25ccdab27c0e96f136d1444b675ef3a4e0b97652
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63
64 state->symbols->language_version = state->language_version;
65
66 state->current_function = NULL;
67
68 state->toplevel_ir = instructions;
69
70 /* Section 4.2 of the GLSL 1.20 specification states:
71 * "The built-in functions are scoped in a scope outside the global scope
72 * users declare global variables in. That is, a shader's global scope,
73 * available for user-defined functions and global variables, is nested
74 * inside the scope containing the built-in functions."
75 *
76 * Since built-in functions like ftransform() access built-in variables,
77 * it follows that those must be in the outer scope as well.
78 *
79 * We push scope here to create this nesting effect...but don't pop.
80 * This way, a shader's globals are still in the symbol table for use
81 * by the linker.
82 */
83 state->symbols->push_scope();
84
85 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
86 ast->hir(instructions, state);
87
88 detect_recursion_unlinked(state, instructions);
89
90 state->toplevel_ir = NULL;
91 }
92
93
94 /**
95 * If a conversion is available, convert one operand to a different type
96 *
97 * The \c from \c ir_rvalue is converted "in place".
98 *
99 * \param to Type that the operand it to be converted to
100 * \param from Operand that is being converted
101 * \param state GLSL compiler state
102 *
103 * \return
104 * If a conversion is possible (or unnecessary), \c true is returned.
105 * Otherwise \c false is returned.
106 */
107 bool
108 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
109 struct _mesa_glsl_parse_state *state)
110 {
111 void *ctx = state;
112 if (to->base_type == from->type->base_type)
113 return true;
114
115 /* This conversion was added in GLSL 1.20. If the compilation mode is
116 * GLSL 1.10, the conversion is skipped.
117 */
118 if (state->language_version < 120)
119 return false;
120
121 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
122 *
123 * "There are no implicit array or structure conversions. For
124 * example, an array of int cannot be implicitly converted to an
125 * array of float. There are no implicit conversions between
126 * signed and unsigned integers."
127 */
128 /* FINISHME: The above comment is partially a lie. There is int/uint
129 * FINISHME: conversion for immediate constants.
130 */
131 if (!to->is_float() || !from->type->is_numeric())
132 return false;
133
134 /* Convert to a floating point type with the same number of components
135 * as the original type - i.e. int to float, not int to vec4.
136 */
137 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
138 from->type->matrix_columns);
139
140 switch (from->type->base_type) {
141 case GLSL_TYPE_INT:
142 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
143 break;
144 case GLSL_TYPE_UINT:
145 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
146 break;
147 case GLSL_TYPE_BOOL:
148 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
149 break;
150 default:
151 assert(0);
152 }
153
154 return true;
155 }
156
157
158 static const struct glsl_type *
159 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
160 bool multiply,
161 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
162 {
163 const glsl_type *type_a = value_a->type;
164 const glsl_type *type_b = value_b->type;
165
166 /* From GLSL 1.50 spec, page 56:
167 *
168 * "The arithmetic binary operators add (+), subtract (-),
169 * multiply (*), and divide (/) operate on integer and
170 * floating-point scalars, vectors, and matrices."
171 */
172 if (!type_a->is_numeric() || !type_b->is_numeric()) {
173 _mesa_glsl_error(loc, state,
174 "Operands to arithmetic operators must be numeric");
175 return glsl_type::error_type;
176 }
177
178
179 /* "If one operand is floating-point based and the other is
180 * not, then the conversions from Section 4.1.10 "Implicit
181 * Conversions" are applied to the non-floating-point-based operand."
182 */
183 if (!apply_implicit_conversion(type_a, value_b, state)
184 && !apply_implicit_conversion(type_b, value_a, state)) {
185 _mesa_glsl_error(loc, state,
186 "Could not implicitly convert operands to "
187 "arithmetic operator");
188 return glsl_type::error_type;
189 }
190 type_a = value_a->type;
191 type_b = value_b->type;
192
193 /* "If the operands are integer types, they must both be signed or
194 * both be unsigned."
195 *
196 * From this rule and the preceeding conversion it can be inferred that
197 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
198 * The is_numeric check above already filtered out the case where either
199 * type is not one of these, so now the base types need only be tested for
200 * equality.
201 */
202 if (type_a->base_type != type_b->base_type) {
203 _mesa_glsl_error(loc, state,
204 "base type mismatch for arithmetic operator");
205 return glsl_type::error_type;
206 }
207
208 /* "All arithmetic binary operators result in the same fundamental type
209 * (signed integer, unsigned integer, or floating-point) as the
210 * operands they operate on, after operand type conversion. After
211 * conversion, the following cases are valid
212 *
213 * * The two operands are scalars. In this case the operation is
214 * applied, resulting in a scalar."
215 */
216 if (type_a->is_scalar() && type_b->is_scalar())
217 return type_a;
218
219 /* "* One operand is a scalar, and the other is a vector or matrix.
220 * In this case, the scalar operation is applied independently to each
221 * component of the vector or matrix, resulting in the same size
222 * vector or matrix."
223 */
224 if (type_a->is_scalar()) {
225 if (!type_b->is_scalar())
226 return type_b;
227 } else if (type_b->is_scalar()) {
228 return type_a;
229 }
230
231 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
232 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
233 * handled.
234 */
235 assert(!type_a->is_scalar());
236 assert(!type_b->is_scalar());
237
238 /* "* The two operands are vectors of the same size. In this case, the
239 * operation is done component-wise resulting in the same size
240 * vector."
241 */
242 if (type_a->is_vector() && type_b->is_vector()) {
243 if (type_a == type_b) {
244 return type_a;
245 } else {
246 _mesa_glsl_error(loc, state,
247 "vector size mismatch for arithmetic operator");
248 return glsl_type::error_type;
249 }
250 }
251
252 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
253 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
254 * <vector, vector> have been handled. At least one of the operands must
255 * be matrix. Further, since there are no integer matrix types, the base
256 * type of both operands must be float.
257 */
258 assert(type_a->is_matrix() || type_b->is_matrix());
259 assert(type_a->base_type == GLSL_TYPE_FLOAT);
260 assert(type_b->base_type == GLSL_TYPE_FLOAT);
261
262 /* "* The operator is add (+), subtract (-), or divide (/), and the
263 * operands are matrices with the same number of rows and the same
264 * number of columns. In this case, the operation is done component-
265 * wise resulting in the same size matrix."
266 * * The operator is multiply (*), where both operands are matrices or
267 * one operand is a vector and the other a matrix. A right vector
268 * operand is treated as a column vector and a left vector operand as a
269 * row vector. In all these cases, it is required that the number of
270 * columns of the left operand is equal to the number of rows of the
271 * right operand. Then, the multiply (*) operation does a linear
272 * algebraic multiply, yielding an object that has the same number of
273 * rows as the left operand and the same number of columns as the right
274 * operand. Section 5.10 "Vector and Matrix Operations" explains in
275 * more detail how vectors and matrices are operated on."
276 */
277 if (! multiply) {
278 if (type_a == type_b)
279 return type_a;
280 } else {
281 if (type_a->is_matrix() && type_b->is_matrix()) {
282 /* Matrix multiply. The columns of A must match the rows of B. Given
283 * the other previously tested constraints, this means the vector type
284 * of a row from A must be the same as the vector type of a column from
285 * B.
286 */
287 if (type_a->row_type() == type_b->column_type()) {
288 /* The resulting matrix has the number of columns of matrix B and
289 * the number of rows of matrix A. We get the row count of A by
290 * looking at the size of a vector that makes up a column. The
291 * transpose (size of a row) is done for B.
292 */
293 const glsl_type *const type =
294 glsl_type::get_instance(type_a->base_type,
295 type_a->column_type()->vector_elements,
296 type_b->row_type()->vector_elements);
297 assert(type != glsl_type::error_type);
298
299 return type;
300 }
301 } else if (type_a->is_matrix()) {
302 /* A is a matrix and B is a column vector. Columns of A must match
303 * rows of B. Given the other previously tested constraints, this
304 * means the vector type of a row from A must be the same as the
305 * vector the type of B.
306 */
307 if (type_a->row_type() == type_b) {
308 /* The resulting vector has a number of elements equal to
309 * the number of rows of matrix A. */
310 const glsl_type *const type =
311 glsl_type::get_instance(type_a->base_type,
312 type_a->column_type()->vector_elements,
313 1);
314 assert(type != glsl_type::error_type);
315
316 return type;
317 }
318 } else {
319 assert(type_b->is_matrix());
320
321 /* A is a row vector and B is a matrix. Columns of A must match rows
322 * of B. Given the other previously tested constraints, this means
323 * the type of A must be the same as the vector type of a column from
324 * B.
325 */
326 if (type_a == type_b->column_type()) {
327 /* The resulting vector has a number of elements equal to
328 * the number of columns of matrix B. */
329 const glsl_type *const type =
330 glsl_type::get_instance(type_a->base_type,
331 type_b->row_type()->vector_elements,
332 1);
333 assert(type != glsl_type::error_type);
334
335 return type;
336 }
337 }
338
339 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
340 return glsl_type::error_type;
341 }
342
343
344 /* "All other cases are illegal."
345 */
346 _mesa_glsl_error(loc, state, "type mismatch");
347 return glsl_type::error_type;
348 }
349
350
351 static const struct glsl_type *
352 unary_arithmetic_result_type(const struct glsl_type *type,
353 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
354 {
355 /* From GLSL 1.50 spec, page 57:
356 *
357 * "The arithmetic unary operators negate (-), post- and pre-increment
358 * and decrement (-- and ++) operate on integer or floating-point
359 * values (including vectors and matrices). All unary operators work
360 * component-wise on their operands. These result with the same type
361 * they operated on."
362 */
363 if (!type->is_numeric()) {
364 _mesa_glsl_error(loc, state,
365 "Operands to arithmetic operators must be numeric");
366 return glsl_type::error_type;
367 }
368
369 return type;
370 }
371
372 /**
373 * \brief Return the result type of a bit-logic operation.
374 *
375 * If the given types to the bit-logic operator are invalid, return
376 * glsl_type::error_type.
377 *
378 * \param type_a Type of LHS of bit-logic op
379 * \param type_b Type of RHS of bit-logic op
380 */
381 static const struct glsl_type *
382 bit_logic_result_type(const struct glsl_type *type_a,
383 const struct glsl_type *type_b,
384 ast_operators op,
385 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
386 {
387 if (state->language_version < 130) {
388 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
389 return glsl_type::error_type;
390 }
391
392 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
393 *
394 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
395 * (|). The operands must be of type signed or unsigned integers or
396 * integer vectors."
397 */
398 if (!type_a->is_integer()) {
399 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403 if (!type_b->is_integer()) {
404 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
405 ast_expression::operator_string(op));
406 return glsl_type::error_type;
407 }
408
409 /* "The fundamental types of the operands (signed or unsigned) must
410 * match,"
411 */
412 if (type_a->base_type != type_b->base_type) {
413 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
414 "base type", ast_expression::operator_string(op));
415 return glsl_type::error_type;
416 }
417
418 /* "The operands cannot be vectors of differing size." */
419 if (type_a->is_vector() &&
420 type_b->is_vector() &&
421 type_a->vector_elements != type_b->vector_elements) {
422 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
423 "different sizes", ast_expression::operator_string(op));
424 return glsl_type::error_type;
425 }
426
427 /* "If one operand is a scalar and the other a vector, the scalar is
428 * applied component-wise to the vector, resulting in the same type as
429 * the vector. The fundamental types of the operands [...] will be the
430 * resulting fundamental type."
431 */
432 if (type_a->is_scalar())
433 return type_b;
434 else
435 return type_a;
436 }
437
438 static const struct glsl_type *
439 modulus_result_type(const struct glsl_type *type_a,
440 const struct glsl_type *type_b,
441 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
442 {
443 if (state->language_version < 130) {
444 _mesa_glsl_error(loc, state,
445 "operator '%%' is reserved in %s",
446 state->version_string);
447 return glsl_type::error_type;
448 }
449
450 /* From GLSL 1.50 spec, page 56:
451 * "The operator modulus (%) operates on signed or unsigned integers or
452 * integer vectors. The operand types must both be signed or both be
453 * unsigned."
454 */
455 if (!type_a->is_integer()) {
456 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
457 return glsl_type::error_type;
458 }
459 if (!type_b->is_integer()) {
460 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
461 return glsl_type::error_type;
462 }
463 if (type_a->base_type != type_b->base_type) {
464 _mesa_glsl_error(loc, state,
465 "operands of %% must have the same base type");
466 return glsl_type::error_type;
467 }
468
469 /* "The operands cannot be vectors of differing size. If one operand is
470 * a scalar and the other vector, then the scalar is applied component-
471 * wise to the vector, resulting in the same type as the vector. If both
472 * are vectors of the same size, the result is computed component-wise."
473 */
474 if (type_a->is_vector()) {
475 if (!type_b->is_vector()
476 || (type_a->vector_elements == type_b->vector_elements))
477 return type_a;
478 } else
479 return type_b;
480
481 /* "The operator modulus (%) is not defined for any other data types
482 * (non-integer types)."
483 */
484 _mesa_glsl_error(loc, state, "type mismatch");
485 return glsl_type::error_type;
486 }
487
488
489 static const struct glsl_type *
490 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
491 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
492 {
493 const glsl_type *type_a = value_a->type;
494 const glsl_type *type_b = value_b->type;
495
496 /* From GLSL 1.50 spec, page 56:
497 * "The relational operators greater than (>), less than (<), greater
498 * than or equal (>=), and less than or equal (<=) operate only on
499 * scalar integer and scalar floating-point expressions."
500 */
501 if (!type_a->is_numeric()
502 || !type_b->is_numeric()
503 || !type_a->is_scalar()
504 || !type_b->is_scalar()) {
505 _mesa_glsl_error(loc, state,
506 "Operands to relational operators must be scalar and "
507 "numeric");
508 return glsl_type::error_type;
509 }
510
511 /* "Either the operands' types must match, or the conversions from
512 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
513 * operand, after which the types must match."
514 */
515 if (!apply_implicit_conversion(type_a, value_b, state)
516 && !apply_implicit_conversion(type_b, value_a, state)) {
517 _mesa_glsl_error(loc, state,
518 "Could not implicitly convert operands to "
519 "relational operator");
520 return glsl_type::error_type;
521 }
522 type_a = value_a->type;
523 type_b = value_b->type;
524
525 if (type_a->base_type != type_b->base_type) {
526 _mesa_glsl_error(loc, state, "base type mismatch");
527 return glsl_type::error_type;
528 }
529
530 /* "The result is scalar Boolean."
531 */
532 return glsl_type::bool_type;
533 }
534
535 /**
536 * \brief Return the result type of a bit-shift operation.
537 *
538 * If the given types to the bit-shift operator are invalid, return
539 * glsl_type::error_type.
540 *
541 * \param type_a Type of LHS of bit-shift op
542 * \param type_b Type of RHS of bit-shift op
543 */
544 static const struct glsl_type *
545 shift_result_type(const struct glsl_type *type_a,
546 const struct glsl_type *type_b,
547 ast_operators op,
548 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
549 {
550 if (state->language_version < 130) {
551 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
552 return glsl_type::error_type;
553 }
554
555 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
556 *
557 * "The shift operators (<<) and (>>). For both operators, the operands
558 * must be signed or unsigned integers or integer vectors. One operand
559 * can be signed while the other is unsigned."
