
2467 "only valid for function parameters in %s.",
2468 decl->identifier, state->version_string);
2469 }
2470 if (this->type->qualifier.flags.q.in) {
2471 _mesa_glsl_error(& loc, state,
2472 "`in' qualifier in declaration of `%s' "
2473 "only valid for function parameters in %s.",
2474 decl->identifier, state->version_string);
2475 }
2476 /* FINISHME: Test for other invalid qualifiers. */
2477 }
2478
2479 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2480 & loc);
2481
2482 if (this->type->qualifier.flags.q.invariant) {
2483 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2484 var->mode == ir_var_inout)) {
2485 /* FINISHME: Note that this doesn't work for invariant on
2486 * a function signature outval
2487 */
2488 _mesa_glsl_error(& loc, state,
2489 "`%s' cannot be marked invariant, vertex shader "
2490 "outputs only\n", var->name);
2491 } else if ((state->target == fragment_shader) &&
2492 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2493 /* FINISHME: Note that this doesn't work for invariant on
2494 * a function signature inval
2495 */
2496 _mesa_glsl_error(& loc, state,
2497 "`%s' cannot be marked invariant, fragment shader "
2498 "inputs only\n", var->name);
2499 }
2500 }
2501
2502 if (state->current_function != NULL) {
2503 const char *mode = NULL;
2504 const char *extra = "";
2505
2506 /* There is no need to check for 'inout' here because the parser will
2507 * only allow that in function parameter lists.
2508 */
2509 if (this->type->qualifier.flags.q.attribute) {
2510 mode = "attribute";
2511 } else if (this->type->qualifier.flags.q.uniform) {
2512 mode = "uniform";
2513 } else if (this->type->qualifier.flags.q.varying) {
2514 mode = "varying";
2515 } else if (this->type->qualifier.flags.q.in) {
2516 mode = "in";
2517 extra = " or in function parameter list";
2518 } else if (this->type->qualifier.flags.q.out) {
2519 mode = "out";
2520 extra = " or in function parameter list";
2521 }
2522
2523 if (mode) {
2524 _mesa_glsl_error(& loc, state,
2525 "%s variable `%s' must be declared at "
2526 "global scope%s",
2527 mode, var->name, extra);
2528 }
2529 } else if (var->mode == ir_var_in) {
2530 var->read_only = true;
2531
2532 if (state->target == vertex_shader) {
2533 bool error_emitted = false;
2534
2535 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2536 *
2537 * "Vertex shader inputs can only be float, floating-point
2538 * vectors, matrices, signed and unsigned integers and integer
2539 * vectors. Vertex shader inputs can also form arrays of these
2540 * types, but not structures."
2541 *
2542 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2543 *
2544 * "Vertex shader inputs can only be float, floating-point
2545 * vectors, matrices, signed and unsigned integers and integer
2546 * vectors. They cannot be arrays or structures."
2547 *
2548 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2549 *
2550 * "The attribute qualifier can be used only with float,
2551 * floating-point vectors, and matrices. Attribute variables
2552 * cannot be declared as arrays or structures."
2553 */
2554 const glsl_type *check_type = var->type->is_array()
2555 ? var->type->fields.array : var->type;
2556
2557 switch (check_type->base_type) {
2558 case GLSL_TYPE_FLOAT:
2559 break;
2560 case GLSL_TYPE_UINT:
2561 case GLSL_TYPE_INT:
2562 if (state->language_version > 120)
2563 break;
2564 /* FALLTHROUGH */
2565 default:
2566 _mesa_glsl_error(& loc, state,
2567 "vertex shader input / attribute cannot have "
2568 "type %s`%s'",
2569 var->type->is_array() ? "array of " : "",
2570 check_type->name);
2571 error_emitted = true;
2572 }
2573
2574 if (!error_emitted && (state->language_version <= 130)
2575 && var->type->is_array()) {
2576 _mesa_glsl_error(& loc, state,
2577 "vertex shader input / attribute cannot have "
2578 "array type");
2579 error_emitted = true;
2580 }
2581 }
2582 }
2583
2584 /* Integer vertex outputs must be qualified with 'flat'.
2585 *
2586 * From section 4.3.6 of the GLSL 1.30 spec:
2587 * "If a vertex output is a signed or unsigned integer or integer
2588 * vector, then it must be qualified with the interpolation qualifier
2589 * flat."