560 */
561 if (!type_a->is_integer()) {
562 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
563 "integer vector", ast_expression::operator_string(op));
564 return glsl_type::error_type;
565
566 }
567 if (!type_b->is_integer()) {
568 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
569 "integer vector", ast_expression::operator_string(op));
570 return glsl_type::error_type;
571 }
572
573 /* "If the first operand is a scalar, the second operand has to be
574 * a scalar as well."
575 */
576 if (type_a->is_scalar() && !type_b->is_scalar()) {
577 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
578 "second must be scalar as well",
579 ast_expression::operator_string(op));
580 return glsl_type::error_type;
581 }
582
583 /* If both operands are vectors, check that they have same number of
584 * elements.
585 */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
590 "have same number of elements",
591 ast_expression::operator_string(op));
592 return glsl_type::error_type;
593 }
594
595 /* "In all cases, the resulting type will be the same type as the left
596 * operand."
597 */
598 return type_a;
599 }
600
601 /**
602 * Validates that a value can be assigned to a location with a specified type
603 *
604 * Validates that \c rhs can be assigned to some location. If the types are
605 * not an exact match but an automatic conversion is possible, \c rhs will be
606 * converted.
607 *
608 * \return
609 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
610 * Otherwise the actual RHS to be assigned will be returned. This may be
611 * \c rhs, or it may be \c rhs after some type conversion.
612 *
613 * \note
614 * In addition to being used for assignments, this function is used to
615 * type-check return values.
616 */
617 ir_rvalue *
618 validate_assignment(struct _mesa_glsl_parse_state *state,
619 const glsl_type *lhs_type, ir_rvalue *rhs,
620 bool is_initializer)
621 {
622 /* If there is already some error in the RHS, just return it. Anything
623 * else will lead to an avalanche of error message back to the user.
624 */
625 if (rhs->type->is_error())
626 return rhs;
627
628 /* If the types are identical, the assignment can trivially proceed.
629 */
630 if (rhs->type == lhs_type)
631 return rhs;
632
633 /* If the array element types are the same and the size of the LHS is zero,
634 * the assignment is okay for initializers embedded in variable
635 * declarations.
636 *
637 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
638 * is handled by ir_dereference::is_lvalue.
639 */
640 if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
641 && (lhs_type->element_type() == rhs->type->element_type())
642 && (lhs_type->array_size() == 0)) {
643 return rhs;
644 }
645
646 /* Check for implicit conversion in GLSL 1.20 */
647 if (apply_implicit_conversion(lhs_type, rhs, state)) {
648 if (rhs->type == lhs_type)
649 return rhs;
650 }
651
652 return NULL;
653 }
654
655 static void
656 mark_whole_array_access(ir_rvalue *access)
657 {
658 ir_dereference_variable *deref = access->as_dereference_variable();
659
660 if (deref && deref->var) {
661 deref->var->max_array_access = deref->type->length - 1;
662 }
663 }
664
665 ir_rvalue *
666 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
667 const char *non_lvalue_description,
668 ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
669 YYLTYPE lhs_loc)
670 {
671 void *ctx = state;
672 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
673
674 if (!error_emitted) {
675 if (non_lvalue_description != NULL) {
676 _mesa_glsl_error(&lhs_loc, state,
677 "assignment to %s",
678 non_lvalue_description);
679 error_emitted = true;
680 } else if (lhs->variable_referenced() != NULL
681 && lhs->variable_referenced()->read_only) {
682 _mesa_glsl_error(&lhs_loc, state,
683 "assignment to read-only variable '%s'",
684 lhs->variable_referenced()->name);
685 error_emitted = true;
686
687 } else if (state->language_version <= 110 && lhs->type->is_array()) {
688 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
689 *
690 * "Other binary or unary expressions, non-dereferenced
691 * arrays, function names, swizzles with repeated fields,
692 * and constants cannot be l-values."
693 */
694 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
695 "allowed in GLSL 1.10 or GLSL ES 1.00.");
696 error_emitted = true;
697 } else if (!lhs->is_lvalue()) {
698 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
699 error_emitted = true;
700 }
701 }
702
703 ir_rvalue *new_rhs =
704 validate_assignment(state, lhs->type, rhs, is_initializer);
705 if (new_rhs == NULL) {
706 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
707 } else {
708 rhs = new_rhs;
709
710 /* If the LHS array was not declared with a size, it takes it size from
711 * the RHS. If the LHS is an l-value and a whole array, it must be a
712 * dereference of a variable. Any other case would require that the LHS
713 * is either not an l-value or not a whole array.
714 */
715 if (lhs->type->array_size() == 0) {
716 ir_dereference *const d = lhs->as_dereference();
717
718 assert(d != NULL);
719
720 ir_variable *const var = d->variable_referenced();
721
722 assert(var != NULL);
723
724 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
725 /* FINISHME: This should actually log the location of the RHS. */
726 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
727 "previous access",
728 var->max_array_access);
729 }
730
731 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
732 rhs->type->array_size());
733 d->type = var->type;
734 }
735 mark_whole_array_access(rhs);
736 mark_whole_array_access(lhs);
737 }
738
739 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
740 * but not post_inc) need the converted assigned value as an rvalue
741 * to handle things like:
742 *
743 * i = j += 1;
744 *
745 * So we always just store the computed value being assigned to a
746 * temporary and return a deref of that temporary. If the rvalue
747 * ends up not being used, the temp will get copy-propagated out.
748 */
749 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
750 ir_var_temporary);
751 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
752 instructions->push_tail(var);
753 instructions->push_tail(new(ctx) ir_assignment(deref_var,
754 rhs,
755 NULL));
756 deref_var = new(ctx) ir_dereference_variable(var);
757
758 if (!error_emitted)
759 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
760
761 return new(ctx) ir_dereference_variable(var);
762 }
763
764 static ir_rvalue *
765 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
766 {
767 void *ctx = ralloc_parent(lvalue);
768 ir_variable *var;
769
770 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
771 ir_var_temporary);
772 instructions->push_tail(var);
773 var->mode = ir_var_auto;
774
775 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
776 lvalue, NULL));
777
778 return new(ctx) ir_dereference_variable(var);
779 }
780
781
782 ir_rvalue *
783 ast_node::hir(exec_list *instructions,
784 struct _mesa_glsl_parse_state *state)
785 {
786 (void) instructions;
787 (void) state;
788
789 return NULL;
790 }
791
792 static ir_rvalue *
793 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
794 {
795 int join_op;
796 ir_rvalue *cmp = NULL;
797
798 if (operation == ir_binop_all_equal)
799 join_op = ir_binop_logic_and;
800 else
801 join_op = ir_binop_logic_or;
802
803 switch (op0->type->base_type) {
804 case GLSL_TYPE_FLOAT:
805 case GLSL_TYPE_UINT:
806 case GLSL_TYPE_INT:
807 case GLSL_TYPE_BOOL:
808 return new(mem_ctx) ir_expression(operation, op0, op1);
809
810 case GLSL_TYPE_ARRAY: {
811 for (unsigned int i = 0; i < op0->type->length; i++) {
812 ir_rvalue *e0, *e1, *result;
813
814 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
815 new(mem_ctx) ir_constant(i));
816 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
817 new(mem_ctx) ir_constant(i));
818 result = do_comparison(mem_ctx, operation, e0, e1);
819
820 if (cmp) {
821 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
822 } else {
823 cmp = result;
824 }
825 }
826
827 mark_whole_array_access(op0);
828 mark_whole_array_access(op1);
829 break;
830 }
831
832 case GLSL_TYPE_STRUCT: {
833 for (unsigned int i = 0; i < op0->type->length; i++) {
834 ir_rvalue *e0, *e1, *result;
835 const char *field_name = op0->type->fields.structure[i].name;
836
837 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
838 field_name);
839 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
840 field_name);
841 result = do_comparison(mem_ctx, operation, e0, e1);
842
843 if (cmp) {
844 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
845 } else {
846 cmp = result;
847 }
848 }
849 break;
850 }
851
852 case GLSL_TYPE_ERROR:
853 case GLSL_TYPE_VOID:
854 case GLSL_TYPE_SAMPLER:
855 /* I assume a comparison of a struct containing a sampler just
856 * ignores the sampler present in the type.
857 */
858 break;
859
860 default:
861 assert(!"Should not get here.");
862 break;
863 }
864
865 if (cmp == NULL)
866 cmp = new(mem_ctx) ir_constant(true);
867
868 return cmp;
869 }
870
871 /* For logical operations, we want to ensure that the operands are
872 * scalar booleans. If it isn't, emit an error and return a constant
873 * boolean to avoid triggering cascading error messages.
874 */
875 ir_rvalue *
876 get_scalar_boolean_operand(exec_list *instructions,
877 struct _mesa_glsl_parse_state *state,
878 ast_expression *parent_expr,
879 int operand,
880 const char *operand_name,
881 bool *error_emitted)
882 {
883 ast_expression *expr = parent_expr->subexpressions[operand];
884 void *ctx = state;
885 ir_rvalue *val = expr->hir(instructions, state);
886
887 if (val->type->is_boolean() && val->type->is_scalar())
888 return val;
889
890 if (!*error_emitted) {
891 YYLTYPE loc = expr->get_location();
892 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
893 operand_name,
894 parent_expr->operator_string(parent_expr->oper));
895 *error_emitted = true;
896 }
897
898 return new(ctx) ir_constant(true);
899 }
900
901 /**
902 * If name refers to a builtin array whose maximum allowed size is less than
903 * size, report an error and return true. Otherwise return false.
904 */
905 static bool
906 check_builtin_array_max_size(const char *name, unsigned size,
907 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
908 {
909 if ((strcmp("gl_TexCoord", name) == 0)
910 && (size > state->Const.MaxTextureCoords)) {
911 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
912 *
913 * "The size [of gl_TexCoord] can be at most
914 * gl_MaxTextureCoords."
915 */
916 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
917 "be larger than gl_MaxTextureCoords (%u)\n",
918 state->Const.MaxTextureCoords);
919 return true;
920 } else if (strcmp("gl_ClipDistance", name) == 0
921 && size > state->Const.MaxClipPlanes) {
922 /* From section 7.1 (Vertex Shader Special Variables) of the
923 * GLSL 1.30 spec:
924 *
925 * "The gl_ClipDistance array is predeclared as unsized and
926 * must be sized by the shader either redeclaring it with a
927 * size or indexing it only with integral constant
928 * expressions. ... The size can be at most
929 * gl_MaxClipDistances."
930 */
931 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
932 "be larger than gl_MaxClipDistances (%u)\n",
933 state->Const.MaxClipPlanes);
934 return true;
935 }
936 return false;
937 }
938
939 /**
940 * Create the constant 1, of a which is appropriate for incrementing and
941 * decrementing values of the given GLSL type. For example, if type is vec4,
942 * this creates a constant value of 1.0 having type float.
943 *
944 * If the given type is invalid for increment and decrement operators, return
945 * a floating point 1--the error will be detected later.
946 */
947 static ir_rvalue *
948 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
949 {
950 switch (type->base_type) {
951 case GLSL_TYPE_UINT:
952 return new(ctx) ir_constant((unsigned) 1);
953 case GLSL_TYPE_INT:
954 return new(ctx) ir_constant(1);
955 default:
956 case GLSL_TYPE_FLOAT:
957 return new(ctx) ir_constant(1.0f);
958 }
959 }
960
961 ir_rvalue *
962 ast_expression::hir(exec_list *instructions,
963 struct _mesa_glsl_parse_state *state)
964 {
965 void *ctx = state;
966 static const int operations[AST_NUM_OPERATORS] = {
967 -1, /* ast_assign doesn't convert to ir_expression. */
968 -1, /* ast_plus doesn't convert to ir_expression. */
969 ir_unop_neg,
970 ir_binop_add,
971 ir_binop_sub,
972 ir_binop_mul,
973 ir_binop_div,
974 ir_binop_mod,
975 ir_binop_lshift,
976 ir_binop_rshift,
977 ir_binop_less,
978 ir_binop_greater,
979 ir_binop_lequal,
980 ir_binop_gequal,
981 ir_binop_all_equal,
982 ir_binop_any_nequal,
983 ir_binop_bit_and,
984 ir_binop_bit_xor,
985 ir_binop_bit_or,
986 ir_unop_bit_not,
987 ir_binop_logic_and,
988 ir_binop_logic_xor,
989 ir_binop_logic_or,
990 ir_unop_logic_not,
991
992 /* Note: The following block of expression types actually convert
993 * to multiple IR instructions.
994 */
995 ir_binop_mul, /* ast_mul_assign */
996 ir_binop_div, /* ast_div_assign */
997 ir_binop_mod, /* ast_mod_assign */
998 ir_binop_add, /* ast_add_assign */
999 ir_binop_sub, /* ast_sub_assign */
1000 ir_binop_lshift, /* ast_ls_assign */
1001 ir_binop_rshift, /* ast_rs_assign */
1002 ir_binop_bit_and, /* ast_and_assign */
1003 ir_binop_bit_xor, /* ast_xor_assign */
1004 ir_binop_bit_or, /* ast_or_assign */
1005
1006 -1, /* ast_conditional doesn't convert to ir_expression. */
1007 ir_binop_add, /* ast_pre_inc. */
1008 ir_binop_sub, /* ast_pre_dec. */
1009 ir_binop_add, /* ast_post_inc. */
1010 ir_binop_sub, /* ast_post_dec. */
1011 -1, /* ast_field_selection doesn't conv to ir_expression. */
1012 -1, /* ast_array_index doesn't convert to ir_expression. */
1013 -1, /* ast_function_call doesn't conv to ir_expression. */
1014 -1, /* ast_identifier doesn't convert to ir_expression. */
1015 -1, /* ast_int_constant doesn't convert to ir_expression. */
1016 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1017 -1, /* ast_float_constant doesn't conv to ir_expression. */
1018 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1019 -1, /* ast_sequence doesn't convert to ir_expression. */
1020 };
1021 ir_rvalue *result = NULL;
1022 ir_rvalue *op[3];
1023 const struct glsl_type *type; /* a temporary variable for switch cases */
1024 bool error_emitted = false;
1025 YYLTYPE loc;
1026
1027 loc = this->get_location();
1028
1029 switch (this->oper) {
1030 case ast_assign: {
1031 op[0] = this->subexpressions[0]->hir(instructions, state);
1032 op[1] = this->subexpressions[1]->hir(instructions, state);
1033
1034 result = do_assignment(instructions, state,
1035 this->subexpressions[0]->non_lvalue_description,
1036 op[0], op[1], false,
1037 this->subexpressions[0]->get_location());
1038 error_emitted = result->type->is_error();
1039 break;
1040 }
1041
1042 case ast_plus:
1043 op[0] = this->subexpressions[0]->hir(instructions, state);
1044
1045 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1046
1047 error_emitted = type->is_error();
1048
1049 result = op[0];
1050 break;
1051
1052 case ast_neg:
1053 op[0] = this->subexpressions[0]->hir(instructions, state);
1054
1055 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1056
1057 error_emitted = type->is_error();
1058
1059 result = new(ctx) ir_expression(operations[this->oper], type,
1060 op[0], NULL);
1061 break;
1062
1063 case ast_add:
1064 case ast_sub:
1065 case ast_mul:
1066 case ast_div:
1067 op[0] = this->subexpressions[0]->hir(instructions, state);
1068 op[1] = this->subexpressions[1]->hir(instructions, state);
1069
1070 type = arithmetic_result_type(op[0], op[1],
1071 (this->oper == ast_mul),
1072 state, & loc);
1073 error_emitted = type->is_error();
1074
1075 result = new(ctx) ir_expression(operations[this->oper], type,
1076 op[0], op[1]);
1077 break;
1078
1079 case ast_mod:
1080 op[0] = this->subexpressions[0]->hir(instructions, state);
1081 op[1] = this->subexpressions[1]->hir(instructions, state);
1082
1083 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1084
1085 assert(operations[this->oper] == ir_binop_mod);
1086
1087 result = new(ctx) ir_expression(operations[this->oper], type,
1088 op[0], op[1]);
1089 error_emitted = type->is_error();
1090 break;
1091
1092 case ast_lshift:
1093 case ast_rshift:
1094 if (state->language_version < 130) {
1095 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
1096 operator_string(this->oper));
1097 error_emitted = true;
1098 }
1099
1100 op[0] = this->subexpressions[0]->hir(instructions, state);
1101 op[1] = this->subexpressions[1]->hir(instructions, state);
1102 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1103 &loc);
1104 result = new(ctx) ir_expression(operations[this->oper], type,
1105 op[0], op[1]);
1106 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1107 break;
1108
1109 case ast_less:
1110 case ast_greater:
1111 case ast_lequal:
1112 case ast_gequal:
1113 op[0] = this->subexpressions[0]->hir(instructions, state);
1114 op[1] = this->subexpressions[1]->hir(instructions, state);
1115
1116 type = relational_result_type(op[0], op[1], state, & loc);
1117
1118 /* The relational operators must either generate an error or result
1119 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1120 */
1121 assert(type->is_error()
1122 || ((type->base_type == GLSL_TYPE_BOOL)
1123 && type->is_scalar()));
1124
1125 result = new(ctx) ir_expression(operations[this->oper], type,
1126 op[0], op[1]);
1127 error_emitted = type->is_error();
1128 break;
1129
1130 case ast_nequal:
1131 case ast_equal:
1132 op[0] = this->subexpressions[0]->hir(instructions, state);
1133 op[1] = this->subexpressions[1]->hir(instructions, state);
1134
1135 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1136 *
1137 * "The equality operators equal (==), and not equal (!=)
1138 * operate on all types. They result in a scalar Boolean. If
1139 * the operand types do not match, then there must be a
1140 * conversion from Section 4.1.10 "Implicit Conversions"
1141 * applied to one operand that can make them match, in which
1142 * case this conversion is done."