2590 */
2591 if (state->language_version >= 130
2592 && state->target == vertex_shader
2593 && state->current_function == NULL
2594 && var->type->is_integer()
2595 && var->mode == ir_var_out
2596 && var->interpolation != ir_var_flat) {
2597
2598 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2599 "then it must be qualified with 'flat'");
2600 }
2601
2602
2603 /* Interpolation qualifiers cannot be applied to 'centroid' and
2604 * 'centroid varying'.
2605 *
2606 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2607 * "interpolation qualifiers may only precede the qualifiers in,
2608 * centroid in, out, or centroid out in a declaration. They do not apply
2609 * to the deprecated storage qualifiers varying or centroid varying."
2610 */
2611 if (state->language_version >= 130
2612 && this->type->qualifier.has_interpolation()
2613 && this->type->qualifier.flags.q.varying) {
2614
2615 const char *i = this->type->qualifier.interpolation_string();
2616 assert(i != NULL);
2617 const char *s;
2618 if (this->type->qualifier.flags.q.centroid)
2619 s = "centroid varying";
2620 else
2621 s = "varying";
2622
2623 _mesa_glsl_error(&loc, state,
2624 "qualifier '%s' cannot be applied to the "
2625 "deprecated storage qualifier '%s'", i, s);
2626 }
2627
2628
2629 /* Interpolation qualifiers can only apply to vertex shader outputs and
2630 * fragment shader inputs.
2631 *
2632 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2633 * "Outputs from a vertex shader (out) and inputs to a fragment
2634 * shader (in) can be further qualified with one or more of these
2635 * interpolation qualifiers"
2636 */
2637 if (state->language_version >= 130
2638 && this->type->qualifier.has_interpolation()) {
2639
2640 const char *i = this->type->qualifier.interpolation_string();
2641 assert(i != NULL);
2642
2643 switch (state->target) {
2644 case vertex_shader:
2645 if (this->type->qualifier.flags.q.in) {
2646 _mesa_glsl_error(&loc, state,
2647 "qualifier '%s' cannot be applied to vertex "
2648 "shader inputs", i);
2649 }
2650 break;
2651 case fragment_shader:
2652 if (this->type->qualifier.flags.q.out) {
2653 _mesa_glsl_error(&loc, state,
2654 "qualifier '%s' cannot be applied to fragment "
2655 "shader outputs", i);
2656 }
2657 break;
2658 default:
2659 assert(0);
2660 }
2661 }
2662
2663
2664 /* From section 4.3.4 of the GLSL 1.30 spec:
2665 * "It is an error to use centroid in in a vertex shader."
2666 */
2667 if (state->language_version >= 130
2668 && this->type->qualifier.flags.q.centroid
2669 && this->type->qualifier.flags.q.in
2670 && state->target == vertex_shader) {
2671
2672 _mesa_glsl_error(&loc, state,
2673 "'centroid in' cannot be used in a vertex shader");
2674 }
2675
2676
2677 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2678 */
2679 if (this->type->specifier->precision != ast_precision_none
2680 && state->language_version != 100
2681 && state->language_version < 130) {
2682
2683 _mesa_glsl_error(&loc, state,
2684 "precision qualifiers are supported only in GLSL ES "
2685 "1.00, and GLSL 1.30 and later");
2686 }
2687
2688
2689 /* Precision qualifiers only apply to floating point and integer types.
2690 *
2691 * From section 4.5.2 of the GLSL 1.30 spec:
2692 * "Any floating point or any integer declaration can have the type
2693 * preceded by one of these precision qualifiers [...] Literal
2694 * constants do not have precision qualifiers. Neither do Boolean
2695 * variables.
2696 *
2697 * In GLSL ES, sampler types are also allowed.
2698 *
2699 * From page 87 of the GLSL ES spec:
2700 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2701 */
2702 if (this->type->specifier->precision != ast_precision_none
2703 && !var->type->is_float()
2704 && !var->type->is_integer()
2705 && !(var->type->is_sampler() && state->es_shader)
2706 && !(var->type->is_array()
2707 && (var->type->fields.array->is_float()
2708 || var->type->fields.array->is_integer()))) {
2709
2710 _mesa_glsl_error(&loc, state,
2711 "precision qualifiers apply only to floating point"
2712 "%s types", state->es_shader ? ", integer, and sampler"
2713 : "and integer");
2714 }
2715
2716 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2717 *
2718 * "[Sampler types] can only be declared as function
2719 * parameters or uniform variables (see Section 4.3.5
2720 * "Uniform")".