1143 */
1144 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1145 && !apply_implicit_conversion(op[1]->type, op[0], state))
1146 || (op[0]->type != op[1]->type)) {
1147 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1148 "type", (this->oper == ast_equal) ? "==" : "!=");
1149 error_emitted = true;
1150 } else if ((state->language_version <= 110)
1151 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1152 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1153 "GLSL 1.10");
1154 error_emitted = true;
1155 }
1156
1157 if (error_emitted) {
1158 result = new(ctx) ir_constant(false);
1159 } else {
1160 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1161 assert(result->type == glsl_type::bool_type);
1162 }
1163 break;
1164
1165 case ast_bit_and:
1166 case ast_bit_xor:
1167 case ast_bit_or:
1168 op[0] = this->subexpressions[0]->hir(instructions, state);
1169 op[1] = this->subexpressions[1]->hir(instructions, state);
1170 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1171 state, &loc);
1172 result = new(ctx) ir_expression(operations[this->oper], type,
1173 op[0], op[1]);
1174 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1175 break;
1176
1177 case ast_bit_not:
1178 op[0] = this->subexpressions[0]->hir(instructions, state);
1179
1180 if (state->language_version < 130) {
1181 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1182 error_emitted = true;
1183 }
1184
1185 if (!op[0]->type->is_integer()) {
1186 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1187 error_emitted = true;
1188 }
1189
1190 type = error_emitted ? glsl_type::error_type : op[0]->type;
1191 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1192 break;
1193
1194 case ast_logic_and: {
1195 exec_list rhs_instructions;
1196 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1197 "LHS", &error_emitted);
1198 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1199 "RHS", &error_emitted);
1200
1201 ir_constant *op0_const = op[0]->constant_expression_value();
1202 if (op0_const) {
1203 if (op0_const->value.b[0]) {
1204 instructions->append_list(&rhs_instructions);
1205 result = op[1];
1206 } else {
1207 result = op0_const;
1208 }
1209 type = glsl_type::bool_type;
1210 } else {
1211 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1212 "and_tmp",
1213 ir_var_temporary);
1214 instructions->push_tail(tmp);
1215
1216 ir_if *const stmt = new(ctx) ir_if(op[0]);
1217 instructions->push_tail(stmt);
1218
1219 stmt->then_instructions.append_list(&rhs_instructions);
1220 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1221 ir_assignment *const then_assign =
1222 new(ctx) ir_assignment(then_deref, op[1], NULL);
1223 stmt->then_instructions.push_tail(then_assign);
1224
1225 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1226 ir_assignment *const else_assign =
1227 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1228 stmt->else_instructions.push_tail(else_assign);
1229
1230 result = new(ctx) ir_dereference_variable(tmp);
1231 type = tmp->type;
1232 }
1233 break;
1234 }
1235
1236 case ast_logic_or: {
1237 exec_list rhs_instructions;
1238 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1239 "LHS", &error_emitted);
1240 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1241 "RHS", &error_emitted);
1242
1243 ir_constant *op0_const = op[0]->constant_expression_value();
1244 if (op0_const) {
1245 if (op0_const->value.b[0]) {
1246 result = op0_const;
1247 } else {
1248 result = op[1];
1249 }
1250 type = glsl_type::bool_type;
1251 } else {
1252 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1253 "or_tmp",
1254 ir_var_temporary);
1255 instructions->push_tail(tmp);
1256
1257 ir_if *const stmt = new(ctx) ir_if(op[0]);
1258 instructions->push_tail(stmt);
1259
1260 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1261 ir_assignment *const then_assign =
1262 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1263 stmt->then_instructions.push_tail(then_assign);
1264
1265 stmt->else_instructions.append_list(&rhs_instructions);
1266 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1267 ir_assignment *const else_assign =
1268 new(ctx) ir_assignment(else_deref, op[1], NULL);
1269 stmt->else_instructions.push_tail(else_assign);
1270
1271 result = new(ctx) ir_dereference_variable(tmp);
1272 type = tmp->type;
1273 }
1274 break;
1275 }
1276
1277 case ast_logic_xor:
1278 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1279 *
1280 * "The logical binary operators and (&&), or ( | | ), and
1281 * exclusive or (^^). They operate only on two Boolean
1282 * expressions and result in a Boolean expression."
1283 */
1284 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1285 &error_emitted);
1286 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1287 &error_emitted);
1288
1289 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1290 op[0], op[1]);
1291 break;
1292
1293 case ast_logic_not:
1294 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1295 "operand", &error_emitted);
1296
1297 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1298 op[0], NULL);
1299 break;
1300
1301 case ast_mul_assign:
1302 case ast_div_assign:
1303 case ast_add_assign:
1304 case ast_sub_assign: {
1305 op[0] = this->subexpressions[0]->hir(instructions, state);
1306 op[1] = this->subexpressions[1]->hir(instructions, state);
1307
1308 type = arithmetic_result_type(op[0], op[1],
1309 (this->oper == ast_mul_assign),
1310 state, & loc);
1311
1312 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1313 op[0], op[1]);
1314
1315 result = do_assignment(instructions, state,
1316 this->subexpressions[0]->non_lvalue_description,
1317 op[0]->clone(ctx, NULL), temp_rhs, false,
1318 this->subexpressions[0]->get_location());
1319 error_emitted = (op[0]->type->is_error());
1320
1321 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1322 * explicitly test for this because none of the binary expression
1323 * operators allow array operands either.
1324 */
1325
1326 break;
1327 }
1328
1329 case ast_mod_assign: {
1330 op[0] = this->subexpressions[0]->hir(instructions, state);
1331 op[1] = this->subexpressions[1]->hir(instructions, state);
1332
1333 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1334
1335 assert(operations[this->oper] == ir_binop_mod);
1336
1337 ir_rvalue *temp_rhs;
1338 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1339 op[0], op[1]);
1340
1341 result = do_assignment(instructions, state,
1342 this->subexpressions[0]->non_lvalue_description,
1343 op[0]->clone(ctx, NULL), temp_rhs, false,
1344 this->subexpressions[0]->get_location());
1345 error_emitted = type->is_error();
1346 break;
1347 }
1348
1349 case ast_ls_assign:
1350 case ast_rs_assign: {
1351 op[0] = this->subexpressions[0]->hir(instructions, state);
1352 op[1] = this->subexpressions[1]->hir(instructions, state);
1353 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1354 &loc);
1355 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1356 type, op[0], op[1]);
1357 result = do_assignment(instructions, state,
1358 this->subexpressions[0]->non_lvalue_description,
1359 op[0]->clone(ctx, NULL), temp_rhs, false,
1360 this->subexpressions[0]->get_location());
1361 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1362 break;
1363 }
1364
1365 case ast_and_assign:
1366 case ast_xor_assign:
1367 case ast_or_assign: {
1368 op[0] = this->subexpressions[0]->hir(instructions, state);
1369 op[1] = this->subexpressions[1]->hir(instructions, state);
1370 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1371 state, &loc);
1372 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1373 type, op[0], op[1]);
1374 result = do_assignment(instructions, state,
1375 this->subexpressions[0]->non_lvalue_description,
1376 op[0]->clone(ctx, NULL), temp_rhs, false,
1377 this->subexpressions[0]->get_location());
1378 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1379 break;
1380 }
1381
1382 case ast_conditional: {
1383 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1384 *
1385 * "The ternary selection operator (?:). It operates on three
1386 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1387 * first expression, which must result in a scalar Boolean."
1388 */
1389 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1390 "condition", &error_emitted);
1391
1392 /* The :? operator is implemented by generating an anonymous temporary
1393 * followed by an if-statement. The last instruction in each branch of
1394 * the if-statement assigns a value to the anonymous temporary. This
1395 * temporary is the r-value of the expression.
1396 */
1397 exec_list then_instructions;
1398 exec_list else_instructions;
1399
1400 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1401 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1402
1403 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1404 *
1405 * "The second and third expressions can be any type, as
1406 * long their types match, or there is a conversion in
1407 * Section 4.1.10 "Implicit Conversions" that can be applied
1408 * to one of the expressions to make their types match. This
1409 * resulting matching type is the type of the entire
1410 * expression."
1411 */
1412 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1413 && !apply_implicit_conversion(op[2]->type, op[1], state))
1414 || (op[1]->type != op[2]->type)) {
1415 YYLTYPE loc = this->subexpressions[1]->get_location();
1416
1417 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1418 "operator must have matching types.");
1419 error_emitted = true;
1420 type = glsl_type::error_type;
1421 } else {
1422 type = op[1]->type;
1423 }
1424
1425 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1426 *
1427 * "The second and third expressions must be the same type, but can
1428 * be of any type other than an array."
1429 */
1430 if ((state->language_version <= 110) && type->is_array()) {
1431 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1432 "operator must not be arrays.");
1433 error_emitted = true;
1434 }
1435
1436 ir_constant *cond_val = op[0]->constant_expression_value();
1437 ir_constant *then_val = op[1]->constant_expression_value();
1438 ir_constant *else_val = op[2]->constant_expression_value();
1439
1440 if (then_instructions.is_empty()
1441 && else_instructions.is_empty()
1442 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1443 result = (cond_val->value.b[0]) ? then_val : else_val;
1444 } else {
1445 ir_variable *const tmp =
1446 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1447 instructions->push_tail(tmp);
1448
1449 ir_if *const stmt = new(ctx) ir_if(op[0]);
1450 instructions->push_tail(stmt);
1451
1452 then_instructions.move_nodes_to(& stmt->then_instructions);
1453 ir_dereference *const then_deref =
1454 new(ctx) ir_dereference_variable(tmp);
1455 ir_assignment *const then_assign =
1456 new(ctx) ir_assignment(then_deref, op[1], NULL);
1457 stmt->then_instructions.push_tail(then_assign);
1458
1459 else_instructions.move_nodes_to(& stmt->else_instructions);
1460 ir_dereference *const else_deref =
1461 new(ctx) ir_dereference_variable(tmp);
1462 ir_assignment *const else_assign =
1463 new(ctx) ir_assignment(else_deref, op[2], NULL);
1464 stmt->else_instructions.push_tail(else_assign);
1465
1466 result = new(ctx) ir_dereference_variable(tmp);
1467 }
1468 break;
1469 }
1470
1471 case ast_pre_inc:
1472 case ast_pre_dec: {
1473 this->non_lvalue_description = (this->oper == ast_pre_inc)
1474 ? "pre-increment operation" : "pre-decrement operation";
1475
1476 op[0] = this->subexpressions[0]->hir(instructions, state);
1477 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1478
1479 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1480
1481 ir_rvalue *temp_rhs;
1482 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1483 op[0], op[1]);
1484
1485 result = do_assignment(instructions, state,
1486 this->subexpressions[0]->non_lvalue_description,
1487 op[0]->clone(ctx, NULL), temp_rhs, false,
1488 this->subexpressions[0]->get_location());
1489 error_emitted = op[0]->type->is_error();
1490 break;
1491 }
1492
1493 case ast_post_inc:
1494 case ast_post_dec: {
1495 this->non_lvalue_description = (this->oper == ast_post_inc)
1496 ? "post-increment operation" : "post-decrement operation";
1497 op[0] = this->subexpressions[0]->hir(instructions, state);
1498 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1499
1500 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1501
1502 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1503
1504 ir_rvalue *temp_rhs;
1505 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1506 op[0], op[1]);
1507
1508 /* Get a temporary of a copy of the lvalue before it's modified.
1509 * This may get thrown away later.
1510 */
1511 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1512
1513 (void)do_assignment(instructions, state,
1514 this->subexpressions[0]->non_lvalue_description,
1515 op[0]->clone(ctx, NULL), temp_rhs, false,
1516 this->subexpressions[0]->get_location());
1517
1518 error_emitted = op[0]->type->is_error();
1519 break;
1520 }
1521
1522 case ast_field_selection:
1523 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1524 break;
1525
1526 case ast_array_index: {
1527 YYLTYPE index_loc = subexpressions[1]->get_location();
1528
1529 op[0] = subexpressions[0]->hir(instructions, state);
1530 op[1] = subexpressions[1]->hir(instructions, state);
1531
1532 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1533
1534 ir_rvalue *const array = op[0];
1535
1536 result = new(ctx) ir_dereference_array(op[0], op[1]);
1537
1538 /* Do not use op[0] after this point. Use array.
1539 */
1540 op[0] = NULL;
1541
1542
1543 if (error_emitted)
1544 break;
1545
1546 if (!array->type->is_array()
1547 && !array->type->is_matrix()
1548 && !array->type->is_vector()) {
1549 _mesa_glsl_error(& index_loc, state,
1550 "cannot dereference non-array / non-matrix / "
1551 "non-vector");
1552 error_emitted = true;
1553 }
1554
1555 if (!op[1]->type->is_integer()) {
1556 _mesa_glsl_error(& index_loc, state,
1557 "array index must be integer type");
1558 error_emitted = true;
1559 } else if (!op[1]->type->is_scalar()) {
1560 _mesa_glsl_error(& index_loc, state,
1561 "array index must be scalar");
1562 error_emitted = true;
1563 }
1564
1565 /* If the array index is a constant expression and the array has a
1566 * declared size, ensure that the access is in-bounds. If the array
1567 * index is not a constant expression, ensure that the array has a
1568 * declared size.