2721 */
2722 if (var_type->contains_sampler() &&
2723 !this->type->qualifier.flags.q.uniform) {
2724 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2725 }
2726
2727 /* Process the initializer and add its instructions to a temporary
2728 * list. This list will be added to the instruction stream (below) after
2729 * the declaration is added. This is done because in some cases (such as
2730 * redeclarations) the declaration may not actually be added to the
2731 * instruction stream.
2732 */
2733 exec_list initializer_instructions;
2734 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2735
2736 if (decl->initializer != NULL) {
2737 result = process_initializer((earlier == NULL) ? var : earlier,
2738 decl, this->type,
2739 &initializer_instructions, state);
2740 }
2741
2742 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2743 *
2744 * "It is an error to write to a const variable outside of
2745 * its declaration, so they must be initialized when
2746 * declared."
2747 */
2748 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2749 _mesa_glsl_error(& loc, state,
2750 "const declaration of `%s' must be initialized",
2751 decl->identifier);
2752 }
2753
2754 /* If the declaration is not a redeclaration, there are a few additional
2755 * semantic checks that must be applied. In addition, variable that was
2756 * created for the declaration should be added to the IR stream.
2757 */
2758 if (earlier == NULL) {
2759 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2760 *
2761 * "Identifiers starting with "gl_" are reserved for use by
2762 * OpenGL, and may not be declared in a shader as either a
2763 * variable or a function."
2764 */
2765 if (strncmp(decl->identifier, "gl_", 3) == 0)
2766 _mesa_glsl_error(& loc, state,
2767 "identifier `%s' uses reserved `gl_' prefix",
2768 decl->identifier);
2769
2770 /* Add the variable to the symbol table. Note that the initializer's
2771 * IR was already processed earlier (though it hasn't been emitted
2772 * yet), without the variable in scope.
2773 *
2774 * This differs from most C-like languages, but it follows the GLSL
2775 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2776 * spec:
2777 *
2778 * "Within a declaration, the scope of a name starts immediately
2779 * after the initializer if present or immediately after the name
2780 * being declared if not."
2781 */
2782 if (!state->symbols->add_variable(var)) {
2783 YYLTYPE loc = this->get_location();
2784 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2785 "current scope", decl->identifier);
2786 continue;
2787 }
2788
2789 /* Push the variable declaration to the top. It means that all the
2790 * variable declarations will appear in a funny last-to-first order,
2791 * but otherwise we run into trouble if a function is prototyped, a
2792 * global var is decled, then the function is defined with usage of
2793 * the global var. See glslparsertest's CorrectModule.frag.
2794 */
2795 instructions->push_head(var);
2796 }
2797
2798 instructions->append_list(&initializer_instructions);
2799 }
2800
2801
2802 /* Generally, variable declarations do not have r-values. However,
2803 * one is used for the declaration in
2804 *
2805 * while (bool b = some_condition()) {
2806 * ...
2807 * }
2808 *
2809 * so we return the rvalue from the last seen declaration here.
2810 */
2811 return result;
2812 }
2813
2814
2815 ir_rvalue *
2816 ast_parameter_declarator::hir(exec_list *instructions,
2817 struct _mesa_glsl_parse_state *state)
2818 {
2819 void *ctx = state;
2820 const struct glsl_type *type;
2821 const char *name = NULL;
2822 YYLTYPE loc = this->get_location();
2823
2824 type = this->type->specifier->glsl_type(& name, state);
2825
2826 if (type == NULL) {
2827 if (name != NULL) {
2828 _mesa_glsl_error(& loc, state,
2829 "invalid type `%s' in declaration of `%s'",
2830 name, this->identifier);
2831 } else {
2832 _mesa_glsl_error(& loc, state,
2833 "invalid type in declaration of `%s'",
2834 this->identifier);
2835 }
2836
2837 type = glsl_type::error_type;
2838 }
2839
2840 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2841 *
2842 * "Functions that accept no input arguments need not use void in the
2843 * argument list because prototypes (or definitions) are required and
2844 * therefore there is no ambiguity when an empty argument list "( )" is
2845 * declared. The idiom "(void)" as a parameter list is provided for
2846 * convenience."
2847 *
2848 * Placing this check here prevents a void parameter being set up
2849 * for a function, which avoids tripping up checks for main taking
2850 * parameters and lookups of an unnamed symbol.
2851 */
2852 if (type->is_void()) {
2853 if (this->identifier != NULL)
2854 _mesa_glsl_error(& loc, state,
2855 "named parameter cannot have type `void'");
2856
2857 is_void = true;
2858 return NULL;
2859 }
2860
2861 if (formal_parameter && (this->identifier == NULL)) {
2862 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2863 return NULL;
2864 }
2865
2866 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2867 * call already handled the "vec4[..] foo" case.
2868 */
2869 if (this->is_array) {
2870 type = process_array_type(&loc, type, this->array_size, state);
2871 }
2872
2873 if (type->array_size() == 0) {
2874 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2875 "a declared size.");
2876 type = glsl_type::error_type;
2877 }
2878
2879 is_void = false;
2880 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2881
2882 /* Apply any specified qualifiers to the parameter declaration. Note that
2883 * for function parameters the default mode is 'in'.
2884 */
2885 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2886
2887 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2888 *
2889 * "Samplers cannot be treated as l-values; hence cannot be used
2890 * as out or inout function parameters, nor can they be assigned
2891 * into."
2892 */
2893 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
2894 && type->contains_sampler()) {
2895 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
2896 type = glsl_type::error_type;
2897 }
2898
2899 instructions->push_tail(var);
2900
2901 /* Parameter declarations do not have r-values.
2902 */
2903 return NULL;
2904 }
2905
2906
2907 void
2908 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2909 bool formal,
2910 exec_list *ir_parameters,
2911 _mesa_glsl_parse_state *state)
2912 {
2913 ast_parameter_declarator *void_param = NULL;
2914 unsigned count = 0;
2915
2916 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2917 param->formal_parameter = formal;
2918 param->hir(ir_parameters, state);
2919
2920 if (param->is_void)
2921 void_param = param;
2922
2923 count++;
2924 }
2925
2926 if ((void_param != NULL) && (count > 1)) {
2927 YYLTYPE loc = void_param->get_location();
2928
2929 _mesa_glsl_error(& loc, state,
2930 "`void' parameter must be only parameter");
2931 }
2932 }
2933
2934
2935 void
2936 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
2937 {
2938 /* IR invariants disallow function declarations or definitions
2939 * nested within other function definitions. But there is no
2940 * requirement about the relative order of function declarations
2941 * and definitions with respect to one another. So simply insert
2942 * the new ir_function block at the end of the toplevel instruction
2943 * list.
2944 */
2945 state->toplevel_ir->push_tail(f);
2946 }
2947
2948
2949 ir_rvalue *
2950 ast_function::hir(exec_list *instructions,
2951 struct _mesa_glsl_parse_state *state)
2952 {
2953 void *ctx = state;
2954 ir_function *f = NULL;
2955 ir_function_signature *sig = NULL;
2956 exec_list hir_parameters;
2957
2958 const char *const name = identifier;
2959
2960 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2961 *
2962 * "Function declarations (prototypes) cannot occur inside of functions;
2963 * they must be at global scope, or for the built-in functions, outside
2964 * the global scope."
2965 *
2966 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2967 *
2968 * "User defined functions may only be defined within the global scope."
2969 *
2970 * Note that this language does not appear in GLSL 1.10.
2971 */
2972 if ((state->current_function != NULL) && (state->language_version != 110)) {
2973 YYLTYPE loc = this->get_location();
2974 _mesa_glsl_error(&loc, state,
2975 "declaration of function `%s' not allowed within "
2976 "function body", name);
2977 }
2978
2979 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2980 *
2981 * "Identifiers starting with "gl_" are reserved for use by
2982 * OpenGL, and may not be declared in a shader as either a
2983 * variable or a function."
2984 */
2985 if (strncmp(name, "gl_", 3) == 0) {
2986 YYLTYPE loc = this->get_location();
2987 _mesa_glsl_error(&loc, state,
2988 "identifier `%s' uses reserved `gl_' prefix", name);
2989 }
2990
2991 /* Convert the list of function parameters to HIR now so that they can be
2992 * used below to compare this function's signature with previously seen
2993 * signatures for functions with the same name.