1569 */
1570 ir_constant *const const_index = op[1]->constant_expression_value();
1571 if (const_index != NULL) {
1572 const int idx = const_index->value.i[0];
1573 const char *type_name;
1574 unsigned bound = 0;
1575
1576 if (array->type->is_matrix()) {
1577 type_name = "matrix";
1578 } else if (array->type->is_vector()) {
1579 type_name = "vector";
1580 } else {
1581 type_name = "array";
1582 }
1583
1584 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1585 *
1586 * "It is illegal to declare an array with a size, and then
1587 * later (in the same shader) index the same array with an
1588 * integral constant expression greater than or equal to the
1589 * declared size. It is also illegal to index an array with a
1590 * negative constant expression."
1591 */
1592 if (array->type->is_matrix()) {
1593 if (array->type->row_type()->vector_elements <= idx) {
1594 bound = array->type->row_type()->vector_elements;
1595 }
1596 } else if (array->type->is_vector()) {
1597 if (array->type->vector_elements <= idx) {
1598 bound = array->type->vector_elements;
1599 }
1600 } else {
1601 if ((array->type->array_size() > 0)
1602 && (array->type->array_size() <= idx)) {
1603 bound = array->type->array_size();
1604 }
1605 }
1606
1607 if (bound > 0) {
1608 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1609 type_name, bound);
1610 error_emitted = true;
1611 } else if (idx < 0) {
1612 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1613 type_name);
1614 error_emitted = true;
1615 }
1616
1617 if (array->type->is_array()) {
1618 /* If the array is a variable dereference, it dereferences the
1619 * whole array, by definition. Use this to get the variable.
1620 *
1621 * FINISHME: Should some methods for getting / setting / testing
1622 * FINISHME: array access limits be added to ir_dereference?
1623 */
1624 ir_variable *const v = array->whole_variable_referenced();
1625 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
1626 v->max_array_access = idx;
1627
1628 /* Check whether this access will, as a side effect, implicitly
1629 * cause the size of a built-in array to be too large.
1630 */
1631 if (check_builtin_array_max_size(v->name, idx+1, loc, state))
1632 error_emitted = true;
1633 }
1634 }
1635 } else if (array->type->array_size() == 0) {
1636 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1637 } else {
1638 if (array->type->is_array()) {
1639 /* whole_variable_referenced can return NULL if the array is a
1640 * member of a structure. In this case it is safe to not update
1641 * the max_array_access field because it is never used for fields
1642 * of structures.
1643 */
1644 ir_variable *v = array->whole_variable_referenced();
1645 if (v != NULL)
1646 v->max_array_access = array->type->array_size() - 1;
1647 }
1648 }
1649
1650 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1651 *
1652 * "Samplers aggregated into arrays within a shader (using square
1653 * brackets [ ]) can only be indexed with integral constant
1654 * expressions [...]."
1655 *
1656 * This restriction was added in GLSL 1.30. Shaders using earlier version
1657 * of the language should not be rejected by the compiler front-end for
1658 * using this construct. This allows useful things such as using a loop
1659 * counter as the index to an array of samplers. If the loop in unrolled,
1660 * the code should compile correctly. Instead, emit a warning.
1661 */
1662 if (array->type->is_array() &&
1663 array->type->element_type()->is_sampler() &&
1664 const_index == NULL) {
1665
1666 if (state->language_version == 100) {
1667 _mesa_glsl_warning(&loc, state,
1668 "sampler arrays indexed with non-constant "
1669 "expressions is optional in GLSL ES 1.00");
1670 } else if (state->language_version < 130) {
1671 _mesa_glsl_warning(&loc, state,
1672 "sampler arrays indexed with non-constant "
1673 "expressions is forbidden in GLSL 1.30 and "
1674 "later");
1675 } else {
1676 _mesa_glsl_error(&loc, state,
1677 "sampler arrays indexed with non-constant "
1678 "expressions is forbidden in GLSL 1.30 and "
1679 "later");
1680 error_emitted = true;
1681 }
1682 }
1683
1684 if (error_emitted)
1685 result->type = glsl_type::error_type;
1686
1687 break;
1688 }
1689
1690 case ast_function_call:
1691 /* Should *NEVER* get here. ast_function_call should always be handled
1692 * by ast_function_expression::hir.
1693 */
1694 assert(0);
1695 break;
1696
1697 case ast_identifier: {
1698 /* ast_identifier can appear several places in a full abstract syntax
1699 * tree. This particular use must be at location specified in the grammar
1700 * as 'variable_identifier'.
1701 */
1702 ir_variable *var =
1703 state->symbols->get_variable(this->primary_expression.identifier);
1704
1705 result = new(ctx) ir_dereference_variable(var);
1706
1707 if (var != NULL) {
1708 var->used = true;
1709 } else {
1710 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1711 this->primary_expression.identifier);
1712
1713 error_emitted = true;
1714 }
1715 break;
1716 }
1717
1718 case ast_int_constant:
1719 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1720 break;
1721
1722 case ast_uint_constant:
1723 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1724 break;
1725
1726 case ast_float_constant:
1727 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1728 break;
1729
1730 case ast_bool_constant:
1731 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1732 break;
1733
1734 case ast_sequence: {
1735 /* It should not be possible to generate a sequence in the AST without
1736 * any expressions in it.
1737 */
1738 assert(!this->expressions.is_empty());
1739
1740 /* The r-value of a sequence is the last expression in the sequence. If
1741 * the other expressions in the sequence do not have side-effects (and
1742 * therefore add instructions to the instruction list), they get dropped
1743 * on the floor.
1744 */
1745 exec_node *previous_tail_pred = NULL;
1746 YYLTYPE previous_operand_loc = loc;
1747
1748 foreach_list_typed (ast_node, ast, link, &this->expressions) {
1749 /* If one of the operands of comma operator does not generate any
1750 * code, we want to emit a warning. At each pass through the loop
1751 * previous_tail_pred will point to the last instruction in the
1752 * stream *before* processing the previous operand. Naturally,
1753 * instructions->tail_pred will point to the last instruction in the
1754 * stream *after* processing the previous operand. If the two
1755 * pointers match, then the previous operand had no effect.
1756 *
1757 * The warning behavior here differs slightly from GCC. GCC will
1758 * only emit a warning if none of the left-hand operands have an
1759 * effect. However, it will emit a warning for each. I believe that
1760 * there are some cases in C (especially with GCC extensions) where
1761 * it is useful to have an intermediate step in a sequence have no
1762 * effect, but I don't think these cases exist in GLSL. Either way,
1763 * it would be a giant hassle to replicate that behavior.
1764 */
1765 if (previous_tail_pred == instructions->tail_pred) {
1766 _mesa_glsl_warning(&previous_operand_loc, state,
1767 "left-hand operand of comma expression has "
1768 "no effect");
1769 }
1770
1771 /* tail_pred is directly accessed instead of using the get_tail()
1772 * method for performance reasons. get_tail() has extra code to
1773 * return NULL when the list is empty. We don't care about that
1774 * here, so using tail_pred directly is fine.
1775 */
1776 previous_tail_pred = instructions->tail_pred;
1777 previous_operand_loc = ast->get_location();
1778
1779 result = ast->hir(instructions, state);
1780 }
1781
1782 /* Any errors should have already been emitted in the loop above.
1783 */
1784 error_emitted = true;
1785 break;
1786 }
1787 }
1788 type = NULL; /* use result->type, not type. */
1789 assert(result != NULL);
1790
1791 if (result->type->is_error() && !error_emitted)
1792 _mesa_glsl_error(& loc, state, "type mismatch");
1793
1794 return result;
1795 }
1796
1797
1798 ir_rvalue *
1799 ast_expression_statement::hir(exec_list *instructions,
1800 struct _mesa_glsl_parse_state *state)
1801 {
1802 /* It is possible to have expression statements that don't have an
1803 * expression. This is the solitary semicolon:
1804 *
1805 * for (i = 0; i < 5; i++)
1806 * ;
1807 *
1808 * In this case the expression will be NULL. Test for NULL and don't do
1809 * anything in that case.
1810 */
1811 if (expression != NULL)
1812 expression->hir(instructions, state);
1813
1814 /* Statements do not have r-values.
1815 */
1816 return NULL;
1817 }
1818
1819
1820 ir_rvalue *
1821 ast_compound_statement::hir(exec_list *instructions,
1822 struct _mesa_glsl_parse_state *state)
1823 {
1824 if (new_scope)
1825 state->symbols->push_scope();
1826
1827 foreach_list_typed (ast_node, ast, link, &this->statements)
1828 ast->hir(instructions, state);
1829
1830 if (new_scope)
1831 state->symbols->pop_scope();
1832
1833 /* Compound statements do not have r-values.
1834 */
1835 return NULL;
1836 }
1837
1838
1839 static const glsl_type *
1840 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1841 struct _mesa_glsl_parse_state *state)
1842 {
1843 unsigned length = 0;
1844
1845 /* From page 19 (page 25) of the GLSL 1.20 spec:
1846 *
1847 * "Only one-dimensional arrays may be declared."
1848 */
1849 if (base->is_array()) {
1850 _mesa_glsl_error(loc, state,
1851 "invalid array of `%s' (only one-dimensional arrays "
1852 "may be declared)",
1853 base->name);
1854 return glsl_type::error_type;
1855 }
1856
1857 if (array_size != NULL) {
1858 exec_list dummy_instructions;
1859 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1860 YYLTYPE loc = array_size->get_location();
1861
1862 if (ir != NULL) {
1863 if (!ir->type->is_integer()) {
1864 _mesa_glsl_error(& loc, state, "array size must be integer type");
1865 } else if (!ir->type->is_scalar()) {
1866 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1867 } else {
1868 ir_constant *const size = ir->constant_expression_value();
1869
1870 if (size == NULL) {
1871 _mesa_glsl_error(& loc, state, "array size must be a "
1872 "constant valued expression");
1873 } else if (size->value.i[0] <= 0) {
1874 _mesa_glsl_error(& loc, state, "array size must be > 0");
1875 } else {
1876 assert(size->type == ir->type);
1877 length = size->value.u[0];
1878
1879 /* If the array size is const (and we've verified that
1880 * it is) then no instructions should have been emitted
1881 * when we converted it to HIR. If they were emitted,
1882 * then either the array size isn't const after all, or
1883 * we are emitting unnecessary instructions.
1884 */
1885 assert(dummy_instructions.is_empty());
1886 }
1887 }
1888 }
1889 } else if (state->es_shader) {
1890 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1891 * array declarations have been removed from the language.
1892 */
1893 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1894 "allowed in GLSL ES 1.00.");
1895 }
1896
1897 return glsl_type::get_array_instance(base, length);
1898 }
1899
1900
1901 const glsl_type *
1902 ast_type_specifier::glsl_type(const char **name,
1903 struct _mesa_glsl_parse_state *state) const
1904 {
1905 const struct glsl_type *type;
1906
1907 type = state->symbols->get_type(this->type_name);
1908 *name = this->type_name;
1909
1910 if (this->is_array) {
1911 YYLTYPE loc = this->get_location();
1912 type = process_array_type(&loc, type, this->array_size, state);
1913 }
1914
1915 return type;
1916 }
1917
1918
1919 static void
1920 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1921 ir_variable *var,
1922 struct _mesa_glsl_parse_state *state,
1923 YYLTYPE *loc)
1924 {
1925 if (qual->flags.q.invariant) {
1926 if (var->used) {
1927 _mesa_glsl_error(loc, state,
1928 "variable `%s' may not be redeclared "
1929 "`invariant' after being used",
1930 var->name);
1931 } else {
1932 var->invariant = 1;
1933 }
1934 }
1935
1936 if (qual->flags.q.constant || qual->flags.q.attribute
1937 || qual->flags.q.uniform
1938 || (qual->flags.q.varying && (state->target == fragment_shader)))
1939 var->read_only = 1;
1940
1941 if (qual->flags.q.centroid)
1942 var->centroid = 1;
1943
1944 if (qual->flags.q.attribute && state->target != vertex_shader) {
1945 var->type = glsl_type::error_type;
1946 _mesa_glsl_error(loc, state,
1947 "`attribute' variables may not be declared in the "
1948 "%s shader",
1949 _mesa_glsl_shader_target_name(state->target));
1950 }
1951
1952 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1953 *
1954 * "The varying qualifier can be used only with the data types
1955 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1956 * these."
1957 */
1958 if (qual->flags.q.varying) {
1959 const glsl_type *non_array_type;
1960
1961 if (var->type && var->type->is_array())
1962 non_array_type = var->type->fields.array;
1963 else
1964 non_array_type = var->type;
1965
1966 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1967 var->type = glsl_type::error_type;
1968 _mesa_glsl_error(loc, state,
1969 "varying variables must be of base type float");
1970 }
1971 }
1972
1973 /* If there is no qualifier that changes the mode of the variable, leave
1974 * the setting alone.
1975 */
1976 if (qual->flags.q.in && qual->flags.q.out)
1977 var->mode = ir_var_inout;
1978 else if (qual->flags.q.attribute || qual->flags.q.in
1979 || (qual->flags.q.varying && (state->target == fragment_shader)))
1980 var->mode = ir_var_in;
1981 else if (qual->flags.q.out
1982 || (qual->flags.q.varying && (state->target == vertex_shader)))
1983 var->mode = ir_var_out;
1984 else if (qual->flags.q.uniform)
1985 var->mode = ir_var_uniform;
1986
1987 if (state->all_invariant && (state->current_function == NULL)) {
1988 switch (state->target) {
1989 case vertex_shader:
1990 if (var->mode == ir_var_out)
1991 var->invariant = true;
1992 break;
1993 case geometry_shader:
1994 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1995 var->invariant = true;
1996 break;
1997 case fragment_shader:
1998 if (var->mode == ir_var_in)
1999 var->invariant = true;
2000 break;
2001 }
2002 }
2003
2004 if (qual->flags.q.flat)
2005 var->interpolation = INTERP_QUALIFIER_FLAT;
2006 else if (qual->flags.q.noperspective)
2007 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
2008 else if (qual->flags.q.smooth)
2009 var->interpolation = INTERP_QUALIFIER_SMOOTH;
2010 else
2011 var->interpolation = INTERP_QUALIFIER_NONE;
2012
2013 if (var->interpolation != INTERP_QUALIFIER_NONE &&
2014 !(state->target == vertex_shader && var->mode == ir_var_out) &&
2015 !(state->target == fragment_shader && var->mode == ir_var_in)) {
2016 const char *qual_string = NULL;
2017 switch (var->interpolation) {
2018 case INTERP_QUALIFIER_FLAT:
2019 qual_string = "flat";
2020 break;
2021 case INTERP_QUALIFIER_NOPERSPECTIVE:
2022 qual_string = "noperspective";
2023 break;
2024 case INTERP_QUALIFIER_SMOOTH:
2025 qual_string = "smooth";
2026 break;
2027 }
2028
2029 _mesa_glsl_error(loc, state,
2030 "interpolation qualifier `%s' can only be applied to "
2031 "vertex shader outputs and fragment shader inputs.",
2032 qual_string);
2033
2034 }
2035
2036 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
2037 var->origin_upper_left = qual->flags.q.origin_upper_left;
2038 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
2039 && (strcmp(var->name, "gl_FragCoord") != 0)) {
2040 const char *const qual_string = (qual->flags.q.origin_upper_left)
2041 ? "origin_upper_left" : "pixel_center_integer";
2042
2043 _mesa_glsl_error(loc, state,
2044 "layout qualifier `%s' can only be applied to "
2045 "fragment shader input `gl_FragCoord'",
2046 qual_string);
2047 }
2048
2049 if (qual->flags.q.explicit_location) {
2050 const bool global_scope = (state->current_function == NULL);
2051 bool fail = false;
2052 const char *string = "";
2053
2054 /* In the vertex shader only shader inputs can be given explicit
2055 * locations.
2056 *
2057 * In the fragment shader only shader outputs can be given explicit
2058 * locations.
2059 */
2060 switch (state->target) {
2061 case vertex_shader:
2062 if (!global_scope || (var->mode != ir_var_in)) {
2063 fail = true;
2064 string = "input";
2065 }
2066 break;
2067
2068 case geometry_shader:
2069 _mesa_glsl_error(loc, state,
2070 "geometry shader variables cannot be given "
2071 "explicit locations\n");
2072 break;
2073
2074 case fragment_shader:
2075 if (!global_scope || (var->mode != ir_var_out)) {
2076 fail = true;
2077 string = "output";
2078 }
2079 break;
2080 };
2081
2082 if (fail) {
2083 _mesa_glsl_error(loc, state,
2084 "only %s shader %s variables can be given an "
2085 "explicit location\n",
2086 _mesa_glsl_shader_target_name(state->target),
2087 string);
2088 } else {
2089 var->explicit_location = true;
2090
2091 /* This bit of silliness is needed because invalid explicit locations
2092 * are supposed to be flagged during linking. Small negative values
2093 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
2094 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
2095 * The linker needs to be able to differentiate these cases. This
2096 * ensures that negative values stay negative.
2097 */
2098 if (qual->location >= 0) {
2099 var->location = (state->target == vertex_shader)
2100 ? (qual->location + VERT_ATTRIB_GENERIC0)
2101 : (qual->location + FRAG_RESULT_DATA0);
2102 } else {
2103 var->location = qual->location;
2104 }
2105 }
2106 }
2107
2108 /* Does the declaration use the 'layout' keyword?
2109 */
2110 const bool uses_layout = qual->flags.q.pixel_center_integer
2111 || qual->flags.q.origin_upper_left
2112 || qual->flags.q.explicit_location;
2113
2114 /* Does the declaration use the deprecated 'attribute' or 'varying'
2115 * keywords?
2116 */
2117 const bool uses_deprecated_qualifier = qual->flags.q.attribute
2118 || qual->flags.q.varying;
2119
2120 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
2121 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
2122 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
2123 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
2124 * These extensions and all following extensions that add the 'layout'
2125 * keyword have been modified to require the use of 'in' or 'out'.
2126 *
2127 * The following extension do not allow the deprecated keywords:
2128 *
2129 * GL_AMD_conservative_depth
2130 * GL_ARB_conservative_depth
2131 * GL_ARB_gpu_shader5
2132 * GL_ARB_separate_shader_objects
2133 * GL_ARB_tesselation_shader
2134 * GL_ARB_transform_feedback3
2135 * GL_ARB_uniform_buffer_object
2136 *
2137 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2138 * allow layout with the deprecated keywords.
2139 */
2140 const bool relaxed_layout_qualifier_checking =
2141 state->ARB_fragment_coord_conventions_enable;
2142
2143 if (uses_layout && uses_deprecated_qualifier) {
2144 if (relaxed_layout_qualifier_checking) {
2145 _mesa_glsl_warning(loc, state,
2146 "`layout' qualifier may not be used with "
2147 "`attribute' or `varying'");
2148 } else {
2149 _mesa_glsl_error(loc, state,
2150 "`layout' qualifier may not be used with "
2151 "`attribute' or `varying'");
2152 }
2153 }
2154
2155 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2156 * AMD_conservative_depth.
2157 */
2158 int depth_layout_count = qual->flags.q.depth_any
2159 + qual->flags.q.depth_greater
2160 + qual->flags.q.depth_less
2161 + qual->flags.q.depth_unchanged;
2162 if (depth_layout_count > 0
2163 && !state->AMD_conservative_depth_enable
2164 && !state->ARB_conservative_depth_enable) {
2165 _mesa_glsl_error(loc, state,
2166 "extension GL_AMD_conservative_depth or "
2167 "GL_ARB_conservative_depth must be enabled "
2168 "to use depth layout qualifiers");
2169 } else if (depth_layout_count > 0
2170 && strcmp(var->name, "gl_FragDepth") != 0) {
2171 _mesa_glsl_error(loc, state,
2172 "depth layout qualifiers can be applied only to "
2173 "gl_FragDepth");
2174 } else if (depth_layout_count > 1
2175 && strcmp(var->name, "gl_FragDepth") == 0) {
2176 _mesa_glsl_error(loc, state,
2177 "at most one depth layout qualifier can be applied to "
2178 "gl_FragDepth");
2179 }
2180 if (qual->flags.q.depth_any)
2181 var->depth_layout = ir_depth_layout_any;
2182 else if (qual->flags.q.depth_greater)
2183 var->depth_layout = ir_depth_layout_greater;
2184 else if (qual->flags.q.depth_less)
2185 var->depth_layout = ir_depth_layout_less;
2186 else if (qual->flags.q.depth_unchanged)
2187 var->depth_layout = ir_depth_layout_unchanged;
2188 else
2189 var->depth_layout = ir_depth_layout_none;
2190 }
2191
2192 /**
2193 * Get the variable that is being redeclared by this declaration
2194 *
2195 * Semantic checks to verify the validity of the redeclaration are also
2196 * performed. If semantic checks fail, compilation error will be emitted via
2197 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2198 *
2199 * \returns
2200 * A pointer to an existing variable in the current scope if the declaration
2201 * is a redeclaration, \c NULL otherwise.
2202 */
2203 ir_variable *
2204 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2205 struct _mesa_glsl_parse_state *state)
2206 {
2207 /* Check if this declaration is actually a re-declaration, either to
2208 * resize an array or add qualifiers to an existing variable.
2209 *
2210 * This is allowed for variables in the current scope, or when at
2211 * global scope (for built-ins in the implicit outer scope).
2212 */
2213 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2214 if (earlier == NULL ||
2215 (state->current_function != NULL &&
2216 !state->symbols->name_declared_this_scope(decl->identifier))) {
2217 return NULL;
2218 }
2219
2220
2221 YYLTYPE loc = decl->get_location();
2222
2223 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2224 *
2225 * "It is legal to declare an array without a size and then
2226 * later re-declare the same name as an array of the same
2227 * type and specify a size."
2228 */
2229 if ((earlier->type->array_size() == 0)
2230 && var->type->is_array()
2231 && (var->type->element_type() == earlier->type->element_type())) {
2232 /* FINISHME: This doesn't match the qualifiers on the two
2233 * FINISHME: declarations. It's not 100% clear whether this is
2234 * FINISHME: required or not.
2235 */
2236
2237 const unsigned size = unsigned(var->type->array_size());
2238 check_builtin_array_max_size(var->name, size, loc, state);
2239 if ((size > 0) && (size <= earlier->max_array_access)) {
2240 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2241 "previous access",
2242 earlier->max_array_access);
2243 }
2244
2245 earlier->type = var->type;
2246 delete var;
2247 var = NULL;
2248 } else if (state->ARB_fragment_coord_conventions_enable
2249 && strcmp(var->name, "gl_FragCoord") == 0
2250 && earlier->type == var->type
2251 && earlier->mode == var->mode) {
2252 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2253 * qualifiers.
2254 */
2255 earlier->origin_upper_left = var->origin_upper_left;
2256 earlier->pixel_center_integer = var->pixel_center_integer;
2257
2258 /* According to section 4.3.7 of the GLSL 1.30 spec,
2259 * the following built-in varaibles can be redeclared with an
2260 * interpolation qualifier:
2261 * * gl_FrontColor
2262 * * gl_BackColor
2263 * * gl_FrontSecondaryColor
2264 * * gl_BackSecondaryColor
2265 * * gl_Color
2266 * * gl_SecondaryColor
2267 */
2268 } else if (state->language_version >= 130
2269 && (strcmp(var->name, "gl_FrontColor") == 0
2270 || strcmp(var->name, "gl_BackColor") == 0
2271 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2272 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2273 || strcmp(var->name, "gl_Color") == 0
2274 || strcmp(var->name, "gl_SecondaryColor") == 0)
2275 && earlier->type == var->type
2276 && earlier->mode == var->mode) {
2277 earlier->interpolation = var->interpolation;
2278
2279 /* Layout qualifiers for gl_FragDepth. */
2280 } else if ((state->AMD_conservative_depth_enable ||
2281 state->ARB_conservative_depth_enable)
2282 && strcmp(var->name, "gl_FragDepth") == 0
2283 && earlier->type == var->type
2284 && earlier->mode == var->mode) {
2285
2286 /** From the AMD_conservative_depth spec:
2287 * Within any shader, the first redeclarations of gl_FragDepth
2288 * must appear before any use of gl_FragDepth.
2289 */
2290 if (earlier->used) {
2291 _mesa_glsl_error(&loc, state,
2292 "the first redeclaration of gl_FragDepth "
2293 "must appear before any use of gl_FragDepth");
2294 }
2295
2296 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2297 if (earlier->depth_layout != ir_depth_layout_none
2298 && earlier->depth_layout != var->depth_layout) {
2299 _mesa_glsl_error(&loc, state,
2300 "gl_FragDepth: depth layout is declared here "
2301 "as '%s, but it was previously declared as "
2302 "'%s'",
2303 depth_layout_string(var->depth_layout),
2304 depth_layout_string(earlier->depth_layout));
2305 }
2306
2307 earlier->depth_layout = var->depth_layout;
2308
2309 } else {
2310 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2311 }
2312
2313 return earlier;
2314 }
2315
2316 /**
2317 * Generate the IR for an initializer in a variable declaration
2318 */
2319 ir_rvalue *
2320 process_initializer(ir_variable *var, ast_declaration *decl,
2321 ast_fully_specified_type *type,
2322 exec_list *initializer_instructions,
2323 struct _mesa_glsl_parse_state *state)
2324 {
2325 ir_rvalue *result = NULL;
2326
2327 YYLTYPE initializer_loc = decl->initializer->get_location();
2328
2329 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2330 *
2331 * "All uniform variables are read-only and are initialized either
2332 * directly by an application via API commands, or indirectly by
2333 * OpenGL."
2334 */
2335 if ((state->language_version <= 110)
2336 && (var->mode == ir_var_uniform)) {
2337 _mesa_glsl_error(& initializer_loc, state,
2338 "cannot initialize uniforms in GLSL 1.10");
2339 }
2340
2341 if (var->type->is_sampler()) {
2342 _mesa_glsl_error(& initializer_loc, state,
2343 "cannot initialize samplers");
2344 }
2345
2346 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2347 _mesa_glsl_error(& initializer_loc, state,
2348 "cannot initialize %s shader input / %s",
2349 _mesa_glsl_shader_target_name(state->target),
2350 (state->target == vertex_shader)
2351 ? "attribute" : "varying");
2352 }
2353
2354 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2355 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2356 state);
2357
2358 /* Calculate the constant value if this is a const or uniform
2359 * declaration.
2360 */
2361 if (type->qualifier.flags.q.constant
2362 || type->qualifier.flags.q.uniform) {
2363 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
2364 if (new_rhs != NULL) {
2365 rhs = new_rhs;
2366
2367 ir_constant *constant_value = rhs->constant_expression_value();
2368 if (!constant_value) {
2369 _mesa_glsl_error(& initializer_loc, state,
2370 "initializer of %s variable `%s' must be a "
2371 "constant expression",
2372 (type->qualifier.flags.q.constant)
2373 ? "const" : "uniform",
2374 decl->identifier);
2375 if (var->type->is_numeric()) {
2376 /* Reduce cascading errors. */
2377 var->constant_value = ir_constant::zero(state, var->type);
2378 }
2379 } else {
2380 rhs = constant_value;
2381 var->constant_value = constant_value;
2382 }
2383 } else {
2384 _mesa_glsl_error(&initializer_loc, state,
2385 "initializer of type %s cannot be assigned to "
2386 "variable of type %s",
2387 rhs->type->name, var->type->name);
2388 if (var->type->is_numeric()) {
2389 /* Reduce cascading errors. */
2390 var->constant_value = ir_constant::zero(state, var->type);
2391 }
2392 }
2393 }
2394
2395 if (rhs && !rhs->type->is_error()) {
2396 bool temp = var->read_only;
2397 if (type->qualifier.flags.q.constant)
2398 var->read_only = false;
2399
2400 /* Never emit code to initialize a uniform.
2401 */
2402 const glsl_type *initializer_type;
2403 if (!type->qualifier.flags.q.uniform) {
2404 result = do_assignment(initializer_instructions, state,
2405 NULL,
2406 lhs, rhs, true,
2407 type->get_location());
2408 initializer_type = result->type;
2409 } else
2410 initializer_type = rhs->type;
2411
2412 var->constant_initializer = rhs->constant_expression_value();
2413 var->has_initializer = true;
2414
2415 /* If the declared variable is an unsized array, it must inherrit
2416 * its full type from the initializer. A declaration such as
2417 *
2418 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2419 *
2420 * becomes
2421 *
2422 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2423 *
2424 * The assignment generated in the if-statement (below) will also
2425 * automatically handle this case for non-uniforms.
2426 *
2427 * If the declared variable is not an array, the types must
2428 * already match exactly. As a result, the type assignment
2429 * here can be done unconditionally. For non-uniforms the call
2430 * to do_assignment can change the type of the initializer (via
2431 * the implicit conversion rules). For uniforms the initializer
2432 * must be a constant expression, and the type of that expression
2433 * was validated above.
2434 */
2435 var->type = initializer_type;
2436
2437 var->read_only = temp;
2438 }
2439
2440 return result;
2441 }
2442
2443 ir_rvalue *
2444 ast_declarator_list::hir(exec_list *instructions,
2445 struct _mesa_glsl_parse_state *state)
2446 {
2447 void *ctx = state;
2448 const struct glsl_type *decl_type;
2449 const char *type_name = NULL;
2450 ir_rvalue *result = NULL;
2451 YYLTYPE loc = this->get_location();
2452
2453 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2454 *
2455 * "To ensure that a particular output variable is invariant, it is
2456 * necessary to use the invariant qualifier. It can either be used to
2457 * qualify a previously declared variable as being invariant
2458 *
2459 * invariant gl_Position; // make existing gl_Position be invariant"
2460 *
2461 * In these cases the parser will set the 'invariant' flag in the declarator
2462 * list, and the type will be NULL.
2463 */
2464 if (this->invariant) {
2465 assert(this->type == NULL);
2466
2467 if (state->current_function != NULL) {
2468 _mesa_glsl_error(& loc, state,
2469 "All uses of `invariant' keyword must be at global "
2470 "scope\n");
2471 }
2472
2473 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2474 assert(!decl->is_array);
2475 assert(decl->array_size == NULL);
2476 assert(decl->initializer == NULL);
2477
2478 ir_variable *const earlier =
2479 state->symbols->get_variable(decl->identifier);
2480 if (earlier == NULL) {
2481 _mesa_glsl_error(& loc, state,
2482 "Undeclared variable `%s' cannot be marked "
2483 "invariant\n", decl->identifier);
2484 } else if ((state->target == vertex_shader)
2485 && (earlier->mode != ir_var_out)) {
2486 _mesa_glsl_error(& loc, state,
2487 "`%s' cannot be marked invariant, vertex shader "
2488 "outputs only\n", decl->identifier);
2489 } else if ((state->target == fragment_shader)
2490 && (earlier->mode != ir_var_in)) {
2491 _mesa_glsl_error(& loc, state,
2492 "`%s' cannot be marked invariant, fragment shader "
2493 "inputs only\n", decl->identifier);
2494 } else if (earlier->used) {
2495 _mesa_glsl_error(& loc, state,
2496 "variable `%s' may not be redeclared "
2497 "`invariant' after being used",
2498 earlier->name);
2499 } else {
2500 earlier->invariant = true;
2501 }
2502 }
2503
2504 /* Invariant redeclarations do not have r-values.