2994 */
2995 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2996 is_definition,
2997 & hir_parameters, state);
2998
2999 const char *return_type_name;
3000 const glsl_type *return_type =
3001 this->return_type->specifier->glsl_type(& return_type_name, state);
3002
3003 if (!return_type) {
3004 YYLTYPE loc = this->get_location();
3005 _mesa_glsl_error(&loc, state,
3006 "function `%s' has undeclared return type `%s'",
3007 name, return_type_name);
3008 return_type = glsl_type::error_type;
3009 }
3010
3011 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3012 * "No qualifier is allowed on the return type of a function."
3013 */
3014 if (this->return_type->has_qualifiers()) {
3015 YYLTYPE loc = this->get_location();
3016 _mesa_glsl_error(& loc, state,
3017 "function `%s' return type has qualifiers", name);
3018 }
3019
3020 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3021 *
3022 * "[Sampler types] can only be declared as function parameters
3023 * or uniform variables (see Section 4.3.5 "Uniform")".
3024 */
3025 if (return_type->contains_sampler()) {
3026 YYLTYPE loc = this->get_location();
3027 _mesa_glsl_error(&loc, state,
3028 "function `%s' return type can't contain a sampler",
3029 name);
3030 }
3031
3032 /* Verify that this function's signature either doesn't match a previously
3033 * seen signature for a function with the same name, or, if a match is found,
3034 * that the previously seen signature does not have an associated definition.
3035 */
3036 f = state->symbols->get_function(name);
3037 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3038 sig = f->exact_matching_signature(&hir_parameters);
3039 if (sig != NULL) {
3040 const char *badvar = sig->qualifiers_match(&hir_parameters);
3041 if (badvar != NULL) {
3042 YYLTYPE loc = this->get_location();
3043
3044 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3045 "qualifiers don't match prototype", name, badvar);
3046 }
3047
3048 if (sig->return_type != return_type) {
3049 YYLTYPE loc = this->get_location();
3050
3051 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3052 "match prototype", name);
3053 }
3054
3055 if (is_definition && sig->is_defined) {
3056 YYLTYPE loc = this->get_location();
3057
3058 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3059 }
3060 }
3061 } else {
3062 f = new(ctx) ir_function(name);
3063 if (!state->symbols->add_function(f)) {
3064 /* This function name shadows a non-function use of the same name. */
3065 YYLTYPE loc = this->get_location();
3066
3067 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3068 "non-function", name);
3069 return NULL;
3070 }
3071
3072 emit_function(state, f);
3073 }
3074
3075 /* Verify the return type of main() */
3076 if (strcmp(name, "main") == 0) {
3077 if (! return_type->is_void()) {
3078 YYLTYPE loc = this->get_location();
3079
3080 _mesa_glsl_error(& loc, state, "main() must return void");
3081 }
3082
3083 if (!hir_parameters.is_empty()) {
3084 YYLTYPE loc = this->get_location();
3085
3086 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3087 }
3088 }
3089
3090 /* Finish storing the information about this new function in its signature.
3091 */
3092 if (sig == NULL) {
3093 sig = new(ctx) ir_function_signature(return_type);
3094 f->add_signature(sig);
3095 }
3096
3097 sig->replace_parameters(&hir_parameters);
3098 signature = sig;
3099
3100 /* Function declarations (prototypes) do not have r-values.
3101 */
3102 return NULL;
3103 }
3104
3105
3106 ir_rvalue *
3107 ast_function_definition::hir(exec_list *instructions,
3108 struct _mesa_glsl_parse_state *state)
3109 {
3110 prototype->is_definition = true;
3111 prototype->hir(instructions, state);
3112
3113 ir_function_signature *signature = prototype->signature;
3114 if (signature == NULL)
3115 return NULL;
3116
3117 assert(state->current_function == NULL);
3118 state->current_function = signature;
3119 state->found_return = false;
3120
3121 /* Duplicate parameters declared in the prototype as concrete variables.
3122 * Add these to the symbol table.
3123 */
3124 state->symbols->push_scope();
3125 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3126 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3127
3128 assert(var != NULL);
3129
3130 /* The only way a parameter would "exist" is if two parameters have
3131 * the same name.