2505 */
2506 return NULL;
2507 }
2508
2509 assert(this->type != NULL);
2510 assert(!this->invariant);
2511
2512 /* The type specifier may contain a structure definition. Process that
2513 * before any of the variable declarations.
2514 */
2515 (void) this->type->specifier->hir(instructions, state);
2516
2517 decl_type = this->type->specifier->glsl_type(& type_name, state);
2518 if (this->declarations.is_empty()) {
2519 /* If there is no structure involved in the program text, there are two
2520 * possible scenarios:
2521 *
2522 * - The program text contained something like 'vec4;'. This is an
2523 * empty declaration. It is valid but weird. Emit a warning.
2524 *
2525 * - The program text contained something like 'S;' and 'S' is not the
2526 * name of a known structure type. This is both invalid and weird.
2527 * Emit an error.
2528 *
2529 * Note that if decl_type is NULL and there is a structure involved,
2530 * there must have been some sort of error with the structure. In this
2531 * case we assume that an error was already generated on this line of
2532 * code for the structure. There is no need to generate an additional,
2533 * confusing error.
2534 */
2535 assert(this->type->specifier->structure == NULL || decl_type != NULL
2536 || state->error);
2537 if (this->type->specifier->structure == NULL) {
2538 if (decl_type != NULL) {
2539 _mesa_glsl_warning(&loc, state, "empty declaration");
2540 } else {
2541 _mesa_glsl_error(&loc, state,
2542 "invalid type `%s' in empty declaration",
2543 type_name);
2544 }
2545 }
2546 }
2547
2548 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2549 const struct glsl_type *var_type;
2550 ir_variable *var;
2551
2552 /* FINISHME: Emit a warning if a variable declaration shadows a
2553 * FINISHME: declaration at a higher scope.
2554 */
2555
2556 if ((decl_type == NULL) || decl_type->is_void()) {
2557 if (type_name != NULL) {
2558 _mesa_glsl_error(& loc, state,
2559 "invalid type `%s' in declaration of `%s'",
2560 type_name, decl->identifier);
2561 } else {
2562 _mesa_glsl_error(& loc, state,
2563 "invalid type in declaration of `%s'",
2564 decl->identifier);
2565 }
2566 continue;
2567 }
2568
2569 if (decl->is_array) {
2570 var_type = process_array_type(&loc, decl_type, decl->array_size,
2571 state);
2572 if (var_type->is_error())
2573 continue;
2574 } else {
2575 var_type = decl_type;
2576 }
2577
2578 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2579
2580 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2581 *
2582 * "Global variables can only use the qualifiers const,
2583 * attribute, uni form, or varying. Only one may be
2584 * specified.
2585 *
2586 * Local variables can only use the qualifier const."
2587 *
2588 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2589 * that adds the 'layout' keyword.
2590 */
2591 if ((state->language_version < 130)
2592 && !state->ARB_explicit_attrib_location_enable
2593 && !state->ARB_fragment_coord_conventions_enable) {
2594 if (this->type->qualifier.flags.q.out) {
2595 _mesa_glsl_error(& loc, state,
2596 "`out' qualifier in declaration of `%s' "
2597 "only valid for function parameters in %s.",
2598 decl->identifier, state->version_string);
2599 }
2600 if (this->type->qualifier.flags.q.in) {
2601 _mesa_glsl_error(& loc, state,
2602 "`in' qualifier in declaration of `%s' "
2603 "only valid for function parameters in %s.",
2604 decl->identifier, state->version_string);
2605 }
2606 /* FINISHME: Test for other invalid qualifiers. */
2607 }
2608
2609 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2610 & loc);
2611
2612 if (this->type->qualifier.flags.q.invariant) {
2613 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2614 var->mode == ir_var_inout)) {
2615 /* FINISHME: Note that this doesn't work for invariant on
2616 * a function signature outval
2617 */
2618 _mesa_glsl_error(& loc, state,
2619 "`%s' cannot be marked invariant, vertex shader "
2620 "outputs only\n", var->name);
2621 } else if ((state->target == fragment_shader) &&
2622 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2623 /* FINISHME: Note that this doesn't work for invariant on
2624 * a function signature inval
2625 */
2626 _mesa_glsl_error(& loc, state,
2627 "`%s' cannot be marked invariant, fragment shader "
2628 "inputs only\n", var->name);
2629 }
2630 }
2631
2632 if (state->current_function != NULL) {
2633 const char *mode = NULL;
2634 const char *extra = "";
2635
2636 /* There is no need to check for 'inout' here because the parser will
2637 * only allow that in function parameter lists.
2638 */
2639 if (this->type->qualifier.flags.q.attribute) {
2640 mode = "attribute";
2641 } else if (this->type->qualifier.flags.q.uniform) {
2642 mode = "uniform";
2643 } else if (this->type->qualifier.flags.q.varying) {
2644 mode = "varying";
2645 } else if (this->type->qualifier.flags.q.in) {
2646 mode = "in";
2647 extra = " or in function parameter list";
2648 } else if (this->type->qualifier.flags.q.out) {
2649 mode = "out";
2650 extra = " or in function parameter list";
2651 }
2652
2653 if (mode) {
2654 _mesa_glsl_error(& loc, state,
2655 "%s variable `%s' must be declared at "
2656 "global scope%s",
2657 mode, var->name, extra);
2658 }
2659 } else if (var->mode == ir_var_in) {
2660 var->read_only = true;
2661
2662 if (state->target == vertex_shader) {
2663 bool error_emitted = false;
2664
2665 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2666 *
2667 * "Vertex shader inputs can only be float, floating-point
2668 * vectors, matrices, signed and unsigned integers and integer
2669 * vectors. Vertex shader inputs can also form arrays of these
2670 * types, but not structures."
2671 *
2672 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2673 *
2674 * "Vertex shader inputs can only be float, floating-point
2675 * vectors, matrices, signed and unsigned integers and integer
2676 * vectors. They cannot be arrays or structures."
2677 *
2678 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2679 *
2680 * "The attribute qualifier can be used only with float,
2681 * floating-point vectors, and matrices. Attribute variables
2682 * cannot be declared as arrays or structures."
2683 */
2684 const glsl_type *check_type = var->type->is_array()
2685 ? var->type->fields.array : var->type;
2686
2687 switch (check_type->base_type) {
2688 case GLSL_TYPE_FLOAT:
2689 break;
2690 case GLSL_TYPE_UINT:
2691 case GLSL_TYPE_INT:
2692 if (state->language_version > 120)
2693 break;
2694 /* FALLTHROUGH */
2695 default:
2696 _mesa_glsl_error(& loc, state,
2697 "vertex shader input / attribute cannot have "
2698 "type %s`%s'",
2699 var->type->is_array() ? "array of " : "",
2700 check_type->name);
2701 error_emitted = true;
2702 }
2703
2704 if (!error_emitted && (state->language_version <= 130)
2705 && var->type->is_array()) {
2706 _mesa_glsl_error(& loc, state,
2707 "vertex shader input / attribute cannot have "
2708 "array type");
2709 error_emitted = true;
2710 }
2711 }
2712 }
2713
2714 /* Integer vertex outputs must be qualified with 'flat'.
2715 *
2716 * From section 4.3.6 of the GLSL 1.30 spec:
2717 * "If a vertex output is a signed or unsigned integer or integer
2718 * vector, then it must be qualified with the interpolation qualifier
2719 * flat."
2720 */
2721 if (state->language_version >= 130
2722 && state->target == vertex_shader
2723 && state->current_function == NULL
2724 && var->type->is_integer()
2725 && var->mode == ir_var_out
2726 && var->interpolation != INTERP_QUALIFIER_FLAT) {
2727
2728 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2729 "then it must be qualified with 'flat'");
2730 }
2731
2732
2733 /* Interpolation qualifiers cannot be applied to 'centroid' and
2734 * 'centroid varying'.
2735 *
2736 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2737 * "interpolation qualifiers may only precede the qualifiers in,
2738 * centroid in, out, or centroid out in a declaration. They do not apply
2739 * to the deprecated storage qualifiers varying or centroid varying."
2740 */
2741 if (state->language_version >= 130
2742 && this->type->qualifier.has_interpolation()
2743 && this->type->qualifier.flags.q.varying) {
2744
2745 const char *i = this->type->qualifier.interpolation_string();
2746 assert(i != NULL);
2747 const char *s;
2748 if (this->type->qualifier.flags.q.centroid)
2749 s = "centroid varying";
2750 else
2751 s = "varying";
2752
2753 _mesa_glsl_error(&loc, state,
2754 "qualifier '%s' cannot be applied to the "
2755 "deprecated storage qualifier '%s'", i, s);
2756 }
2757
2758
2759 /* Interpolation qualifiers can only apply to vertex shader outputs and
2760 * fragment shader inputs.
2761 *
2762 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2763 * "Outputs from a vertex shader (out) and inputs to a fragment
2764 * shader (in) can be further qualified with one or more of these
2765 * interpolation qualifiers"
2766 */
2767 if (state->language_version >= 130
2768 && this->type->qualifier.has_interpolation()) {
2769
2770 const char *i = this->type->qualifier.interpolation_string();
2771 assert(i != NULL);
2772
2773 switch (state->target) {
2774 case vertex_shader:
2775 if (this->type->qualifier.flags.q.in) {
2776 _mesa_glsl_error(&loc, state,
2777 "qualifier '%s' cannot be applied to vertex "
2778 "shader inputs", i);
2779 }
2780 break;
2781 case fragment_shader:
2782 if (this->type->qualifier.flags.q.out) {
2783 _mesa_glsl_error(&loc, state,
2784 "qualifier '%s' cannot be applied to fragment "
2785 "shader outputs", i);
2786 }
2787 break;
2788 default:
2789 assert(0);
2790 }
2791 }
2792
2793
2794 /* From section 4.3.4 of the GLSL 1.30 spec:
2795 * "It is an error to use centroid in in a vertex shader."
2796 */
2797 if (state->language_version >= 130
2798 && this->type->qualifier.flags.q.centroid
2799 && this->type->qualifier.flags.q.in
2800 && state->target == vertex_shader) {
2801
2802 _mesa_glsl_error(&loc, state,
2803 "'centroid in' cannot be used in a vertex shader");
2804 }
2805
2806
2807 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2808 */
2809 if (this->type->specifier->precision != ast_precision_none
2810 && state->language_version != 100
2811 && state->language_version < 130) {
2812
2813 _mesa_glsl_error(&loc, state,
2814 "precision qualifiers are supported only in GLSL ES "
2815 "1.00, and GLSL 1.30 and later");
2816 }
2817
2818
2819 /* Precision qualifiers only apply to floating point and integer types.
2820 *
2821 * From section 4.5.2 of the GLSL 1.30 spec:
2822 * "Any floating point or any integer declaration can have the type
2823 * preceded by one of these precision qualifiers [...] Literal
2824 * constants do not have precision qualifiers. Neither do Boolean
2825 * variables.
2826 *
2827 * In GLSL ES, sampler types are also allowed.
2828 *
2829 * From page 87 of the GLSL ES spec:
2830 * "RESOLUTION: Allow sampler types to take a precision qualifier."
2831 */
2832 if (this->type->specifier->precision != ast_precision_none
2833 && !var->type->is_float()
2834 && !var->type->is_integer()
2835 && !(var->type->is_sampler() && state->es_shader)
2836 && !(var->type->is_array()
2837 && (var->type->fields.array->is_float()
2838 || var->type->fields.array->is_integer()))) {
2839
2840 _mesa_glsl_error(&loc, state,
2841 "precision qualifiers apply only to floating point"
2842 "%s types", state->es_shader ? ", integer, and sampler"
2843 : "and integer");
2844 }
2845
2846 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
2847 *
2848 * "[Sampler types] can only be declared as function
2849 * parameters or uniform variables (see Section 4.3.5
2850 * "Uniform")".
2851 */
2852 if (var_type->contains_sampler() &&
2853 !this->type->qualifier.flags.q.uniform) {
2854 _mesa_glsl_error(&loc, state, "samplers must be declared uniform");
2855 }
2856
2857 /* Process the initializer and add its instructions to a temporary
2858 * list. This list will be added to the instruction stream (below) after
2859 * the declaration is added. This is done because in some cases (such as
2860 * redeclarations) the declaration may not actually be added to the
2861 * instruction stream.
2862 */
2863 exec_list initializer_instructions;
2864 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2865
2866 if (decl->initializer != NULL) {
2867 result = process_initializer((earlier == NULL) ? var : earlier,
2868 decl, this->type,
2869 &initializer_instructions, state);
2870 }
2871
2872 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2873 *
2874 * "It is an error to write to a const variable outside of
2875 * its declaration, so they must be initialized when
2876 * declared."
2877 */
2878 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2879 _mesa_glsl_error(& loc, state,
2880 "const declaration of `%s' must be initialized",
2881 decl->identifier);
2882 }
2883
2884 /* If the declaration is not a redeclaration, there are a few additional
2885 * semantic checks that must be applied. In addition, variable that was
2886 * created for the declaration should be added to the IR stream.
2887 */
2888 if (earlier == NULL) {
2889 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2890 *
2891 * "Identifiers starting with "gl_" are reserved for use by
2892 * OpenGL, and may not be declared in a shader as either a
2893 * variable or a function."
2894 */
2895 if (strncmp(decl->identifier, "gl_", 3) == 0)
2896 _mesa_glsl_error(& loc, state,
2897 "identifier `%s' uses reserved `gl_' prefix",
2898 decl->identifier);
2899 else if (strstr(decl->identifier, "__")) {
2900 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
2901 * spec:
2902 *
2903 * "In addition, all identifiers containing two
2904 * consecutive underscores (__) are reserved as
2905 * possible future keywords."
2906 */
2907 _mesa_glsl_error(& loc, state,
2908 "identifier `%s' uses reserved `__' string",
2909 decl->identifier);
2910 }
2911
2912 /* Add the variable to the symbol table. Note that the initializer's
2913 * IR was already processed earlier (though it hasn't been emitted
2914 * yet), without the variable in scope.
2915 *
2916 * This differs from most C-like languages, but it follows the GLSL
2917 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2918 * spec:
2919 *
2920 * "Within a declaration, the scope of a name starts immediately
2921 * after the initializer if present or immediately after the name
2922 * being declared if not."
2923 */
2924 if (!state->symbols->add_variable(var)) {
2925 YYLTYPE loc = this->get_location();
2926 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2927 "current scope", decl->identifier);
2928 continue;
2929 }
2930
2931 /* Push the variable declaration to the top. It means that all the
2932 * variable declarations will appear in a funny last-to-first order,
2933 * but otherwise we run into trouble if a function is prototyped, a
2934 * global var is decled, then the function is defined with usage of
2935 * the global var. See glslparsertest's CorrectModule.frag.
2936 */
2937 instructions->push_head(var);
2938 }
2939
2940 instructions->append_list(&initializer_instructions);
2941 }
2942
2943
2944 /* Generally, variable declarations do not have r-values. However,
2945 * one is used for the declaration in
2946 *
2947 * while (bool b = some_condition()) {
2948 * ...
2949 * }
2950 *
2951 * so we return the rvalue from the last seen declaration here.
2952 */
2953 return result;
2954 }
2955
2956
2957 ir_rvalue *
2958 ast_parameter_declarator::hir(exec_list *instructions,
2959 struct _mesa_glsl_parse_state *state)
2960 {
2961 void *ctx = state;
2962 const struct glsl_type *type;
2963 const char *name = NULL;
2964 YYLTYPE loc = this->get_location();
2965
2966 type = this->type->specifier->glsl_type(& name, state);
2967
2968 if (type == NULL) {
2969 if (name != NULL) {
2970 _mesa_glsl_error(& loc, state,
2971 "invalid type `%s' in declaration of `%s'",
2972 name, this->identifier);
2973 } else {
2974 _mesa_glsl_error(& loc, state,
2975 "invalid type in declaration of `%s'",
2976 this->identifier);
2977 }
2978
2979 type = glsl_type::error_type;
2980 }
2981
2982 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2983 *
2984 * "Functions that accept no input arguments need not use void in the
2985 * argument list because prototypes (or definitions) are required and
2986 * therefore there is no ambiguity when an empty argument list "( )" is
2987 * declared. The idiom "(void)" as a parameter list is provided for
2988 * convenience."
2989 *
2990 * Placing this check here prevents a void parameter being set up
2991 * for a function, which avoids tripping up checks for main taking
2992 * parameters and lookups of an unnamed symbol.
2993 */
2994 if (type->is_void()) {
2995 if (this->identifier != NULL)
2996 _mesa_glsl_error(& loc, state,
2997 "named parameter cannot have type `void'");
2998
2999 is_void = true;
3000 return NULL;
3001 }
3002
3003 if (formal_parameter && (this->identifier == NULL)) {
3004 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
3005 return NULL;
3006 }
3007
3008 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
3009 * call already handled the "vec4[..] foo" case.
3010 */
3011 if (this->is_array) {
3012 type = process_array_type(&loc, type, this->array_size, state);
3013 }
3014
3015 if (!type->is_error() && type->array_size() == 0) {
3016 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
3017 "a declared size.");
3018 type = glsl_type::error_type;
3019 }
3020
3021 is_void = false;
3022 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
3023
3024 /* Apply any specified qualifiers to the parameter declaration. Note that
3025 * for function parameters the default mode is 'in'.
3026 */
3027 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
3028
3029 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3030 *
3031 * "Samplers cannot be treated as l-values; hence cannot be used
3032 * as out or inout function parameters, nor can they be assigned
3033 * into."
3034 */
3035 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3036 && type->contains_sampler()) {
3037 _mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
3038 type = glsl_type::error_type;
3039 }
3040
3041 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
3042 *
3043 * "When calling a function, expressions that do not evaluate to
3044 * l-values cannot be passed to parameters declared as out or inout."
3045 *
3046 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
3047 *
3048 * "Other binary or unary expressions, non-dereferenced arrays,
3049 * function names, swizzles with repeated fields, and constants
3050 * cannot be l-values."
3051 *
3052 * So for GLSL 1.10, passing an array as an out or inout parameter is not
3053 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
3054 */
3055 if ((var->mode == ir_var_inout || var->mode == ir_var_out)
3056 && type->is_array() && state->language_version == 110) {
3057 _mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
3058 type = glsl_type::error_type;
3059 }
3060
3061 instructions->push_tail(var);
3062
3063 /* Parameter declarations do not have r-values.
3064 */
3065 return NULL;
3066 }
3067
3068
3069 void
3070 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
3071 bool formal,
3072 exec_list *ir_parameters,
3073 _mesa_glsl_parse_state *state)
3074 {
3075 ast_parameter_declarator *void_param = NULL;
3076 unsigned count = 0;
3077
3078 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
3079 param->formal_parameter = formal;
3080 param->hir(ir_parameters, state);
3081
3082 if (param->is_void)
3083 void_param = param;
3084
3085 count++;
3086 }
3087
3088 if ((void_param != NULL) && (count > 1)) {
3089 YYLTYPE loc = void_param->get_location();
3090
3091 _mesa_glsl_error(& loc, state,
3092 "`void' parameter must be only parameter");
3093 }
3094 }
3095
3096
3097 void
3098 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
3099 {
3100 /* IR invariants disallow function declarations or definitions
3101 * nested within other function definitions. But there is no
3102 * requirement about the relative order of function declarations
3103 * and definitions with respect to one another. So simply insert
3104 * the new ir_function block at the end of the toplevel instruction
3105 * list.
3106 */
3107 state->toplevel_ir->push_tail(f);
3108 }
3109
3110
3111 ir_rvalue *
3112 ast_function::hir(exec_list *instructions,
3113 struct _mesa_glsl_parse_state *state)
3114 {
3115 void *ctx = state;
3116 ir_function *f = NULL;
3117 ir_function_signature *sig = NULL;
3118 exec_list hir_parameters;
3119
3120 const char *const name = identifier;
3121
3122 /* New functions are always added to the top-level IR instruction stream,
3123 * so this instruction list pointer is ignored. See also emit_function
3124 * (called below).
3125 */
3126 (void) instructions;
3127
3128 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
3129 *
3130 * "Function declarations (prototypes) cannot occur inside of functions;
3131 * they must be at global scope, or for the built-in functions, outside
3132 * the global scope."
3133 *
3134 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
3135 *
3136 * "User defined functions may only be defined within the global scope."
3137 *
3138 * Note that this language does not appear in GLSL 1.10.
3139 */
3140 if ((state->current_function != NULL) && (state->language_version != 110)) {
3141 YYLTYPE loc = this->get_location();
3142 _mesa_glsl_error(&loc, state,
3143 "declaration of function `%s' not allowed within "
3144 "function body", name);
3145 }
3146
3147 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
3148 *
3149 * "Identifiers starting with "gl_" are reserved for use by
3150 * OpenGL, and may not be declared in a shader as either a
3151 * variable or a function."
3152 */
3153 if (strncmp(name, "gl_", 3) == 0) {
3154 YYLTYPE loc = this->get_location();
3155 _mesa_glsl_error(&loc, state,
3156 "identifier `%s' uses reserved `gl_' prefix", name);
3157 }
3158
3159 /* Convert the list of function parameters to HIR now so that they can be
3160 * used below to compare this function's signature with previously seen
3161 * signatures for functions with the same name.
3162 */
3163 ast_parameter_declarator::parameters_to_hir(& this->parameters,
3164 is_definition,
3165 & hir_parameters, state);
3166
3167 const char *return_type_name;
3168 const glsl_type *return_type =
3169 this->return_type->specifier->glsl_type(& return_type_name, state);
3170
3171 if (!return_type) {
3172 YYLTYPE loc = this->get_location();
3173 _mesa_glsl_error(&loc, state,
3174 "function `%s' has undeclared return type `%s'",
3175 name, return_type_name);
3176 return_type = glsl_type::error_type;
3177 }
3178
3179 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
3180 * "No qualifier is allowed on the return type of a function."
3181 */
3182 if (this->return_type->has_qualifiers()) {
3183 YYLTYPE loc = this->get_location();
3184 _mesa_glsl_error(& loc, state,
3185 "function `%s' return type has qualifiers", name);
3186 }
3187
3188 /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
3189 *
3190 * "[Sampler types] can only be declared as function parameters
3191 * or uniform variables (see Section 4.3.5 "Uniform")".
3192 */
3193 if (return_type->contains_sampler()) {
3194 YYLTYPE loc = this->get_location();
3195 _mesa_glsl_error(&loc, state,
3196 "function `%s' return type can't contain a sampler",
3197 name);
3198 }
3199
3200 /* Verify that this function's signature either doesn't match a previously
3201 * seen signature for a function with the same name, or, if a match is found,
3202 * that the previously seen signature does not have an associated definition.
3203 */
3204 f = state->symbols->get_function(name);
3205 if (f != NULL && (state->es_shader || f->has_user_signature())) {
3206 sig = f->exact_matching_signature(&hir_parameters);
3207 if (sig != NULL) {
3208 const char *badvar = sig->qualifiers_match(&hir_parameters);
3209 if (badvar != NULL) {
3210 YYLTYPE loc = this->get_location();
3211
3212 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
3213 "qualifiers don't match prototype", name, badvar);
3214 }
3215
3216 if (sig->return_type != return_type) {
3217 YYLTYPE loc = this->get_location();
3218
3219 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
3220 "match prototype", name);
3221 }
3222
3223 if (is_definition && sig->is_defined) {
3224 YYLTYPE loc = this->get_location();
3225
3226 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3227 }
3228 }
3229 } else {
3230 f = new(ctx) ir_function(name);
3231 if (!state->symbols->add_function(f)) {
3232 /* This function name shadows a non-function use of the same name. */
3233 YYLTYPE loc = this->get_location();
3234
3235 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3236 "non-function", name);
3237 return NULL;
3238 }
3239
3240 emit_function(state, f);
3241 }
3242
3243 /* Verify the return type of main() */
3244 if (strcmp(name, "main") == 0) {
3245 if (! return_type->is_void()) {
3246 YYLTYPE loc = this->get_location();
3247
3248 _mesa_glsl_error(& loc, state, "main() must return void");
3249 }
3250
3251 if (!hir_parameters.is_empty()) {
3252 YYLTYPE loc = this->get_location();
3253
3254 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3255 }
3256 }
3257
3258 /* Finish storing the information about this new function in its signature.
3259 */
3260 if (sig == NULL) {
3261 sig = new(ctx) ir_function_signature(return_type);
3262 f->add_signature(sig);
3263 }
3264
3265 sig->replace_parameters(&hir_parameters);
3266 signature = sig;
3267
3268 /* Function declarations (prototypes) do not have r-values.
3269 */
3270 return NULL;
3271 }
3272
3273
3274 ir_rvalue *
3275 ast_function_definition::hir(exec_list *instructions,
3276 struct _mesa_glsl_parse_state *state)
3277 {
3278 prototype->is_definition = true;
3279 prototype->hir(instructions, state);
3280
3281 ir_function_signature *signature = prototype->signature;
3282 if (signature == NULL)
3283 return NULL;
3284
3285 assert(state->current_function == NULL);
3286 state->current_function = signature;
3287 state->found_return = false;
3288
3289 /* Duplicate parameters declared in the prototype as concrete variables.
3290 * Add these to the symbol table.
3291 */
3292 state->symbols->push_scope();
3293 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3294 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3295
3296 assert(var != NULL);
3297
3298 /* The only way a parameter would "exist" is if two parameters have
3299 * the same name.
3300 */
3301 if (state->symbols->name_declared_this_scope(var->name)) {
3302 YYLTYPE loc = this->get_location();
3303
3304 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3305 } else {
3306 state->symbols->add_variable(var);
3307 }
3308 }
3309
3310 /* Convert the body of the function to HIR. */
3311 this->body->hir(&signature->body, state);
3312 signature->is_defined = true;
3313
3314 state->symbols->pop_scope();
3315
3316 assert(state->current_function == signature);
3317 state->current_function = NULL;
3318
3319 if (!signature->return_type->is_void() && !state->found_return) {
3320 YYLTYPE loc = this->get_location();
3321 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3322 "%s, but no return statement",
3323 signature->function_name(),
3324 signature->return_type->name);
3325 }
3326
3327 /* Function definitions do not have r-values.
3328 */
3329 return NULL;
3330 }
3331
3332
3333 ir_rvalue *
3334 ast_jump_statement::hir(exec_list *instructions,
3335 struct _mesa_glsl_parse_state *state)
3336 {
3337 void *ctx = state;
3338
3339 switch (mode) {
3340 case ast_return: {
3341 ir_return *inst;
3342 assert(state->current_function);
3343
3344 if (opt_return_value) {
3345 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3346
3347 /* The value of the return type can be NULL if the shader says
3348 * 'return foo();' and foo() is a function that returns void.
3349 *
3350 * NOTE: The GLSL spec doesn't say that this is an error. The type
3351 * of the return value is void. If the return type of the function is
3352 * also void, then this should compile without error. Seriously.
3353 */
3354 const glsl_type *const ret_type =
3355 (ret == NULL) ? glsl_type::void_type : ret->type;
3356
3357 /* Implicit conversions are not allowed for return values. */
3358 if (state->current_function->return_type != ret_type) {
3359 YYLTYPE loc = this->get_location();
3360
3361 _mesa_glsl_error(& loc, state,
3362 "`return' with wrong type %s, in function `%s' "
3363 "returning %s",
3364 ret_type->name,
3365 state->current_function->function_name(),
3366 state->current_function->return_type->name);
3367 }
3368
3369 inst = new(ctx) ir_return(ret);
3370 } else {
3371 if (state->current_function->return_type->base_type !=
3372 GLSL_TYPE_VOID) {
3373 YYLTYPE loc = this->get_location();
3374
3375 _mesa_glsl_error(& loc, state,
3376 "`return' with no value, in function %s returning "
3377 "non-void",
3378 state->current_function->function_name());
3379 }
3380 inst = new(ctx) ir_return;
3381 }
3382
3383 state->found_return = true;
3384 instructions->push_tail(inst);
3385 break;
3386 }
3387
3388 case ast_discard:
3389 if (state->target != fragment_shader) {
3390 YYLTYPE loc = this->get_location();
3391
3392 _mesa_glsl_error(& loc, state,
3393 "`discard' may only appear in a fragment shader");
3394 }
3395 instructions->push_tail(new(ctx) ir_discard);
3396 break;
3397
3398 case ast_break:
3399 case ast_continue:
3400 if (mode == ast_continue &&
3401 state->loop_nesting_ast == NULL) {
3402 YYLTYPE loc = this->get_location();
3403
3404 _mesa_glsl_error(& loc, state,
3405 "continue may only appear in a loop");
3406 } else if (mode == ast_break &&
3407 state->loop_nesting_ast == NULL &&
3408 state->switch_state.switch_nesting_ast == NULL) {
3409 YYLTYPE loc = this->get_location();
3410
3411 _mesa_glsl_error(& loc, state,
3412 "break may only appear in a loop or a switch");
3413 } else {
3414 /* For a loop, inline the for loop expression again,
3415 * since we don't know where near the end of
3416 * the loop body the normal copy of it
3417 * is going to be placed.
3418 */
3419 if (state->loop_nesting_ast != NULL &&
3420 mode == ast_continue &&
3421 state->loop_nesting_ast->rest_expression) {
3422 state->loop_nesting_ast->rest_expression->hir(instructions,
3423 state);
3424 }
3425
3426 if (state->switch_state.is_switch_innermost &&
3427 mode == ast_break) {
3428 /* Force break out of switch by setting is_break switch state.
3429 */
3430 ir_variable *const is_break_var = state->switch_state.is_break_var;
3431 ir_dereference_variable *const deref_is_break_var =
3432 new(ctx) ir_dereference_variable(is_break_var);
3433 ir_constant *const true_val = new(ctx) ir_constant(true);
3434 ir_assignment *const set_break_var =
3435 new(ctx) ir_assignment(deref_is_break_var,
3436 true_val,
3437 NULL);
3438
3439 instructions->push_tail(set_break_var);
3440 }
3441 else {
3442 ir_loop_jump *const jump =
3443 new(ctx) ir_loop_jump((mode == ast_break)
3444 ? ir_loop_jump::jump_break
3445 : ir_loop_jump::jump_continue);
3446 instructions->push_tail(jump);
3447 }
3448 }
3449
3450 break;
3451 }
3452
3453 /* Jump instructions do not have r-values.