3132 */
3133 if (state->symbols->name_declared_this_scope(var->name)) {
3134 YYLTYPE loc = this->get_location();
3135
3136 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3137 } else {
3138 state->symbols->add_variable(var);
3139 }
3140 }
3141
3142 /* Convert the body of the function to HIR. */
3143 this->body->hir(&signature->body, state);
3144 signature->is_defined = true;
3145
3146 state->symbols->pop_scope();
3147
3148 assert(state->current_function == signature);
3149 state->current_function = NULL;
3150
3151 if (!signature->return_type->is_void() && !state->found_return) {
3152 YYLTYPE loc = this->get_location();
3153 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3154 "%s, but no return statement",
3155 signature->function_name(),
3156 signature->return_type->name);
3157 }
3158
3159 /* Function definitions do not have r-values.
3160 */
3161 return NULL;
3162 }
3163
3164
3165 ir_rvalue *
3166 ast_jump_statement::hir(exec_list *instructions,
3167 struct _mesa_glsl_parse_state *state)
3168 {
3169 void *ctx = state;
3170
3171 switch (mode) {
3172 case ast_return: {
3173 ir_return *inst;
3174 assert(state->current_function);
3175
3176 if (opt_return_value) {
3177 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3178
3179 /* The value of the return type can be NULL if the shader says
3180 * 'return foo();' and foo() is a function that returns void.
3181 *
3182 * NOTE: The GLSL spec doesn't say that this is an error. The type
3183 * of the return value is void. If the return type of the function is
3184 * also void, then this should compile without error. Seriously.
3185 */
3186 const glsl_type *const ret_type =
3187 (ret == NULL) ? glsl_type::void_type : ret->type;
3188
3189 /* Implicit conversions are not allowed for return values. */
3190 if (state->current_function->return_type != ret_type) {
3191 YYLTYPE loc = this->get_location();
3192
3193 _mesa_glsl_error(& loc, state,
3194 "`return' with wrong type %s, in function `%s' "
3195 "returning %s",
3196 ret_type->name,
3197 state->current_function->function_name(),
3198 state->current_function->return_type->name);
3199 }
3200
3201 inst = new(ctx) ir_return(ret);
3202 } else {
3203 if (state->current_function->return_type->base_type !=
3204 GLSL_TYPE_VOID) {
3205 YYLTYPE loc = this->get_location();
3206
3207 _mesa_glsl_error(& loc, state,
3208 "`return' with no value, in function %s returning "
3209 "non-void",
3210 state->current_function->function_name());
3211 }
3212 inst = new(ctx) ir_return;
3213 }
3214
3215 state->found_return = true;
3216 instructions->push_tail(inst);
3217 break;
3218 }
3219
3220 case ast_discard:
3221 if (state->target != fragment_shader) {
3222 YYLTYPE loc = this->get_location();
3223
3224 _mesa_glsl_error(& loc, state,
3225 "`discard' may only appear in a fragment shader");
3226 }
3227 instructions->push_tail(new(ctx) ir_discard);
3228 break;
3229
3230 case ast_break:
3231 case ast_continue:
3232 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3233 * FINISHME: and they use a different IR instruction for 'break'.
3234 */
3235 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3236 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3237 * FINISHME: loop.
3238 */
3239 if (state->loop_or_switch_nesting == NULL) {
3240 YYLTYPE loc = this->get_location();
3241
3242 _mesa_glsl_error(& loc, state,
3243 "`%s' may only appear in a loop",
3244 (mode == ast_break) ? "break" : "continue");
3245 } else {
3246 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3247
3248 /* Inline the for loop expression again, since we don't know
3249 * where near the end of the loop body the normal copy of it
3250 * is going to be placed.
3251 */
3252 if (mode == ast_continue &&
3253 state->loop_or_switch_nesting_ast->rest_expression) {
3254 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3255 state);
3256 }
3257
3258 if (loop != NULL) {
3259 ir_loop_jump *const jump =
3260 new(ctx) ir_loop_jump((mode == ast_break)
3261 ? ir_loop_jump::jump_break
3262 : ir_loop_jump::jump_continue);
3263 instructions->push_tail(jump);
3264 }
3265 }
3266
3267 break;
3268 }
3269
3270 /* Jump instructions do not have r-values.
3271 */
3272 return NULL;
3273 }
3274
3275
3276 ir_rvalue *
3277 ast_selection_statement::hir(exec_list *instructions,
3278 struct _mesa_glsl_parse_state *state)
3279 {
3280 void *ctx = state;
3281
3282 ir_rvalue *const condition = this->condition->hir(instructions, state);
3283
3284 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3285 *
3286 * "Any expression whose type evaluates to a Boolean can be used as the
3287 * conditional expression bool-expression. Vector types are not accepted
3288 * as the expression to if."