3454 */
3455 return NULL;
3456 }
3457
3458
3459 ir_rvalue *
3460 ast_selection_statement::hir(exec_list *instructions,
3461 struct _mesa_glsl_parse_state *state)
3462 {
3463 void *ctx = state;
3464
3465 ir_rvalue *const condition = this->condition->hir(instructions, state);
3466
3467 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3468 *
3469 * "Any expression whose type evaluates to a Boolean can be used as the
3470 * conditional expression bool-expression. Vector types are not accepted
3471 * as the expression to if."
3472 *
3473 * The checks are separated so that higher quality diagnostics can be
3474 * generated for cases where both rules are violated.
3475 */
3476 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3477 YYLTYPE loc = this->condition->get_location();
3478
3479 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3480 "boolean");
3481 }
3482
3483 ir_if *const stmt = new(ctx) ir_if(condition);
3484
3485 if (then_statement != NULL) {
3486 state->symbols->push_scope();
3487 then_statement->hir(& stmt->then_instructions, state);
3488 state->symbols->pop_scope();
3489 }
3490
3491 if (else_statement != NULL) {
3492 state->symbols->push_scope();
3493 else_statement->hir(& stmt->else_instructions, state);
3494 state->symbols->pop_scope();
3495 }
3496
3497 instructions->push_tail(stmt);
3498
3499 /* if-statements do not have r-values.
3500 */
3501 return NULL;
3502 }
3503
3504
3505 ir_rvalue *
3506 ast_switch_statement::hir(exec_list *instructions,
3507 struct _mesa_glsl_parse_state *state)
3508 {
3509 void *ctx = state;
3510
3511 ir_rvalue *const test_expression =
3512 this->test_expression->hir(instructions, state);
3513
3514 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
3515 *
3516 * "The type of init-expression in a switch statement must be a
3517 * scalar integer."
3518 *
3519 * The checks are separated so that higher quality diagnostics can be
3520 * generated for cases where the rule is violated.
3521 */
3522 if (!test_expression->type->is_integer()) {
3523 YYLTYPE loc = this->test_expression->get_location();
3524
3525 _mesa_glsl_error(& loc,
3526 state,
3527 "switch-statement expression must be scalar "
3528 "integer");
3529 }
3530
3531 /* Track the switch-statement nesting in a stack-like manner.
3532 */
3533 struct glsl_switch_state saved = state->switch_state;
3534
3535 state->switch_state.is_switch_innermost = true;
3536 state->switch_state.switch_nesting_ast = this;
3537
3538 /* Initalize is_fallthru state to false.
3539 */
3540 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
3541 state->switch_state.is_fallthru_var =
3542 new(ctx) ir_variable(glsl_type::bool_type,
3543 "switch_is_fallthru_tmp",
3544 ir_var_temporary);
3545 instructions->push_tail(state->switch_state.is_fallthru_var);
3546
3547 ir_dereference_variable *deref_is_fallthru_var =
3548 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3549 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
3550 is_fallthru_val,
3551 NULL));
3552
3553 /* Initalize is_break state to false.
3554 */
3555 ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
3556 state->switch_state.is_break_var = new(ctx) ir_variable(glsl_type::bool_type,
3557 "switch_is_break_tmp",
3558 ir_var_temporary);
3559 instructions->push_tail(state->switch_state.is_break_var);
3560
3561 ir_dereference_variable *deref_is_break_var =
3562 new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
3563 instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
3564 is_break_val,
3565 NULL));
3566
3567 /* Cache test expression.
3568 */
3569 test_to_hir(instructions, state);
3570
3571 /* Emit code for body of switch stmt.
3572 */
3573 body->hir(instructions, state);
3574
3575 state->switch_state = saved;
3576
3577 /* Switch statements do not have r-values.
3578 */
3579 return NULL;
3580 }
3581
3582
3583 void
3584 ast_switch_statement::test_to_hir(exec_list *instructions,
3585 struct _mesa_glsl_parse_state *state)
3586 {
3587 void *ctx = state;
3588
3589 /* Cache value of test expression.
3590 */
3591 ir_rvalue *const test_val =
3592 test_expression->hir(instructions,
3593 state);
3594
3595 state->switch_state.test_var = new(ctx) ir_variable(glsl_type::int_type,
3596 "switch_test_tmp",
3597 ir_var_temporary);
3598 ir_dereference_variable *deref_test_var =
3599 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3600
3601 instructions->push_tail(state->switch_state.test_var);
3602 instructions->push_tail(new(ctx) ir_assignment(deref_test_var,
3603 test_val,
3604 NULL));
3605 }
3606
3607
3608 ir_rvalue *
3609 ast_switch_body::hir(exec_list *instructions,
3610 struct _mesa_glsl_parse_state *state)
3611 {
3612 if (stmts != NULL)
3613 stmts->hir(instructions, state);
3614
3615 /* Switch bodies do not have r-values.
3616 */
3617 return NULL;
3618 }
3619
3620
3621 ir_rvalue *
3622 ast_case_statement_list::hir(exec_list *instructions,
3623 struct _mesa_glsl_parse_state *state)
3624 {
3625 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases)
3626 case_stmt->hir(instructions, state);
3627
3628 /* Case statements do not have r-values.
3629 */
3630 return NULL;
3631 }
3632
3633
3634 ir_rvalue *
3635 ast_case_statement::hir(exec_list *instructions,
3636 struct _mesa_glsl_parse_state *state)
3637 {
3638 labels->hir(instructions, state);
3639
3640 /* Conditionally set fallthru state based on break state.
3641 */
3642 ir_constant *const false_val = new(state) ir_constant(false);
3643 ir_dereference_variable *const deref_is_fallthru_var =
3644 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3645 ir_dereference_variable *const deref_is_break_var =
3646 new(state) ir_dereference_variable(state->switch_state.is_break_var);
3647 ir_assignment *const reset_fallthru_on_break =
3648 new(state) ir_assignment(deref_is_fallthru_var,
3649 false_val,
3650 deref_is_break_var);
3651 instructions->push_tail(reset_fallthru_on_break);
3652
3653 /* Guard case statements depending on fallthru state.
3654 */
3655 ir_dereference_variable *const deref_fallthru_guard =
3656 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
3657 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
3658
3659 foreach_list_typed (ast_node, stmt, link, & this->stmts)
3660 stmt->hir(& test_fallthru->then_instructions, state);
3661
3662 instructions->push_tail(test_fallthru);
3663
3664 /* Case statements do not have r-values.
3665 */
3666 return NULL;
3667 }
3668
3669
3670 ir_rvalue *
3671 ast_case_label_list::hir(exec_list *instructions,
3672 struct _mesa_glsl_parse_state *state)
3673 {
3674 foreach_list_typed (ast_case_label, label, link, & this->labels)
3675 label->hir(instructions, state);
3676
3677 /* Case labels do not have r-values.
3678 */
3679 return NULL;
3680 }
3681
3682
3683 ir_rvalue *
3684 ast_case_label::hir(exec_list *instructions,
3685 struct _mesa_glsl_parse_state *state)
3686 {
3687 void *ctx = state;
3688
3689 ir_dereference_variable *deref_fallthru_var =
3690 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
3691
3692 ir_rvalue *const true_val = new(ctx) ir_constant(true);
3693
3694 /* If not default case, ...
3695 */
3696 if (this->test_value != NULL) {
3697 /* Conditionally set fallthru state based on
3698 * comparison of cached test expression value to case label.
3699 */
3700 ir_rvalue *const test_val = this->test_value->hir(instructions, state);
3701
3702 ir_dereference_variable *deref_test_var =
3703 new(ctx) ir_dereference_variable(state->switch_state.test_var);
3704
3705 ir_rvalue *const test_cond = new(ctx) ir_expression(ir_binop_all_equal,
3706 glsl_type::bool_type,
3707 test_val,
3708 deref_test_var);
3709
3710 ir_assignment *set_fallthru_on_test =
3711 new(ctx) ir_assignment(deref_fallthru_var,
3712 true_val,
3713 test_cond);
3714
3715 instructions->push_tail(set_fallthru_on_test);
3716 } else { /* default case */
3717 /* Set falltrhu state.
3718 */
3719 ir_assignment *set_fallthru =
3720 new(ctx) ir_assignment(deref_fallthru_var,
3721 true_val,
3722 NULL);
3723
3724 instructions->push_tail(set_fallthru);
3725 }
3726
3727 /* Case statements do not have r-values.
3728 */
3729 return NULL;
3730 }
3731
3732
3733 void
3734 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3735 struct _mesa_glsl_parse_state *state)
3736 {
3737 void *ctx = state;
3738
3739 if (condition != NULL) {
3740 ir_rvalue *const cond =
3741 condition->hir(& stmt->body_instructions, state);
3742
3743 if ((cond == NULL)
3744 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3745 YYLTYPE loc = condition->get_location();
3746
3747 _mesa_glsl_error(& loc, state,
3748 "loop condition must be scalar boolean");
3749 } else {
3750 /* As the first code in the loop body, generate a block that looks
3751 * like 'if (!condition) break;' as the loop termination condition.
3752 */
3753 ir_rvalue *const not_cond =
3754 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3755 NULL);
3756
3757 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3758
3759 ir_jump *const break_stmt =
3760 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3761
3762 if_stmt->then_instructions.push_tail(break_stmt);
3763 stmt->body_instructions.push_tail(if_stmt);
3764 }
3765 }
3766 }
3767
3768
3769 ir_rvalue *
3770 ast_iteration_statement::hir(exec_list *instructions,
3771 struct _mesa_glsl_parse_state *state)
3772 {
3773 void *ctx = state;
3774
3775 /* For-loops and while-loops start a new scope, but do-while loops do not.
3776 */
3777 if (mode != ast_do_while)
3778 state->symbols->push_scope();
3779
3780 if (init_statement != NULL)
3781 init_statement->hir(instructions, state);
3782
3783 ir_loop *const stmt = new(ctx) ir_loop();
3784 instructions->push_tail(stmt);
3785
3786 /* Track the current loop nesting.
3787 */
3788 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
3789
3790 state->loop_nesting_ast = this;
3791
3792 /* Likewise, indicate that following code is closest to a loop,
3793 * NOT closest to a switch.
3794 */
3795 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
3796 state->switch_state.is_switch_innermost = false;
3797
3798 if (mode != ast_do_while)
3799 condition_to_hir(stmt, state);
3800
3801 if (body != NULL)
3802 body->hir(& stmt->body_instructions, state);
3803
3804 if (rest_expression != NULL)
3805 rest_expression->hir(& stmt->body_instructions, state);
3806
3807 if (mode == ast_do_while)
3808 condition_to_hir(stmt, state);
3809
3810 if (mode != ast_do_while)
3811 state->symbols->pop_scope();
3812
3813 /* Restore previous nesting before returning.
3814 */
3815 state->loop_nesting_ast = nesting_ast;
3816 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
3817
3818 /* Loops do not have r-values.
3819 */
3820 return NULL;
3821 }
3822
3823
3824 ir_rvalue *
3825 ast_type_specifier::hir(exec_list *instructions,
3826 struct _mesa_glsl_parse_state *state)
3827 {
3828 if (!this->is_precision_statement && this->structure == NULL)
3829 return NULL;
3830
3831 YYLTYPE loc = this->get_location();
3832
3833 if (this->precision != ast_precision_none
3834 && state->language_version != 100
3835 && state->language_version < 130) {
3836 _mesa_glsl_error(&loc, state,
3837 "precision qualifiers exist only in "
3838 "GLSL ES 1.00, and GLSL 1.30 and later");
3839 return NULL;
3840 }
3841 if (this->precision != ast_precision_none
3842 && this->structure != NULL) {
3843 _mesa_glsl_error(&loc, state,
3844 "precision qualifiers do not apply to structures");
3845 return NULL;
3846 }
3847
3848 /* If this is a precision statement, check that the type to which it is
3849 * applied is either float or int.
3850 *
3851 * From section 4.5.3 of the GLSL 1.30 spec:
3852 * "The precision statement
3853 * precision precision-qualifier type;
3854 * can be used to establish a default precision qualifier. The type
3855 * field can be either int or float [...]. Any other types or
3856 * qualifiers will result in an error.
3857 */
3858 if (this->is_precision_statement) {
3859 assert(this->precision != ast_precision_none);
3860 assert(this->structure == NULL); /* The check for structures was
3861 * performed above. */
3862 if (this->is_array) {
3863 _mesa_glsl_error(&loc, state,
3864 "default precision statements do not apply to "
3865 "arrays");
3866 return NULL;
3867 }
3868 if (this->type_specifier != ast_float
3869 && this->type_specifier != ast_int) {
3870 _mesa_glsl_error(&loc, state,
3871 "default precision statements apply only to types "
3872 "float and int");
3873 return NULL;
3874 }
3875
3876 /* FINISHME: Translate precision statements into IR. */
3877 return NULL;
3878 }
3879
3880 if (this->structure != NULL)
3881 return this->structure->hir(instructions, state);
3882
3883 return NULL;
3884 }
3885
3886
3887 ir_rvalue *
3888 ast_struct_specifier::hir(exec_list *instructions,
3889 struct _mesa_glsl_parse_state *state)
3890 {
3891 unsigned decl_count = 0;
3892
3893 /* Make an initial pass over the list of structure fields to determine how
3894 * many there are. Each element in this list is an ast_declarator_list.
3895 * This means that we actually need to count the number of elements in the
3896 * 'declarations' list in each of the elements.
3897 */
3898 foreach_list_typed (ast_declarator_list, decl_list, link,
3899 &this->declarations) {
3900 foreach_list_const (decl_ptr, & decl_list->declarations) {
3901 decl_count++;
3902 }
3903 }
3904
3905 /* Allocate storage for the structure fields and process the field
3906 * declarations. As the declarations are processed, try to also convert
3907 * the types to HIR. This ensures that structure definitions embedded in
3908 * other structure definitions are processed.
3909 */
3910 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3911 decl_count);
3912
3913 unsigned i = 0;
3914 foreach_list_typed (ast_declarator_list, decl_list, link,
3915 &this->declarations) {
3916 const char *type_name;
3917
3918 decl_list->type->specifier->hir(instructions, state);
3919
3920 /* Section 10.9 of the GLSL ES 1.00 specification states that
3921 * embedded structure definitions have been removed from the language.
3922 */
3923 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3924 YYLTYPE loc = this->get_location();
3925 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3926 "not allowed in GLSL ES 1.00.");
3927 }
3928
3929 const glsl_type *decl_type =
3930 decl_list->type->specifier->glsl_type(& type_name, state);
3931
3932 foreach_list_typed (ast_declaration, decl, link,
3933 &decl_list->declarations) {
3934 const struct glsl_type *field_type = decl_type;
3935 if (decl->is_array) {
3936 YYLTYPE loc = decl->get_location();
3937 field_type = process_array_type(&loc, decl_type, decl->array_size,
3938 state);
3939 }
3940 fields[i].type = (field_type != NULL)
3941 ? field_type : glsl_type::error_type;
3942 fields[i].name = decl->identifier;
3943 i++;
3944 }
3945 }
3946
3947 assert(i == decl_count);
3948
3949 const glsl_type *t =
3950 glsl_type::get_record_instance(fields, decl_count, this->name);
3951
3952 YYLTYPE loc = this->get_location();
3953 if (!state->symbols->add_type(name, t)) {
3954 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3955 } else {
3956 const glsl_type **s = reralloc(state, state->user_structures,
3957 const glsl_type *,
3958 state->num_user_structures + 1);
3959 if (s != NULL) {
3960 s[state->num_user_structures] = t;
3961 state->user_structures = s;
3962 state->num_user_structures++;
3963 }
3964 }
3965
3966 /* Structure type definitions do not have r-values.
3967 */
3968 return NULL;
3969 }