3289 *
3290 * The checks are separated so that higher quality diagnostics can be
3291 * generated for cases where both rules are violated.
3292 */
3293 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3294 YYLTYPE loc = this->condition->get_location();
3295
3296 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3297 "boolean");
3298 }
3299
3300 ir_if *const stmt = new(ctx) ir_if(condition);
3301
3302 if (then_statement != NULL) {
3303 state->symbols->push_scope();
3304 then_statement->hir(& stmt->then_instructions, state);
3305 state->symbols->pop_scope();
3306 }
3307
3308 if (else_statement != NULL) {
3309 state->symbols->push_scope();
3310 else_statement->hir(& stmt->else_instructions, state);
3311 state->symbols->pop_scope();
3312 }
3313
3314 instructions->push_tail(stmt);
3315
3316 /* if-statements do not have r-values.
3317 */
3318 return NULL;
3319 }
3320
3321
3322 void
3323 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3324 struct _mesa_glsl_parse_state *state)
3325 {
3326 void *ctx = state;
3327
3328 if (condition != NULL) {
3329 ir_rvalue *const cond =
3330 condition->hir(& stmt->body_instructions, state);
3331
3332 if ((cond == NULL)
3333 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3334 YYLTYPE loc = condition->get_location();
3335
3336 _mesa_glsl_error(& loc, state,
3337 "loop condition must be scalar boolean");
3338 } else {
3339 /* As the first code in the loop body, generate a block that looks
3340 * like 'if (!condition) break;' as the loop termination condition.
3341 */
3342 ir_rvalue *const not_cond =
3343 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3344 NULL);
3345
3346 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3347
3348 ir_jump *const break_stmt =
3349 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3350
3351 if_stmt->then_instructions.push_tail(break_stmt);
3352 stmt->body_instructions.push_tail(if_stmt);
3353 }
3354 }
3355 }
3356
3357
3358 ir_rvalue *
3359 ast_iteration_statement::hir(exec_list *instructions,
3360 struct _mesa_glsl_parse_state *state)
3361 {
3362 void *ctx = state;
3363
3364 /* For-loops and while-loops start a new scope, but do-while loops do not.
3365 */
3366 if (mode != ast_do_while)
3367 state->symbols->push_scope();
3368
3369 if (init_statement != NULL)
3370 init_statement->hir(instructions, state);
3371
3372 ir_loop *const stmt = new(ctx) ir_loop();
3373 instructions->push_tail(stmt);
3374
3375 /* Track the current loop and / or switch-statement nesting.
3376 */
3377 ir_instruction *const nesting = state->loop_or_switch_nesting;
3378 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3379
3380 state->loop_or_switch_nesting = stmt;
3381 state->loop_or_switch_nesting_ast = this;
3382
3383 if (mode != ast_do_while)
3384 condition_to_hir(stmt, state);
3385
3386 if (body != NULL)
3387 body->hir(& stmt->body_instructions, state);
3388
3389 if (rest_expression != NULL)
3390 rest_expression->hir(& stmt->body_instructions, state);
3391
3392 if (mode == ast_do_while)
3393 condition_to_hir(stmt, state);
3394
3395 if (mode != ast_do_while)
3396 state->symbols->pop_scope();
3397
3398 /* Restore previous nesting before returning.
3399 */
3400 state->loop_or_switch_nesting = nesting;
3401 state->loop_or_switch_nesting_ast = nesting_ast;
3402
3403 /* Loops do not have r-values.
3404 */
3405 return NULL;
3406 }
3407
3408
3409 ir_rvalue *
3410 ast_type_specifier::hir(exec_list *instructions,
3411 struct _mesa_glsl_parse_state *state)
3412 {
3413 if (!this->is_precision_statement && this->structure == NULL)
3414 return NULL;
3415
3416 YYLTYPE loc = this->get_location();
3417
3418 if (this->precision != ast_precision_none
3419 && state->language_version != 100
3420 && state->language_version < 130) {
3421 _mesa_glsl_error(&loc, state,
3422 "precision qualifiers exist only in "
3423 "GLSL ES 1.00, and GLSL 1.30 and later");
3424 return NULL;
3425 }
3426 if (this->precision != ast_precision_none
3427 && this->structure != NULL) {
3428 _mesa_glsl_error(&loc, state,
3429 "precision qualifiers do not apply to structures");
3430 return NULL;
3431 }
3432
3433 /* If this is a precision statement, check that the type to which it is
3434 * applied is either float or int.
3435 *
3436 * From section 4.5.3 of the GLSL 1.30 spec:
3437 * "The precision statement
3438 * precision precision-qualifier type;
3439 * can be used to establish a default precision qualifier. The type
3440 * field can be either int or float [...]. Any other types or
3441 * qualifiers will result in an error.
3442 */
3443 if (this->is_precision_statement) {
3444 assert(this->precision != ast_precision_none);
3445 assert(this->structure == NULL); /* The check for structures was
3446 * performed above. */
3447 if (this->is_array) {
3448 _mesa_glsl_error(&loc, state,
3449 "default precision statements do not apply to "
3450 "arrays");
3451 return NULL;
3452 }
3453 if (this->type_specifier != ast_float
3454 && this->type_specifier != ast_int) {
3455 _mesa_glsl_error(&loc, state,
3456 "default precision statements apply only to types "
3457 "float and int");
3458 return NULL;
3459 }
3460
3461 /* FINISHME: Translate precision statements into IR. */
3462 return NULL;
3463 }
3464
3465 if (this->structure != NULL)
3466 return this->structure->hir(instructions, state);
3467
3468 return NULL;
3469 }
3470
3471
3472 ir_rvalue *
3473 ast_struct_specifier::hir(exec_list *instructions,
3474 struct _mesa_glsl_parse_state *state)
3475 {
3476 unsigned decl_count = 0;
3477
3478 /* Make an initial pass over the list of structure fields to determine how
3479 * many there are. Each element in this list is an ast_declarator_list.
3480 * This means that we actually need to count the number of elements in the
3481 * 'declarations' list in each of the elements.
3482 */
3483 foreach_list_typed (ast_declarator_list, decl_list, link,
3484 &this->declarations) {
3485 foreach_list_const (decl_ptr, & decl_list->declarations) {
3486 decl_count++;
3487 }
3488 }
3489
3490 /* Allocate storage for the structure fields and process the field
3491 * declarations. As the declarations are processed, try to also convert
3492 * the types to HIR. This ensures that structure definitions embedded in
3493 * other structure definitions are processed.
3494 */
3495 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3496 decl_count);
3497
3498 unsigned i = 0;
3499 foreach_list_typed (ast_declarator_list, decl_list, link,
3500 &this->declarations) {
3501 const char *type_name;
3502
3503 decl_list->type->specifier->hir(instructions, state);
3504
3505 /* Section 10.9 of the GLSL ES 1.00 specification states that
3506 * embedded structure definitions have been removed from the language.
3507 */
3508 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3509 YYLTYPE loc = this->get_location();
3510 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3511 "not allowed in GLSL ES 1.00.");
3512 }
3513
3514 const glsl_type *decl_type =
3515 decl_list->type->specifier->glsl_type(& type_name, state);
3516
3517 foreach_list_typed (ast_declaration, decl, link,
3518 &decl_list->declarations) {
3519 const struct glsl_type *field_type = decl_type;
3520 if (decl->is_array) {
3521 YYLTYPE loc = decl->get_location();
3522 field_type = process_array_type(&loc, decl_type, decl->array_size,
3523 state);
3524 }
3525 fields[i].type = (field_type != NULL)
3526 ? field_type : glsl_type::error_type;
3527 fields[i].name = decl->identifier;
3528 i++;
3529 }
3530 }
3531
3532 assert(i == decl_count);
3533
3534 const glsl_type *t =
3535 glsl_type::get_record_instance(fields, decl_count, this->name);
3536
3537 YYLTYPE loc = this->get_location();
3538 if (!state->symbols->add_type(name, t)) {
3539 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3540 } else {
3541 const glsl_type **s = reralloc(state, state->user_structures,
3542 const glsl_type *,
3543 state->num_user_structures + 1);
3544 if (s != NULL) {
3545 s[state->num_user_structures] = t;
3546 state->user_structures = s;
3547 state->num_user_structures++;
3548 }
3549 }
3550
3551 /* Structure type definitions do not have r-values.
3552 */
3553 return NULL;
3554 }